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Scientific Significance Statement

This study explores the drivers of bacterial diversity in inland saline lakes lacking marine connection, focusing on the “matter
of salt>—how different salt compositions influence planktonic microbial community composition. Despite their global abun-
dance and ecological importance, these aquatic systems remain much less studied than marine-related saline water bodies. To
address this knowledge gap, we generated a comprehensive dataset from published and unpublished studies, as well as con-
ducted targeted sampling campaigns in underexplored systems, with a particular focus on endorheic soda lakes. Our findings
provide novel insights into how the anionic composition of dissolved salts shapes microbial diversity in inland waters, clearly
distinguishing carbonate ion-dominated systems.

Abstract

While the influence of salinity on microbial diversity is well documented in marine and brackish ecosystems,
the impact of different dissolved inorganic ion types remains largely unexplored. In this study, we assessed how
ionic composition shapes planktonic bacterial community structure in inland saline aquatic habitats, compared
to the effects of salinity alone, spatial factors, and other environmental variables. We collected and analyzed
16S rRNA gene amplicon datasets from freshwater to hypersaline aquatic environments worldwide (375 samples
from 130 lakes). The composition of major ions explained more variability in bacterioplankton structure than
bulk salinity. Taxa contributing the most to the observed dissimilarity between communities included lineages
characteristic of specific habitat types, such as Actinobacteria acl in freshwater, Halomonadaceae in saline
waters, or Nitriliruptorales in soda- and soda-saline systems. Many of these indicator lineages for specific habitat
types were monophyletic, further underpinning ionic composition as a crucial eco-evolutionary driver of
aquatic microbial diversity.

*Correspondence: attila.szabo@slu.se

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Associate editor: Meryem Beklioglu

10f12


https://orcid.org/0000-0002-7777-8166
https://orcid.org/0000-0001-6226-1757
https://orcid.org/0000-0002-4265-1835
mailto:attila.szabo@slu.se
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Flol2.70088&domain=pdf&date_stamp=2025-12-14

Szabo et al.

Saline lakes are globally significant habitats, with a total
water volume comparable to all freshwater lakes and with a
surface area comprising 23% of all lakes (Messager
et al. 2016). While thalassic saline systems (i.e., waters of
recent marine origin) are relatively uniform in ionic
composition—dominated by Na* and Cl”—and therefore can
be adequately characterized by overall salt concentration,
athalassic saline waters exhibit broad variability in ionic com-
position and can thus be further classified based on the rela-
tive ratio of major ions (Hammer 1986; Sacco et al. 2021).
Many of these systems are situated in closed drainage
(endorheic) basins, where salt composition is primarily
influenced by weathering of local rocks and soils, rather than
the remnants of marine salts (Bayly 1967; Hammer 1986). The
cation composition of saline lakes is typically dominated by
Na', and dominance of Mg®" or Ca®" is rare. In contrast,
there is a notable diversity in anion composition, and while
Cl~ and SO4%~ are prevalent in most saline inland waters,
alkaline soda waters feature a dominance of carbonate ions
(HCO3~/CO527) (Williams 1998; Boros and Kolpakova 2018).
Elevated carbonate content leads to alkaline pH and low Ca*"
availability, which promotes high concentration of bioavail-
able phosphates (Toner and Catling 2020) that enhance pri-
mary production (Grant and Sorokin 2011; Boros et al. 2025).
Additionally, the often remarkably high dissolved organic car-
bon content can make these systems hotspots for microbial
organic carbon processing (Eiler et al. 2003; Boros et al. 2020).

Microbial community assembly in aquatic ecosystems is
governed by a combination of deterministic (environmental
selection) and stochastic (dispersal, drift, speciation) processes
that shape diversity patterns across spatial and environmental
gradients (Vellend 2010; Zhou and Ning 2017; Langenheder
and Székely 2011). For aquatic bacteria, external osmotic stress
constitutes one of the most cardinal environmental selective
factors that not only drives species sorting processes but also
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adaptive evolutionary processes and, consequently, microbial
diversity (Gunde-Cimerman et al. 2018; Paver et al. 2018;
Jurdzinski et al. 2023). As we previously demonstrated for bac-
terial isolates (Csitdri et al. 2022), the requirement for distinct
adaptive mechanisms to cope with the salinity stress imposed
by different ions (Banciu and Muntyan 2015) underscores the
significance of ionic composition as a critical selective force,
even at low salt concentrations. Nevertheless, in contrast to
the extensive body of literature on how salinity influences
microbial diversity (e.g., Lozupone and Knight 2007; Tam-
ames et al. 2010; Thompson et al. 2017) or how community
composition is structured along salinity gradients in thalassic
systems (e.g., Herlemann et al. 2011; Campbell and
Kirchman 2013; Paver et al. 2018), the influence of ionic com-
position on community assembly processes has not yet been
systematically explored.

To address this knowledge gap, we analyzed bacterial 16S
rRNA gene amplicon datasets from a range of inland aquatic
systems with varying salt content, with a particular focus on
soda lakes. Using multiple statistical approaches, we tested the
hypothesis that beyond total salt concentration, ionic compo-
sition is a major environmental filtering factor structuring
planktonic bacterial communities.

Materials and methods

Data collection and sampling

To ensure comprehensive data collection, we utilized two
complementary strategies: (1) data retrieval from sequence
databases and literature sources, and (2) additional sampling
from various athalassic saline aquatic environments (Table 1;
Supporting Information Table S1; Supporting Information
Fig. S1). The comprehensive search of publicly available data-
bases was performed by querying the NCBI, EBI, and IMG/M
databases with terms “saline lake,” “alkaline lake,” “soda lake,”

Table 1. Geographic origin, ionic composition type, and source studies for 16S rRNA gene datasets used in this study. Source studies:
1: Kambura 2017; 2: Lavrentyeva et al. 2020; 3: Matyugina et al. 2018; 4: Ji et al. 2019; 5-12: Sinclair et al. 2015; Szabé et al. 2017,
2020, 2022; Mentes et al. 2018; Korponai et al. 2019; Szuréczki et al. 2020; Marton et al. 2023b; 13: Zorz et al. 2019; 14: Edwardson

and Hollibaugh 2018; 15: Phillips et al. 2021.

Geographic region lonic composition type No. of samples Source
Great Rift Valley (Africa) Soda 5 1

North Kazakhstan (Asia) Saline, freshwater 14 This study
Balkhash-Alakol Basin (Asia) Saline, soda, soda-saline 34 This study
West and South Kazakhstan (Asia) Saline, soda-saline 9 This study
Barguzin Valley (Asia) Saline 1 2
Transbaikalia (Asia) Soda 6 3

Tibetan Plateau (Asia) Freshwater, soda, soda-saline, saline 20 4
Pannonian Basin (Europe) Freshwater, soda, soda-saline, saline 262 This study, 5-12
Cariboo Plateau (North America) Soda 15 13

Great Basin (North America) Soda 10 14,15

2012
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“soda pan,” “soda,” “saline,” and “alkaline.” Additionally, we
manually reviewed the results and searched for peer-reviewed
publications that referred to sequence data in Google Scholar
and Web of Science databases. From the hits evaluated as of
15" November 2022, we excluded entries without available
sequences that lacked proper metadata description or con-
tained too few sequences (<2500 reads) after pipeline
processing. For deeper water bodies, we included only
sequences obtained above the chemo- and oxycline. Detailed
descriptions of the source study sites are provided in
Supporting Information Text S1 and Supporting Information
Table S1.

We limited our analyses to sequence data generated by
PCR amplification of the V4 or V3-V4 regions of the bacterial
16S tRNA gene, as these were the most commonly targeted
regions. We used the V4 dataset for broader site representa-
tion and the V3-V4 dataset to provide more highly resolved
taxonomic affiliation.

In addition to data retrieval, from 2012 to 2021, we con-
ducted extensive sampling campaigns across several inland
aquatic systems in Central and Eastern Europe, as well as in
Central Asia (Supporting Information Table S1). The sampling
sites were selected to encompass a diverse range of saline con-
ditions, from freshwater lakes to hypersaline environments,
with salinities spanning from < 0.5 to > 150 g/L and pH values
ranging from 7.0 to 10.7. Water samples were collected from
the near-surface layer of the water columns.

Ionic composition classification of sampling sites

Freshwater sites were provided as low salinity references,
and their collection was limited to lakes sampled during the
same campaigns as nearby saline systems. Freshwater habitats
were defined as aquatic environments with low salinity, typi-
cally below 1 g/L (Sacco et al. 2021) based on previously publi-
shed data. However, salinity thresholds reported in the
literature may vary depending on classification criteria
(Supporting Information Fig. S2). Saline sites were categorized
as described in Boros and Kolpakova (2018) according to their
dominant anion equivalent percentage (e%). Accordingly,
sodium brines were classified into the following categories:
(1) soda type: carbonate ions have > 25 €% with this species
being first in the rank of anions; (2) soda-saline type: carbon-
ate ions >25 e%, but with other anions in higher rank;
(3) saline type: chloride or sulfate dominate with carbonates
< 25 e% (Supporting Information Figs. S2, S3).

Description of sampling sites

We specifically targeted underrepresented sites such as
saline lakes in Kazakhstan and soda and saline waters of
Austria, Hungary, Romania, and Serbia.

Kazakhstan is the 9™ largest country in the world, featur-
ing an extraordinary diversity of aquatic habitats and wet-
lands (Boros et al. 2017), yet planktonic prokaryotic
communities of its saline-alkaline lakes remain scarcely stud-
ied. We targeted four regions of the country. In Northern
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Kazakhstan, during April-May 2015, 2 freshwater and
12 saline lakes were sampled (Boros et al. 2017). Seven sam-
ples were collected from different sites of Lake Balkhash in
September 2018. In 2021, 27 additional sites were sampled
along the southeastern shore of Lake Balkhash, as well as from
Lake Alakol and adjacent saline lakes (Boros et al. 2025).
Finally, in 2018-2019, we collected nine samples from saline-
alkaline water bodies in West and South Kazakhstan.

The Pannonian Steppe, the westernmost part of the Eur-
asian steppe and one of the largest grasslands in Europe, fea-
tures numerous soda lakes, pans (shallow lakes with a high
area-to-volume ratio), and a few saline waters. Between 2012
and 2021, several sampling campaigns have been conducted
to investigate the spatiotemporal diversity of their planktonic
microbial communities (Felféldi 2020; Somogyi et al. 2022).
The present study incorporated samples collected during this
period from various locations, including soda pans in the Kis-
kunsag National Park in Hungary (Szabd et al. 2017, 2020;
Marton et al. 2023a), Lake Neusiedler/Fert6 (Szurdczki
et al. 2020), and the Seewinkel/Fertézug region (Sinclair
et al. 2015; Szabo et al. 2022; Marton et al. 2023b). Additional
samples were collected from a transect spanning Austria to
Serbia (2018), during a monitoring program of soda and saline
lakes in Hungary (2021) (Boros et al. 2025), from Lacul Ursu
and Lacul “Plus” hypersaline lakes in Romania (2015), and
25 freshwater sites from the Pannonian (Carpathian) Basin
(Anda et al. 2025) were also included to compare bacterial
communities within the same biogeographic region. Details
of sample collection and processing are given in the
Supporting Information Text S2.

Bioinformatic and statistical analyses

Raw sequence data from various platforms were processed
with mothur (Schloss et al. 2009) to generate a unified opera-
tional taxonomic unit (OTU) table with reads clustered at
99% sequence identity, minimizing inherent biases in diver-
sity estimates for data originating from diverse sources
(Johnson et al. 2019; Schloss 2021). Quality filtering, adapter
removal, and chimera check were performed, with subsequent
taxonomic assignments based on Silva SSU 138 (Quast
et al. 2012) and the FreshTrain database (Rohwer et al. 2018).
Non-target sequences (e.g., Archaea, chloroplasts) were
removed, and OTUs were clustered using OptiClust (Westcott
and Schloss 2017). Rarefaction was applied to standardize
sequencing depth across samples. OTUs responsible for dis-
similarity among samples of contrasting ionic composition
type were identified using similarity percentage (SIMPER)
analysis based on Bray—Curtis similarity. The PAST3 software
(Hammer 2001) was used to determine which OTUs were
responsible for the dissimilarity among ionic composition sam-
ple types. Ordination and statistical analyses were conducted in
R 4.3.0 (R Core Team 2023). The “ggplot2” package (Wickham
et al. 2016) was used for data visualization. Ternary plots were
generated by “ggtern” (Hamilton and Ferry 2018), while
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nonmetric multidimensional scaling (NMDS), “envfit,” PER-
MANOVA (using “adonis2” function), and variance partitioning
analyses were carried out by the “vegan” package
(Oksanen 2022). A Procrustes test was employed to assess dissim-
ilarities in the ordination patterns between the V4 and V3-V4
datasets. Distance-decay relationships were investigated based on
Bray-Curtis similarity, enabling the examination of community
similarity as a function of geographic distances between sam-
pling sites, calculated using the Haversine formula from the
“geosphere” library (Hijmans et al. 2017). A Mantel test was con-
ducted to test for correlations between community dissimilarity
and geographic distance. Three-way PERMANOVA tested differ-
ences in planktonic bacterial community composition across
salinities, ionic types, and geographic regions, while variance
partitioning estimated the relative contributions of environmen-
tal, spatial, and methodological factors to variation in commu-
nity composition (Supporting Information Text S2). Variance
inflation factors (VIF) were calculated for samples with complete
metadata to assess collinearity among environmental parameters
and ion equivalent percentages using the “vif.cca” function. Sig-
nificant Pearson correlations (p < 0.05) were identified between
environmental parameters and visualized with “corrplot” (Wei
et al. 2017). Indicator OTUs characteristic of specific ionic com-
position types were identified using the “indicspecies” package
(Caceres and Legendre 2009). A phylogenetic tree was con-
structed for indicator OTUs wusing “clearcut” (Sheneman
et al. 2006) implemented in the mothur program and visualized
with “ggtree” and “ggtreeExtra” (Yu et al. 2017). Further details
of the analyses are provided in Supporting Information Text S2,
S$3 and Szabé (2025).

Results and discussion

High-quality amplicon sequences were obtained from
375 samples collected at 130 sites in ten geographic regions
on four continents (Africa: 4, Asia: 84, Europe: 262, and North
America: 25) (Fig. 1A; Table 1; Supporting Information
Fig. S1). Thirty-five samples were collected from lakes classi-
fied as freshwater according to Sacco et al. (2021) (< 1.0 g/L
salinity), while 340 samples were from athalassic saline lakes
(1.0-248 g/L). Based on their anionic composition, the saline
sites could be further classified as soda (n= 246,
Na*-HCO;37-CO3%7), soda-saline (n =28, Na™-Cl~ or Na'-
SO4%~ > HCO;37-CO3%™ > 25 e%) or saline lakes (n = 66, Na*-
Cl™ or Na*-S0,>") (Fig. 1; Supporting Information Fig. S2;
Supporting Information Table S1).

VIF calculated for a data subset with detailed available envi-
ronmental variables (n = 115) showed no collinearity between
ionic composition and environmental parameters such as
depth, temperature, pH, salinity, dissolved oxygen,
chlorophyll-a, and dissolved organic carbon (DOC). Strong
collinearity was observed among the different dissolved ions,
particularly between Na®™ and Mg?", as well as between the
concentration of dissolved ions and salinity. However, no
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collinearity was detected between salinity and ion equivalent
percentages. Correlation analysis failed to detect any strong
(Ir| > 0.7) correlation between ion equivalent percentages and
environmental parameters, and only identified one moderate
(0.5 <] < 0.7) correlation between pH and Na + e%. Overall,
these results suggest that ionic composition is largely indepen-
dent of other environmental variables typically associated
with driving microbial diversity (e.g., nutrients, DOC, pH),
underpinning its importance as a major community structur-
ing selective factor.

Despite the global distribution of sampling sites, bacterial
community composition was primarily structured by the spe-
cific ionic composition of the waters (Fig. 2; Supporting Infor-
mation Figs. S4, S7). Communities were also influenced by
the salinity gradient (Fig. 2A,B; Supporting Information
Fig. S6), with salinity identified as a significant factor by the
PERMANOVA, even though it only explained 1.2% of the var-
iance in community composition (Fig. 3A). Soda lake commu-
nities from the American continent and, to some extent, from
Africa, tended to separate from Eurasian sites along the salin-
ity gradient (Fig. 2; Supporting Information Figs. S6, S7),
reflecting their generally higher salinities, site-specific features
such as the dominance of mat-forming cyanobacteria
(e.g., Nodosilinea in the Cariboo Plateau samples), with a possi-
ble additional contribution of geographic distance (Supporting
Information Fig. S8). In contrast, despite distances of several
thousands of kilometers, certain soda lake communities from
Africa, Asia, and Europe were similar in composition, indicating
that geographic distance alone does not fully explain commu-
nity separation. Other environmental factors such as pH, DOC,
water temperature, and depth were also significantly fitted on
the NMDS plot, and according to the variance partitioning
analysis (VPA), the three parameters which had been reported
for all samples (salinity, pH, sampling depth) explained 3.1% of
the total variance (Fig. 3B). Overall, these results suggest a pri-
mary role of deterministic processes in the assembly of bacterial
communities in inland saline lakes.

Geographic region explained a large part of the variance in
community composition when using PERMANOVA (10.9%,
Fig. 3A) and to a minor part using VPA, where spatial vectors
explained merely 3.1% variance (Fig. 3B), or by the distance
decay analyses (Supporting Information Fig. S8). The latter
showed only a weak positive correlation (Mantel r,; = 0.33,
p <0.01) with geographic distance and often showed greater
similarity between samples from distant sites than between
time series samples from the same site. This is supported by
the previously reported high seasonal turnover of bacterial
communities in these habitats (Szab6 et al. 2020; Marton
et al. 2023b; Pellegrinetti et al. 2024). A likely explanation for
the contrasting results of the PERMANOVA could be method-
ological differences, as samples from the same region were
often processed within the same project or by the same group,
suggesting that these regional differences might reflect varia-
tions in sampling and sample processing (e.g., sample
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Fig. 1. lonic composition and geographic location of samples. (A) Map showing the geographic origins of the samples. (B, C) Ternary diagrams of the
equivalent percentage (e%) contribution of major dissolved ions to total ion content in the samples.

collection, DNA extraction, PCR amplification) rather than
true spatial processes such as dispersal. In addition, we note
that PERMANOVA tests categorical differences, in contrast to
variance partitioning or distance-decay analyses, which assess
continuous environmental or spatial contributions to commu-
nity variation. No differences in community structure were
observed between the V3-V4 and V4 datasets, as shown by
the Procrustes test (Supporting Information Fig. S9), which
indicated a strong and significant similarity (r=0.989,
p<0.01), and only a minimal fraction of the variance
(R*=0.014, p < 0.01) was explained by primer choice indicat-
ing a negligible effect of primer choice in this study. Future
efforts should aim to employ standardized methods to facili-
tate more comprehensive comparisons.

The equivalent percentage (e%) of all major ions (Na*, K*,
Ca**, Mg?*, Cl, SO,>7, HCO;3™ + CO3>") was significantly
fitted on the NMDS plot. As expected, soda and soda-saline

communities aligned along Na*, and HCO3;~ + CO32 vectors,
while saline lakes aligned along Cl~ and SO,*” vectors
(Fig. 2B). The ionic composition of the samples consistently
explained a significant and high proportion of community
variance, whether considered as ionic composition type
(PERMANOVA: 5.8%, Fig. 3A) or as ion equivalent percentages
(VPA: 4.1%, Fig. 3B).

Our findings emphasize that bacterial community compo-
sition is influenced not only by salinity, as a measure of total
dissolved salts, but also by the ionic composition of the salts,
independently of other environmental factors and geographic
distance. In athalassic saline systems, variable amounts of spe-
cific dissolved ions require distinct cellular adaptation strate-
gies, creating selective barriers for microorganisms adapted to
similar salinity levels but different ionic compositions (Stevens
and Cockell 2020; Waajen et al. 2020; Csitari et al. 2022). Such
adaptations may include modifications in cell wall composition

S5of12

859017 SUOLLILLIOD BAIERID 3|gedtjdde ay) Aq pausenob a1e Sao1e O ‘88N JO SajnJ Joj Afeiq1 T 8UlUO AB|IA UO (SUOIPLOD-PUB-SLWIBILIY A8 | AReIq U IUO//SANL) SUORIPUOD PU. SIS 1 8L} 39S *[9202/T0/T] Uo ArigiTauluo AB)IM ‘Saoueis IMnouby JO AISAIUN USIPEMS AJ 8800L ZI01/200T OT/I0p/LL0d a1 Afeiq 1 puijuo'sqndo se/sdiy wouy pepeoiumod ‘T ‘9202 ‘2v2e8LEZ



Szabo et al.

A v

NMDS2

NMDS1

Salt composition and bacterial diversity

Chemical type

O freshwater
@ saline
O soda
O soda-saline

Continent
YV Africa
/\ America

O Asia
O Europe

NMDS2

Cyanobiaceae
Rhodobacteraceae
Cyanobiaceae
Nitriliruptoraceae AA

Nitriliruptoraceaeyy @
llumatobacteraceae E
®
v A
- (]
A' » &
O ¢

° v
A
& o Rhodobacteraceae
8 a Hal L d
S m alomonadaceae
z ) ..
[m ] ¢
(]
(] (]
]
]
Comamonadaceae

NMDS1

NMDS1

Fig. 2. Comparison of planktonic freshwater and different athalassic saline inland water bacterial communities. NMDS ordination of bacterial OTUs
(stress 0.19), defined at 99% sequence identity for the V4 region of the 16S rRNA gene and rotated along the salinity gradient. (A) Salinity (in g/L) is pro-
jected as gray contours. (B) Significantly fitted (p < 0.05) environmental variables are represented by green vectors, while significantly fitted ion equiva-
lent percentages are depicted in red. (€) OTUs responsible for 20% dissimilarity between ionic composition types were identified according to SIMPER
analysis and shown in gray by the name of the closest affiliated taxa (family level or above).

to enhance or inhibit ion attraction, plasma membrane lipid
composition to regulate ion permeability, and membrane
proteins that selectively bind specific ions (Banciu and
Muntyan 2015). Specialized ion transporters are also crucial

for preventing toxic ion accumulation, balancing internal pH,
and regulating osmotic pressure. Additionally, the ability to uti-
lize sodium-motive force for bioenergetics and different osmo-
regulation strategies—such as intracellular K* accumulation or

60f12

85UL01 7 SUoWILLD 8AIEeID 3|qeot|dde ay) Aq peuenob a1e sejone O ‘8sn J0 Sa|n. 1oy Akeiqi8UlUO 8|1 UO (SUORIPUOD-PUE-SWS)/LI0Y A8 | AR1q 1 U1 IUO//SANL) SUOTPUOD PUe WIS 1 8L 89S *[9202/T0/T] Uo AriqiTauliu A8|iM ‘seoueids eInnouby JO AISBAIUN UsIpemS Aq 8800L Z[01/200T 0T/10p/Liod A8 | im Are.q i puljuo'sqndo sey/:sdny wouy pepeoiumod ‘T ‘9202 '2v2e8LEe



Szabo et al.

Salt composition and bacterial diversity

A

Salinity lonic composition

type

Geographic region Residuals = 0.707
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Spatial Residuals =0.824

Fig. 3. Variance in bacterial community composition explained by ionic composition and other parameters. (A) Variance significantly explained by salin-
ity, ionic composition types, and geographic regions based on R? of PERMANOVA tests (p < 0.01). (B) Variance explained according to VPA by significant
environmental parameters (salinity, pH, and sampling depth), ion equivalent percentages, and geographic distance represented by positive significant

eigenvectors derived from a distance-based Moran’s eigenvector maps analysis.

the synthesis and uptake of organic compatible solutes—
determine which microorganisms can persist under given ionic
conditions (Banciu and Sorokin 2013; Banciu and
Muntyan 2015). The similarity of bacterial communities in geo-
graphically distant sites that feature comparable ionic composi-
tions (Supporting Information Fig. SS5) implies strong species
sorting processes and unrestricted dispersal of aquatic bacteria
as shown in previous studies (Jurdzinski et al. 2023). Our
dataset predominantly featured sites with Na™ as the dominant
cation, with limited representation of Mg®*-dominated lakes
due to the scarcity of such samples in databases. We assume
that CaCl, and MgCl, rich inland saline sites (Sacco
et al. 2021) are also distinct in bacterial community composi-
tion compared to Na™ dominated waters, as chaotropic salts,
such as Mg®" and Ca*" chloride salts, are known to destabilize
macromolecules and disrupt cellular functions (Hallsworth
et al. 2007; Ball and Hallsworth 2015; Gutiérrez-Preciado
et al. 2024). These further underpin the pivotal role of ionic
composition in shaping microbial diversity.

More than 80% (385 out of 470) of the indicator OTUs
were specific to a single environment type (freshwater, soda,
soda-saline, or saline). In contrast, less than 20% (85 OTUs)
were associated with multiple environment types, with most
(74 OTUs) shared between soda and soda-saline environments.
Monophyletic bacterial lineages were identified in association
with specific ionic composition types. The principal taxa driving
the observed community differences were acl-related
actinobacteria in freshwaters and Halomonadaceae in saline
samples (Figs. 2C, 4), both well-known characteristic groups of
these respective habitats (Ghylin et al. 2014; de la Haba
et al. 2023). Soda and soda-saline lakes were distinguished by
other planktonic actinobacteria (e.g., aclll, Lunal,
Nitriliruptoraceae) as well as by “Cyanobiaceae,” Methylophilaceae,

and Rhodobacteraceae, all of which are lineages previously
described from these habitats (Vavourakis et al. 2019; Szabd
et al. 2020; Fazi et al. 2021) (Fig. 2C; Supporting Information
Fig. S7). Some saline and freshwater indicator OTUs were
monophyletic, exemplified in freshwaters by the betl lineage
(Pseudomonadota) and Frankiales (Actinomycetota), and in
saline waters by Flavobacteriaceae, Idiomarinaceae, and
Alteromonadaceae (Fig. 4). In contrast, there were no mono-
phyletic lineages exclusively comprising taxa from soda or
soda-saline lakes. However, several monophyletic lineages such
as Nitriliruptorales, Rubritaleaceae, Gemmatimonadota, and
Cyclobacteriaceae contained representatives only from soda
and soda-saline types (Fig. 4). Our study did not incorporate
16S tRNA gene composition data on Archaea, due to the lim-
ited availability of such datasets. However, Archaea, especially
the class Halobacteria, are well-known to be key members of
microbial communities in hypersaline environments, often
thriving under extreme ionic and osmotic conditions
(Oren 2024). Future endeavors to more broadly assess the com-
position of the entire prokaryotic community could shed fur-
ther light on differences between sites with varying ionic
compositions.

In conclusion, our comprehensive analysis of 16S rRNA
gene amplicon datasets supports the hypothesis that the
composition of major dissolved ions is a substantial selec-
tive factor that influences the assembly of planktonic
microbial communities in athalassic habitats, potentially
surpassing the importance of total salinity. Samples with
different ionic composition were distinguished by charac-
teristic microbial taxa, often represented by monophyletic
lineages, highlighting ionic composition as a strong selec-
tive force with evolutionary implications. Our findings pro-
vide a foundation for future studies on the genomic and
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samples, weighted by the abundance of each indicator is represented by greenish-blue bars in the outermost circle.

physiological adaptations to ionic stress and underscore the
importance of considering ionic composition alongside
salinity, particularly when studying saline systems of non-
marine origin.
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