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Gaps in tropical science from
unrepresentative distribution of sampling
and citation across natural terrestrial
environments

A list of authors and their affiliations appears at the end of the paper

Effective environmental policies for the tropics depend on accurate, repre-
sentative scientific data. However, there is strong evidence from particular
disciplines and regions that existing research is patchily distributed. Here, we
show that poor representation of sampling and citation in some biomes and
across key environmental gradients from all disciplines for the entire tropics
may lead to flawed scientific paradigms and inappropriate policy prescrip-
tions.Wemap sampling locations and citations from2738published studies in
natural terrestrial tropical environments across all disciplines to identify gaps
in field sampling effort and research attention. Five ecoregions – all in moist
broadleaf forests – generate 22% of the total citations but cover only 3% of the
tropical land area. By contrast, drier biomes with low tree cover account col-
lectively for 57% of the tropical area but generate only 20% of total citations.
Locations that are drier, colder, with greater plant species richness, lower tree
cover and facing greater climate change extremes are under-sampled and
under-cited. Our results will help to correct these imbalances to improve the
scientific basis for environmental policies across the tropics.

The terrestrial tropics are highly populated1 and encompass a wide
range of valuable yet threatened ecosystems2–4. Numerous interna-
tional initiatives have emerged to mitigate these threats. These initia-
tives are shaped by broad syntheses of regional knowledge across all
disciplines4–6, drawing on fieldwork by numerous researchers. How-
ever, field research effort across the tropics is uneven, with certain
areas disproportionately represented while other regions remain
relatively overlooked7–15. Previous studies have tracked research
activity within particular disciplines, regions or time frames7–15, con-
sistently revealing strong geographic and thematic biases in research
effort, citations, peer review and publication. Moreover, site-specific
findings may be extrapolated far beyond their original contexts15,16,
exacerbating the risk of inappropriate policy applications. Still missing
is a comprehensive, cross-disciplinary overview of the spatial dis-
tribution of tropical field research sampling and study citation, and a

robust assessment of how well this distribution represents the full
spectrum of environmental variation across the tropics.

Here, we identify 4260 articles featuring primary field data
within the tropics. Habitat types with a high degree of anthropogenic
influence (urban and agricultural) account for 36% and 32% of sam-
pling locations and citations, respectively. The spatial distributions of
sampling and citation across the tropics are dominated by this pre-
valence of research on heavily impacted environments (Supplemen-
tary Fig. 1). While heavily human-impacted environments in the tropics
are widespread and important for policy, they are subject to distinct
drivers than environments where direct human influence is
minimal17,18. To focus on the spatial distribution and drivers of sam-
pling and citation across relatively natural environments, we remove
studies featuring urban and agricultural habitats for subsequent
analyses.
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We map 6370 field measurements from 2738 published articles
representing 89,468 citations, across all disciplines in different natural
habitats in terrestrial tropical biomes and ecoregions, and relate their
spatial distribution to a selection of key environmental conditions
across the tropics. We compile an initial list of studies with aminimum
of 1 citation from a keyword search for “trop*” in the article title on the
Web of Science database19. The search is designed to minimize intro-
duction of spatial biases arising from the search process itself, such
that any biases in the identified body of literature likely reflect genuine
trends in research effort and attention20,21 (Supplementary Fig. 2). Each
article is scanned by a trained human reviewer to extract geographic
coordinates of field sampling sites, article citation data and habitat
sampled (including aquatic freshwater). Citation data are included as a
proxy for the scientific influence exerted by specific studies22. In cases
where multiple coordinates for sampling locations are identified in a
paper, citations per sampling location are calculated as total paper
citations divided by the number of locations identified per paper.

Using this geo-referenced database, we first summarize the dis-
tribution of sampling and citation among tropical biomes and ecor-
egions using a widely held definition of the terrestrial tropics based
upon vegetation structure (Table 1)23. Then, we compare the frequency
distribution of sampling and citation under different environmental
conditions with the actual frequency distribution with which the same
conditions occur in nature across the tropics. We select the following
eight conditions because of their recognized importance either as
ecosystem drivers or as ecosystem attributes controlling major pro-
cesses or services2,3,24–26. (i) current mean annual temperature (MAT)
and (ii) precipitation (MAP), (iii) projected changes in future mean
annual temperature (ΔMAT) and (iv) precipitation (ΔMAP) by 2100
compared to recent conditions (1970-2000) under the SSP 245 sce-
nario in the coupled model inter-comparison project27, (v) MODIS
derived leaf area index (LAI)28 and (vi) soil organic carbon stock in the
upper 2 meters (SOC) from the SoilGrids product29, and (vii) vascular
plant species richness30 and (viii) mammal and bird species richness31.
Finally, we use statistical multivariate modeling21 to highlight tropical
regions with combinations of environmental conditions which are not
adequately sampled according to our database.

Results
Uneven global representation of field research across
tropical biomes
The spatial distribution of sampling locations and citations across
the tropics is highly variable (Fig. 1). The moist broadleaf forest
biome covers around 29% of the tropics (Supplementary Fig. 3,
Table 1) but accounts for 68% and 73% of all sampling locations

and citations, respectively (Fig. 1, Table 1). The top five most cited
ecoregions (Fig. 2, Supplementary data 1) - all in moist broadleaf
forests with major field stations and/or resident population cen-
ters - account for 11% and 22% of total locations and citations
respectively, but cover only 3% of the tropical biome area. By
contrast, drier biomes (dry broadleaf forest, deserts and xeric
shrublands, grasslands, savannas and shrublands) account col-
lectively for 57% of the tropical area (Table 1) but feature only 21%
and 20% of sampling locations and citations respectively (Fig. 1,
Table 1). Deserts and xeric shrublands stand out as poorly sam-
pled and cited both in absolute terms, and after correcting for
biome area (Table 1). Mangroves are generally frequently sampled
and cited given their limited area (Table 1), although the Guinean
mangroves in west Africa is one of the least cited tropical ecor-
egions (Fig. 2, Supplementary Data 1). Flooded grasslands and
savannas, and coniferous forests are cited much less than
expected given how often they are sampled (Table 1, cita-
tion:sampling ratio).

Regional gaps in tropical research
Current sampling efforts capture some tropical habitats and condi-
tions well, while others remain relatively under-sampled (Fig. 2). Spe-
cifically, current sampling locations adequately represent
environmental conditions from only around 30% of the tropics, cor-
responding mainly with the moist broadleaf forest biome, particularly
in Asia (Fig. 2). Areas with environmental conditions that are poorly
represented by the present distribution of sampling correspond
mainly with biomes in drier regions with low tree cover, particularly in
Africa (Fig. 2).

Representativeness of sampling and citation across the tropical
environmental space
The observed distribution of research sampling locations and
citations with varying MAT, MAP, ΔMAT, ΔMAP, LAI, SOC, vas-
cular plant, mammal and bird species richness are different from
the expected distribution based upon the tropical land area
characterized by these same conditions (Fig. 3, Supplementary
Fig. 3). Specifically, relatively cold (<20 oC MAT) or dry
(<1000mm MAP) locations with low LAI ( < 3 m2 m-2) and pre-
dicted to face more climate extremes (greater future warming,
cooling or increased precipitation) are less sampled and cited
than expected given their spatial extent (Fig. 3), which corre-
sponds to the following tropical biomes: dry broadleaf forest,
coniferous forest, grasslands, savannas and shrublands (Supple-
mentary Fig. 3). These areas tend to occur at relatively high and

Table 1 | The distribution of sampling locations and citations across natural terrestrial habitats in tropical biomes

Biome Area Sampling locations Citation rate Citation: sampling ratio

% of total % of total Density 105km-2 % of total Density 105km-2

Grasslands, Savannas &
Shrublands

31.1 11.2 5.2 10.7 66 1.0

Moist Broadleaf Forests 28.5 68.2 34.9 73.4 493 1.1

Deserts & Xeric Shrublands 20.2 1.1 0.8 1.3 12 1.2

Dry Broadleaf Forests 5.6 9.1 23.5 8.1 275 0.9

Montane Grasslands & Shrublands 4.4 0.9 3.0 1.1 48 1.2

Flooded Grasslands & Savannas 1.2 0.7 8.2 0.4 62 0.6

Coniferous Forests 1 1.9 27.8 0.6 115 0.3

Mangroves 0.5 2.1 63.4 1.9 752 0.9

Extra-tropical other* 7.5 4.8 9.4 2.6 67 0.5

Sampling and citation values are derived from a database of 2738 articles, representing 6370 sampling locations and 89468 citations. Sampling and citation density are calculated as the total
number of samples and citations from studies occurring in each biome, respectively, divided by the area of the corresponding biome. Citation:sampling ratio is the ratio of % citations to % sampling
locations. *Non-tropical biomes included within the 100 km buffer around the formally defined tropical area23.
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Fig. 1 | Distribution of field sampling and study citations across natural ter-
restrial habitats in the tropics.Density of sampling locations (A) and citations (B)
per unit land area across natural terrestrial habitats in the tropics. Spatial resolution
is 3° (~ 330 km).Mapswere produced fromadatabase of 2738 articles, representing
6370 sampling locations and 89,468 citations. The full extent of tropical biomes

is highlighted in dark gray, using widely accepted boundaries23. To account
for transition zones between the biomes, we added a buffer of 100km around
the formally defined tropical area. Overall, the study area consisted of 52.9 ×
106 km-2 of terrestrial land (ca. 36 % of the global land area). Base map from
Natural Earth98.

Fig. 2 | Representativeness of currently sampled environmental conditions
across natural terrestrial habitats in the tropics. Values are derived from a
database of 2738 articles, representing 6370 sampling locations and 89,468 cita-
tions. Values represent probabilities (1 = high, 0 = low) that environmental condi-
tions within a location have been sampled, using statistical multivariatemodeling16.
A value above 0.5 effectively classifies an environmental condition as one where a

sampling location is present. Photographs show the locations of the top five most
cited (red outline and arrow) and least cited (black outline and arrow) ecoregions
across the terrestrial tropics23. Photo credits in Supplementary Table 1. Data of
locations and citation metrics across the full list of ecoregions are presented in
Supplementary data 1. Base map from Esri99.
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low latitudes, and at higher elevations, within the tropics (Fig. 2).
Conversely, areas with high LAI and high diversity of mammals
and birds, corresponding roughly with the moist broadleaf forest
biome (Supplementary Fig. 3), are sampled and cited more often
than expected from the frequency of their occurrence (Fig. 3). It
is important to note, however, that the datasets used to quantify
actual biodiversity distributions30,31 are themselves likely spatially
biased32,33, for many of the same reasons that drive sampling and
citation biases7–16. Therefore, the extent to which actual biodi-
versity distributions are accurately represented by existing
research should be interpreted with caution, though the present
analysis likely overestimates representation (Fig. 3).

Discussion
Policy risks from unrepresentative sampling and citation in
tropical research
Scientific research depends on finite resources, which necessitates
difficult decisions about where to focus field sampling efforts. We
document major spatial biases in research foci across the terrestrial
tropics, which means that valuable ecoregions and widespread envir-
onmental conditions remain largely overlooked. For example, the
under-sampled and poorly recognized drier biomes showhigh floristic
diversity34 and play a central role in regulating inter-annual variability
in global atmospheric carbon dioxide levels35. Yet, these drier biomes
are home to around one-third of the global human population36, their

Fig. 3 | Distribution of field sampling and study citations across environmental
space represented by natural terrestrial habitats in the tropics. Frequency dis-
tribution of actual occurrence (A,D, G, J), sampling locations (B, E,H,K) and citations
(C, F, I, L) for different combinations of environmental conditions across natural
terrestrial habitats in the tropics. Values are derived from a database of 2738 articles,
representing 6370 sampling locations and 89,468 citations. The tropics are defined

using widely accepted boundaries23. Gray pixels denote the full range of ambient
conditions across the entire tropics, from a random sample (n = 100 000) of the total
pixels within the study area. To be representative, sampling locations (B, E, H, K) and
citations (C, F, I, L) should cover the full range of environmental conditions shown in
gray and display a frequency distribution similar to the actual occurrence of envir-
onmental conditions (A, D, G, J) observed across the entire tropics.
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habitats are generally more threatened37 and they receive less formal
protection than other biomes38. By contrast, certain geographic areas,
biomes, and ecoregions are disproportionately favored in terms of
research effort and attention. These relatively well-sampled and cited
regions tend to occur in humid forest biomes, particularly in Asia. The
vast diversity of tropical environments exacerbates the risks of extra-
polating findings from a narrow set of well-researched contexts to
broader, ecologically distinct regions15,16.

One possible example of such extrapolation is the widespread
advocacy – both within and beyond the scientific community – for
afforestation in ecosystems with naturally low tree cover as a climate
change mitigation strategy39–41. The prevalence and persistence of this
narrative16,42,43 may stem, at least in part, from the strong research
emphasisweobserve inmoist broadleaf forest biomes, and the relative
scarcity of research in dry forests and open tropical ecosystems such
as deserts, grasslands, and shrublands37,38. The scientific inferences and
policy prescriptions derived from the limited number of intensively
sampled locations often stretches far beyond the wider regions which
possess clear climatic or ecosystem analogues to the original
locations15,16, hampering the development of effective environmental
management actions tailored to suit local conditions.

Drivers of research imbalances and pathways to more repre-
sentative insights
As science enters an era of “big data”, the urgency to make sense of
massive data streams has increased dramatically. One critical challenge
is that many large-scale data collection initiatives do not collect repre-
sentative samples of their variable of interest44, which means both that
the effective sample sizes are much lower and that the mean variable
estimates from these samples are inaccurate45. The spatial biases we
reveal likely emerge froma complexmix of factors: locations of research
stations46, article peer review outcomes and citation rates8, evolution of
population centers and transport infrastructure1, as well as imbalances
among regions in resources available for research47. Further, there may
be biome-specific differences in the likelihood that research will be
referred to as tropical. Although technically a potential methodological
artifact in the current analysis, if true, it would nevertheless contribute
to the continued marginalisation of certain tropical biomes from policy
discussions. As it is, we believe that the trends identified mostly reflect
genuine trends in tropical research effort and attention. First, because
they are confirmed by multiple independent sources7–15,37,38. Second,
because the biome most closely linked to the tropics –mangroves48,49 –
where there should be the weakest incentive to specify the tropical
origin of the research, is more sampled and cited relative to its extent,
not less as would be expected if the search term in our literature review
introduced sampling artifacts.

We emphasize that the spatial biases identified are an emergent
property resulting fromsynthesizingmany individual research studies,
then drawing broad conclusions from them (“external validity” in
reviews and meta-analyses50), even though individual studies may not
make inferences beyond their immediate study site. As such, our
results make no claim about the accuracy and quality of individual
articles (“internal validity”50). Nor do our results suggest that inten-
sively studied research sites and field stations are inherently proble-
matic or not deserving of investment. On the contrary, these
infrastructures enable in-depth investigations thatwouldbedifficult to
execute elsewhere and often yield a high return on investment51.
Instead, we advocate for complementing the detailed, long-term per-
spectives provided by intensive research sites with broader pan-
tropical perspectives from spatially extensive measurement networks
when formulating integrative outputs intended to inform policy. Such
networks have already been established to address these challenges,
mainly focused on carbon cycling52,53 and species occurrence54,55. While
these networks may also be affected by problems associated with
unrepresentative spatial sampling56,57, they remain essential tools for

broadening scientific perspectives. More networks addressing other
biomes38, ecosystem components and processes are developing, and
will contribute to amore balanced picture of pan-tropical processes as
long as the underlying spatial distribution of sampled sites is explicitly
considered when deriving broad principles and metrics of tropical
ecosystem functioning.

As larger-scale – but often unrepresentative – data collection
initiatives flourish, the need to develop strategies to derive accurate,
balanced inferences from these datasets is growing ever more urgent.
A range of qualitative and quantitative approaches could be used to
account for the spatial distribution of sampling44. Rigorous assess-
ments of the contributions of bias on descriptive inference - so called
“risk-of-bias” assessments– are standard inmedical researchproposals
and papers58. Expanding the use of risk-of-bias assessments to other
fields could improve scientific transparency and rigor, helping both
authors and readers better understand the limitations and general-
izability of research findings. Risk-of-bias can be reducedwith auxiliary
variables which are associated with both the likelihood of a unit being
sampled and with the underlying values of the variable of interest, to
adjust the overall population-level estimate so that it lies closer to the
true value44,59,60. Moreover, such variables can also be used to guide
future sampling efforts – to target locations which have been sampled
less frequently than would be expected by chance61–63.

The spatial distribution of sampling documented in this study
could serve as an auxiliary variable to correct current estimates of
ecosystem properties and processes and guide future, more balanced
sampling, improving biome or pan-tropical estimates of environmental
variables. However, even after statistical and sampling corrections, some
residual biases are inevitable. These biases and uncertainties should be
clearly communicated to readers anddata users to aid interpretation64,65.
Specifically, the temporal and spatial scope of inference supported by
the data should be clearly reported. Where inferences extend beyond
the sampled populations or regions, such extrapolations should be
explicitly acknowledged and critically assessed. These practicesmay not
currently be incentivizedwithin academia66 but will become increasingly
critical to maintain a clear view of knowns and unknowns in a rapidly
changing world inundated with data.

Toward broader and more inclusive tropical sciences
Our results highlight biomes and environmental conditions that
dominate tropical research, and identify priorities for future sampling
to improve assessments of the overall current and potential future
state of the tropics as awhole.While global disparities and inequities in
science and research have received considerable attention7–16,47,67–69,
our study highlights the extent and importance of regional disparities
within the tropics70–72, particularly between South America and Asia
versus Africa, and tropical lowland forests versus other habitats. The
underlying causes of these regional disparities likely overlap sub-
stantially with those driving global patterns: including unequal access
to research resources and infrastructure among tropical countries and
regions47,73, variation in social and political stability74, administrative
barriers to knowledge transfer across regions and countries75, the
preferential channeling of international funding and collaborations
through a small subset of tropical institutions and countries46, a bias in
research toward forested landscapes relative to other tropical habitat
types70, unethical collaborative practices which disproportionately
benefit partners fromwealthier regions and/or countries often outside
the tropics76 and systemic biases in the recognition of scientific
knowledge production77,78. Many of these issues lack straightforward
solutions, requiring a paradigm shift in global scientific collaborative
practices76,79. However, reducing administrative and financial barriers
to scientific engagement across different tropical regions and globally
– such as the costs of journal subscriptions and the difficulty of
securing visas for research visits and study – would represent a major
concrete advance68,75.
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Based upon our study, we offer three broad, related but distinct,
conclusions and suggestions for future action. First, large portions of
the tropics representing valuable ecoregions are relatively well-
sampled but poorly cited, and therefore may have had limited influ-
ence over scientific narratives or environmental policy. Similar bodies
of scientific knowledge originating from different locations receive
very different levels of recognition77. This issuemay be exacerbated by
the under-representation of non-English language literature80,81, which
we recommend integrating more fully into future reviews. Fast-
evolving translation tools make this a realistic vision82. Efforts to
increase the diversity of scientific groups – such as journal editors,
reviewers, society boardmembers, conferenceorganizers – couldhelp
to increase representation fromunder-recognized tropical regions and
countries and reduce systemic bias69,79. Some journals have begun
experimenting with tools designed to reduce discriminatory practices
in academic publishing83. If adopted more broadly as standard prac-
tice, such tools could contribute to the creation of a more equitable
scientific landscape.

Second, some tropical areas remain significantly under-sampled
despite their broad extent and ecological value. These areas should be
prioritized in future research efforts, as an effectivemeans to increase
the amount of novel environmental knowledge per unit research
investment. Greater recognition of the scientific value of under-
sampled regions by governments, research institutions, funding bod-
ies and journal editors or reviewers would help incentivize researchers
to undertake the additional costs often inherent to sampling these
areas16,42,70. International support for local research infrastructures and
field stations could be restructured to begin to counteract the accu-
mulated effects of historical preferences for highly accessible loca-
tions near lowland tropical forests.

Finally, we highlight disparities in research attention across a few
key axes of environmental variation across the tropics, but there
remain many other globally or locally critical drivers of ecosystem
processes (e.g., anthropogenic influence, geology, soil type, or plant/
animal phylogenetic relatedness), which are likely also not well
represented by the current distribution of field research. Further work
might highlight new priority areas for future sampling or deserving of
greater attention, depending on the process or driver in question.
Addressing these data gaps is essential for producing truly integrative,
globally relevant ecological insights.

Methods
Inclusion & ethics
The authorship team comprises a diverse range of nationalities and
career stages with a reasonably balanced gender composition. There
is, however, a distinct overrepresentation of North European and
American institutions, although several members of the team are
nationals of tropical countries but are now employed outside of the
tropics. In large part, this reflects the fact that much of the group was
initially established to complete a conceptually similar article focused
on Arctic systems20. For the present analysis, considerable effort was
made to widen the authorship group, enlisting assistance and inputs
from researchers working in tropical countries, with limited success.
Therefore, in the present article, we have taken particular care to
evaluate and thoroughly describe the diverse perspectives about the
patterns and drivers of regional and global variation in knowledge
production.

Literature review
On 3 November 2021, we searched the Web of Science database for
articles with the term “trop*” in their title. Wider keyword searches of
the abstract or main text were not performed since they yielded an
intractably large number of articles. The approachwas not designed to
yield a complete list of tropical research, but to provide as close to an
unbiased subset of tropical research aspossible. As such,more specific

search terms were avoided since they could introduce biases if parti-
cular names or terms were more likely to be used in particular loca-
tions or by particular disciplines. Non-English language articles were
not screened out but represent a minority of the Web of Science
database84. Uncited papers were not included because it was assumed
that they have not yet exerted much influence over scientific para-
digms or policy strategy22. We include all studies irrespective of dis-
cipline and all time periods, including social sciences and laboratory
studies, as long as the geographic origin of the samples was reported.

The resulting initial list of 11,804 cited papers was then screened
to assess their relevance to our objectives (see key steps in the
screening process in a PRISMA flow diagram format (Supplementary
Fig. 2). Of these papers, 11,713 (99% of initially screened papers) were
successfully accessed via university institutional access to the pub-
lisher in question or by writing to the corresponding author for a
personal copy. After full review, papers were excluded (6625, 56.0% of
initially screened papers) if: (1) they featured only measurements in
marine environments; tidal estuaries were counted as terrestrial and
labeled as river habitats; (2) they did not include primary field mea-
surements because they were broad reviews, modeling analyses, the
data presented had already been published elsewhere, or the mea-
surementswere from laboratorymeasurements using sampleswithout
a clear provenance; (3) the primary field measurements featured were
located outside of the tropics and buffer regions as defined in our
study23. Studies that were not field-based (for example, remote sen-
sing, geographical information science, and modeling analyses) were,
in some cases, included where they included ‘groundtruthing’ field
measurements and/or the spatial extent of the study was relatively
limited.

After removing papers that did not fulfill these criteria, 5088 (43%
of initially screened papers) papers remained, which were subjected to
further analysis. Content analysis was used to: (1) extract geographical
coordinates of the field measurements. In cases where coordinates
were not explicitly provided, we used place or landform names men-
tioned in the text to determine the approximate coordinates of the
field site(s) on Google Maps; (2) classify the habitats sampled within
the paper. The habitats featured were forest, grassland, wetland,
desert, rocky area, agricultural, urban, lake, and river. Content analysis
inevitably included a degree of subjective judgment on the part of the
reviewer. All reviewers were trained at least to a university under-
graduate level in environmental sciences and received identical review
instructions. Individual papers frequently featured multiple habitats
and/or single habitats which represented aspects of multiple habitat
categories, inwhich case amaximumof 3 habitats could be assigned to
the same sampling location. The information from the content analysis
was then paired with basic paper information derived from Web of
Science (authors, journal, title, volume and page numbers, science
categories and research areas, citations as of 3 November 2021) to
form the central dataset for subsequent analyses.

Mapping study sampling locations and citations
To further define our study domain for spatial analysis, we used the
biome boundaries that were classified as tropical in the ecoregions
database (i.e. BIOME_NAME field included a word “tropical”)23. To
acknowledge that theremight be transition zones between thebiomes,
we added a buffer of 100 km around the tropical area. Overall, our
domain consisted of 52.9 × 106 km-2 of terrestrial land (ca. 36 % of the
global land area). After removing articles that were outside this tro-
pical domain, the number of articles, sampling locations, and citations
decreased to 4260, 9987, and 131,030, respectively. Finally, to focus on
terrestrial environments with lower intensity of direct human influ-
ence, we excluded sampling locations in urban and agricultural areas
based on the habitat description in the literature database, which
resulted in a dataset of 2738 articles, 6370 sampling locations and
89,468 citations for the final analyses.
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Extraction of environmental conditions variables from study
site locations
All the data processing and analyses were conducted in R program ver-
sion 4.4.185. We used a range of climatic, vegetation, soil and biodiversity
data to characterize the tropical region as a whole and to extract data to
study site locations. From the biome dataset23, we utilized the variables
ecoregion (ECO_NAME) and biome (BIOME_NAME) to broadly classify
articles to key ecological domains.We used the 1-kmWorldClim v2mean
annual average air temperature (oC) and annual cumulative precipitation
data (mm) over 1970-2000 and 2081-2100 based on the SSP 2.45 sce-
nario, produced from an ensemble of 12 downscaled CMIP6 layers27.
Climate anomaly layers were calculated based on the difference between
2081-2100 and 1970-2000 layers. We used the MODIS MOD15A2H
dataset, which provides 500-meter resolution data on Leaf Area Index
(Lai_500m)28. We applied quality filtering to exclude poor-quality pixels
(included FparLai_QC bit 0 value 0 data, i.e., good quality) and areas
affected by clouds (included FparLai_QC bit 3-4 value 0 data, i.e., no
clouds). We then calculated annual means over 2002-2023 and filled
gaps in the average MODIS LAI map by applying a moving window
analysis (window size: 19) with the focal command in the R package
terra86. Soil organic carbon stock data for the uppermost 2 meters were
extracted from the SoilGrids product29. We used a dataset of predicted
vascular plant species richness (i.e.: alphadiversity) for a plot size of 1000
m2 including forest and non-forest species (ca. 5 km pixel resolution)30.
This plot size was chosen as it is commonly used when sampling forests.
We further extracted predicted bird and mammal species richness
datasets31 and summed them as one animal diversity measure. All the
geospatial layers were re-projected to WGS 1984 at 1 km resolution and
masked by the climate datasets using the R package terra86.

Spatial analyses
We calculated the total number of articles, sampling locations, and cita-
tions across biomes and ecoregions. Then, we examined the distribution
of sampling locations and citations across the full range of tropical con-
ditions, to compare with the actual prevalence of the same conditions in
reality. To describe the conditions across the entire tropics, we took a
random sample (n= 100000) of the total pixels within our study domain.

We used statistical multivariate modeling to highlight areas lack-
ing sampling locations when considering overall environmental
variability21,87. This approach is conceptually grounded in species dis-
tribution models (SDMs)88. SDMs define a geographic space based on
environmental variables and identify areas where environmental con-
ditions are suitable for a given species. We adapted this framework to
evaluate representativeness of sampling locations, aiming to delineate
the spatial distribution of environmental conditions across a geo-
graphic envelope that reflects the range of environments captured by
the current sampling locations21,87.

We used a binomial/categorical response variable for the
presence-absence data (1 = sampling location exists, 0 = sampling
location is missing), and climate (MAT and MAP), soil (SOC), vegeta-
tion (LAI), and biodiversity (plant and animal species richness) as
explanatory variables. Since our database contains information about
sampling locations only, we needed to artificially create locations with
the absence of sampling. To do this, we followed an established
methodology89, creating a random sample of terrestrial absence
locations with the same number of observations as our presence
locations (n = 6447) with the R package sp90. Then, we obtained spatial
data in these randomly sampled locations based on coordinate colo-
cation. These were then combined with the literature database, which
resulted in a data frame of 12,894 locations. The predictors in the final
data set did not suffer from high multi-collinearities, as the correla-
tions between the predictor variables were <0.70.

We used common statistical and machine learning models –

generalized additive models91, random forest models92 and general-
ized boosted regression trees93 – to predict both the presence-absence

of sampling locations and the probabilities for the presence. To reduce
uncertainties associated with individual models, we calculated the
median probability across the three models, which was used to
describe the representativeness of sampling locations for each raster
pixel across the whole tropics. In the final map, high probabilities
indicate a good coverage of current sampling locations in similar
conditions (1 =highprobability that there is a sampling location in such
conditions), and low probabilities suggest lack of locations (0 = no
probability for a sampling location). From these probabilities, we also
calculated the total area capturing the environmental conditions
where sampling sites are covered (>0.5).

The performance of the three models and their ensemble was
assessed using cross-validation with 99 permutations from which we
calculated the area under the curve (AUC) test statistic94 with the R
package ROCR95. In the cross-validation procedure, a random sample of
70% of the data was used to test the model fit, and the remaining 30%
were used to assess predictive performance. Test statistics were calcu-
lated after each permutation to evaluate the ensemblemodel. AUC scores
varied from0.76 to 0.9, with themean AUCbeing 0.83. An AUC value of 1
represents perfect accuracy and 0.5 indicates that the model is no better
than random. All the visualizations from the spatial analyses were created
with theRpackageggplot296 andmapswith ESRI ArcGIS Pro version 3.0.3.

Use of AI
Large language models were used to copy-edit existing text, to check
for errors in grammar and syntax, and to suggest alternative sentence
formulations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited in a Zenodo
repository file, with DOI 10.5281/zenodo.15423742 (https://zenodo.
org/records/15423743)97. Thedata canbedownloaded fromthis linkby
any user, there are no access restrictions. Additional data are pre-
sented together with the article in the file Supplementary data 1, which
presents sampling and citation data for the full list of ecoregions
included within the study area.

Code availability
All code generated in this study have been deposited in a Zenodo
repository file, with DOI 10.5281/zenodo.15423742 (https://zenodo.
org/records/15423743)97. The code can be downloaded from this link
by any user, there are no access restrictions.
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