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A B S T R A C T

Previous research has shown the importance of oxalate-extractable aluminium (Alox) for predicting soil organic 
carbon (SOC) contents across diverse geographical regions. However, studies using data from humid continental 
climates are scarce, and the data used in these studies have not been statistically representative for larger scales. 
Our study aimed to 1) evaluate the influence of soil physical and geochemical properties (specifically Alox), farm 
management, and climate on the spatial distribution and storage potential of SOC in Swedish agricultural soils 
and 2) to assess whether estimates of aggregation, assumed to influence the protection of soil organic matter, 
could improve predictions. We analyzed a statistically representative subset of mineral soils with pH < 7 from the 
Swedish soil and crop monitoring program, which covers the country’s agricultural land. We identified the most 
important predictors for topsoil SOC contents using a random forest model. We employed partial dependence 
plots to visualize and interpret the interactions between key variables and SOC contents. Results showed that 
Alox was the most important predictor for SOC contents, as evidenced by its high relative importance score and 
the increased out-of-bag error when removed from the model. Notably, SOC content reached a plateau at Alox 
contents of about 3.5 g kg− 1, suggesting the possibility of SOC under-saturation. Climatic variables were of 
secondary importance, while farm management did not emerge as a significant predictor. Surprisingly, silt-sized 
aggregation was not identified as an important variable for predicting SOC content. Our findings emphasize the 
importance of incorporating geochemical properties, particularly Alox, in addition to soil texture, in predictive 
modelling and monitoring efforts for enhanced soil carbon management in humid climates.

1. Introduction

Carbon storage in agricultural soils may help mitigate climate 
change and, at the same time, make soils more adapted to a changing 
climate (Lal, 2008; Sanderman et al., 2017). Soil is the largest terrestrial 
soil organic carbon (SOC) pool. About 65 % of this SOC is considered to 
be contained in mineral-associated organic matter and thereby partly 
protected from microbial decomposition (Heckman et al., 2022; Sokol 
et al., 2022). The clay fraction (<2 μm) has often been considered an 
indicator of SOC storage capacity in mineral soils (Feng et al., 2013; 
Salonen et al., 2024; Solly et al., 2020; Wiesmeier et al., 2019). Finer 
particles, such as clay, have a larger specific surface area and, therefore, 
a large capacity to adsorb soil organic matter (SOM) (Rabot et al., 2018; 

Sollins et al., 1996). Based on this understanding, it has been suggested 
that soils have a finite capacity to store SOC and that this storage ca
pacity depends on the clay content (Feng et al., 2013; Hassink and 
Whitmore, 1997; Salonen et al., 2024). The point at which this capacity 
is reached has been referred to as ‘carbon saturation’ (Hassink, 1997). 
When soils are not saturated, soil and crop management changes that 
increase organic matter inputs can increase the mineral-associated SOC 
pool (Castellano et al., 2015; Guillaume et al., 2022; Hassink, 1997). 
Agricultural soils, especially deeper soil layers, are typically ‘carbon 
under-saturated’ (Georgiou et al., 2022; Sanderman et al., 2017).

According to the Swedish soil and crop monitoring program (SMP; 
accessible at https://miljodata.slu.se/mvm/aker), there has been an 
increase in SOC concentrations in Swedish agricultural soils, equivalent 
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to a relative increase of 0.38 % yr− 1 during the last decades (Henryson 
et al., 2022; Poeplau et al., 2015). This increase has been attributed to 
changes in land use, with an increase in the area under ley and a cor
responding decrease in annual crops as the main driver (Henryson et al., 
2022; Poeplau et al., 2015). Data from the same monitoring program 
and data from the Swedish Farm Register also showed that SOC contents 
were larger in dairy farms than in arable farms (Henryson et al., 2022). 
These changes were attributed to a larger proportion of ley and higher 
use of animal manure in dairy farms (Henryson et al., 2022; Poeplau 
et al., 2015). This shows that Swedish agricultural soils may have the 
potential to store more SOC.

However, clay content alone does not determine SOC storage since it 
does not fully account for the surface area or presence and abundance of 
reactive minerals (Bailey et al., 2018; Farrar and Coleman, 1967; Ras
mussen et al., 2018; Totsche et al., 2018). Other soil properties besides 
clay content, are needed to estimate a soil’s SOC storage capacity (Bailey 
et al., 2018; Solly et al., 2020), and the clay saturation concept could be 
replaced by a soil’s mineralogical capacity to store SOC (Poeplau et al., 
2024). The mineralogical capacity should not be viewed as a threshold 
since a soil’s capacity to store SOC can also be influenced by manage
ment and climate (i.e. the ‘ecosystem capacity’ (Poeplau et al., 2024)).

In order to explain the mineralogical capacity, reactive mineral 
phases containing Al and Fe can be leveraged since they are considered 
to associate with SOM through organo-metal complexation and/or co- 
precipitation and thereby regulate microbial and enzymatic accessi
bility SOM (Kleber et al., 2015). It has also been suggested that in
teractions between clay, reactive metal phases, and SOM facilitate soil 
aggregation (Schlüter et al., 2022; Tisdall and Oades, 1982; Totsche 
et al., 2018). Aggregates are assumed to protect SOM by physically 
limiting microbial and enzymatic accessibility (Hall and Thompson, 
2021; Matus et al., 2014). Since SOC is mainly associated with the silt 
and clay fraction, aggregation in silt- and/or clay sizes may be more 
important than macro-aggregation for SOM protection (Totsche et al., 
2018; Wiesmeier et al., 2019). Furthermore, SOC has been shown to 
correlate with the volume of released clay particles upon SOM removal 
(Jensen et al., 2019; Fukumasu et al., 2021).

Indeed, positive correlations between oxalate-extractable aluminium 
(Alox) and iron (Feox) (assumed to represent the reactive mineral 
fraction of these metals) and SOC contents have been reported on na
tional scales in the United States, New Zealand, and Chile in different 
climates (Beare et al., 2014; Hall and Thompson, 2021; Matus et al., 
2006; Rasmussen et al., 2018). For example, Rasmussen et al. (2018)
showed, using data from the U.S. Department of Agriculture’s National 
Cooperative Soil Survey, that SOC contents increased with increasing 
Alox and Feox under humid conditions in acidic to neutral soils. Fuku
masu et al. (2021) showed for a limited dataset from the Nordic coun
tries and Canada that Alox was positively correlated with topsoil SOC 
contents. Alox was also the strongest predictor for topsoil SOC for a 
dataset of arable soils from southern Finland (Salonen et al., 2024). 
However, it is unclear how statistically representative these datasets are 
for Sweden and other regions with humid continental climates and soils 
formed from quaternary deposits.

In this study, we used a statistically representative sub-sample of the 
data contained in the SMP, which covers all agricultural land in Sweden, 
to identify the strongest predictors for SOC contents across a humidity 
gradient. These data were combined with new measurements of oxalate 
extractable Al, Fe and P and silt-sized aggregation. Our objectives were 
i) to quantify the relationships between soil physical and geochemical 
properties, farm management, climatic variables, and topsoil SOC con
tents in Sweden and ii) to assess whether estimates of aggregation, 
assumed to influence the protection of SOM, could improve predictions.

2. Methods and materials

2.1. Inventory design and data sets

We used stored topsoil samples from the Swedish soil and crop 
monitoring program (SMP) of arable land (Eriksson, 2021). The SMP 
includes measured data on soil chemical and physical variables and 
information on farm type and is, therefore, suitable for gaining insights 
into which variables best explain variations in soil organic carbon (SOC) 
contents. Soil samples have been collected repeatedly from these sites 
since 1988, with sampling occurring every ten years. For this study, we 
exclusively utilized data from the third inventory cycle (Inventory III), 
which was conducted between 2011 and 2017. After sampling, the 
samples were air-dried, sieved through a 2-mm sieve, and stored in 
airtight plastic containers in a temperature-controlled room. All soil 
samples from the SMP had previously been analyzed for the variables 
listed in Table S1. We only used the SOC content, texture, pH and 
exchangeable cations (Ca, K, Mg, and Na) (Eriksson, 2021). We selected 
these variables based on evidence from large-scale studies, which have 
demonstrated their significant influence on SOC contents (Rasmussen 
et al., 2018; von Fromm et al., 2025) and to limit overfitting and avoid 
adding noise. Element concentrations were analyzed using the 200.8 
method (ICP SFMS). Soil pH (H2O) was determined according to SS-ISO 
10390. Carbon content was determined using a LECO Trumac CN 
analyzer according to SS-ISO 10694. Soil texture was analyzed using the 
pipette method after organic matter oxidation (Messing et al., 2024).

2.2. Selection of sampling points

To limit the number of samples used for further chemical analysis, 
we selected 100 samples from the 2039 topsoil samples contained in 
Inventory III. Since SOC has previously been shown to correlate with the 
contents of short-range order (SRO) phases and organo-metal complexes 
(i.e. the reactive mineral fraction estimated from Alox and Feox) for 
mineral acidic soils (Fukumasu et al., 2021; Hall and Thompson, 2021), 
we selected samples that represented mineral acidic soils. We first 
excluded samples with pH >7 (n = 258). In line with previous studies 
distinguishing between mineral and organic soils, we excluded organic 
soils, defined as those with SOC content greater than 70 g kg− 1 (n =
147), from our analysis (Andrén et al., 2008; Poeplau et al., 2015). The 
pH of the remaining samples (n = 1624) was between 4.5 and 6.9, and 
SOC content was between 10 and 70 g kg− 1 soil. To obtain a represen
tative sub-sample, we stratified the remaining samples into four groups: 
high pH-high SOC (n = 276), high pH-low SOC (n = 477), low pH-high 
SOC (n = 477) and low pH-low SOC (n = 394). The first twenty-five 
samples were selected from each group after randomization. The 
amount of soil left in storage was insufficient for one of the selected 
samples. This sample was replaced by the 26th sample from the same 
group. In this manner, we merged the advantages of ensuring repre
sentation across key subgroups through stratification with the statistical 
benefits of random sampling within each stratum (Neyman, 1992).

The geographical distribution of the sampling locations for the 
selected samples was checked against the distribution of locations for 
the whole dataset (Fig. 1A). Distributions of SOC content and pH for our 
subsample were representative of the distributions for all data from 
Inventory III, again excluding samples with SOC contents >70 g kg− 1 

and pH >7 (Fig. 1B and C). The density curves were achieved using the 
Kernel density estimation, which produced smooth curves of pH and 
SOC (Wickham and Wickham, 2016). Fig. S1 shows that our subsample 
was also representative of the SMP concerning soil and crop farm 
management.

2.3. Oxalate extraction

In addition to the variables selected in the SMP, we carried out 
ammonium oxalate extractions to estimate Alox, Feox and Pox contents. 
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The Al and Fe extracted with oxalate originate from short-range order 
(SRO) aluminosilicates, poorly crystalline hydrous oxides and organic- 
mineral complexes (Hall and Thompson, 2021; Matus et al., 2008). 
The Pox would represent extracted inorganic and organic phosphorus 
fractions (Fransson, 2001). Approximately one gram of air-dried soil, 
sieved through a 2-mm mesh, was mixed with 100 mL of 0.2 mol L− 1 

acid ammonium oxalate solution. This solution was prepared by 
combining diammonium oxalate monohydrate ([NH₄]₂C₂O₄ ⋅ H₂O) and 
oxalic acid dihydrate (C₂H₂O₄ ⋅ 2H₂O), with the pH adjusted to 3.0. The 
mixture was shaken for four hours on an orbital shaker (GFL orbital 
shaker, Vortexers, Germany) with as little exposure to light as possible to 
minimize photochemical oxidation. The suspension was centrifuged for 
15 min at 4000 rpm. The supernatant was then filtered through a 0.2 μm 
micro filter (Sarstedt™, Germany) using a syringe, again with as little 
exposure to light as possible. The filtrate was diluted with water at a 1:3 
ratio. Alox, Feox and Pox concentrations were analyzed using Induc
tively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) on a 
Perkin Elmer 5300 DV instrument (Ontario, Canada).

2.4. Silt-sized soil aggregation

The volume of (<2 μm) particles released upon chemical dispersion 
of the silt-sized aggregates was used as a measure of soil aggregation 
(Fukumasu et al., 2021). This volume was estimated from the difference 
in the volume of clay-sized particles after chemical dispersion and me
chanical dispersion. Mechanically dispersed soil was assumed to contain 
primary particles and micro-aggregates, while chemically dispersed soil 
contained only primary particles.

For mechanical dispersion, 5 g of air-dried soil was mixed with 
water, shaken overnight, and sieved through a 63-μm sieve. The particle 
size distribution of the suspension was then determined using the 
methods described by Svensson et al., 2022. For chemical dispersion, the 
soil was treated with hydrogen peroxide, boiled, cooled, and rinsed. 
Then 1 mL of a chemical dispersant (sodium carbonate, Na2CO3 7 g L- 1 

and sodium metaphosphate, (NaO3P)n 33 g L− 1) and distilled water were 
added, resulting in a final volume of ca. 40 mL. The mixture was shaken 
overnight and sieved before analyzing the particle size distributions. 
Particle size distributions for chemical dispersion and mechanical 

dispersion were determined through laser diffraction measurements 
using a Horiba Partica LA-90 V2 (Svensson et al. (2022).

2.5. Statistical analysis

We used a random forest model (RFM) to predict SOC contents for 
selected explanatory variables (Friedman, 2001). The selected explan
atory variables included four categorical farm management variables, 
nine geochemical variables, measured concentrations of Alox, Feox and 
Pox, three measured physical properties and three climatic variables 
(Table 1). The weather data was obtained by averaging observed records 
from 1961 to 2017 provided by the Swedish Meteorological and Hy
drological Institute (Swedish Meteorological and Hydrological Institute, 
2025). These data were derived from gridded analysis models, which 
interpolate observed climate records for enhanced spatial accuracy. 
From these data, we calculated the De Martonne aridity index (DMAI), a 
measure of humidity and aridity (De Martonne, 1925): 

DMAI =
MAP

MAT + 10
(1) 

where MAP (mm) is the mean annual precipitation and MAT (◦C) is 
the mean annual temperature. For visualization purposes, DMAI was 
divided into seven classes (Table S2) (Pellicone et al., 2019).

We selected the most influential variables based on previous 
knowledge related to SOC predictions (Solly et al., 2020; Von Fromm 
et al., 2021; Yu et al., 2021). Summary statistics for all included vari
ables are presented in Table S3. Note that all variables were logarith
mically transformed in the analysis to reduce skewness. MAT was first 
transformed by subtracting each value from the maximum MAT value 
and adding 1 to ensure that all values were positive before the loga
rithmic transformation. All farm management variables were included 
as categorical variables (yes/no), according to the answers in an SMP 
farmer questionnaire.

Initial data exploration was conducted using Spearman’s rank cor
relation coefficients (ρ) to examine pairwise relationships between all 
untransformed non-normal variables. In cases where tied ranks 
occurred, p-values were approximated as exact computation is not 
possible with ties. From the RFM, we determined the variable 

Fig. 1. A) The geographical distribution of sampling points in the Swedish soil and crop monitoring program (SMP) brown and the selected sampling points for the 
current study visualized according to the De Martonnes aridity index, B) Distributions of soil pH and C), soil organic carbon content at 0–20 cm depth for samples 
from the SMP and the sub-sample used in this study. Samples with pH > 7 and SOC contents >70 g kg− 1 were excluded for both cases.
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importance based on the increase in the mean square error (IMSE) when 
a variable was removed from the model. We used the Boruta algorithm 
to select the relevant variables with respect to the response variable 
(Kursa and Rudnicki, 2010). In addition, we used partial dependency 
plots (PDP) to illustrate how individual explanatory variables contrib
uted to the variation in SOC while other variables were kept constant 
(Friedman, 2001; Pearson, 2017). The model performance was evalu
ated using the out-of-bag (OOB) error (OOBE), which is the mean square 
error for the data points not included in each bootstrap sample. This 
estimate provides internal validation without requiring a separate test 
set to mitigate the risk of overfitting (Breiman, 2001).

We compared the RFM with the results of a linear regression model 
(LRM) as a benchmark model. We used the method of comparing the 
RFM and the LRM described by Jeong et al. (2016) to ensure that the two 
models were comparative. We trained an optimized RFM (based on the 
Boruta feature selection algorithm) and LRM (based on a backward se
lection using the model with the lowest Akaike information criterion 
score) on 50 % of the data and tested both models on the remaining data. 
We used the root mean square error (RMSE) to assess how well the 
model fitted the measured data.

Data processing and analysis were carried out using R version 4.3.1 
(R Core Team, 2023). We used the “RandomForest” R package 
(Friedman, 2001; Liaw and Wiener, 2002) and the “partial” function in 
the “PDP” R package to determine the partial dependence of each var
iable (Greenwell, 2017). The LRM analysis was conducted with the “lm” 
function in R (R Core Team, 2023) and the “relaimpo” R package 
(Groemping, 2006) to show the relative variable importance in the LRM. 
In addition, we also used the packages “ggplot2” (Wickham, 2016), 
“ggspatial” (Dunnington, 2023) and “ggtern” (Hamilton & Ferry, 2018) 
for graphical and geographic illustrations. The base shape files used for 
the maps to create Swedish administrative borders were from the 2011 

annual stock block data from the Swedish Board of Agriculture 
(Jordbruksverket, 2025).

3. Results

3.1. SOC content in relation to geochemical and physical properties, farm 
management and climate

Soil organic carbon content was between 10 and 70 g kg− 1 (Table S3) 
with a mean C:N ratio of 11.5 ± 2.7. Alox and Feox concentrations were 
0.4 to 4.3 g kg− 1 and 1.2 to 13 g kg− 1 soil, respectively (Table S3). Soil 
texture covered ten different classes, with clay contents in the range of 
1.4–52 % and silt contents in the range of 9.6–95 % (Fig. S1). The 
fraction of clay contained in silt-sized aggregates was between 0 and 38 
%. Climate data indicated conditions from slightly arid (30 ≤ DMAI≤35; 
Table S2) to excessively humid (60 ≤ DMAI≤187; Table S2) (Fig. 1A). 
The northern parts of Sweden were characterized by very humid to 
humid conditions, while the southern parts were slightly arid to exces
sively humid. The central regions were characterized by moderately 
humid (35 ≤ DMAI≤40; Table S2) to humid conditions (40 ≤

DMAI≤50).Of the selected samples, 43 % were from crop farms, 31 % 
from animal farms, 24 % from mixed farms, and 2 % reported no specific 
farming activities (Fig. S1). Forty-six percent of the samples were from 
fields where manure was regularly applied. Additionally, 34 % of the 
samples were from fields with annual crops without ley, 31 % annual 
crops with several years of ley, and 27 % almost exclusively ley.

The geographical distributions of SOC content co-varied with Alox 
concentrations (Fig. S2) but not with Feox concentrations or pH 
(Fig. S3). The clay content was generally higher in the central part of 
Sweden compared to the southern and northern parts (Fig. S5), whereas 
the silt content was higher in the northern parts compared to the central 

Table 1 
Variables used for the Random forest analysis. SMHI is the Swedish meteorological and hydrological institute. SMP is the Swedish soil and crop monitoring program.

Type Variable Unit Abbreviation Source

Climate Mean annual temperature (1961–2017) ◦C MAT SMHI

Mean annual precipitation (1961–2017) mm MAP SMHI
De Martonne aridity index – DMAI De Martonne (1925); SMHI

Geochemical 
properties pH (H2O) – pH SMP

Exchangeable magnesium g kg− 1 soil Mg SMP
Exchangeable manganese g kg− 1 soil Mn SMP
Exchangeable calcium g kg− 1 soil Ca SMP
Exchangeable potassium g kg− 1 soil K SMP

Oxalate extracted aluminium g kg− 1 soil Alox
Ammonium oxalate 
extraction

Oxalate extracted iron g kg− 1 soil Feox
Ammonium oxalate 
extraction

Oxalate extracted phosphorus g kg− 1 soil Pox Ammonium oxalate 
extraction

Soil physical 
properties

Clay (<2 μm) % Clay Chemical dispersion

Silt (2–63 μm) % Silt Chemical dispersion
Silt-sized aggregation (Volume of primary 
particles in aggregates)

% of <2 μm particles in <63 μm 
aggregates Aggregation

Chemical and mechanical 
dispersion

Farm management Practice –
I. Organic (Yes/No)

II. Conventional (Yes/No)
SMP

Operation –

I. Crop (Yes/No)
II. Mixed (Yes/No)

III. Animal (Yes/No)
IV. No.farming (Yes/No)

SMP

Rotation –

I. Mostly.crops.without.ley 
(Yes/No)

II. Crops.and.several.years.of.ley 
(Yes/No)

III. Almost.only.ley (Yes/No)
IV. Other.rotation (Yes/No)

SMP

Manuring –
I. Regular.manure.application 

(Yes/No) SMP
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and southern parts of Sweden (Fig. S5). Spearman rank correlation co
efficients (ρ) confirmed the above-described relationships (Fig. 2). The 
strongest correlation with SOC content was found for Alox (ρ = 0.6) 
(Fig. 2). SOC content was not significantly correlated with Feox or clay 
content but weakly positively correlated with other geochemical vari
ables (exchangable Ca and Pox) and climatic variables (DMAI). SOC 
content was also weakly positively correlated with regular application of 
manure and mixed framing. Notably, DMAI was high when the rotation 
was dominated by ley (ρ = 0.29) and low when the rotation was 
dominated by annual crops without ley. Silt-sized aggregation was 
strongly positively correlated with clay content (ρ = 0.7).

3.2. Key predictors of SOC across a humidity gradient

The random forest model (RFM) reproduced the measured SOC 
contents (RMSE = 0.32 g kg− 1) slightly better than the linear regression 
model (LRM) (RMSE = 0.34 g kg− 1; Fig. S5). Our model showed that 
Alox was the most important predictor, with an increase in mean square 
error (MSE) of approximately 21 % when excluded from the RFM, fol
lowed by DMAI with an increase in MSE of approximately 9 %. Other 
important variables selected by the Boruta algorithm were Mn, Pox, Silt, 
exchangable Ca, MAT and MAP, with an increase in MSE ranging from 6 
to 9 % when excluded from the model.

The RFM with all relevant variables included (Fig. 4A) had a lower 
prediction error than the model without Alox (Fig. 4B). Excluding Alox 
from the RFM increased the OOBE with 10 % compared to the model 
containing all key predictors (Fig. 4). Both models underestimated SOC 
contents for values larger than 40 g kg-1, while values smaller than 
approximately 20 g kg− 1 were overestimated. Both models showed a 
greater propensity for underestimation than overestimation.

The partial dependence plots (PDPs) in Fig. 5A illustrate that pre
dicted SOC content increase with higher Alox concentrations, with the 
largest increases observed between 2 and 3.5 g kg− 1. Further increases in 
Alox beyond this range had a limited effect on predicted SOC content. 
Similar trends were observed for DMAI and Pox, where SOC content 
increased and then plateaued at higher values of these variables (Fig. 5B, 
C). For DMAI, this plateau was evident under very humid (50 ≤ DMAI ≤

60) and excessively humid (60 ≤ DMAI ≤ 187) conditions. Predicted 
SOC generally decreased with increasing exchangable Mn (Fig. 5D) but 
increased with higher proportions of silt-sized particles, and exchang
able Ca (Fig. 5E, F). MAT and MAP had opposing effects. MAT decreased 
with predicted SOC content (Fig. 5G). For MAP, predicted SOC con
tentwas lowest at values around 600–700 mm, increased with higher 
MAP, and plateaued above approximately 800 mm (Fig. 5H).

4. Discussion

4.1. General modelling results

The random forest model generally reproduced the measured SOC 
contents better compared to the LRM. The RFM was more robust and 
better at capturing the complex relationships between the predictors and 
SOC contents. In both models, oxalate-extractable aluminium (Alox) 
was the most important predictor (Fig. 3, S6). However, SOC contents in 
the RFM were overestimated for values smaller than 20 g kg− 1, while 
values larger than 40 g kg− 1 were underestimated. Only 11 and 26 % of 
the samples had SOC contents <20 and > 40 g kg− 1, respectively. This 
imbalance could have resulted in overfitting in the 20–40 g kg− 1 range at 
the expense of poorer fit to measured data at lower and higher SOC 
contents. Expanding the dataset for these ranges might have improved 
model performance, as was the case for Jeong et al. (2016). Even though 
RFM can sometimes be overly specialized to training data, which 
potentially leads to overfitting, using out-of-bag error (OOBE) helps to 
reduce this risk.

4.2. Geochemical predictors of spatial variation in SOC contents in 
Swedish agricultural soils

Geochemical properties, particularly Alox, emerged from the RFM 
model as the most important predictors for SOC contents for Swedish 
agricultural soils with pH lower than 7. This was shown both by the 
relative importance scores and the fact that the model, by including 
Alox, resulted in smaller out-of-box errors (OOBE; Fig. 4). This result is 
in line with previous studies in temperate and humid climatic zones such 

Fig. 2. Spearman rank correlation coefficients (ρ) for the relationships between all variables. Correlations with p-values below 0.05 are shown.
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as those in New Zealand, the United States and Finland (Beare et al., 
2014; Hall and Thompson, 2021; Salonen et al., 2024). For example, 
Hall and Thompson (2021) demonstrated that Alox was the strongest 
predictor for SOC contents in climates ranging from temperate to trop
ical in North America, Puerto Rico, Alaska, and Hawaii (NEON, 2020; 
Yu, 2021). We, thereby, confirmed results from studies based on smaller 
datasets or with more limited geographical coverage for humid conti
nental climates (Fukumasu et al., 2021; Salonen et al., 2024). For 
example, Salonen et al. (2024), found that Alox explained 21 % of the 
variation in SOC contents in Finnish arable soils with clay contents be
tween 2 and 68 %.

The underlying mechanisms behind our findings likely involve: (1) 
Sorption: Short-range order mineral phases represented in Alox provide 
abundant reactive surfaces for the sorption (via hydrogen bonds and 
covalent bonds (Ahmad and Martsinovich, 2023)) of organic carbon 
compounds (e.g., carboxylic acids and cellulose), hereby, also promot
ing aggregation (Kleber et al., 2021; von Fromm, 2025). This reduces the 
accessibility of SOC to microbial decomposition, thereby increasing SOC 
persistence in soil. (2) Formation of organometal co-precipitates and 
complexes: Aluminium oxides can form strong complexes with organic 
matter, particularly with ligands containing carboxyl and phenolic 
groups. These complexes decrease the solubility and mobility of organic 
carbon, further promoting SOC retention (Hall & Thompson, 2025). In 
our study, the measurement of total Alox encompasses both short-range 
order mineral phases and organometal complexes, making it difficult to 
distinguish the specific contributions of each to SOC stabilization. 
However, the role of Alox in aggregation as suggested in the first 
mechanism is questionable, as aggregation was not correlated with Alox 
(Fig. 2).

Exchangeable cations can act as binding agents for SOC and are 
closely associated with enhanced aggregate stability, thereby contrib
uting to SOC stabilization (Bronick and Lal, 2005; Phocharoen et al., 
2018; Slimani et al., 2022; Totsche et al., 2018). This stabilization may 
be partly attributed to the formation of cation bridges with SOC (Huang 
et al., 2019) and ionic bonds with organic substrates, resulting in 
immobilisation and stabilization of SOC (Solly et al., 2020; Kunhi 
Mouvenchery et al., 2012). Our findings support this mechanism, as we 
observed increased SOC concentrations with higher levels of 
exchangeable Ca (Fig. 5F) and a positive correlation between 
exchangeable Ca and Aggregation (ρ = 0.44; Fig. 2). The abundance of 
Ca cations in Swedish agricultural soils likely reflects the widespread 
presence of lime-rich glaciofluvial deposits and calcareous soils, 
particularly in Götaland, as well as in the western, southern, and central 
regions of Sweden, and in southwestern mountainous areas under 
cultivation (Clason & Granström, 1992). In contrast, the decrease in SOC 
content with increasing exchangeable Mn concentration (Fig. 5D) may 
be related to the catalytic role of Mn in SOM decomposition, where Mn 
facilitates the breakdown of complex organic molecules into simpler 
compounds (Li et al., 2021).

Rasmussen et al. (2018) proposed that the principal controls on SOC 
storage are determined by soil pH and water availability. Specifically, in 
water-limited, alkaline soils, calcium, and to a lesser extent, clay con
tent, are the dominant factors influencing SOC storage. In contrast, in 
more humid and acidic environments, iron and aluminium minerals, 
particularly their complexes and oxyhydroxides, play a greater role. 
Based on these findings, it is plausible that under less humid conditions, 
exchangeable Ca is the most important factor for SOC stabilization, 
whereas under more humid conditions, oxalate-extractable aluminium 

Fig. 3. Variable importance, expressed as the increase in mean squared error (MSE) upon removal of each predictor from the random forest model for soil organic 
carbon (SOC) content. Variables are grouped by category: climate, soil geochemical properties, and soil physical properties.

Fig. 4. Predicted soil organic carbon (SOC) contents from the random forest model plotted against measured SOC contents for A) all predictor variables selected by 
the Boruta algorithm and B) all predictor variables except Alox. OOBE is the out-of-bag error.
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(Alox) may assume greater importance.
Surprisingly, in contrast to the findings of Fukumasu et al. (2021), 

who reported that SOC stabilization via physical protection was asso
ciated with silt-sized aggregates and particles in the topsoil of Swedish 
agricultural fields, our study found that silt-sized aggregation was not a 
strong predictor of SOC content. This suggests that aggregation played a 
relatively minor role in protecting SOM from microbial decomposition 
in the soils we examined. Notably, silt-sized aggregation was positively 
correlated with clay content (Fig. 2), consistent with the well- 
documented influence of clay on soil aggregation (Boix-Fayos et al., 
2001; Kemper and Koch, 1966; Rivera and Bonilla, 2020). Clay content 
is frequently incorporated into pedotransfer functions to predict aggre
gate stability (Wu et al., 2017). Beyond the sorption of SOM onto clay 
surfaces, aggregates smaller than 20 μm are thought to consist of floc
culated clay particles held together by van der Waals forces, hydrogen 
bonding, and Coulombic interactions (Tisdall and Oades, 1982).

The observed increase in predicted SOC content with increasing Pox 
can be attributed to the intrinsic properties of SOM. A substantial pro
portion of organic phosphorus is associated with SOM (Kleber et al., 
2007; Spohn, 2020). Organic phosphorus compounds, which typically 

contain one or more phosphate groups, exhibit a high affinity for 
adsorption to mineral surfaces (Spohn, 2024). Accordingly, Pox is ex
pected to correlate positively with both SOC and Alox, which was 
confirmed in our study (Fig. 2, Fig. 5C). Pox also includes a fraction of 
inorganic phosphorus forms, often associated with Alox and Feox in 
acidic soils (Fransson, 2001). The combined contributions of organic 
and inorganic phosphorus to Pox likely explain the similar trends 
observed in the PDPs for Alox and Pox (Fig. 5A, C), as well as its positive 
correlation with SOC (ρ = 0.36; Fig. 2).

In contrast to our results, Feox content was a significant predictor in 
the regression models used by Salonen et al. (2024), and the sum of clay 
and silt contents was a significant predictor in one of their models. 
However, the effect of Feox was insignificant for soils with clay content 
smaller than 30 %. In our data, the range of clay contents was not as 
wide (1–52 %), and 75 % of the samples had clay contents smaller than 
30 %. It is possible that the limited effects of soil texture and Feox 
contents in our dataset compared to Salonen et al. (2024) were due to 
these differences in soil texture. Another possibility is that the effects of 
increased surface area with increasing clay content were cancelled out 
by increased soil moisture. Soils with high clay content are more prone 

Fig. 5. Partial dependence plots (PDPs) for the predictor variables with the highest relative importance scores, as identified by the Boruta algorithm, in the random 
forest model (RFM) for soil organic carbon (SOC). A) oxalate-extractable aluminium (Alox), B) De Martonne aridity index (DMAI), C) oxalate-extractable phosphorus 
(Pox), D) exchangeable manganese (Mn), E) silt-sized soil particles (2–63 μm), F) mean annual temperature (MAT), G) exchangeable calcium (Ca), and H) mean 
annual precipitation (MAP).
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to create partially anaerobic microsites, which limits microbial degra
dation (Keiluweit et al., 2017; Noël et al., 2024). Also, Feox, which was 
positively correlated with clay content (Fig. 2), may have been affected 
by soil moisture. Under anaerobic conditions, Fe(III) may be reduced to 
Fe(II), which is a less reactive form of iron (Chen et al., 2020; Fukumasu 
et al., 2021). Nonetheless, our findings agreed well with previous large- 
scale studies (e.g., Hall & Thompson 2022; Rasmussen et al., 2018; von 
Fromm et al., 2025; Yu et al., 2021).

4.3. Limited influence of climate and farm management on SOC 
predictions compared to geochemical properties

In line with previous studies, our results show that climate variables 
and farm management practices were of secondary importance to 
geochemical properties (Doetterl et al., 2015; Van De Vreken et al., 
2016). However, previous national-scale studies, which were based, at 
least partly, on the same data as we used, have shown that differences in 
farm management also led to changes in SOC contents (Henryson et al., 
2022; Poeplau et al., 2015). Furthermore, the data from Eriksson (2021)
showed higher SOC contents on animal farms (Table S5) due to a higher 
degree of pastures, regular manure application, and crop rotations that 
included ley. Both Poeplau et al. (2015) and Henryson et al. (2022) used 
SOC data from the SMP. However, unlike the method used by Poeplau 
et al. (2015), who conducted their analysis at the county scale, in the 
approach taken here, we used data from individual fields for which the 
farmers reported farm management data. Henryson et al. (2022) based 
their farm management data on the Swedish Farm Register. The data in 
the Swedish Farm Register are based on information on land use and the 
number of animals reported by farmers to the Swedish Board of Agri
culture. The data on land use are uncertain due to unclear definitions 
(Glimskär and Skånes, 2015). It should be noted that differences in SOC 
content between ley-dominated rotations and other rotations were 
smaller for our subset compared to the complete data from Inventory III, 
which may explain the differences in our results (Table S5).

Climate influences both carbon inputs to soil, via its effect on net 
primary productivity (NPP), and the turnover of SOM (Poeplau et al., 
2024; Wiesmeier et al., 2019). Yet, the complex interactions among soil 
physical properties, management practices, and climate introduce un
certainty in interpreting these relationships. Despite these challenges, 
our findings align with global-scale analyses (Jobbágy and Jackson, 
2000; Hansen et al., 2023; von Fromm, 2025).

In this study, mean annual temperature (MAT) emerged as a signif
icant predictor of soil organic carbon (SOC), with SOC decreasing as 
MAT increased (Fig. 3; 5F). This contrasts with Salonen et al. (2024), 
who observed no significant effect of MAT in a climate similar to Swe
den’s, likely due to the narrower MAT range in their dataset. The rela
tionship between predicted SOC content and mean annual precipitation 
(MAP) was non-linear, showing an initial sharp decrease followed by a 
rapid increase, which is difficult to interpret (Fig. 5D). Our study would 
have benefited from evaluating geochemical predictors within pedo- 
climatically uniform sub-regions, as demonstrated by Wenzel et al. 
(2024). However, when MAT and MAP were integrated into the DMAI 
index, a general increase in predicted SOC content was observed with 
increasing wetness (Fig. 5C). These results suggest that higher soil 
moisture and lower temperature may limit microbial turnover of SOM 
and/or enhance NPP, thereby increasing SOC.

4.4. Assessing the SOC saturation state in Swedish agricultural soils 
across a humidity gradient

The partial dependence plots (PDP) show that SOC content increased 
gradually until it reached a plateau at higher Alox contents (Fig. 5A). A 
similar pattern was observed for multiple ecosystem types for the Na
tional Ecological Observatory Network dataset with sampling points 
across North America (Yu et al. (2021). Yu et al. (2021) suggested that 
this plateau indicates a potential for further SOC accrual. In other words, 

soils with high Alox contents may not have reached their mineralogical 
capacity. For Sweden, previous studies on the effects of changes in farm 
management on SOC contents have indicated that further changes 
should be possible if the input of SOM were increased (Eriksson, 2021; 
Henryson et al., 2022; Poeplau et al., 2015). It is plausible to assume that 
such changes should mainly occur for soils with higher Alox contents 
where the ecosystem capacity may be a limiting factor for attaining the 
mineralogical capacity.

Soil organic carbon content did not continue to increase with DMAI 
in very humid and extremely humid conditions (DMAI>53) (Fig. 5C). 
Aside from the limitation on C inputs, we do acknowledge other possible 
mechanisms that can result in the lower protection of SOC. For instance, 
as Alox content increases, the dominant stabilization mechanism may 
shift toward surface sorption, where organic molecules adsorb directly 
onto metal oxide surfaces from co-precipitation, providing proportion
ally less carbon protection per unit of metal (Wagai and Mayer, 2007). 
The effect of DMAI suggests a limited influence on NPP for the two 
wettest humidity classes. The sampling points with higher DMAI are 
mainly located on the west coast in the south of Sweden and in the north 
of Sweden. In the north, NPP is limited due to short growing seasons. At 
the same time, humid conditions also promote weathering, which cre
ates new mineral surfaces that may help to stabilize SOM and decrease 
soil pH, leading to slower SOM turnover (Meier and Leuschner, 2010; 
Doetterl et al., 2015).

5. Conclusions

We found that the variations in SOC contents in Swedish agricultural 
soils could mainly be predicted by soil geochemistry. Especially oxalate- 
extractable aluminium (Alox) emerged as a key predictor. Based on 
these results and previous studies highlighting the importance of reac
tive aluminium phases in soils for SOC stabilization, we suggest that 
Alox measurements should be included in future soil inventories. The 
relationship between SOC contents and Alox suggests a potential for 
additional carbon storage in Swedish arable soils with large amounts of 
Alox. Farm management and climate variables were of secondary 
importance for predicting SOC contents. This study also highlights the 
need to explicitly include Alox in process-based models for predicting 
SOC storage in humid climates rather than relying solely on clay and silt 
content.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.geodrs.2025.e01038.
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Current status of Swedish arable soils and cereal crops Data from the period, 
pp. 2011–2017. https://pub.epsilon.slu.se/23486/1/eriksson_j_210514.pdf.

Farrar, D., Coleman, J., 1967. The correlation of surface area with other properties of 
nineteen British clay soils. J. Soil Sci. 18 (1), 118–124. https://doi.org/10.1111/ 
j.1365-2389.1967.tb01493.x.

Feng, W., Plante, A.F., Six, J., 2013. Improving estimates of maximal organic carbon 
stabilization by fine soil particles. Biogeochemistry 112 (1), 81–93. https://doi.org/ 
10.1007/s10533-011-9679-7.

Fransson, A.-M., 2001. Evaluation of oxalate/oxalic acid for extracting plant available 
phosphorus in unfertilized acid soils. Commun. Soil Sci. Plant Anal. 32 (15–16), 
2469–2484. https://doi.org/10.1081/CSS-120000385.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. 
Ann. Stat. 1189-1232. https://doi.org/10.1214/aos/1013203451.

Fukumasu, J., Poeplau, C., Coucheney, E., Jarvis, N., Klöffel, T., Koestel, J., Kätterer, T., 
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