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Abstract Our study found that sediment heavy
metal content is the primary factor influencing heavy
metal uptake by emergent macrophyte species. This
research aimed to quantify the concentrations of
heavy metals and metalloids (As, Cd, Cu, Pb, Si, and
Zn) in emergent macrophytes—Lysimachia thyrsi-
flora, Sagittaria sagittifolia, Phragmites australis,
Glyceria fluitans, Carex nigra, Equisetum fluviatile,
and Juncus effusus—as well as in the corresponding
water and sediment samples from Orrefors, Léen,
and Emmaboda, to assess their net accumulation and
translocation capacity for application in phytoreme-
diation management. Our results revealed that the
sediment As concentration at the Emmaboda site
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was 23 times higher than the Swedish Environmen-
tal Protection Agency (Swe EPA) guideline value.
At the Orrefors and Lien sites, the concentrations of
heavy metals and the metalloid in water followed the
descending order: Zn>Pb>Cu>As>Cd. Among
the studied species, L. thyrsiflora was the most abun-
dant across locations and exhibited the highest As
accumulation (1,603 mg/kg) in its roots, with mini-
mal translocation to its shoots. Si and Zn showed rel-
atively high translocation to the shoots in most of the
surveyed emergent macrophytes, regardless of loca-
tion. This preliminary study indicates the substantial
heavy metal accumulation in L. thyrsiflora and J. effu-
sus. In combination with their limited translocation
to the shoots, this underscores their strong potential
for phytoremediation-based management of contami-
nated glasswork sites.

Keywords Arsenic - Emergent - Glassworks -
Macrophyte - Nature-based solutions - Sediment -
Phytoremediation

1 Introduction

Heavy metal contamination represents a significant
global concern due to its environmental persistence,
toxicity, and tendency to accumulate in organisms
(Liu et al., 2022; Xiao et al., 2022). The adverse
effects of heavy metals and metalloids, such as lead
(Pb), chromium (Cr), cadmium (Cd) and metalloids,
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such as arsenic (As) on human health have been well
documented (Greger & Landberg, 2015; Sandhi et al.,
2018a, 2022), and include chronic and acute diseases,
such as gastrointestinal problems, nervous system dis-
orders, skin lesions and disruption of the reproduc-
tive system (Balali-Mood et al., 2021; Sandhi et al.,
2022). Heavy metals from contaminated sites are
highly mobile in the soil and tend to leach into the
surrounding aquatic sphere (Dhote & Dixit, 2009; Li
et al., 2018). Climate change exacerbates this issue by
increasing the frequency of high precipitation events,
stormwater runoff, and flooding, which transport even
more toxic pollutants into adjacent water bodies, such
as wetlands (Gill et al., 2014; Ponting et al., 2021;
Qiao et al., 2023). Once heavy metals enter aquatic
ecosystems, they become bioavailable, and owing
to their toxicity, they may harm aquatic organisms
and ecosystems (Goldyn et al., 2018). According to
the Swedish Environmental Protection Agency (Swe
EPA), a national Swedish inventory of contaminated
sites (1999-2015) identified approximately 85,000
polluted locations (Swedish EPA, 2021). In recent
years, the environmental management of contami-
nated soil has received increasing attention, and the
United Nations (UN) has incorporated this issue
into its Sustainable Development Goals (SDG 11:
Sustainable Cities and Communities) (UN Gen-
eral Assembly, 2015). According to a World Health
Organization (WHO) report, approximately 694,000
sites in 29 countries located in the European Union
(EU) have been officially registered in national or
regional inventories for future contamination assess-
ment (WHO, 2021).

Aquatic macrophytes play a vital role in aquatic
ecosystems, particularly wetlands. They serve as food
for aquatic bacteria, invertebrates, and vertebrates and
as biofilters for various heavy metals and metalloids
(Marchand et al., 2010; Nabi, 2021; Sandhi et al.,
2018a). Heavy metal accumulation rates in macro-
phytes greatly depend on plant species (Galal et al.,
2017), with high Pb and Cr accumulation capabilities
reported in Salvinia natans (Lima et al., 2016); high
iron (Fe), copper (Cu), zinc (Zn), manganese (Mn),
Cr, and Pb accumulation capabilities reported in
Pista stratiotes and Spirodela intermedia (Miretzky
et al., 2004); and high accumulation capability for Cr,
Cd, and Pb in Salvinia herzogii and Pistia stratiotes
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(Paris et al., 2005). High metal-specific accumula-
tion capabilities have been observed in Typha latifo-
lia and Elodea canadensis (for Cr, As, Zn, Cu, and
Cd; Fritioff & Greger, 2003; Rahman & Hasegawa,
2011), Leptodictyum riparium (for Cu, Zn, and Pb;
Basile et al., 2011), Warnstofia fluitans (for As; San-
dhi et al., 2018a, 2018b), Azolla pinnata (for Cu and
Pb; Saralegui et al., 2021) and Phragmites australis
(for Fe, cobalt (Co) and nickel (Ni); Abdelaal et al.,
2021). In addition to its high accumulation capacity,
fast heavy metal uptake has been observed in several
aquatic plant species, and can be used for environ-
mental management by phytoremediation (Sandhi
et al., 2018a; Schiick & Greger, 2020).

Phytoremediation, which involves the uptake and
degradation of contaminants by plants, is an environ-
mentally friendly approach and a nature-based solu-
tions (NBS) for managing contaminated sites (Mench
et al., 2009; Solomun et al., 2024). Macrophytes are
known for their potential to be used as both rhizo-
filters (uptake metals in both root and shoot parts of
aquatic plant species) and phytostabilizers (prevent-
ing heavy metal mobility by adsorption and complex-
ation in plant roots) of heavy metals in contaminated
water and sediment-soil systems (Galal et al., 2017;
Rai, 2009). However, the phytoextraction and phyto-
stabilization capacities of different macrophyte spe-
cies depend on their bioconcentration factor (BCF)
and translocation factor (TF) for each heavy metal
(Abdelaal et al., 2021).

The glassworks region “kingdom of crystal” (glas-
riket) is one of Sweden’s most heavily metal-contam-
inated regions, with more than 50 glass-producing
sites with total metal concentrations of 16,900 mg/
kg Pb, 180 mg/kg Cd and 2600 mg/kg As reported in
glass work site soils (Alriksson et al., 2023; Hagner
et al., 2018). To the best of our knowledge, there are
no previous field or laboratory studies that assessed
heavy metal concentrations and accumulation in
emergent macrophytes in wetland systems of contam-
inated glasswork sites in Sweden. This preliminary
study aimed to quantify the heavy metal content of
sediment—water and emergent macrophyte species at
contaminated glasswork sites. Specifically, this study
investigated the net accumulation and translocation of
heavy metals and metalloids in emergent macrophytes
to evaluate their phytoremediation potential.
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2 Materials & Methods
2.1 Sampling Sites

The glassworks industrial region in southeast Swe-
den (Smaland County) was selected for this investi-
gation because of heavy metal mobilization from the
contaminated sites to the adjacent aquatic system
(Augustsson et al., 2016). Three study sites were
selected based on earlier glasswork-related investi-
gations conducted by the Kalmar County Admin-
istrative Board (Thunberg, 2020). Sampling was
performed at three locations in May 2022: Orrefors,
Lden, and Emmmboda (Fig. 1 in the supplementary
file). During the summer period (June—August, 2022),
the average day time temperatures in Kalmar County
was 15.7 °C. During the winter (December-Febru-
ary, 2021-22), average daytime temperatures was
—3.23 °C (SMH]I, 2025).

2.1.1 Orrefors

In the Orrefors area, glasswork related activities were
performed from 1897 until 2014, and it has been esti-
mated that 17 tons of As, 62 tons of Pb, and 1.6 tons
of Cd are contained in the soils of that region. (Thun-
berg, 2020). The landfills from this glasswork site were
decommissioned in 1970, and natural vegetation with
the dominant tree species were spruce (Picea spp., fam-
ily Pinaceae) and pine (Pinus spp., family Pinaceae),
have reestablished themselves (Hagner et al., 2018).

2.1.2 Lden

The Lake Léen in the Lessebo municipality is located
between different glasswork factories. One of the old-
est glassware-producing factories, Kosta, is located
approximately 16 km northeast of Lake Lien and this
lake has also been used for angling.

2.1.3 Emmaboda

The Emmaboda municipality has a long history of
glasswork-related activities, with several glass-pro-
ducing factories established in the mid-nineteenth
century (Emmaboda Kommun, 2022). Confirmed
glasswork activities in Emmaboda occurred from
1919 to 1930 and from 1934 to 1978 (Alriksson

et al., 2023). The soils from several locations in
the Emmaboda municipality were classified as
‘severely contaminated’ for As, Pb, Cu, Zn, and Cd
and ‘highly contaminated’ for As in groundwater by
the Swedish EPA (Hoglund et al., 2007).

2.2 Sample Collection and Processing
2.2.1 Sediment

Three sediment samples of approximately 0.5
L (including water) from a wetland location
within each study site were collected (depth from
0.2-0.7 m below the water surface) using a hand
spade. Depending on the location, the distance
between replicate was 5—-15 m. The samples were
stored in plastic boxes in the field and transported
to the Environmental Chemistry Laboratory of the
Department of Biology and Environmental Sci-
ence, Linnaeus University (LNU), Kalmar, Sweden.
Debris, rocks, and plant materials were removed
from the sediment samples before drying at 60 °C
for 72 h. The soil samples were stored in numbered
plastic bags at room temperature for further heavy
metal analysis in an accredited laboratory. The pH
of the sediment was measured at the Environmental
Chemistry Laboratory, LNU, using a pH meter (HI
2211pH/ORP meter, Hanna Instruments, USA) by
adding 1 g of sediment to 10 mL of water (Greger &
Landberg, 2015).

2.2.2 Water

Three wetland water samples (0.5 L for each sam-
ple) were collected from each study site. Before col-
lection, the water-collecting vessel was rinsed thrice
at the collection point. Water samples were col-
lected to a depth of 0.3-0.5 cm above the sediment
surface, stored in plastic bottles and transported to
the Environmental Chemistry Laboratory, LNU.
After measuring the pH (HI 2211pH/ORP meter,
Hanna Instruments, USA), the water samples were
filtered through a 0.45 pym membrane filter, 0.03%
HNO; (7.5 pyL HNOj-analytical grade in 25 mL
water) was added, and the samples were stored in a
refrigerator (4 °C) until analysis.
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2.2.3 Macrophytes

Emergent macrophyte species were collected from
the same three locations as water and sediment sam-
ples. The emergent macrophyte species collected were
tufted yellow-loosestrife (Lysimachia thyrsiflora),
arrowhead (Sagittaria sagittifolia), common reed
(Phragmites australis), floating sweet grass (Glyceria
fluitans) from Orrefors; tufted yellow-loosestrife (Lysi-
machia thyrsiflora), common sedge/black sedge (Carex
nigra), water horsetail (Equisetum fluviatile) from Laen
and tufted yellow-loosestrife (Lysimachia thyrsiflora),
floating sweet grass (Glyceria fluitans) and common/
soft rush (Juncus effusus) from Emmaboda. A total
of seven emergent macrophyte species were sampled.
Information on their taxonomy (plant family) and
growth duration is provided (Supplementary Table 1).
Macrophyte species were selected on the basis of their
availability and abundance at the study site. Three rep-
licates of each plant species were collected from each
site for heavy metal and metalloid content analysis.

Plant samples were collected from each site,
cleaned, rinsed from sediment and debris with tap
water, and gently dried using a paper towel. Root and
shoot parts were separated using scissors, and fresh
weights were measured. Plant samples were placed in
an oven at 60 °C for 72 h to obtain dry weight (for
procedure, see Sandhi et al., 2017). The dry weights
of the plant samples (roots and shoots) were meas-
ured and they were consequently stored at room tem-
perature until their heavy metal content was analysed
by an accredited laboratory.

2.3 Analysis
2.3.1 Chemical Analysis

All collected samples were sent to an accredited ana-
lytical laboratory (ALS Scandinavia AB, Lulea, Swe-
den) for analysis of heavy metal and metalloid (As,
Cd, Cu, Pb, Zn, and Si) content. Prior to analysis, the
sediment samples were sieved to<2 mm by follow-
ing the ISO 11464:2006 method; to ensure homoge-
neity, sediment grinding was also performed. Before
the analyses, the sediment samples were digested in
7 M HNO; in a hotblock, according to SE-SOP-0021.
Macrophyte samples (including root and shoot parts)
were digested with HNO; and H,O, in a micro-
wave oven following the SE -SOP-0128 (SS-EN
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13805:2014) method. The heavy metal content in both
the sediment and macrophytes was then determined
according to SS-EN ISO 17294-2:2016 and the US
EPA method 200.8:1994, and no digestion process
was required for the water samples. The heavy metal
content in the water samples and their concentrations
in all three sample matrices were then determined
according to SS-EN ISO 17294-2:2016 and the US
EPA method 200.8:1994 using sector field inductively
coupled plasma spectrometry (ICP-SFMS). In the case
of measurement accuracy, the uncertainty from the
analytical laboratory is given as extended uncertainty
and (JCGM 100:2008 Corrected version 2010) calcu-
lated with a coverage factor of 2, which gives a level
of approximately 95% certainty.

2.3.2 Calculation and Statistical Analysis

The total concentrations of the heavy metals (As, Cd,
Cu, Pb, Zn, and Si) in the plant and sediment samples
were calculated based on the total contents of the dif-
ferent heavy metals obtained from ICP-SFMS. Equa-
tions 1 and 2 were used to calculate the net accumula-
tion and translocation in the shoot of heavy metals in
the plants respectively (Pourghasemian et al., 2013).

Net accumulation of heavy metal by root (ug of
whole plant/root g DWt)

_ Total content of heavy metal in the whole plant (ug)

Root dry weight (g)
ey
Translocation (%, total metal in shoot pg/total
metal in whole plant ug) of heavy metal in the shoot

_ Total content of heavy metal in the shoot part (ug) 100

@)
We performed one-way ANOVA followed by Fish-
er’s Least Significant Difference (LSD) post-hoc test to
evaluate the differences in heavy metal concentrations
between species. One-way ANOVA followed by a post-
hoc (LSD) test was also performed to determine the dif-
ferences between heavy metal concentrations and other
parameters in the sediment and water samples from all
sites. All the above-mentioned statistical analyses were
performed using SPSS, version 22 software (IBM SPSS
Inc., Chicago, USA). The graphs were generated in the
Microsoft office Excel package (MS office professional
plus, 2021 version).

" Total content of heavy metal in the whole plant (ug)
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3 Results

3.1 pH and Heavy Metal Concentrations in Water
and Sediment

Water pH was slightly higher at the Léen site than
at the Orrefors and Emmaboda sites, but there were
no significant differences in pH among the sites
(Table 1). However, the sediment pH was signifi-
cantly higher at the Orrefors site than at other sites.

The water concentrations of As, Cd, Cu, Pb, and
Zn were significantly higher at the Emmaboda site
than at other sites (Table 1). With the exception of
As concentration, the lowest water heavy metal con-
centrations were found at the Liden site. The gen-
eral trend of heavy metal and metalloid concentra-
tions in water from the Orrefors and Léen sites was
Zn>Pb>Cu> As>Cd.

Our results showed different patterns of heavy
metal concentrations in sediments from the three
sites, although similar patterns were observed in sedi-
ments from Orrefors and Lien, where concentrations
followed the order Si>Pb>Zn> As>Cu>Cd and Si
>Pb>7Zn>Cu> As>Cd respectively; whereas from
Emmaboda: Si>Zn>As>Pb>Cu>Cd (Table 1).
Sediment As (230 mg/kg) concentrations at the
Emmaboda site were significantly higher than at the
other two sites and 23 times greater than the Swed-
ish reference values for sediment (10 mg/kg) and
sensitive land use, as specified by the Swedish EPA.
Likewise, Pb concentrations at Orrefors exceeded the
Swedish reference values for sediment by a factor of
12 and sensitive land use by factors of and 6. The
highest Zn concentration in sediment was observed
at the Emmaboda site. In contrast, Cd concentrations
were similar across all three sites. Silicon concentra-
tions in the sediments were significantly higher at the
Orrefors site compared to the others.

3.2 Heavy Metals in Macrophytes
3.2.1 Concentration in Root & Shoot
Orrefors At the Orrefors site, significantly higher

As concentrations were found in the roots of L.
thyrsiflora (33 mg/kg DW) than in all plant species

collected from the same site (Table 2). Meanwhile, G.
fluitans from the same location accumulated higher
Cu and Si concentrations in their roots than other
macrophyte species. However, only the Si concen-
tration in the roots of G. fluitans was significantly
higher than that of all other plant species. The high-
est root and shoot Zn concentrations were observed
for S. sagittifolia. However, its concentration in the
shoots was significantly higher than that in other mac-
rophyte species. Both Cd and Cu concentrations in
shoots from the Orrefors site were higher in S. sag-
ittifolia than in the other macrophyte species, except
for Cu in L. thyrsiflora. The mean Cd concentration in
the roots of P. australis was higher than that in other
macrophyte species. In contrast, L. thyrsiflora showed
higher As and Pb concentrations in shoots than the
other macrophyte species examined from the Orrefors
site did.

Lien At the Lien site, the highest Pb and Si con-
centrations were found in the roots of E. fluvia-
tile compared to other plant species from this site
(Table 2). In addition, higher As, Cd, and Zn concen-
trations were found in the roots of E. fluviatile than
in the other macrophyte species. E. fluviatile showed
higher shoot concentrations of Zn, Cu, and Si than
other macrophyte species. However, this value was
significantly higher for Zn only. Pb concentrations
showed a different species-specific shoot accumula-
tion pattern; C. nigra had significantly higher shoot
Pb concentrations than all other macrophyte species
collected from the Lien site.

Emmaboda At the Emmaboda site, As and Si
concentrations in the roots were higher in L. thyr-
siflora than in other plant species from the same
site (Table 2). The shoot Cd and Zn concentrations
of J. effusus were significantly higher than those
of the other macrophytes. However, although not
significant, shoot As, Cu, and Pb concentrations in
J. effusus were higher than those in all other mac-
rophytes. Significantly higher concentrations of Si
(5.4 g/kg) were found in the shoots of G. fluitans
than in those of all other plant species from the
same site. In the roots, relatively higher Cd, Cu,
Pb, and Zn concentrations were found in J. effusus
than in the other species.
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3.2.2 Net Accumulation accumulation of Pb and Zn was found in P. australis

and S. sagittifolia, respectively, than in all other plant
At the Orrefors site, a significantly higher As net species at the Orrefors site. Significantly higher Si
accumulation was found in L. thyrsiflora than net accumulation was found in G. fluitans than in L.

in all other plant species (Fig. la). A higher net thyrsiflora and S. sagittifolia (Fig. 1b). S. sagittifolia
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showed higher Cd and Cu net accumulation than all
other Orrefors macrophyte species. Similar to the
Orrefors site, in Emmaboda, a higher As net accumu-
lation was detected in L. thyrsiflora than in all other
plant species from the same site. The net accumula-
tion of Cu, Cd, Zn, and Pb was higher in J. effusus
than in the other plant species, but the differences
were only significant for Cd, Cu and Zn. The Si net
accumulation in G. fluitans was not significantly
higher than that in the other macrophyte species from
Emmaboda. At the Lien site, the net accumulation of
As, Cd, Cu, Pb, and Si was higher in E. fluviatile than
that in other macrophyte species from the same site.

3.2.3 Translocation to the Shoot

At the Orrefors site, P. australis showed the highest
Si translocation (> 50%) to the shoot, whereas S. sag-
ittifolia showed the highest translocation (>50%) of
Zn. The translocation of Zn in S. sagittifolia was sig-
nificantly higher than that in the other plant species
(Fig. 2). Cd translocation was significantly higher in
S. sagittifolia than in the other plant species. Macro-
phytes from the Léen site exhibited different translo-
cation patterns. The translocation of Zn was similar
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among the macrophyte species. Significant differ-
ences in the translocation of As, Cd, Si, Pb, and Cu
were observed among the plant species, with C. nigra
exhibiting significantly lower Cu translocation com-
pared to the other two species. At the Emmaboda
site, J. effusus showed significantly higher Cd and Zn
translocations than the other plant species. J. effusus
also showed higher As, Cu, Pb and Si translocation
compared to the other plant species; however, the dif-
ferences were not significant across all species.

4 Discussion

The high sediment As concentration at the Emma-
boda site is likely the result of past glasswork activi-
ties in that region. Sulfate reduction plays a vital role
in the bioavailability of As, with the low sediment
pH playing an important role in the gradual oxida-
tion of sulfide, especially in mining areas where a
positive correlation is found between sulfide and As
content (Alonso et al., 2020; Culioli et al., 2009). The
relationship between pH and As species mobility in
streams is already well documented, as heavy precipi-
tation may reduce stream water pH levels, which, in
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Fig. 2 Translocation to shoot (%) of As, Cd, Cu, Pb, Si, and
Zn in the macrophyte species collected from Orrefors, Lien
and Emmaboda. Different letters indicate significant differ-
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ences between the plant species from the same site and for the
same element (P <0.05, n=3+SE)
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turn, may increase As mobility in aquatic media (Park
et al., 2023). In our study, low sediment pH may have
increased As mobility in aquatic media. Generally,
heavy metal concentrations are higher in the sedi-
ments of contaminated sites than in the water column
above, as the sediments work as metal sinks (Greger,
2004; Sandhi et al., 2023). Therefore, the heavy metal
concentrations in the sediments likely determine the
heavy metal accumulation in the macrophyte spe-
cies collected in this study. The high heavy metal and
metalloid concentration in the water at the Emma-
boda site was probably a consequence of heavy met-
als resuspended from the sediment sink. Most mac-
rophytes investigated in our study belonged to the
hydrohalophyte category (air-water plant or semi-
aquatic plant species) (Petrov et al., 2023). There-
fore, we assumed that heavy metal concentrations in
sediments influenced the species-specific heavy metal
accumulation patterns in macrophytes.

Accumulated heavy metals not only affect the
physiological processes of specific macrophyte spe-
cies but also have antagonistic effects on the uptake
of other heavy metals in macrophytes. External
medium Zn concentrations can influence Cu and Cd
uptake in plant shoots, as shown in previous studies,
where high external Zn content reduced Cd and Cu
uptake and translocation in Ceratophyllum demersum
and Hydrilla verticillata, respectively (Aravind &
Prasad, 2003; Wang et al., 2009a). Concurrent with
the above, the low Zn sediment and Zn water con-
centrations in Lien may have led to higher Cu and
Cd concentrations in plant shoots compared with the
other two sites with high external Zn concentrations.

This high As net accumulation in certain macro-
phyte species from Emmaboda could be due to the
development of As tolerance mechanisms such as; a)
As intercellular compartmentalization and b) extra-
cellular As sequestration. These mechanisms could be
similar to those employed by the As hyperaccumula-
tor species Pteris vittata, especially when growing at
highly contaminated sites (Datta et al., 2017; Sandhi
et al., 2018a). Generally, the accumulation patterns
of heavy metals in plants are regulated by external
factors (e.g., environmental conditions, growing sea-
son, pH, sediment characteristics, and organic matter
content) and internal physiological factors (e.g. plant
type, growth stage, element-based absorption, accu-
mulation, and translocation) (Greger, 2004; Nuiiez
et al., 2011; Petrov et al., 2023).

Plants depend on certain essential trace metals for
growth and development. For example, Zn, Cu, and Si
play important roles in various essential biological and
metabolic processes such as protein synthesis, photo-
synthesis, oxidative stress response, enzyme activation,
and carbohydrate metabolism (Hamzah Saleem et al.,
2022; Meharg & Meharg, 2015; Sandhi et al., 2023).
Several emergent macrophytes possess a unique ability
to accumulate heavy metals from water and sediment
in their roots (Tan et al., 2023) (Fig. 3). The relatively
high Si accumulation in plant roots may be explained
by the role of Si in plant’s biotic and abiotic stress tol-
erance. Si affects various physiological processes in
aquatic plants, including hydrodynamic stress, light
interception, and herbivore protection (Schoelynck &
Struyf, 2016). The benefits of Si in plant stress man-
agement (both biotic and abiotic) are extensive, and
include the reduction in heavy metal uptake in plants
(Meharg & Meharg, 2015). In addition to Si, Zn also
plays an important role for plant nutrition, and enzy-
matic activities. Zn concentration is relatively higher
in the leaves compared to root (Hossain et al., 2021).
That could corroborate the high Zn translocation to the
aboveground parts of our investigated macrophytes.

Water

Sediment
Rt \0 Heavy metal

. accumulation and
translocation

Fig.3 Schematic diagram for heavy metal and metalloid
uptake and translocation process in emergent macrophyte spe-
cies. The black dots represent the heavy metals and metalloids
while red arrows indicate their translocation pathways (illustra-
tion courtesy: A. Sandhi)
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However, the relatively high translocation factors
for Cd and As in J. effusus compared to other emer-
gent macrophyte species from the same site could
be attributed to its developed tolerance mechanisms.
Yang et al. (2020) reported that translocation values
are inversely proportional to their concentrations,
particularly for non-essential trace elements, such as
Cd and Pb. A previous study has found that J. effusus
can regulate Cd bioavailability at the water-root inter-
face by releasing strong organic ligands around the
root zone (Najeeb et al., 2011). Additionally, recent
research has highlighted the strong potential for As
phytostabilization in a closely related halophytic
macrophyte species, Juncus acutus, where root As
concentration was found to correlate with sediment
As levels (Alam et al., 2022). According to Hossain
et al. (2021), interactions arising from both dissen-
tion and synergistic processes among elements can
influence the metabolism of these elements within the
plant body. This, in turn, may affect metal transloca-
tion in macrophytes independently of their availabil-
ity in the sediment, potentially explaining the varia-
tion observed in heavy metal translocation within the
macrophytes studied.

The much higher heavy metal concentration in plant
roots compared to sediments from the Emmaboda site
could be explained by sediment being the main metal
sink in aquatic environments, and the sediment mass
being higher than the plant biomass (Nuifez et al.,
2011). Moreover, the accumulation of heavy metals
in macrophytes from sediment could also depend on
the presence or absence of other metals, as well as on
local sediment characteristics (Cardwell et al., 2002).
Therefore, our study revealed that the net accumula-
tion of heavy metals in plants depends on the heavy
metal concentration of the sediment at specific sites.
In contrast, heavy metal translocation in plant shoots
is related to the beneficial or essential roles of these
elements in plant growth and development.

Our study revealed that the perennial emergent
macrophyte L. thyrsiflora is an excellent As accumu-
lator species at both Orrefors and Emmaboda sites.
The low translocation of As to the aboveground
plant parts further confirms the potential of L. thrysi-
flora as an As phytostabilizer candidate. Wang et al.
(2009b) reported that Lysimachia deltoides could be
an excellent Cd hyperaccumulator in contaminated
soils (52 mg/kg Cd) under favourable hot and humid

@ Springer

climatic conditions. In northern temperate condi-
tions, a recent study also confirmed that L. thyrsi-
flora (collected in Sweden) demonstrated excellent
heavy metal (Cd, Cu, Zn and Pb) removal capacity in
a five-day laboratory trial (Schiick & Greger, 2020).
Overall, the low translocation of toxic heavy metals
in the emergent macrophyte species investigated may
be explained by the fact that most accumulated heavy
metals are stored or stabilized in the root parts. This
could be due to 1) a developed tolerance mechanism,
or 2) a defence mechanism or protection of photo-
synthetic cells in aboveground plant parts, including
leaves, in the studied macrophyte species (Abdelaal
et al., 2021; Rascio & Navari-Izzo, 2011). In addi-
tion, the compartmentalization of heavy metals in the
below-ground parts of wetland macrophytes—such as
their storage capacity within intercellular air spaces
like the cortex parenchyma—may play a significant
role in reducing the translocation of heavy metals to
above-ground tissues (Bonanno et al., 2017).

5 Limitations

This study acknowledges the limitation of lacking an
experimental design to evaluate the effects of sea-
sonal changes on heavy metal loading in sediments
and their uptake by emergent macrophytes. Address-
ing this aspect could have enhanced the comparisons
and strengthened the study’s conclusions. The pri-
mary aim of this investigation was to provide pre-
liminary insights into industrial contamination at the
glassworks site and its impact on adjacent aquatic
systems, including sediment—water-emergent mac-
rophyte species. Furthermore, analyses of organic
matter content and cation exchange capacity in sedi-
ment samples—which are critical for understanding
contamination dynamics—could not be included
due to time and resource constraints. Future research
should incorporate these components to facilitate a
more comprehensive assessment of contaminated
wetland management at the glassworks site.

6 Conclusion
Investigations of emergent macrophytes from con-

taminated glasswork sites demonstrate their ability to
accumulate high levels of heavy metals from heavily
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contaminated sediments. Our study also revealed that
for most of the investigated heavy metals and metal-
loids, translocation to the shoot/aerial parts of these
emergent macrophyte species was limited. This sug-
gests that these macrophytes are not suitable for phy-
toextraction, where aerial plant parts with high heavy
metal contents are removed, as a remediation strat-
egy for contaminated sites.

In conclusion, L. thyrsiflora and J. effusus exhibit
strong potential as multi-metal phytostabilizers in
Swedish and other temperate regions, making them
promising candidates for phytoremediation applica-
tions such as constructed floating wetland systems.
However, before deploying these emergent macro-
phytes as nature-based solutions for aquatic eco-
system management, further research is required
to assess the long-term leaching dynamics and sea-
sonal bioavailability of leached heavy metals from
these species.
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