

RESEARCH ARTICLE

BugBook: Critical considerations for evaluating and applying insect frass

I.G. Lopes^{1*} , M. Gómez-Brandón² , N. Praeg³ , J. Claeys⁴ , W. Yakti⁵ , M. Bitterlich⁵ , J.J. Jones⁶ , C.M. Geilfus⁷ and T. Klammsteiner^{8*}

¹Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp Campus, Sundsvägen 5, 234 56 Alnarp, Sweden; ²Grupo de Ecología Animal (GEA), Torre CACTI-Lab 95, Vigo University, Fonte das Abelleiras, s/n, E-36310 Vigo, Spain; ³Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria; ⁴Inagro, Ieperseweg 87, 8800 Rumbeke-Beitem, Belgium; ⁵Urban Plant Ecophysiology Division, Albrecht Daniel-Thaer Institute of Agriculture and Horticulture, Humboldt University of Berlin, Lentzeallee 55, 14195 Berlin, Germany; ⁶Department of Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195 Berlin, Germany; ⁷Department of Soil Science and Plant Nutrition, Hochschule Geisenheim, Von-Lade-Straße 1, 65366 Geisenheim, Germany; ⁸Department of Ecology, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; *iva.guidini.lopes@slu.se; thomas.klammsteiner@uibk.ac.at

Received 26 November 2024 | Accepted 5 June 2025 | Published online 25 June 2025 |
Published in issue 21 November 2025

Abstract

Insect frass is one of the most abundant products in the insect industry, regardless of the farmed species. Rich in organic matter and plant nutrients, frass is a promising organic amendment that can be used in agriculture. While many benefits and challenges have been reported, several knowledge gaps remain unanswered, regarding the specific characteristics and mechanisms of its effects on soils and plants, particularly in terms of the processes driving these effects and interactions. This article aims to discuss recent research on frass and identify existing knowledge gaps, and propose strategies to improve research methodologies, increase comparability across studies, and generate more robust results. The topics covered include the evaluation of frass effects on soil physical properties, microbiological dynamics and fertility, as well as its effects on plant growth, development, and metabolism. The article also explores the potential of frass as an antimicrobial agent and highlights the need for stabilising and improving its quality and safety before it is used in agricultural activities. Looking forward, insect frass holds great promise as a sustainable input for agriculture, food production, and feed systems.

Keywords

experimental design – fertiliser – hygienisation – protocol – soil amendment

1 Introduction

Climate change poses a wide-ranging threat to global food security, affecting crop yields, food distribution networks, and market stability through extreme cli-

matic events, changing precipitation dynamics and rising temperatures (Dasgupta and Robinson, 2022). In addition, an expanding world population with shifting dietary preferences, along with geopolitical tensions further intensify the challenges associated with food secu-

riety, thereby requiring a multidisciplinary approach to address agricultural productivity, socio-economic factors, and environmental sustainability (Mbow *et al.*, 2019). As one measure to secure proper food supply, global agriculture is urged to provide higher yields (Ren *et al.*, 2019). The increase in agricultural output is expected to come from intensifying production on existing farmland, in addition to the need for new areas (FAO, 2017). Improving agricultural production and boosting its yield involves the adequate use of fertilisers, which are becoming more expensive. The prices of fertilisers, food and energy interact closely, creating a feedback loop within which rising costs in one sector increase costs in others, as typically observed in linear economies, leading the whole system to instability (Alexander *et al.*, 2023; Ott, 2012). From an environmental perspective, the use of synthetic fertilisers such as ammonium, nitrate, and urea have significant impacts. This includes high water and energy consumption, substantial use of fossil fuels, and a generally high potential for contributing to global warming throughout its production and use, justifying the need for a greater use of organic inputs (Chien *et al.*, 2009).

A growing interest in finding solutions to replace synthetic fertilisers – at least partially, from both academia and industry – has been observed over the last few decades. Partial replacements of synthetic inputs with organic amendments could enhance agricultural sustainability by improving soil health and resilience, reduce environmental footprints of current production systems, and boost long-term productivity. While synthetic fertilisers have a more rapid nutrient release upon application in the soil, these are more prone to nutrients runoff. For instance, NO_3^- is easily soluble in water and is not adsorbed by the soil organic matter's negative charges. Conversely, organic fertilisers are typically known to act as slow-release fertilisers, seen that they need to “break down” and its nutrients need to mineralise before absorption, providing those in a lower amount over an extended period of time and preventing runoff (Shaji *et al.*, 2021). Their rational and proper use may therefore provide a means of long-term protection to agricultural fields, not only by enhancing nutrient availability but also by preventing the risk of eutrophication and groundwater contamination. Besides, organic fertilisers and soil amendments are known to contain an endogenous active microbiome that may exert long-term effects on the productivity and sustainability of agro-ecosystems (Mas-Carrió *et al.*, 2018), contributing to soil organic matter (SOM) buildup and increasing microbial activity and diversity. Therefore, the integration

of organic fertilisers into current systems might contribute to reducing the dependency on synthetic inputs, bolstering ecosystem resilience (Badagliacca *et al.*, 2024; Liu *et al.*, 2024; Tang *et al.*, 2022). In addition to these well-known benefits, the use of organic fertilisers, such as compost, manure, and bio-based waste products can enhance circularity in food production systems by bringing valuable nutrients back. However, as pointed by Leytem *et al.* (2024), several challenges exist from this perspective, including unbalanced and inconstant nutrient composition, the possible presence of pathogenic microorganisms, heavy metals, and other undesired substances such as antibiotics.

Interest in insect farming has been rapidly growing since the last few decades, as it addresses several global challenges by connecting waste management with food security and sustainability (Alfiko *et al.*, 2022; Tomberlin and van Huis, 2020). Farmed insects, such as various cricket species, yellow mealworm (YM), and black soldier fly (BSF), have high levels of essential amino acids and micronutrients, which makes these valuable food and feed components (Jiang *et al.*, 2023; Oonincx and Finke, 2021). Insects are mainly produced for their biomass, which is rich in protein and fat, but after their harvest, significant amounts of the remaining substrate, exuviae, and insect faeces remain. This blend is called insect frass. Even when insects are provided with a high-quality substrate suitable for production, the amount of frass remaining after harvest can exceed the weight of dry larvae produced (Deruytter *et al.*, 2023; Guidini Lopes *et al.*, 2023; Yakti *et al.*, 2022).

According to EU regulations, frass is defined as a mixture of insect excrement, residual feeding substrate, parts of farmed insects (not more than 5% (v/w) and not more than 3% (w/w)), and dead eggs (Commission Regulation (EU) 2021/1925). This classification further requires that frass undergoes hygienisation measures, such as heat treatment (70 °C for 1 h), anaerobic digestion or further composting, as it is legally considered within the “manures” group (Commission Regulation (EU) 142/2011). Insect frass is a valuable plant fertiliser that contains organic and plant available forms of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), sodium (Na), as well as other elements (Amorim *et al.*, 2024; Beesigamukama *et al.*, 2022b). Additionally, chitin-rich exuviae fragments that remain in the frass might have a protective effect against pests, while boosting the plant's immune response (Barragán-Fonseca *et al.*, 2022). Besides potentially reducing the harmful environmental impacts related to the production and use of chemical fertilisers and pesticides, insect

frass represents an additional revenue stream for producers, which could increase profitability for both the insect producers and farmers who would utilise this by-product (Beesigamukama *et al.*, 2022a; Niyonsaba *et al.*, 2021, 2023). However, frass can still be considered a novel agricultural input with several unknown traits and effects, from its composition to its use.

Insect frass has been showcased multiple times in the literature as a promising fertiliser and/or soil amendment that can benefit the soil-plant system in distinct ways. However, it is noteworthy that this novel material has a widely varying composition, not only in terms of organic matter and plant nutrients, but also in relation to the presence of bioactive compounds, which might cause this input to be different in comparison to other known organic materials such as compost. Among the knowledge gaps existing around insect frass, the most relevant ones are wide variations in its nutrient content, either from the same or distinct species as affected by the feed substrate used; fluctuating results when using frass as a fertiliser, in both soil and plants; possible effects of insect frass in plant protection; logistical challenges; and market needs (Figure 1). Encompassing all of these gaps is a central matter: how frass-related research is conducted and how replicable the results currently being published are. The aforementioned gaps will certainly be fulfilled in the future, but in order to advance knowledge in an adequate manner, designing experimental protocols in certain ways could enhance the comprehension of the effects of frass in agricultural practices even more. The main objective of this article is to discuss frass-related research up to this moment, highlighting both unsuccessfully and successfully acquired data, while providing useful suggestions for future research around this topic.

2 Challenges in classifying, characterising and testing insect frass

Rearing insects is *per se* a highly variable subject, with outcomes influenced by factors such as insect species, rearing methods, production scale, feed substrates used, and the type of processing applied to the resulting biomass and frass. Even when focusing on a single insect species, high variations in larval biomass and frass quality have been observed (Gärttling and Schulz, 2022; Lalander *et al.*, 2019). While balancing the proximate composition of larval biomass is somewhat easier, given the provision of diets with stable composition, maintaining consistent frass composition is more challeng-

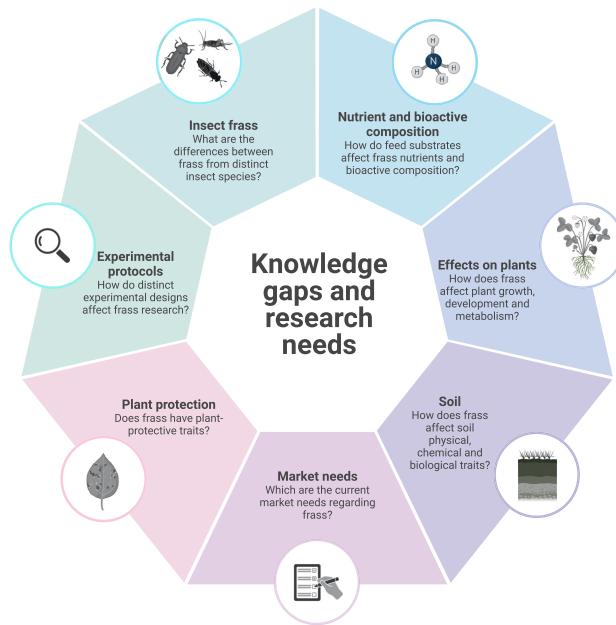


FIGURE 1

Conceptual map of knowledge gaps and research needs related to insect frass. Key challenges in frass research include variability in composition (due to insect species, diets, life stages, and processing techniques), the need for methodological standardisation (e.g. extraction solutions, ratios, and testing protocols), similar to what is done with compost and soils, as well as identification of key parameters, regulatory challenges, and market needs.

ing, as even minor adjustments in process parameters, such as the bioconversion efficiency, ventilation, temperature, and humidity could affect its characteristics.

Based on the benefits reported so far in the literature regarding the use of insect frass in agriculture, its high concentration of organic matter, plant nutrients (which may vary in availability depending on the insect species and post-treatment method), and beneficial microorganisms are particularly prominent (Lopes *et al.*, 2022). Due to the varying life cycles of insect species, which directly influence the time required for frass production (e.g. 10–15 days for BSFL and 40–60 days for YM per batch for a first-use sort of say), it is even more challenging to understand and predict the differences observed in frass composition. Therefore, it is noteworthy that, at first glance, 'insect frass' types should not be treated the same when it comes to understanding their potential. Even though legal definitions are necessary (as stated above), the characteristics of frass and its effects on soils and plants must be considered, at least regarding its origin, i.e. the species from which it was produced. Nevertheless, a series of parameters can be considered and evaluated when reporting the effects and results of frass use, in the attempt of increasing the

understanding of frass effects in crop production within a circular perspective, as performed by Ashworth *et al.* (2025). These are listed below as “recommended parameters” (which should always be reported in research on frass or commercially), “additional parameters” (which could be of great benefit for understanding the potential of the product) and “useful supplementary parameters” that are more specific. Based on those parameters, the effects and potentialities of frass in the soil and in plant cultivation are subsequently discussed.

Recommended parameters for frass characterisation:

- (1) Organic matter content,
- (2) C, N, P, and K concentrations.

Additional recommended parameters:

- (1) pH and electrical conductivity (EC),
- (2) Ammonium and nitrate concentration,
- (3) Organic matter degradability (CO_2 and NH_3 emissions, self-heating capacity).

Useful supplementary parameters:

- (1) Concentration of other macro- and micronutrients (Ca, Mg, S, Cu, Na, Zn, and B),
- (2) Concentration of heavy metals (e.g. Cd, Hg, As, Pb, Cr),
- (3) Microbial abundance and functionality,
- (4) Biostimulants (e.g. amino acids, humic substances and phytohormones).

The assessment and disclosure of frass characteristics will primarily depend on two possibilities: for research purposes and the marketing context it is introduced to. When it comes to scientific efforts, it is advisable that the recommended and additional recommended parameters mentioned above are always disclosed to ensure a thorough understanding of frass composition given a certain rearing protocol and conditions, which can be translated later on to other realities and production scales. Conversely, when frass is marketed as a soil amendment or organic fertiliser, it must be minimally in agreement with the respective country's regulatory requirements.

Chemical and biological analysis of frass

Insect frass is a rich source of organic matter, nutrients, and bioactive substances in close interactions that can contribute to the fertility of soils and plant health in distinct ways (Lopes *et al.*, 2022). However, the understanding of frass effects depends directly on the proper chemical and biological characterisation of this input. Such characterisation can be a challenging step towards frass analysis, as there are several methods used to characterise soil and other organic amendments, such as vermicompost, compost and animal manures, which are

currently being used as they are or with small adaptations. This chapter aims to bridge existing knowledge on analytical methods with the unique considerations that frass demands, assisting newcomers in accurate sample analysis. While standard procedures for soil amendments are applicable to frass, its distinct properties – such as lower maturity due to rapid production, the diversity of insect species and their digestion, and the variety of feed substrates – should be carefully accounted for, with attention to how these factors differentiate frass from other organic amendments. A thorough portrayal of methods for characterising insect frass is described in another chapter of the BugBook (Smets *et al.*, 2025). Nevertheless, we highlight some methods for the above-mentioned parameters, which are paramount for frass characterisation.

It is strongly recommended to determine the organic matter content, for which the loss-on-ignition method is the simplest and most commonly used method. A dry frass sample (dried at 60–105 °C to constant weight) is gradually and slowly heated in a muffle furnace to 550 °C and maintained at this temperature for 4 h. The volatile solids (VS) content, representing the amount of organic matter in the sample, is then calculated, as the remaining material consists solely of ash. Besides organic matter determination, elemental analysis (CNS) is a rapid and reliable method for characterising basic composition of frass. In elemental analysers, the samples are burned and the generated gases, related to the concentrations of C, N and sulphur (S), for example, are then analysed. The carbon-to-nitrogen ratio (C/N ratio) gives a first indication of how quickly the organic matter in frass can be decomposed, releasing nutrients to the soil, even though a recent study has demonstrated that for BSF larvae frass, a low C/N ratio does not necessarily indicate that this organic material is completely digested and considered a biologically stable material (Lopes *et al.*, 2024).

Ammonium (N-NH_4^+) and nitrate (N-NO_3^-) are important forms of available nitrogen in insect frass and are essential for plants and microorganisms. Colorimetric methods (e.g. based on the Berthelot reaction) are widely used, but ion chromatography can also be applied. The procedure for determining N-NO_3^- (and even nitrite N-NO_2^-) is based on the “cadmium reduction method”, in which a sample is buffered to a pH of 8.2 and passed through a column containing copper-cadmium to reduce the N-NO_3^- to N-NO_2^- , which is then measured photometrically following diazotisation and coupling. An automated and precise method is the continuous flow analysis principle, which is based on

international standard regulations such as the ISO. The extraction of N fractions (e.g. for continuous flow analysis) typically involves a KCl solution (2 M), K_2SO_4 , $CaCl_2$, or deionised water. However, the choice of extraction ratio should be carefully investigated prior to the analysis itself, and depending on frass type and physical composition, distinct methods should be evaluated and validated.

Regarding the analysis of P, owing to the availability of both organic and inorganic forms of this macronutrient, it is paramount to estimate its concentration to properly understand its availability to plants. A simple and well-established method is the determination of phosphate (PO_4^{3-}), which is based on the reaction of ammonium heptamolybdate and potassium antimony(III) oxide tartrate in an acidic medium with dialysed and diluted solutions of PO_4^{3-} , to form an antimony-phospho-molybdate complex. This complex is then reduced to an intensely blue complex, which can be analysed spectrophotometrically. When the aim is to infer the bioavailable fraction of P, alkaline or neutral extraction is recommended. Irrespective of the type of fertiliser, several extractants for determining plant-available phosphorus in recycled P fertilisers have been proposed and compared by Hernandez-Mora *et al.* (2025), including H_2O , NAC (neutral ammonium citrate), $NaHCO_3$, Ca-lactate and others. According to those authors, the results of different methods might differ according to chemical properties, with the extraction with H_2O being reported as not reliable for determining P availability. However, the use of NAC and LiCl is suitable for a wide range of pH values, while H_2O often underestimates the concentration of available P, given that no ion exchange is favoured. The concentration of K in a frass sample can be best assessed by AAS (flame photometry) or inductively coupled plasma analysis after extracting the samples in a neutral salt solution (usually 1M ammonium acetate).

Laboratory-based analysis of fertilisers (including insect frass) includes pH and EC measurements, which are carried out using aqueous extracts (with a recommended ratio of 1:5 (w/v)) with deionised water. The contents are vortexed for homogenisation, allowed to sit for 30–60 min, and then analysed (ISO, 1994).

The degradability of frass organic matter and its readiness for use can be assessed using soil CO_2 and NH_3 emission tests to estimate the microbial activity in a frass sample. This can be achieved using Solvita® tests, as suggested by Lopes *et al.* (2024). Although established for compost, the Dewar flask self-heating test (Brinton *et al.*, 1995; Niese, 1996) can be used to

determine the stability of organic matter based on the rise over ambient temperature of frass in an insulated thermos flask. In brief, the Dewar flask, a type of insulated container designed to minimise heat exchange with the surroundings, reheat test measures self-heating potential of materials. Sieved (4–5 mm) and moistened samples (50% moisture) are placed in 2-litre insulated Dewar flasks, and max daily temperatures are recorded alongside ambient temperatures over 5–7 days using min-max thermometers. However, the conditions under which this method is applied must be carefully controlled. In particular, the water content plays a critical role in heat development. Moreover, heat development should ultimately be assessed by integrating the area under the heat curve rather than relying solely on the maximum temperature achieved.

Other macro- and micronutrients (e.g. Ca, Mg, Cu, Mn, Zn, and others) can be analysed by atomic absorption spectrometry (AAS) after dissolving the ashes of a sample in an acid solution, such as HNO_3 (0.1 M). In addition, the fibre content of frass can be analysed by the sequential method with detergents, as proposed by Robertson and Van Soest (1981). Regarding heavy metal concentrations in frass, several elements (e.g. Al, As, Cd, Cr, Fe, Pb, etc.) can be evaluated by inductively coupled optical emission spectroscopy (ICP-OES), as suggested by Zarcinas *et al.* (1987) and validated by Amorim *et al.* (2024).

Several methods can be used to characterise the biological and bioactive properties of frass samples. Both nutrient dynamics and microbial activities in frass-treated and untreated soils (e.g. in pot experiments) can be evaluated by measuring carbon and nitrogen mineralisation as a function of CO_2 release and $N-NH_4^+$ concentration, respectively, as conducted by Praeg and Klammsteiner (2024) and Gebremikael *et al.* (2022). In addition, the characterisation of microbial abundance in frass can be done using similar methods as for soil, as performed by Nurfikari *et al.* (2024). However, it is of paramount importance that when using soil DNA extraction kits and sequencing samples, thorough quality checks should be carried out in the obtained data sets. The composition of bacterial and fungal communities can be determined by combining quantitative PCR and amplicon sequencing approaches (e.g. Illumina MiSeq) as standard methods.

Secondary metabolites, such as phenolic compounds, terpenoids, and alkaloids may reflect the plant material consumed by insects. Insects that feed on plants often pass on plant-derived bioactive compounds through their frass, including phenolic compounds, terpenoids,

and alkaloids. Gas chromatography-mass spectrometry (GC-MS) is applied to detect volatile organic compounds and non-volatile organic compounds such as fatty acids, terpenoids, and phenolics in frass. To date, scarce resources are available of phytoactive substances and biostimulants in frass fertilisers and to the author's knowledge, a single study published by Green (2023) described a small share of this bioactive composition, including biogenic amines and some phytohormones (e.g. indoleacetic acid, abscisic acid, jasmonic acid, methyl jasmonate and gibberellins). This demonstrates the large knowledge gap that exists in frass-related research from this perspective. The bioactive composition of frass can be determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as discussed by Vrobel and Tarkowski (2023).

Considering the discussions made above, once related to standardised protocols for soil and other organic materials, such as compost and manure, it is highly advisable to set appropriate standards for insect frass, considering its widely varying composition. Establishing standard protocols for insect frass is essential to accurately reflect its unique features – influenced by rapid production, diverse insect species, and varying feed substrates. Developing standardised protocols facilitates interdisciplinary collaboration by providing clear guidelines accessible to a wider audience, resulting in more robust and comparable research outcomes. It is clear that several soil- and compost-analysis methods are applicable for frass analysis. However, protocols based on soil or compost are often used depending on the context of fertiliser application, and there is currently no clear guideline on which protocols or standardised methods should be universally applied. Therefore, we suggest that the scientific community either agrees on a common approach using composting methods or considers developing specific protocols tailored to insect frass. This lack of information and standardisation hampers proper comparison between studies conducted in different laboratories. Thus, we advocate the need for standardisation of protocols in frass research.

Testing frass as an organic input on plant performance
Once the insect frass is properly characterised, its effects on plants can be evaluated. As previously mentioned, insect frass is typically rich in nutrients, especially $\text{N}-\text{NH}_4^+$, P, K, and micronutrients, in addition to organic matter. Therefore, it can benefit soil and plants in multiple ways. However, assessing these effects under greenhouse or field conditions is a complex subject due to variations in soil and cultivation media properties, cli-

matic conditions, microbial interactions, and application methods, all of which influence plant development. In addition, as demonstrated by Lopes *et al.* (2024), some traits that are typically considered as indicators of a compost's maturity and stability in compost or other organic amendments might not be entirely valid for BSF larvae frass, as well as other potential characteristics, justifying the need for specific ways of approaching insect frass. In this section, the main properties and plant performance indexes that should be considered when evaluating plant growth and development experimentally are discussed, while in Section 3.0 ("Assessing the influence of insect frass on plant performance") we elaborate in-depth on how to conduct experiments in greenhouse and field conditions.

A seed germination test is a common way to evaluate frass maturity and to detect any phytotoxic effects (Luo *et al.*, 2018). Potential phytotoxicity existing in frass can be due to lack of organic matter stabilisation, presence of phytotoxic substances (metals, high load of nutrients) or other reasons. Seed germination bioassays can be conducted according to the methods described in Lopes *et al.* (2024) and Bohm *et al.* (2023). Briefly, frass extracts are prepared by dissolving 5 g of fresh frass in 50 ml of deionised water and shaking continuously for 1 h, followed by centrifugation (4000–10 000 rotations per minute) for 15 min and subsequent filtering (0.45 μm filter). Then, 10 ml of the extracts are placed in Petri dishes or germination boxes, with a deionised water variant as control, and seeds are germinated over time, enabling the calculation of the germination index proposed by Zucconi *et al.* (1981). Seeds from distinct species should be used (e.g. watercress, tomato, lettuce, *Brassica* spp. seeds), considering that species show varying sensitivity to distinct compounds that might be present in frass.

General growth parameters (e.g. biomass accumulation, stem diameter, leaf area) can be assessed at the beginning, during and after an experiment, and compared with an established control. For instance, above-ground and root biomass can be sampled and oven-dried (60–70 °C until constant weight) to determine the fresh and dry weights of a plant. Plant height, stem diameter, and leaf area (estimated by digital imaging or by using specific leaf area metres), are good indicators of vegetative growth. To determine nutrient uptake and development, it is important to measure the total carbon and nitrogen content of the plant (which can be performed in elemental analysers, as described in the previous section) (Oxborough and Baker, 1997). Pérez-Harguindeguy *et al.* (2013) provided useful standard protocols for the determination of several parameters

of interest in plant growth, including shoot and root biomass, leaf dry mass, leaf area, relative growth rates, and root-to-shoot ratio. Additional parameters to be assessed, depending on the plant species, are the number and quality of flowers and fruits, and physiological parameters.

As stated above, plant performance can be assessed through various developmental stages over the course of an experiment, and what will stipulate the specific stage that should be evaluated is the experiment's objective, overall. For instance, when simply evaluating frass as a source of nutrients for short-cycle crops, plant performance can be assessed by measuring growth parameters and nutrient use efficiency, which requires the plant to be harvested and chemically analysed. Conversely, in case frass is being evaluated for its effects in the emission of volatile compounds in a stressed plant, or even for its effects in abiotically-stressed plants (e.g. evaluating drought or heat stress), non-destructive methods can be used (e.g. photosynthetic efficiency and gas collection in closed chambers). Therefore, the plant's developmental stage in which frass should be tested must be considered case-by-case, as there is no general recommendation.

Insect frass affects plant growth through pathways that go beyond simple nutrient supplementation. Many of the effects verified following frass application are mediated by microorganisms, which affect plant metabolism and induce effects from photosynthetic performance improvements to increase plant defence. These aspects can be addressed by measuring distinct physiological parameters of plants, such as chlorophyll content, which can be assessed by using a Soil Plant Analysis Development (SPAD) metre to infer potential improvements in a plant's photosynthetic performance. Chlorophyll fluorescence is an easy and accessible method for assessing the efficiency of photosystem II (PSII), potentially identifying stress-related situations. This can be achieved using portable fluorometers. The maximum fluorescence yield is measured by exposing the leaves to a saturating flash of $3500 \mu\text{mol}/\text{m}^2$ per s during exposure to natural light, and the effective quantum yield of PSII is recorded. After these measurements, the maximum quantum efficiency of PSII (called the Fv/Fm ratio) is determined for the dark-adapted leaves. Then, the non-photochemical quenching coefficient (NPQ) is calculated, and photochemical quenching (qP) and the intrinsic efficiency of open PSII centres are estimated (Oxborough and Baker, 1997).

An outstanding tool for assessing a plant's physiological status are gas exchange analysers, which can mea-

sure for instance CO_2 exchange, stomatal conductance and transpiration, among other parameters that help infer photosynthetic performance in a highly accurate manner. It has been suggested that the application of insect frass can rapidly affect a plant's capacity to assimilate CO_2 , thus improving photosynthetic performance, owing to the action of the distinct groups of biostimulants existing in this organic amendment (Radzikowska-Kujawska *et al.*, 2023). However, it is paramount to disclose values that are expected according to the type of plants used, given that C₃, C₄, and plants using crassulacean acid metabolism (CAM) have very distinct photosynthetic performances, which are also influenced by temperature, as thoroughly discussed by (Yamori *et al.*, 2014). Therefore, it is highly recommended that when gas exchange measurements are carried out experimentally, the study should describe the complete setup of the equipment, including the temperature, air and CO_2 flows, and daylight conditions.

Another way to determine a plant's metabolism, growth, and stress responses is by the analysis of biochemical markers that can indicate carbon allocation and storage, including non-structural carbohydrates such as sugars and starch, which are critical for osmoprotection, long-term carbon storage, and rhizodeposition, among other traits (Chlumská *et al.*, 2014, 2022). Complementarily, antioxidant enzymes can be analysed as an indication of stresses, such as superoxide dismutase, peroxidase, and catalase, which respond to environmental stress (e.g. extreme temperatures). These can be measured in leaves as described in (Cavalcanti *et al.*, 2004). In addition, lipid peroxidation can be measured in fresh leaves as a function of malondialdehyde content, which measures the oxidative stress level and could demonstrate grass-fertilisation effects on plant stress resilience tests (e.g. drought).

Several other parameters can be considered when assessing the effects of insect frass and other organic amendments on plants. In any case, one of the most relevant matters is choosing appropriate controls to distinguish the effects of frass from other soil and environmental factors. Control treatments should reflect all variables tested in an experiment, regardless of being conducted under greenhouse or field conditions, and should demonstrate expected results according to other studies in published and validated literature.

Physical and structural properties of soils and growth substrates as affected by insect frass supplementation

The application of organic materials to soils or growth substrates will inherently change their physical proper-

ties, and insect frass will be no exception. Several studies have reported chemical and minor physical shifts in soils fertilised with insect frass, such as changes in fertility levels, organic matter content, bulk density, pH and EC (Antoniadis *et al.*, 2023; Ashworth *et al.*, 2025). However, the authors are not aware of any study that directly tackled the topic on soil structure being affected by insect frass, but there is no question that its addition will affect the physical properties and structure of plant growing media. Instead, the questions to be answered are (i) how strongly insect frass affects soil physical properties and (ii) how important the changes in physical properties are for plant performance. If this is known, insect frass, in addition to its potential value for plant nutrition and protection, can also positively influence the physical environment in plant production systems.

Soil physical properties as affected by organic amendments

The physical properties of soils and substrates are determined by their texture (the size distribution of mineral particles) and structure (the secondary 3D arrangement of particles) (Bronick and Lal, 2005). The texture and structure shape the size and geometry of the soil pore space in which water and solutes move. While texture is constant in time and does not change due to tillage or other measures, soil structure is dynamic in time and changes upon any disturbance, including amendments with organic matter, such as insect frass. Consequently, adding organic carbon, such as frass, influences how water (and its solutes) is retained in and released from soils. In general, soil organic carbon in any form contributes to soil structure and, hence, to soil hydraulic properties (Rawls *et al.*, 2003). Such effects have been described for compost (Pamuru *et al.*, 2024; Rivier *et al.*, 2022), and farmyard manure (Fu *et al.*, 2022), but also for biotic influences, such as the activity of termites (Garg *et al.*, 2023) or for the introduction of plant-derived mucilage (Ahmed *et al.*, 2014; Naveed *et al.*, 2019), and mycorrhizal fungi (Pauwels *et al.*, 2023) that only add organic carbon in the per mile range (on a weight basis) to soils. It is therefore possible that the so-called bio-stimulatory potentials can unfold due to changes in the physical/hydraulic environment even when nutritional effects can be neglected (Bitterlich *et al.*, 2020; Gärttling and Schulz, 2022; Houben *et al.*, 2020).

The causes of the response of soil hydraulic properties to organic carbon involve the formation of organo-mineral complexes, particle entanglement and enmesh-

ment by microbes and roots, biopore formation after decomposition of organic matter, the binding of released organic molecules to charged surfaces (clay minerals and polyvalent cations), and the surfactant, often hydrophobic properties of organic matter – see reviewed in Bronick and Lal (2005); Rawls *et al.* (2003); and Rillig and Mummey (2006). From a physical point of view, the expected influences of insect frass application on soil hydraulic properties likely resemble those of compost addition, even though depending on insect species, feed substrate and other variables, the similarity with compost might be reduced. This is because frass is, like compost, derived from organic matter, and its application might come in similar quantities. The C/N ratios of approximately 14 to 15 in insect frass compare well with ratios found in bio-waste compost, and the total N, P, and K contents compare well with those in manure (Gärttling and Schulz, 2022; Houben *et al.*, 2020; Lomonaco *et al.*, 2024). Therefore, to meet the desired nutrient inputs, insect frass has been applied at rates of several tons per hectare (ha) in plant growth studies (Beesigamukama *et al.*, 2020; Houben *et al.*, 2021). Considering the application rates of 5 tons per ha with an organic carbon content of almost 40% – as reported by Houben *et al.* (2020) for mealworm frass – and a soil bulk density of 1.5 g cm^{-3} in the upper 30 cm, the organic matter content in the topsoil would increase by approximately 0.07 to 0.08%. In sandy soils, the global averages of approximately 0.3% organic matter in temperate regions and less than 0.09% organic matter in arid regions have been reported (Yost and Hartemink, 2019). Hence, such organic matter inputs are expected to be non-negligible for soil hydraulics, particularly when applied to coarsely textured soil.

The consequences of altered soil physical properties for plant trials: theoretical considerations

Barring the provision of nutrients, the relevance of frass application to soils for plant resource use is most likely related to the sensitivity of soil hydraulic properties to organic matter (Feifel *et al.*, 2024). For instance, the water retention of sandy soils is most sensitive to increases in soil organic matter, whilst the water retention of finer textured soils is less sensitive (Rawls *et al.*, 2003), which implies a context dependency (Rehan *et al.*, 2024). It depends on the soil or substrate used, and on the dose, whether a meaningful change in soil hydraulic properties due to insect frass application merits consideration. In addition, the influence of added frass might change with time, depending on its mineralisation rate.

Although it is always appropriate to test the usefulness of insect frass in a particular setting against a control treatment with no application, this does not allow extrapolation of the findings to other settings. However, a systematic understanding of the side effects of fertilising with insect frass is desired because nutrient and water availability to plants integrate photosynthesis and growth. If the influence of frass addition on soil hydraulic properties is unknown and cultivation measures are not adjusted, the benefits of nutrient provision could be counteracted by suboptimal irrigation. We continue to illustrate this with theoretical considerations. In Figure 2 we illustrate how insect frass could affect soil hydraulic properties, specifically the soil water retention of a coarsely textured soil or substrate. These generic water retention curves show that frass addition can increase soil water retention due to some of the mechanisms mentioned earlier. While the volumetric soil water content is subject to change upon precipitation, irrigation, and water extraction by any means, the soil water potential is the intrinsic soil property that changes due to frass inputs and determines plant water availability.

Assuming that nutrient leaching by drainage should be prevented (irrigation of water content between FC and PWP) in a planting trial, equal irrigation of potted plants would, according to Figure 2, lead to lower soil water potentials in pots with insect frass than in pots without it. Knowing that plants react to declining water potentials with stomatal closure (Carminati and Javaux, 2020), the even irrigation of all pots in this scenario harbours the risk that the potential benefits of frass-derived nitrogen for photosynthesis are counteracted by lower stomatal conductance. Therefore, the nitrogen use efficiency of plants from insect frass may be unintentionally limited by the mode of irrigation, and the fertilisation potential of insect frass may be underestimated. The risk of such unwanted biases is expected to increase with declining soil moisture because the soil water potential declines disproportionately with a unit change in soil water content (note the log-scale on the y-axis in Figure 2). Based on this, we could argue that irrigation with an amount over field capacity would install equality in soil water potentials in wet conditions around -6 kPa after excess water has drained. Albeit this is correct and might lead to a conserved plant physiological response, it could introduce a bias in plant nutrient availability by unbalanced leaching from soils because more water would drain from the frass-free soil until -6 kPa is achieved (see Figure 2). This could lead to an overestimation of the plant nutrition effect of insect

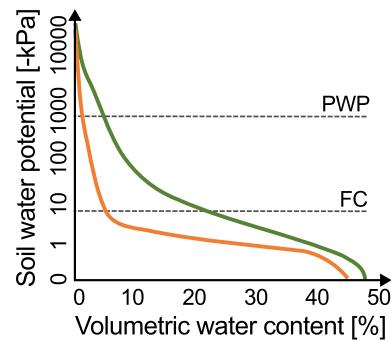


FIGURE 2 Schematic illustration of hypothetical soil water retention in sandy soil without (orange line) and with addition of insect frass (green line). The lower dotted line denotes the field capacity (FC, at -6 kPa), i.e. the threshold at which drainage ceases and water is retained in soils against gravity. The x-values at which the water retention curves cross the FC line indicate the volumetric soil water content after (excess) water from precipitation or irrigation drains. Beyond the FC, soils further dry due to evaporation and/or plant uptake until the permanent wilting point at -1500 kPa (PWP, upper dotted line). Beyond the PWP, soils dry exclusively through evaporation. The soil water potential equals the energy required (by plants) to extract water from the soil (i.e. soil water availability or drought stress). The illustration shows that adding insect frass would lead to a change in plant water availability (water potential) when these soils are irrigated with equal amounts as soils without added frass. In addition, frass addition might also change the amount of plant-available soil water (water content from FC to PWP), e.g. in open pots.

frass by unintendedly removing more nutrients from frass-free soil.

Recommendations for testing insect frass as plant culture component

With a profound understanding of the altered soil hydraulics after application, synergistic or additive effects on plant growth can potentially be achieved with the application of insect frass. More importantly, unintended side effects are avoided. In the following, we propose some measures for planting trials with insect frass that, if applied, can yield better reproducibility of observations and safer assignments of plant growth effects to specific properties of the added insect frass. This section specifically addresses issues related to plant water availability.

A straightforward way to minimise potential side-effects as described in the previous section, is to install equal water potentials in all pots in studies that intend to test the nutritional effects of insect frass amendments on soils. This requires treatment-specific irrigation and a pre-hoc determination of soil water retention. The sim-

plest way to approach the water content related to the soil water holding capacity (at approximately -6 kPa water potential) is to estimate it from the weight differences between the pots filled with substrate after saturating them using a capillary rise method and the weight after subsequent drainage under exclusion of evaporation (Klute, 1986). The weight-based water content between soils with and without insect frass differs and can be used in planting trials as target weights for irrigation. Thus, plants can be maintained under ample moisture conditions, which should largely exclude any growth constraints related to water availability. Depending on the environmental conditions and plant size, the pots can be weighed at time intervals during cultivation to replace the weight loss with water. It is also recommended considering plant growth increments and in particular treatment-specific growth effects. This is because large plants consume water resources from a finite volume faster than small plants and, hence, would grow relatively longer under lower water potentials than smaller plants. For different-sized plants (as can be expected, such as when different dosages of frass are tested in one trial), we would therefore recommend increasing the frequency of irrigation for larger plants rather than replacing more water, for instance, once a day. Increasing the frequency with plant size avoids larger departures from high soil water potential during cultivation.

To test frass amendment effects at specific plant stress levels, such as under drought, the measurement of water retention curves and decision making based on them is desired. This is due to the curvilinear nature of water retention, which is frequently observed in soils or substrates within the plant-available moisture range (Raviv *et al.*, 2005). When unknown, the specific non-linearity of the water content-water potential relationship would introduce errors in prescribed decisions on soil water content that intend to induce equal drought stress across substrates with different frass contents.

3 Assessing the influence of insect frass on plant performance

Similar to other organic amendments, insect frass affects plants in multiple ways, and assessing these effects can be challenging. Frass can be tested under greenhouse conditions using pots as experimental units, applied to soil in open greenhouses (e.g. tunnels), or tested under field conditions, where climatic conditions vary more significantly and impact the obtained results. In addi-

tion, frass could be used for elaborating nutrient solutions, applied as fertigation (i.e. delivering nutrients to plants by injecting fertilisers into the irrigation system), or even used in hydroponic cultures. Regardless of how frass is evaluated, one of the most important factors to consider is having adequate controls to infer the correct meaning of the obtained results while enabling replicability of the studies by other parties.

Pot trials

Over the last few years, several studies have evaluated frass as a fertiliser under greenhouse conditions using pots as experimental units. The advantage of conducting pot trials is that they can be conducted under controlled conditions, which can exclude several factors that may affect test results, including temperature, water availability, lighting conditions, and the presence of pathogens, among others. The cultivation of plants in pot trials is often associated with an artificial root-to-shoot ratio, meaning fewer roots compared to natural open-field conditions, factors closely related to a soil's physical characteristics correlated with environmental conditions (Vergani and Graf, 2016). When evaluating the performance of this organic input on plant growth and development, it is important to initially distinguish two ways of using frass: as a soil amendment/growing media that is applied as partial (most commonly) or complete replacement of other commonly used growing media such as peat; or as a fertiliser, in which frass is added to the pots in amounts that are calculated according to the crop's nutrient demand.

As highlighted by Lopes *et al.* (2022), several studies have reported signs of phytotoxicity in plants cultivated with BSF frass (especially when fresh) when it is applied as part of the growing media, with concentrations of $>10\%$ of the pot volume being limiting for plant development (Setti *et al.*, 2019). YM frass, which typically shows higher stability than BSF frass (e.g. higher $\text{NO}_3^-/\text{NH}_4^+$ ratio, lower self-heating capacity, and higher seed germination), could be applied at higher concentrations, but at the same time, due to its physical nature (dry, fine-grained powder), it is usually not used as a growing medium, but rather as a fertiliser (Poveda, 2021). Pot trials are essential for understanding several aspects of plant growth under certain conditions or fertilisation regimes, under controlled conditions. It is also necessary to study the mechanisms of action of new agricultural inputs, such as the widely unexplored insect frass. Below, we briefly discuss interesting results obtained in experiments conducted in pots and present some recommendations for future studies.

Soils with distinct textures were fertilised with BSF frass and evaluated by Rehan *et al.* (2024) for their fertility levels over time and the productivity of ryegrass (*Lolium multiflorum*) over the course of six months, under semi-controlled conditions. Even though the authors did not evaluate any physical parameters of the tested soils over time (as suggested under 'Recommendations' for testing insect frass as plant culture component), interesting findings were observed, including a higher soil organic matter accumulation and consequent effects on crop productivity in sandy soil in comparison to the other finer-textured soils. Additionally, a positive effect on soil microbiota was detected, measured by the activity of the enzyme dehydrogenase. When evaluating barley (*Hordeum vulgare*) growth fertilised with YM frass in a pot trial, Houben *et al.* (2020) verified similar biomass yield and nutrient accumulation in comparison to a conventional mineral fertiliser, as well as a lower water-soluble phosphorus concentration in the soil when replacing this mineral fertiliser with 50–100% frass. Thus, this might prevent P leaching and increase its fixation in the soil. Both studies demonstrated interesting results that might be translated to field conditions, although such conclusions should be tested accordingly. It is noteworthy that the doses of insect frass applied in pot trials, especially those in which frass is used as an amendment and not as a fertiliser, might sometimes be distant from real application doses, and the translation from pot to field conditions is hampered.

In a study by Asplund *et al.* (2014), six spring wheat varieties were tested for N use efficiency under field and greenhouse conditions. Even though these authors observed a few variety \times fertilisation interactions in the field, the results were very similar under both cultivation conditions. Similarly, Loel *et al.* (2014) evaluated the growth and development of sugar beet varieties (*Beta vulgaris* L. subsp. *vulgaris*) under both field and greenhouse conditions. These authors demonstrated that variety and age-specific shifts were observed in the metabolism of plants (including sugar content and CO₂ assimilation), with differences being attributed to the environmental conditions to which the plants were subjected to experimentally. Particularly, the mineralisation rate of N and other nutrients, a major parameter to be considered when evaluating the results obtained in these trials, may be affected by the material that is used for soil amendment. Insect frass contains compounds such as chitin, biogenic amines (e.g. putrescine, cadaverine), small peptides, and phytohormones (e.g. indoleacetic acid, abscisic acid, jasmonic acid) (Green,

2023), which can influence soil-borne processes by affecting microbial activity, organic matter decomposition, and nutrient availability. In this regard, it is noteworthy that proper methods for evaluating N mineralisation must be considered for distinct experimental designs, as thoroughly discussed by Bettoli *et al.* (2022). These considerations are paramount for interpreting results when applying insect frass in pot trials to cultivate distinct plant species and discussing the results from a real-life application perspective.

A great part of the effects observed in pot trials when cultivating plants fertilised with insect frass is mediated by microorganisms. In a pot trial and using *in vitro* tests, Poveda *et al.* (2019) demonstrated microbial-modulated biostimulatory effects of YM frass that were extinguished when the frass was sterilised. Similarly, Praeg and Klammsteiner (2024) demonstrated a great influence on soil microbiota following the application of insect frass from three insect species, and discussed how the shift in the microbial community might affect plant responses. The presence of microbial groups and distinct molecules (e.g. chitin from exuviae, amino acids, small peptides, phytohormones) in insect frass and the mechanisms behind their action still constitute the main knowledge gap on the actions of frass, and unravelling such mechanisms and modes of action should be primarily done in pot trials.

In studies conducted by Barragán-Fonseca *et al.* (2023a,b), it was demonstrated that the presence of insect-derived chitin (exuviae), which when decomposing in the soil, stimulates an increased population of chitinolytic resident microbes, increased the number of flowers, flower reflectance, pollinator attraction, and seed yield in black mustard (*Brassica nigra*). These effects seemed to be determined by a shift in the emission of volatile compounds by the plants, which might have been a microbial-mediated compensation mechanism. Plant defence mechanisms against soil pathogens (e.g. *Alternaria solani*, *Botrytis cinerea*, *Fusarium oxysporum*, among others) were also suggested as being mediated by microorganisms by Arabzadeh *et al.* (2024a). That study evaluated the effect of non-filtered and filtered (using a 0.22 μm filter) BSF frass extracts against the pathogens *in vitro* and revealed that growth inhibition of these plant pathogens was possible when frass extracts were not filtered, i.e. still contained microorganisms. Complementarily, Arabzadeh *et al.* (2024b) assessed the suppressive effect of BSF frass on *F. oxysporum* in a pot trial, confirming the results obtained *in vitro*. Following this perspective, we highlight that evaluating insect frass *in vitro*, followed by a pot trial,

and then under field conditions, represents a straightforward pathway to demonstrate the potential effects of insect frass on crop production.

Field trials

As previously discussed, the translation between pot trials into field conditions often does not follow a linear path. First, it is noteworthy that the phytotoxicity that is frequently observed in pot trials using fresh frass, especially from BSFL, seems not to be observed under field conditions, as several studies reported positive growth and no negative effects due to the most probable causes of frass-derived phytotoxicity (e.g. high ammonia volatilisation, phenolic compounds, high EC, self-heating capacity, and other traits suggested by Lopes *et al.* (2024)). Beesigamukama *et al.* (2020) applied BSF frass at fertilisation rates of 0–7.5 tons per hectare (equivalent to 0–100 kg N per hectare) and cultivated maize (*Zea mays* L.) in Nairobi, Kenya, during two growing seasons and reported increased nitrogen uptake by the plants in comparison to both a commonly applied organic fertiliser (Safi Organics, Mwea town, Kenya) and urea as a positive control. In the same geographical location, Anyega *et al.* (2021) evaluated the cultivation of three vegetable crops (*Phaseolus vulgaris*, *Solanum lycopersicum*, and *Brassica oleracea* var. *acephala*) in both greenhouse and open-field conditions, demonstrating that even shorter-cycle crops (in relation to maize) developed adequately under BSF frass fertilisation, having improved nutrient use efficiency. When comparing the growth of those crops under both experimental conditions, the authors highlighted the existing differences within the same crop grown in pots or in the field, supporting the hypothesis that some results obtained in one condition are similar to those obtained in another condition, while others are not.

Despite the growing number of studies demonstrating a possible translation and interpretation of results from pot- to field-grown crops, one must be thoughtful in this regard. For instance, when evaluating the growth of crops under environmental stress conditions such as drought, one must recognise that water use, root development, and consequently nutrient uptake and water use productivity, will vary greatly in greenhouse and field conditions, as highlighted by Gheysari *et al.* (2021). It is then possible to hypothesise that the microbial interactions observed in both conditions could also be highly distinct, resulting in a cascade of mechanisms and interactions between multiple variables that would result in differential crop development and productivity. As thoroughly discussed by Nelissen

et al. (2014), scientists must be highly aware when converting basic knowledge (e.g. results from pot experiments) into applications in crops cultivated under real field conditions, to sustainably support food security worldwide. These authors advocated for the adoption of translational research in crop production, stimulating the establishment of field trials across distinct European climates in order to improve the current knowledge, strongly based on pot trials and small experiments, promoting higher sustainability in agriculture.

Potential of frass as hydroponic substrate and for producing liquid nutrient solutions

In hydroponic cultivation systems, plants are cultivated on both liquid and solid media, with the latter both physically and chemically supporting their growth, while allowing proper root gas exchange and sufficient flow (and/or retention) of the nutrient solution applied. The choice of hydroponic substrate can have a strong impact on the economy and environmental costs of the plant production system, underlining the need to explore new materials for this application (Gruda, 2019; Rogers, 2017). Generally, compost can be used as a full or partial component in hydroponic growing media, providing both physical support and nutritional value (Haghghi *et al.*, 2016; Moschou *et al.*, 2022); however, studies on the application of insect frass are lacking. The potential use of insect frass in hydroponic media is a topic for future research.

In addition to standard hydroponic, pot, and field trials, insect frass has been used as a base material for the production of nutrient solutions, which might have endless applications in distinct ways of producing food. Liquid forms of compost (sometimes referred to as "compost tea") have been used in gardening practice for centuries and are often applied as fertigation (Romano *et al.*, 2022a), and insect frass can be explored as such from the perspective of product development for multiple purposes. However, it is noteworthy that while compost tea seems to be appropriate for hydroponic systems, its disadvantage is its reduced nutrient content (especially magnesium and micronutrients) compared to solid frass (Romano *et al.*, 2022b). Nevertheless, this might be an interesting use for insect frass with potential application in the future.

In a study conducted by Tan *et al.* (2021), BSF frass tea has been prepared by adding 200 ml deionised water to every 0.18 g of total N in the frass, in addition to 0.5% (v/v) molasses to boost microbial growth. The tea was fermented for one day with aeration and then applied to lettuce and pak choi by drenching.

Despite the higher concentrations of water-soluble plant nutrients in frass tea, solid frass conferred better plant growth-promoting effects as it provided durable nutrient release. In aquaponic applications, insect frass should typically be directly applied to the system after heat treatment and ground into a fine powder. It appears that BSF frass might be a promising supplement in aquaponic systems, as it has been demonstrated to increase the nutrient content of water and improve the nutritional value of highly produced crops (sweet potato (*Ipomea batatas*), sweet banana chilli (*Capsicum annuum*) and leafy vegetables such as pak choi (*Brassica rapa*) and lettuce (*Lactuca sativa*)) when used as a “frass tea” (Romano *et al.*, 2022b; Tan *et al.*, 2021). The amount of insect frass powder added to the aquaponic system has to be optimised to achieve a balance between boosting plant growth without causing adverse effects on fish (Abdessan *et al.*, 2025). Therefore, it is important to monitor relevant water quality parameters, such as pH, EC, and the concentration of nutrients, such as nitrates.

The use of solid BSF frass compost as a one-time top dressing for the cultivation of sweet potato in aquaponics seems to be at least equally suited as daily inorganic fertilisation during the vegetative stage, as demonstrated by Romano *et al.* (2022a). In that study, solid frass compost resulted in greener and healthier leaves. The authors also performed a benefit-cost analysis, showing the highest benefit-cost ratio for the use of solid frass compost compared to inorganic fertiliser, as well as frass compost tea. Frass extracts, such as those prepared for seed germination tests, are often phytotoxic, as demonstrated by Lopes *et al.* (2024). However, when diluted, this phytotoxicity is reduced (González-Lara *et al.*, 2024). In this sense, considering the lack of knowledge regarding frass extracts and their potential applications, it is proposed that at first, distinct extracts are investigated to achieve high productivity and quality of the extracts, with special attention to the forms of the nutrients present in the extracts; subsequently, its effects should be tested under different fertilisation regimes and experimental designs.

4 Considerations on the safety of insect frass

As briefly mentioned under Pot trials, insect frass without any post-treatment is, in many cases, phytotoxic, especially when used fresh. We advocate this as a topic of significant relevance, as discussed in this section. When applied to the soil, frass-derived phytotoxicity might result in the inhibition of germination, stunted

growth, and generally poor development of the plants (Setti *et al.*, 2019). Considering the very rapid bioconversion time of waste by BSFL, frass organic matter is likely to remain unstable (chemically and biologically) and prone to further decomposition, which has been shown to reduce phytotoxicity (Song *et al.*, 2021). Phytotoxicity can arise from several factors, including high concentrations of soluble salts and electrical conductivity (Huang *et al.*, 2024), N in the form of NH_4^+ , which due to the generally high pH of frass, is converted to high concentrations of ammonia (Bohm *et al.*, 2023), and undegraded organic matter causing issues such as high self-heating capacity and continuous decomposition in the soil (Wichuk and McCartney, 2010). Thus, it is recommended that the phytotoxicity level of frass should always be minimally verified, with the following suggested measurements as paramount, according to Lopes *et al.* (2024): seed germination test using sensitive plant species (e.g. watercress or lettuce), pH, NH_4^+ concentration, $\text{NH}_4^+/\text{NO}_3^-$ ratio, EC and, if feasible, tests for self-heating capacity and respiration.

From a microbiological safety standpoint, the agricultural use of frass obtained from larval bioconversion of contaminated substrates such as manure, faecal sludge, or even contaminated municipal solid waste fractions could facilitate the carryover of pathogens. This risk persists if the frass is not properly treated, although BSFL were previously shown to significantly reduce *Escherichia coli* and *Salmonella enterica* in their substrate, presumably through the excretion of antimicrobial peptides (Lopes *et al.*, 2020). A greenhouse trial showed that after the application of frass containing *E. coli*, the counts of colony forming units in the soil-frass blend were reduced to below the detection limit (Klammsteiner *et al.*, 2020). However, it is not yet clear whether pathogens can reaccumulate in the soil after frass application. Both the reduction of pathogens through larval activity and the diluting effects of its application to soil should not be taken as a guarantee for safe application, and appropriate screening measures have to be implemented. In this sense, insect frass can be subjected to post-treatment (using distinct technologies), to ensure its safety for use.

Frass treatment options

Organic feedstocks suitable for insect-based bioconversion can be highly diverse in composition, similar to the regulations controlling their use. Depending on their origin, the bioburden of these feedstocks can vary significantly depending on their origin. The EU Commission has proposed the use of heat treatment, anaerobic

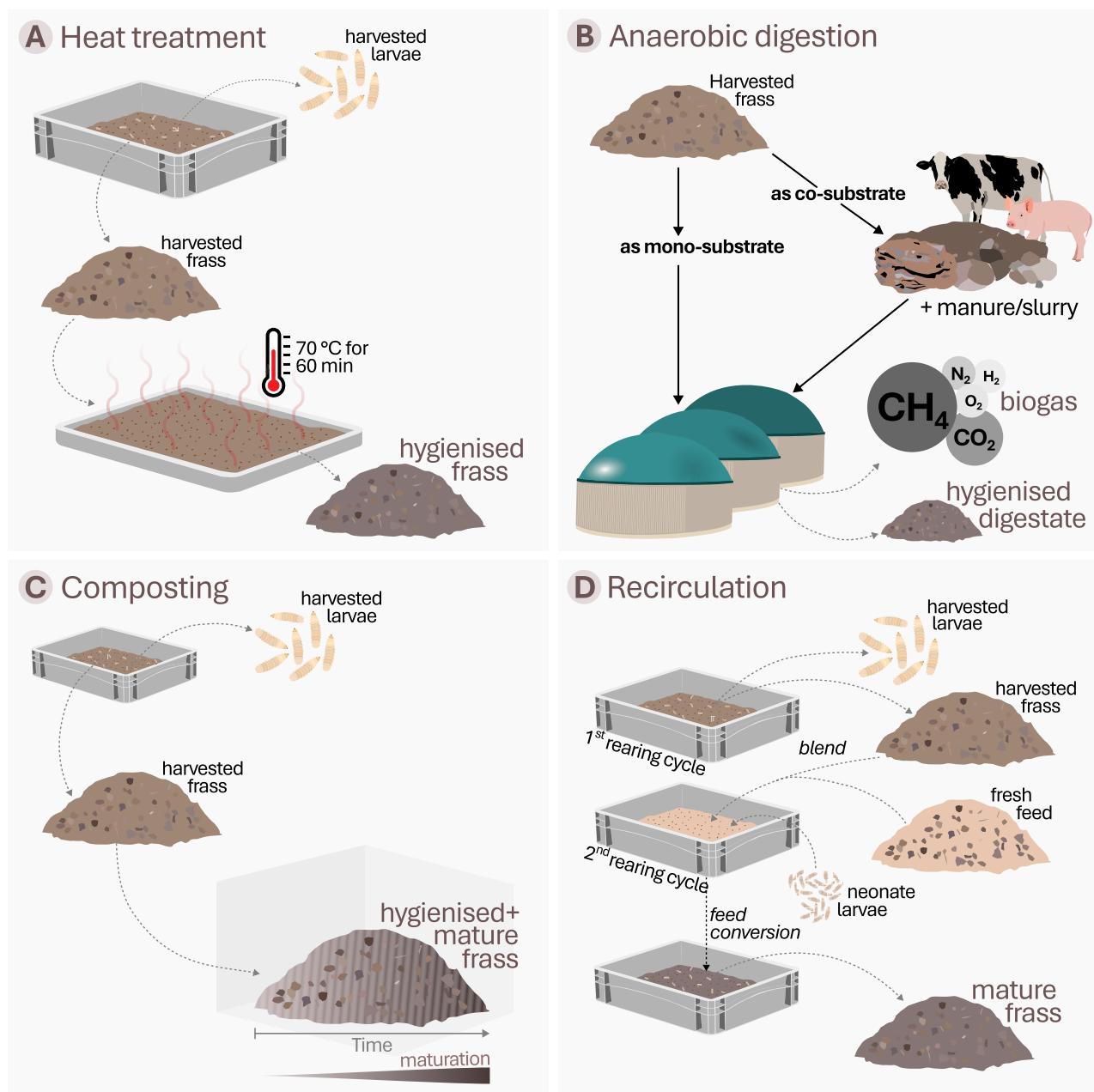


FIGURE 3 Illustration of various treatment options to achieve insect frass hygienisation and/or stabilisation/maturation for safer use. (A) Heat treatment; (B) Anaerobic digestion; (C) Thermophilic composting; (D) Frass recirculation.

digestion, and composting – established methods for treating unprocessed animal manure – to treat insect frass before market placement to ensure its safety (European Commission, 2021) (Figure 3).

Heat treatment

Heat treatment (Figure 3A) of organic fertilisers, including manure, is currently a requirement of many legislations worldwide, such as in the EU (European Commission, 2011), proposed as a means of inactivating pathogenic microorganisms that could pose risks to cropping systems and to the final consumers of the pro-

duced crops. Since November 2021, the EU has included insect frass in the aforementioned regulation; thus, this product currently needs to be heat-treated for 1 h at 70 °C before being commercialised (European Commission, 2021). It is noteworthy that such heating does not affect the stability of the compost organic matter, but it might affect other traits.

When heat-treating insect frass from three different species, BSF, YM and Jamaican field crickets (*Gryllus assimilis*), at 70 °C for 1 h, Praeg and Klammsteiner (2024) observed almost no effects on the nutrient composition of those frass types, including C, N, H and S. The

only exception was the concentration of NH_4^+ in the BSF frass, which was reduced by approximately 15.9% compared to fresh frass (prior to heat treatment). Similarly, there was no evidence that a heat treatment for 1 h, as the one foreseen in the EU legislation, would reduce the phytotoxicity of frass or other organic composts, and that such reductions in phytotoxic traits can be achieved only at higher temperatures (Cui *et al.*, 2024). Conversely, the adoption of such a heat treatment is known to affect microbial activity in frass, inactivating some groups of bacteria. Van Looveren *et al.* (2022) demonstrated that *Enterobacteriaceae* counts were reduced to below the detection of 10 colony forming units per g of frass after applying the same heat treatment. In addition, *Salmonella* spp. was absent from the tested frass, and reductions in the counts of *Clostridium perfringens* were also reported. Similarly, Praeg and Klammsteiner (2024) reported a significant reduction in the microbial activity of heat-treated frass, with microbial respiration being reduced by a factor of 23, while microbial biomass carbon was reduced to a third of its initial value in fresh frass. Interestingly, regardless of heat treatment, after the YM and cricket frass were applied to the soil, both fresh and heat-treated frass stimulated the soil's microbial activity in a similar way, which demonstrates that even though heat treatment affects frass microbial activity, once it is applied to the soil, its benefits in relation to stimulating soil microbiota are the same.

Considering the similarities that insect frass types have with other manures and the placement of frass in the current national legislations across the world, it is likely that the requirement of heat-treating frass at 70 °C for 1 h will continue to be a part of the requirements for commercialising frass in the future. Therefore, an in-depth understanding of how such heat treatment affects the microbial community of frass from different insects and how this affects the soil-plant system is a major challenge to be addressed in future research. In addition, it is noteworthy that studies should also focus on the effects of this treatment on the production and concentration of bioactive substances in frass (e.g. phytohormones, amino acids, and small peptides), especially considering that their presence and functionality are closely related to microbial groups.

Anaerobic digestion

Anaerobic digestion (Figure 3B) is a microbial process that breaks down organic matter in the absence of oxygen, generating biogas (mainly methane and carbon dioxide) and a nutrient-rich digestate often used as a fertiliser (Ward *et al.*, 2008). It occurs in four stages: hydrol-

ysis, acidogenesis, acetogenesis, and methanogenesis, where complex organic molecules are sequentially converted into methane, H_2 , and CO_2 (Yin and Wu, 2024).

Biomethanisation is a promising but underexplored option for treating frass from insect mass-rearing facilities, offering a way to valorise waste and address frass storage challenges. Similar to its use as fertiliser, the biomethane yield of frass varies significantly depending on the composition of the rearing substrate, with biogas production potentials ranging from 44 m³/ton to 668 m³/ton and methane production from 26 m³/ton and 502 m³/ton of volatile solids (Magro *et al.*, 2024). The co-digestion of frass with conventional anaerobic digestion substrates may further enhance biogas production through synergistic effects (Elissen *et al.*, 2019). While anaerobic digestion can be operated with low-tech solutions, building biogas plants for efficient and safe waste treatment often requires significant investment (Breitenmoser *et al.*, 2019). Key benefits include the hygienisation of frass, microbiological stabilisation of digestate, generation of exhaust heat that can be reused in rearing and production, and sustainable waste treatment (Magro *et al.*, 2024; Wedwitschka *et al.*, 2023). To date, research primarily focused on the digestion of BSF frass, with some studies on YM, cricket, and silkworm frass as mono-substrates (Bulak *et al.*, 2020; Łochyńska and Frankowski, 2018; Wedwitschka *et al.*, 2023). However, co-digestion with other low-value substrates, such as manure, with subsequent use of the digestate as biofertiliser, remains underexplored, but could enhance process stability and improve economic feasibility (Lamolinara *et al.*, 2022; Magro *et al.*, 2024).

Composting and vermicomposting

Thermophilic composting (Figure 3C) is one of the most well-known methods for organic matter decomposition and stabilisation. Due to its undigested organic matter fraction and typically low C/N ratio (<20), insect frass (especially from BSF larvae) is a good candidate for thermophilic composting (Hénault-Ethier *et al.*, 2024). However, the input of additional materials to a composting pile with frass is necessary, which might result in extra costs and infrastructure. Adopting this method for fresh frass can improve its quality and safety of use, as demonstrated by Song *et al.* (2021) considering that pathogens are inactivated due to thermophilic temperatures and also that nutrients are made more available for plants throughout the composting process. As process temperatures rise, thermophilic and thermotolerant organisms outcompete mesophiles, thereby reducing bacterial diversity, accelerating decomposition, and

inhibiting fungal growth, with pathogens being most efficiently suppressed at temperatures of around 55 °C, but higher temperatures exceeding 80 °C favouring undesired odours and microbiological inhibition (Insam *et al.*, 2023). Then, after a proper maturation stage, the resulting material is safer and more adequate for being applied in the soil.

In a study by Wu *et al.* (2023), the authors demonstrated that straw addition followed by composting further increased the degree of humification of the fresh frass (collected directly after bioconversion of waste by BSFL). Subsequent composting has also been proven to significantly inactivate pathogenic bacteria, while favouring cellulose-degrading bacteria and cellulase activities in composted frass fertilisers in that study. This may confer frass composts with the ability to degrade complex organic substances faster than natural composts, thereby improving the composting efficiency. Using metagenome imputation and functional profiling of bacterial communities, the latter authors found that nitrogen-related routes such as N₂ fixation, which are key for maintaining crop productivity, were strengthened during the bioconversion of pig and chicken manure by BSFL and the subsequent composting process. These findings point towards plausible microbial-based effects that may explain the potential usefulness of composted frass fertilisers as soil conditioners and/or plant growth promoters.

Unlike composting, vermicomposting does not involve a thermophilic phase and relies on the combined action of earthworms and microorganisms to accomplish the breakdown of organic matter. Earthworms facilitate the aeration and fragmentation of organic material, enhancing its turnover and increasing the rate of decomposition (Edwards and Arancon, 2022). Dulaurent *et al.* (2020) observed in a pot trial that earthworm activity was accompanied by increased nutrient concentration in barley in the presence of mealworm frass. This points towards a synergistic effect between earthworms and insect frass on soil fertility, favouring short-term recycling of nutrients from frass. Bearing this in mind, the subsequent processing of fresh frass through vermicomposting also appears to be a viable option for increasing its stability and safety of use. However, the feasibility of vermicomposting as a posterior treatment for frass still requires further validation.

Frass recirculation

A novel method for frass stabilisation and improved safety was recently proposed by Lopes *et al.* (2024), in

which fresh frass was recirculated back into the bioconversion process (Figure 3D), being provided to the larvae as part of their feed substrate. This may be interpreted as a process similar to vermicomposting. Fresh frass still contains a high proportion of undigested organic matter, and young larvae can still benefit from its nutrients, as it is known to contain most of its N in organic form, and the minimal fraction of inorganic N is predominantly in the form of N-NH₄⁺ (Lopes *et al.*, 2022; Setti *et al.*, 2019). In that study by Lopes *et al.* (2024), the authors evaluated frass recirculation in a food waste bioconversion setup, highlighting that this process might not be as effective for other waste substrates, such as high-fibre components like spent grains or plant waste (e.g. plant trimmings after harvesting the fruits such as cucumbers or tomatoes). Because post-consumer food waste is a highly diverse substrate, it appears that frass recirculation leads to better results in terms of larval yield per box, waste-to-biomass bioconversion efficiency, and frass stability and maturity degree (including higher stability of organic matter, lower self-heating capacity, reduced C/N ratio, increased NO₃⁻/NH₄⁺ ratio, and lower NH₃ and CO₂ emissions from frass). Therefore, this novel method is proposed as a way of increasing frass quality, and future studies should evaluate the long-term effects of frass recirculation within an industrial setting, as well as the effects of frass stabilised by this method in the soil and plants. It is noteworthy that this technology should also be tested for other insect species in addition to BSF.

5 Plant protection potential of insect frass

Similar to other organic amendments and fertilisers, the benefits of insect frass for agriculture appear to go beyond the simple provision of nutrients. Due to the action of biostimulants including beneficial microorganisms, amino acids, small peptides, and phytohormones, frass has been demonstrated to have additional effects on plant growth. Current evidence has demonstrated the potential antimicrobial activity of insect frass, against several pathogens, including soil-borne microorganisms and plant pathogens. Unravelling these potential benefits could stimulate the development of a new research area for the insect industry, increasing its potential beneficial actions on the sustainability and circularity of food systems.

Antimicrobial activity of insect frass

It is evident that BSF and YM modulate the microbial community of the substrate on which they feed on (Kuznetsova *et al.*, 2022; Osimani *et al.*, 2018). This modulation could be caused by indirect effects, including the depletion of nutrients that enhance microbial competition for nutrients (Ghoul and Mitri, 2016), thus increasing the temperature of the substrate (Yakti *et al.*, 2022) or the excretion of compounds with antimicrobial activity (Müller *et al.*, 2017). The presence of these compounds in the produced insect biomass has high potential for application in agriculture and pharmacology.

Antimicrobial resistance (AMR) has become a public health priority worldwide representing a threat under the One Health framework (White and Hughes, 2019). To overcome the rise of AMR, there has been increasing interest in exploring alternative natural niches, such as insects, as potential sources of active molecules with antibiotic potential (Manniello *et al.*, 2021; Mantravadi *et al.*, 2019; Van Moll *et al.*, 2021). In addition to being one of the most abundant groups of living organisms in terms of both species' richness and abundance (Jankielsohn, 2018), insects are highly adaptive to all types of organic matter (Eggleton, 2020). Moreover, they are capable of displaying a rapid and highly effective immune response against pathogens, making them remarkably resilient to microbial infections (Sheehan *et al.*, 2020). Beyond their exoskeleton barrier, insects display a wide range of antimicrobial defence tactics, including melanisation, phagocytosis, and production of antimicrobial peptides (AMPs).

Antimicrobial peptides are a class of small peptides (usually less than 10 kDa) that have some advantages over conventional antibiotics, such as their fast killing time and ability to act on multiple targets simultaneously (Erdem Büyükkiraz and Kesmen, 2022; Fahmy *et al.*, 2024; Zharkova *et al.*, 2019). Currently, 364 AMPs of insect origin have been identified (Wang *et al.*, 2022), and the BSF has the second largest number of AMP encoding genes, as elucidated by Vogel *et al.* (2018) and Moretta *et al.* (2020). Among them, defensins (44%), cecropins and lysozymes (18%), attacins (7%), and other AMPs (<5%) have been identified in BSF larval and adult transcriptomes (Moretta *et al.*, 2020). For BSF, both feeding and oviposition occur on substrates with a high microbial load, such as animal manure or decomposing plant matter, which may have triggered the diversification and expansion of its AMP repertoire. Exposure to pathogens in their environmental niche constitutes one of the main driving factors responsi-

ble for the evolutionary adaptation of an insect's AMP repertoire (Zhou *et al.*, 2024). Although the exact mechanisms by which insect AMPs exert their antimicrobial activities require further investigation (Beesigamukama *et al.*, 2023), the secretion of AMPs by BSFL could contribute to the hygienisation of the feeding substrates by lowering their pathogenic load during the rearing process, and hence, in the insect biomass and the leftover frass (Mudalungu *et al.*, 2021; Surendra *et al.*, 2020). In sum, considering the potential of insect-derived AMPs to perform multiple antibacterial, antifungal and antiviral activities, their applicability as additives in agriculture, food, and feed industries appears as a powerful and promising alternative (Dho *et al.*, 2023; Nazeer *et al.*, 2021; Wang *et al.*, 2016), that could be of use in insect farming. However, the stability of AMPs requires further validation when employed as usable additives (Hwang *et al.*, 2022).

Apart from their own immune system, insects can cope with environmental threats by making use of the molecular defences provided by microbial symbionts that live within their gut, or in specialised cells called bacteriocytes, as well as on the insect's exterior surface or in their surrounding habitat, including their nest or food provisions (Van Arnam *et al.*, 2018). In particular, this defensive strategy based on insect-microbe symbiosis can help the insect combat colonisation by entomopathogens or other invaders competing for nutrients and space (Pickard *et al.*, 2017). Supporting this, there is increasing evidence regarding the antimicrobial capacity of insect-associated bacteria and fungi (Chevrette *et al.*, 2019; Correa *et al.*, 2019; Gorrens *et al.*, 2021b; Van Arnam *et al.*, 2018; Varotto Boccazzì *et al.*, 2017). For instance, these latter authors demonstrated a significant *in vitro* inhibitory effect of *Trichosporon* spp. isolates, which have already been found in industrially reared insects such as the BSF, against the foodborne pathogen *Staphylococcus aureus*. Moreover, they established a strain collection of dominant aerobic bacteria from the gut of BSFL reared on chicken feed and fibre-rich substrates (Gorrens *et al.*, 2021a). As a consequence of larval growth and substrate consumption, it can be assumed that microbes with antagonistic activities or bioactive compounds derived from these microbes or insects are present in the frass. In a recent study, Suraporn *et al.* (2024) isolated lactic acid bacteria with probiotic qualities and antagonistic activity against major foodborne pathogens from silkworm (*Bombyx mori*) larval faeces.

The antimicrobial activity of frass might also rely on the presence of non-gene-encoded compounds, such

as lipids and chitin (Koutsos *et al.*, 2022). On the one hand, insect lipids are promising candidates as antimicrobial agents owing to their ability to potentially damage and destabilise the bacterial cell membrane (Borrelli *et al.*, 2021; Franco *et al.*, 2024; Marusich *et al.*, 2020). These latter authors demonstrated an effective antimicrobial inhibition against *Micrococcus flavus* and *E. coli* cultures, used as Gram-positive and Gram-negative reference strains, by lipids extracted from BSFL. The degree of this effect varied depending on the rearing substrate which implies that the BSFL fatty acid (FA) profile could be modulated through different diet administrations. However, as pointed out by Franco *et al.* (2024), additional factors, including the stage of larval development and rearing conditions, must also be considered to fully understand the biochemical pathways involved in FA synthesis in order to pave the way towards the use of insect lipids as antibacterial agents.

Chitin is also of interest because it is one of the most abundant natural polysaccharides, second only to cellulose, and a major structural component of the insect exoskeleton (Koutsos *et al.*, 2022). In BSF, chitin content has been reported for all developmental stages (Wang *et al.*, 2020), as well as in the sheddings left after pupal emergence and in the frass (Jasso *et al.*, 2024). Chitosan, the fully deacetylated form of chitin, is typically the focus of a wide range of applications owing to its high solubility and nontoxicity. The benefits of chitin and chitosan rely on their properties (Jia *et al.*, 2024), such as those of antimicrobial agents (Guarnieri *et al.*, 2022; Hadj Saadoun *et al.*, 2022), plant growth promoters, and elicitors of plant resistance against biotic and abiotic stresses (Li *et al.*, 2020). Particularly the extraction of chitosan from BSFL cuticles using enzymatic instead of thermochemical approaches has the potential to enhance the value chain of insect mass rearing while generating a highly efficient fungicidal product capable of inhibiting plant pathogens (Escobar Rodríguez *et al.*, 2025). Guarnieri *et al.* (2022) reported that chitosan extracted from different development stages of the BSF (larvae, pupal exuviae and dead adults) had antibacterial effects against *E. coli* and *M. flavus*. Likewise, Lagat *et al.* (2021) found that application of 2–5% chitosan from BSF pupal exuviae led to significant growth inhibition of resistant strains of bacteria, especially *E. coli*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, *S. aureus* and *Candida albicans*. Antibacterial activity has also been demonstrated in chitosan isolated from YM, leading to growth inhibition in *Bacillus cereus*, *Listeria monocytogenes*, *E. coli* and *S. aureus* (Shin *et al.*, 2019).

Antimicrobial assays using insect frass: direct antibiosis and induced systemic resistance

Numerous studies have shown the efficiency of organic amendments such as compost and vermicompost, as well as their liquid derivatives, known as compost and vermicompost teas, in inhibiting the growth or inactivation of soil-borne plant pathogens caused by pathogenic fungi, including *Pythium*, *Rhizoctonia*, *Verticillium*, and *Fusarium* species (Jiang *et al.*, 2023; Rehman *et al.*, 2023). A wide variety of bacterial species with strong antifungal activity (*Bacillus* spp., *Enterobacter* spp., *Pseudomonas* spp., and *Streptomyces* spp.) have been identified in vermicomposts of different origins (De Corato, 2020; Vambe *et al.*, 2023). Recent evidence from *in vitro* experiments has also shown that frass obtained from BSFL has antifungal/anti-oomycete activity against the plant pathogens *Alternaria solani*, *Fusarium oxysporum*, *Phytophthora capsici*, *Sclerotinia sclerotiorum*, *Botrytis cinerea*, and to a lesser extent, *Rhizoctonia solani* (Arabzadeh *et al.*, 2022, 2023, 2024a,b). From a soil perspective, (Setti *et al.*, 2019) also reported that BSF frass was unable to suppress *R. solani* damping-off disease in garden cress, whereas it was more effective with regard to *S. minor*.

To assess antimicrobial activity, Arabzadeh *et al.* (2022) employed a dual-culture overlay assay by mixing different concentrations of fresh frass, ranging from 0% (referred to as the control) to 1% with sterile physiological saline solution. After precipitation, the frass extracts (filtered and non-filtered) were poured into Petri dishes and incubated in the dark for 48 h to allow microorganisms to grow. For each phytopathogen, 10-mm diameter potato dextrose agar covered with actively growing mycelium was then placed in the centre of the agar plate and incubated at room temperature in the dark, for seven days. The Percentage Inhibition of Radial Growth (PIRG, %) was estimated by measuring the colony radii of the tested fungal pathogens and computing them into the equation of $\text{PIRG} (\%) = ((R_1 - R_2)/R_1) \times 100$, where R_1 and R_2 correspond to the control and frass treatment plates, respectively. Mycelial radial growth was calculated as the average of four perpendicular radii from the inoculation point towards the direction of the antagonist colony (frass treatment) or the supposed area (control).

By applying whole-genome sequencing, Arabzadeh *et al.* (2023) identified *Bacillus velezensis*, a bacterium used as a biocontrol agent, as the only bacterium that showed inhibition against the tested phytopathogens in both the initial diet and the resulting BSF frass. Interestingly, these authors stated that such inhibitory effects

varied with the type of feedstock, and, except for *B. cinerea*, it was neutralised following filtration of the frass extracts. Similarly, sterilisation of compost teas was previously found to cause complete or partial loss of mycelial growth inhibition of several phytopathogens (Dionne *et al.*, 2012). The sterilisation or filtration of an environmental sample is expected to affect its microbial load and community composition (Lees *et al.*, 2018), thereby influencing its effectiveness in disease suppression. Although it is difficult to discern the exact suppression mechanism, it is plausible that the microbiota present in the insect frass may compete for space, nutrients, or other available resources against the pathogen, as has been reported for vermicompost (De Corato, 2020).

Other plausible strategies could rely on the production of antimicrobial compounds (Vambe *et al.*, 2023), and/or the release of defence substances such as phenolic compounds or siderophores that may confer systemic resistance to the plant (Beesigamukama *et al.*, 2023). Plant defence against phytopathogens can be characterised by three distinct steps, starting with the recognition of pathogens, followed by signal transduction events that lead to counter-systematic plant defence responses (reviewed in Vlot *et al.* (2021)). Among the microbe-derived elicitors that can prime plant defences, chitin has been known for centuries to induce the expression of pathogenesis-related (PR) genes in plants (Hedrick *et al.*, 1988). Recent advancements have shed light on the molecular mechanisms by which chitin and chitosan induce plant defence and promote plant growth, which can guide the efficient production of chitin-based plant stimulants (Li *et al.*, 2020b).

Given that exoskeleton fragments of insects can be found in frass, it can be assumed that they undergo degradation processes that generate chitin-elicitor molecules in the soil. This degradation may require microbial activity for the release of these molecules (Nayak *et al.*, 2020). A study by (Blakstad *et al.*, 2023) showed that a frass-soil mixture incubated for two weeks was able to prime the defence of *Arabidopsis thaliana*, particularly when combined with *B. cinerea* infection. The induced systemic resistance was confirmed by observing higher mRNA accumulation of defence genes mainly associated with the jasmonic acid signalling pathway. A growth promotion effect has been observed in tomato plants when their substrate was mixed with 0.1% house cricket (*Acheta domesticus*) frass, while an inclusion rate of 0.5% and 1% displayed elicitor effects with lower growth and high activity of

antioxidant enzymes, such as catalase and phenylalanine ammonium lyase, which are characteristic of plant stress elevation (Ferruzca-Campos *et al.*, 2023).

In addition to the antimicrobial activity of frass and its microbiota, nematicidal effects against the root-knot nematode (*Meloidogyne incognita*) has been observed. Extracts from BSF frass were prepared by mixing it with exuviae to enrich the chitin content, and effective microorganisms (such as *Lactobacillus* spp. and yeasts) and molasses were added to the mixture which was fermented for six weeks with daily stirring. A 10% suspension was applied directly to root-knot nematode eggs or juveniles, and the emerging juveniles and survival of juveniles were quantified. The prepared frass suspension led to juvenile paralysis and mortality (Kisaakye *et al.*, 2024).

The frass and exuviae of BSF have been used as soil amendments in a greenhouse experiment in which Brussels sprouts were grown for five weeks before being infected with cabbage root fly larvae (*Delia radicum*). Soil amended with BSF frass and exuviae suppressed the growth of pest larvae and reduced the population, which was not observed when using the same residual streams from house crickets and YM (Wantulla *et al.*, 2023). The authors indicated that the most likely mechanism for suppressing cabbage root fly larvae is the modulation of the soil microbiome by the frass and chitin of BSF. In addition to chitin, studies on plant-pest interactions have revealed the presence of other compounds in the frass of insect pests (e.g. proteins), which can induce or suppress plant immune responses (Ray *et al.*, 2016). A better understanding of the molecular triggers in frass that enhance plant defence can enable the optimal downstream processing of insect frass in order to potentially develop effective frass-based plant defence promoters.

6 Future perspectives for insect frass research

Insect frass is a highly variable product influenced by several factors, including the insect species that generated it, the feed substrate provided, and the post-treatment methods applied. It has been proven to function similarly to other organic amendments, such as compost and vermicompost, by boosting soil fertility and resilience, promoting plant growth, and improving resistance to biotic and abiotic stressors. Beyond its role as a source of plant nutrients, frass contains different biostimulants, including microorganisms, amino acids, and phytohormones, exerting metabolic effects in

distinct plant species. However, the underlying mechanisms remain a critical knowledge gap. It is important to note that frass is not a 'complete fertiliser' from a nutrient perspective, as it frequently lacks essential nutrients. In addition, positive effects observed in certain experimental designs may not be linearly translated to other realities, highlighting the need for translational research to cover these gaps.

We highlight topics that should be focused on in future frass-related research: (i) frass should be blended with other sources of nutrients and bioactive compounds, aiming to develop tailored fertilisers for specific crops; (ii) frass composition should always be disclosed considering at least the essential and highly recommended parameters described in Section 2; (iii) the mechanisms behind frass effects should be investigated, considering the presence of microorganisms, chitin, and phytohormones; (iv) stabilisation of insect frass, especially from BSFL, should be carried out before applying it, aiming at improving its safety and enabling the use of frass as a growing medium for short-cycle crops or even as hydroponic media; (v) the interactions between distinct factors related to frass (e.g. microorganisms, volatile compound emissions by plants, hormones, among others) should be assessed. Attending these and other critical topics outlined in this chapter will enable the widespread inclusion of insect frass in global food systems, supported by rigorous, reproducible, and high-quality research efforts.

Acknowledgements

This paper is part of the BugBook project, initiated by the working group on Standardization of methods, parameters and terminology in insect research of the EAAP insects' commission. For open access purposes, the author has applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This research was funded in part by the Austrian Science Fund (FWF) (<https://doi.org/10.55776/P35401>), The German Ministry for Education and Research (BMBF) (CUBES Project: grant number 031B0733A), the Spanish State Agency for Research (AEI) for the project CNS2023-145509, funded by MICIU/AEI/10.13039/5011 00011033 and by the European Union NextGenerationEU/PRTR.

References

Abdessan, R., Zhumanova, M., Luo, X.-L., Yan, J.-J. and Ji, H., 2025. Influence of direct supplementation of different levels of black soldier fly larvae (*Hermetia illucens*) frass to a recirculating aquaponic system: focusing on fish (*Cyprinus carpio* var. *specularis*), plant (*Lactuca sativa* var. *ramosa* Hort) and water quality. *Aquaculture* 595: 741608.

Ahmed, M.A., Kroener, E., Holz, M., Zarebanadkouki, M. and Carminati, A., 2014. Mucilage exudation facilitates root water uptake in dry soils. *Functional Plant Biology* 41: 1129-1137.

Alexander, P., Arneth, A., Henry, R., Maire, J., Rabin, S. and Rounsevell, M.D.A., 2023. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. *Nature Food* 4: 84-95.

Alfiko, Y., Xie, D., Astuti, R.T., Wong, J. and Wang, L., 2022. Insects as a feed ingredient for fish culture: Status and trends. *Aquaculture and Fisheries* 7: 166-178.

Amorim, H.C.S., Ashworth, A.J., Arsi, K., Rojas, M.G., Morales-Ramos, J.A., Donoghue, A. and Robinson, K., 2024. Insect frass composition and potential use as an organic fertilizer in circular economies. *Journal of Economic Entomology* 117: 1261-1268.

Antoniadis, V., Molla, A., Grammenou, A., Apostolidis, V., Athanassiou, C.G., Rumbos, C.I. and Levizou, E., 2023. Insect frass as a novel organic soil fertilizer for the cultivation of spinach (*Spinacia oleracea*): effects on soil properties, plant physiological parameters and nutrient status. *Journal of Soil Science and Plant Nutrition* 23: 5935-5944.

Anyega, A.O., Korir, N.K., Beesigamukama, D., Changeh, G.J., Nkoba, K., Subramanian, S., van Loon, J.J.A., Dicke, M. and Tanga, C.M., 2021. Black soldier fly-composted organic fertilizer enhances growth, yield and nutrient quality of three key vegetable crops in sub-Saharan Africa. *Frontiers in Plant Science* 12: 680312. <https://doi.org/10.3389/fpls.2021.680312>

Arabzadeh, G., Delisle-Houde, M., Dorais, M., Deschamps, M.H., Derome, N., Vandenberg, G.W. and Tweddell, R.J., 2024a. Evaluation of the antagonistic activity of black soldier fly frass extracts against plant pathogens using single- and double-layer agar bioassays. *Journal of Insects as Food and Feed* 10: 1731-1740.

Arabzadeh, G., Delisle-Houde, M., Tweddell, R.J., Deschamps, M.-H., Dorais, M., Lebeuf, Y., Derome, N. and Vandenberg, G., 2022. Diet Composition Influences Growth Performance, Bioconversion of Black Soldier Fly Larvae: Agronomic Value and In Vitro Biofungicidal Activity of Derived Frass. *Agronomy* 12: 1765. <https://doi.org/10.3390/agronomy12081765>

Arabzadeh, G., Delisle-Houde, M., Vandenberg, G.W., Derome, N., Deschamps, M.-H., Dorais, M., Vincent, A.T. and Tweddell, R.J., 2023. Assessment of antifungal/anti-oomycete activity of frass derived from black soldier fly larvae to control plant pathogens in horticulture: involvement of *Bacillus velezensis*. *Sustainability* 15: 957. <https://doi.org/10.3390/su151410957>

Arabzadeh, G., Delisle-Houde, M., Vandenberg, G.W., Deschamps, M.-H., Dorais, M., Derome, N. and Tweddell, R.J., 2024b. Suppressive Effect of Black Soldier Fly Larvae Frass on Fusarium Wilt Disease in Tomato Plants. *Insects* 15: 613. <https://doi.org/10.3390/insects15080613>

Ashworth, A.J., Amorim, H.C.S., Drescher, G.L., Moore, P.A., Rojas, M.G., Morales-Ramos, J. and Donoghue, A.M., 2025. Insect frass fertilizer as soil amendment for improved forage and soil health in circular systems. *Scientific Reports* 15: 3024.

Asplund, L., Bergkvist, G. and Weih, M., 2014. Proof of concept: nitrogen use efficiency of contrasting spring wheat varieties grown in greenhouse and field. *Plant and Soil* 374: 829-842.

Badagliacca, G., Testa, G., La Malfa, S.G., Cafaro, V., Lo Presti, E. and Monti, M., 2024. Organic fertilizers and bio-waste for sustainable soil management to support crops and control greenhouse gas emissions in mediterranean agroecosystems: a review. *Horticulturae* 10: 427. <https://doi.org/10.3390/horticulturae10050427>

Barragán-Fonseca, K.Y., Greenberg, L.O., Gort, G., Dicke, M. and van Loon, J.J.A., 2023a. Amending soil with insect exuviae improves herbivore tolerance, pollinator attraction and seed yield of *Brassica nigra* plants. *Agriculture, Ecosystems and Environment* 342: 108219.

Barragán-Fonseca, K.Y., Nurfikari, A., van de Zande, E.M., Wantulla, M., van Loon, J.J.A., de Boer, W. and Dicke, M., 2022. Insect frass and exuviae to promote plant growth and health. *Trends in Plant Science* 27: 646-654.

Barragán-Fonseca, K.Y., Rusman, Q., Mertens, D., Weldegergis, B.T., Peller, J., Polder, G., van Loon, J.J.A. and Dicke, M., 2023b. Insect exuviae as soil amendment affect flower reflectance and increase flower production and plant volatile emission. *Plant, Cell and Environment* 46: 931-945.

Beesigamukama, D., Gómez-Brandón, M. and Tanga, C.M., 2023. Chapter Three – Potential of entomocomposting toward soil pathogen suppression. In: Huang, K., Bhat, S.A. and Cui, G. (eds.) *Fate of biological contaminants during recycling of organic wastes*. Elsevier, Amsterdam, pp. 47-70.

Beesigamukama, D., Mochoge, B., Korir, N., Menale, K., Muriithi, B., Kidido, M., Kirscht, H., Diiro, G., Ghemoh, C.J., Sevgan, S., Nakimbugwe, D., Musyoka, M.W., Ekesi, S. and Tanga, C.M., 2022a. Economic and ecological values of frass fertiliser from black soldier fly agro-industrial waste processing. *Journal of Insects as Food and Feed* 8: 245-254.

Beesigamukama, D., Mochoge, B., Korir, N.K., Fiaboe, K.K.M., Nakimbugwe, D., Khamis, F.M., Subramanian, S., Dubois, T., Musyoka, M.W., Ekesi, S., Kelemu, S. and Tanga, C.M., 2020. Exploring Black Soldier Fly Frass as Novel Fertilizer for Improved Growth, Yield and Nitrogen Use Efficiency of Maize Under Field Conditions. *Frontiers in Plant Science* 11: 574592. <https://doi.org/10.3389/fpls.2020.574592>

Beesigamukama, D., Subramanian, S. and Tanga, C.M., 2022b. Nutrient quality and maturity status of frass fertilizer from nine edible insects. *Science Reports* 12: 7182.

Bettioli, A.C.T., Braos, L.B., Lopes, I.G., Andriolli, I., Ferreira, M.E. and da Cruz, M.C.P., 2022. Evaluation of potentially available nitrogen by biological and chemical methods in soil cultivated with maize in succession to cover crops. *Journal of Plant Nutrition Taylor and Francis* 45: 1919-1932.

Bitterlich, M., Mercy, L., Arato, M. and Franken, P., 2020. Arbuscular mycorrhizal fungi as biostimulants for sustainable crop production. In: Rouphael, Y., Du Jardin, P., Brown, P., De Pascale, S. and Colla, G. (eds.) *Biostimulants for sustainable crop production*. Burleigh Dodds, Cambridge, pp. 227-271. <https://doi.org/10.19103/AS.2020.0068>

Blakstad, J.I., Strimbeck, R., Poveda, J., Bones, A.M. and Kissen, R., 2023. Frass from yellow mealworm (*Tenebrio molitor*) as plant fertilizer and defense priming agent. *Biocatalysis and Agricultural Biotechnology* 53: 102862.

Bohm, K., Hatley, G.A., Robinson, B.H. and Gutiérrez-Ginés, M.J., 2023. Analysis of chemical and phytotoxic properties of frass derived from black soldier fly-based bioconversion of biosolids. *Sustainability* 15: 511526 <https://doi.org/10.3390/su151511526>.

Borrelli, L., Varriale, L., Dipineto, L., Pace, A., Menna, L.F. and Fioretti, A., 2021. Insect derived lauric acid as promising alternative strategy to antibiotics in the antimicrobial resistance scenario. *Frontiers in Microbiology* 12: 620798. <https://doi.org/10.3389/fmicb.2021.620798>

Breitenmoser, L., Gross, T., Huesch, R., Rau, J., Dhar, H., Kumar, S., Hugi, C. and Wintgens, T., 2019. Anaerobic digestion of biowastes in India: opportunities, challenges and research needs. *Journal of Environmental Management* 236: 396-412.

Brinton, W., Evans, E., Doffner, M. and Brinton, R.B., 1995. A standardized Dewar test for evaluation of compost self-heating. *BioCycle* 36: 1-16.

Bronick, C.J. and Lal, R., 2005. Soil structure and management: a review. *Geoderma* 124: 3-22.

Bulak, P., Proc, K., Pawłowska, M., Kasprzycka, A., Berus, W. and Bieganowski, A., 2020. Biogas generation from insects breeding post production wastes. *Journal of Cleaner Production* 244: 118777.

Carminati, A. and Javaux, M., 2020. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought. *Trends in Plant Science* 25: 868-880.

Cavalcanti, F.R., Oliveira, J.T.A., Martins-Miranda, A.S., Viégas, R.A. and Silveira, J.A.G., 2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. *New Phytologist* 163: 563-571.

Chevrette, M.G., Carlson, C.M., Ortega, H.E., Thomas, C., Ananiev, G.E., Barns, K.J., Book, A.J., Cagnazzo, J., Carlos, C., Flanigan, W., Grubbs, K.J., Horn, H.A., Hoffmann, F.M., Klassen, J.L., Knack, J.J., Lewin, G.R., McDonald, B.R., Muller, L., Melo, W.G.P., Pinto-Tomás, A.A., Schmitz, A., Wendt-Pienkowski, E., Wildman, S., Zhao, M., Zhang, F., Bugni, T.S., Andes, D.R., Pupo, M.T. and Currie, C.R., 2019. The antimicrobial potential of Streptomyces from insect microbiomes. *Nature Communications* 10: 516.

Chien, S.H., Prochnow, L.I. and Cantarella, H., 2009. Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. In: *Advances in Agronomy*. Academic Press, San Diego, CA, pp. 267-322.

Chlumská, Z., Janeček, Š. and Doležal, J., 2014. How to preserve plant samples for carbohydrate analysis? test of suitable methods applicable in remote areas. *Folia Geobotanica* 49: 1-15.

Chlumská, Z., Liancourt, P., Hartmann, H., Bartoš, M., Altman, J., Dvorský, M., Hubáček, T., Borovec, J., Čapková, K., Kotilínek, M. and Doležal, J., 2022. Species- and compound-specific dynamics of nonstructural carbohydrates toward the world's upper distribution of vascular plants. *Environmental and Experimental Botany* 201: 104985.

Correa, Y., Cabanillas, B., Jullian, V., Álvarez, D., Castillo, D., Dufloer, C., Bustamante, B., Roncal, E., Neyra, E., Sheen, P. and Sauvain, M., 2019. Identification and characterization of compounds from *Chrysosporium multifidum*, a fungus with moderate antimicrobial activity isolated from *Hermetia illucens* gut microbiota. *PLoS ONE* 14: e0218837.

Cui, W., Bai, Q., Liu, J., Chen, J., Qi, Z. and Zhou, W., 2024. Phytotoxicity removal technologies for agricultural waste as a growing media component: a review. *Agronomy* 14: 40. <https://doi.org/10.3390/agronomy14010040>

Dasgupta, S. and Robinson, E.J.Z., 2022. Attributing changes in food insecurity to a changing climate. *Scientific Reports* 12: 4709.

De Corato, U., 2020. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: a critical review. *Rhizosphere* 13: 100192.

Deruytter, D., Gasco, L., Yakti, W., Katz, H., Coudron, C.L., Gligorescu, A., Frooninckx, L., Noyens, I., Meneguz, M., Gross, F., Bellezza Oddon, S., Biasato, I., Mielenz, M., Veldkamp, T., Van Loon, J.J.A., Spranghers, T., Vandenberg, G.W., Oonincx, D.G.A.B. and Bosch, G., 2023. Standardising black soldier fly larvae feeding experiments: an initial protocol and variability estimates. *Journal of Insects as Food and Feed* 10: 1685-1696.

Dho, M., Candian, V. and Tedeschi, R., 2023. Insect antimicrobial peptides: advancements, enhancements and new challenges. *Antibiotics* 12: 952. <https://doi.org/10.3390/antibiotics12060952>

Dionne, A., Tweddell, R.J., Antoun, H. and Avis, T.J., 2012. Effect of non-aerated compost teas on damping-off pathogens of tomato. *Canadian Journal of Plant Pathology* 34: 51-57.

Dulaurent, A.-M., Daoulas, G., Faucon, M.-P. and Houben, D., 2020. Earthworms (*Lumbricus terrestris* L.) mediate the fertilizing effect of frass. *Agronomy* 10: 60783 <https://doi.org/10.3390/agronomy10060783>

Edwards, C.A. and Arancon, N.Q., 2022. The role of earthworms in organic matter and nutrient cycles. In: Edwards, C.A. and Arancon, N.Q. (eds.) *Biology and ecology of earthworms*. Springer, New York, NY, pp. 233-274.

Eggleton, P., 2020. The state of the World's insects. *Annual Review of Environment and Resources* 45: 61-82.

Elissen, H., Hol, S. and van der Weide, R., 2019. Methane production from insect, worm and mushroom waste streams and combinations. Wageningen Plant Research, Wageningen. Available online at <https://edepot.wur.nl/515048>

Erdem Büyükkiraz, M. and Kesmen, Z., 2022. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. *Journal of Applied Microbiology* 132: 1573-1596.

Escobar Rodríguez, C., Zaremska, V., Klammsteiner, T., Kamptsikas, I., Müntermann, N., Weichold, O. and Gruber, S., 2025. Chitosan obtained from black soldier fly larval cuticles expands the value chain and is effective as a biocontrol agent to combat plant pathogens. *Carbohydrate Polymers* 349: 123023.

Fahmy, L., Generalovic, T., Ali, Y.M., Seilly, D., Sivanesan, K., Kalmar, L., Pipan, M., Christie, G. and Grant, A.J., 2024. A novel family of defensin-like peptides from *Hermetia illucens* with antibacterial properties. *BMC Microbiology* 24: 167.

FAO, 2017. The future of food and agriculture – Trends and challenges. Available online at <https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content>

Feifel, M., Durner, W., Hohenbrink, T.L. and Peters, A., 2024. Effects of improved water retention by increased soil organic matter on the water balance of arable soils: A numerical analysis. *Vadose Zone Journal* 23: e20302.

Ferruzca-Campos, E.A., Rico-Chavez, A.K., Guevara-González, R.G., Urrestarazu, M., Cunha-Chiamolera, T.P., Reynoso-Camacho, R. and Guzmán-Cruz, R., 2023. Biostimulant and elicitor responses to cricket frass (*Acheta domesticus*) in tomato (*Solanum lycopersicum* L.) under protected conditions. *Plants* 12. <https://doi.org/10.3390/plants12061327>

Franco, A., Scieuzzo, C., Salvia, R., Pucciarelli, V., Borrelli, L., Addeo, N.F., Bovera, F., Luginestra, A., Schmitt, E. and Falabella, P., 2024. Antimicrobial activity of lipids extracted from *Hermetia illucens* reared on different substrates. *Applied Microbiology and Biotechnology* 108: 167.

Fu, Y., de Jonge, L.W., Moldrup, P., Paradelo, M. and Arthur, E., 2022. Improvements in soil physical properties after long-term manure addition depend on soil and crop type. *Geoderma* 425: 116062.

Garg, A., Gadi, V.K., Zhu, H.-H., Sarmah, A.K., Sreeja, P. and Sekharan, S., 2023. A geotechnical perspective on soil-termite interaction: Role of termites in unsaturated soil properties. *Science of The Total Environment* 895: 164864.

Gärttling, D. and Schulz, H., 2022. Compilation of black soldier fly frass analyses. *Journal of Soil Science and Plant Nutrition* 22: 937-943.

Gebremikael, M.T., Wickeren, N. van, Hosseini, P.S. and De Neve, S., 2022. The impacts of black soldier fly frass on nitrogen availability, microbial activities, C sequestration and plant growth. *Frontiers in Sustainable Food Systems* 6: 795950. <https://doi.org/10.3389/fsufs.2022.795950>

Gheysari, M., Pirnajmedin, F., Movahedrad, H., Majidi, M.M. and Zareian, M.J., 2021. Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments. *Agricultural Water Management* 255: 106999.

Ghoul, M. and Mitri, S., 2016. The Ecology and Evolution of Microbial Competition. *Trends in Microbiology* 24: 833-845.

González-Lara, H., Parra-Pacheco, B., Aguirre-Becerra, H., Feregrino-Perez, A.A. and Garcia-Trejo, J.F., 2024. Effects of using thermocomposted frass from black soldier fly larvae as a germination substrate on the phytotoxicity, germination index, growth and antioxidant contents in kale (*Brassica oleracea*). *Agronomy* 14: 1392. <https://doi.org/10.3390/agronomy14071392>

Gorrens, E., Van Looveren, N., Van Moll, L., Vandeweyer, D., Lachi, D., De Smet, J. and Van Campenhout, L., 2021a. *Staphylococcus aureus* in substrates for black soldier fly larvae (*Hermetia illucens*) and its dynamics during rearing. *Microbiology Spectrum* 9: e02183-21.

Gorrens, E., Van Moll, L., Frooninckx, L., De Smet, J. and Van Campenhout, L., 2021b. Isolation and identification of dominant bacteria from black soldier fly larvae (*Hermetia illucens*) envisaging practical applications. *Frontiers in Microbiology* 12: 665546. <https://doi.org/10.3389/fmicb.2021.665546>.

Green, T., 2023. A biochemical analysis of black Soldier fly (*Hermetia illucens*) larval frass plant growth promoting activity. *PLoS ONE* 18: e0288913.

Gruda, N.S., 2019. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. *Agronomy* 9: 298. <https://doi.org/10.3390/agronomy9060298>.

Guarnieri, A., Triunfo, M., Scieuzzo, C., Ianniciello, D., Tafi, E., Hahn, T., Zibek, S., Salvia, R., De Bonis, A. and Falabella, P., 2022. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect *Hermetia illucens*. *Scientific Reports* 12: 8084.

Guidini Lopes, I., Wiklicky, V., Ermolaev, E. and Lalander, C., 2023. Dynamics of black soldier fly larvae composting – Impact of substrate properties and rearing conditions on process efficiency. *Waste Management* 172: 25-32.

Hadj Saadoun, J., Sogari, G., Bernini, V., Camorali, C., Rossi, F., Neviani, E. and Lazzi, C., 2022. A critical review of intrinsic and extrinsic antimicrobial properties of insects. *Trends in Food Science and Technology* 122: 40-48.

Haghghi, M., Barzegar, M.R. and da Silva, J.A.T., 2016. The effect of municipal solid waste compost, peat, perlite and vermicompost on tomato (*Lycopersicum esculentum* L.) growth and yield in a hydroponic system. *International Journal of Recycling of Organic Waste in Agriculture* 5: 231-242.

Hedrick, S.A., Bell, J.N., Boller, T. and Lamb, C.J., 1988. Chitinase cDNA Cloning and mRNA Induction by Fungal Elicitor, Wounding and Infection I. *Plant Physiology* 86: 182-186.

Hénault-Ethier, L., Quinche, M., Reid, B., Hotte, N., Fortin, A., Normandin, É., de La Rochelle Renaud, G., Rasooli Zadeh, A., Deschamps, M.-H. and Vandenberg, G., 2024. Opportunities and challenges in upcycling agri-food byproducts to generate insect manure (frass): a literature review. *Waste Management* 176: 169-191.

Hernandez, M.A. and Torero, M., 2013. Market concentration and pricing behavior in the fertilizer industry: a global approach. *Agricultural Economics* 44: 723-734. <https://doi.org/10.1111/agec.12084>

Hernandez-Mora, A., Duboc, O., Bünemann, E.K., Ylivainio, K., Lombi, E., Symanczik, S., Horn, D., Delgado, A., Abu Zahra, N., Zuin, L., Dolette, C.L., Eigner, H. and Santner, J., 2025. Evaluation of six phosphorus extraction methods for compliance testing of recycled P fertilizers. *Environmental Technology and Innovation* 37: 103913.

Houben, D., Daoulas, G. and Dulaurent, A.-M., 2021. Assessment of the short-term fertilizer potential of mealworm frass using a pot experiment. *Frontiers in Sustainable Food Systems* 5: 714596. <https://doi.org/10.3389/fsufs.2021.714596>.

Houben, D., Daoulas, G., Faucon, M.-P. and Dulaurent, A.-M., 2020. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. *Scientific Reports* 10: 4659.

Huang, Z., Xu, S., Zheng, N., Yin, X., Yang, Y. and Yao, H., 2024. Salty bio-converted organic fertilizer modulates soil greenhouse gas emissions. *Journal of Cleaner Production* 445: 141192.

Hwang, D., Lee, S.H., Goo, T.-W. and Yun, E.-Y., 2022. Potential of antimicrobial peptide-overexpressed *Tenebrio molitor* larvae extract as a natural preservative for Korean traditional sauces. *Insects* 13: 381. <https://doi.org/10.3390/insects13040381>

Insam, H., Klammsteiner, T. and Gómez-Brandòn, M., 2023. Biology of compost. In: Goss, M.J. and Oliver, M. (eds.) *Encyclopedia of Soils in the Environment* (Second Edition). Academic Press, Oxford, pp. 522-532.

International Organization for Standardization (ISO), 1994. ISO 11464:1994 – Soil quality – Pretreatment of samples for physico-chemical analyses. ISO, Geneva.

Jankielsohn, A., 2018. The importance of insects in agricultural ecosystems. *Advances in Entomology* 6: 62-73. <https://doi.org/10.4236/ae.2018.62006>

Jasso, B., Quinchia, L., Waliczek, T.M. and Drewery, M.L., 2024. Black soldier fly larvae (*Hermetia illucens*) frass and sheddings as a compost ingredient. *Frontiers in Sustainable Food Systems*: 7. <https://doi.org/10.3389/fsufs.2023.1297858>

Jia, X., Ma, P., Wei, C.-I. and Wang, Q., 2024. Chitin and chitosan: Pioneering sustainable substrates for next-generation soilless vertical farming. *Trends in Food Science and Technology* 150: 104599.

Jiang, S.-Y., Xu, B.-X., Zhu, Y.-G. and Zhang, Z.-J., 2023. Insects used as biomass vermi-conversion carriers for health agriculture. *Modern Agriculture* 1: 78-82.

Kisaakye, J., Beesigamukama, D., Haukeland, S., Subramanian, S., Thiongo, P.K., Kelemu, S. and Tanga, C.M., 2024. Chitin-enriched insect frass fertilizer as a biorational alternative for root-knot nematode (*Meloidogyne incognita*) management. *Frontiers in Plant Science*: 15 <https://doi.org/10.3389/fpls.2024.1361739>

Klammsteiner, T., Turan, V., Fernández-Delgado Juárez, M., Oberegger, S. and Insam, H., 2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. *Agronomy* 10: 578. <https://doi.org/10.3390/agronomy10101578>.

Klute, A. (ed.), 1986. Water retention: laboratory methods. In: *Methods of Soil Analysis*. Wiley, Chichester, pp. 635-662.

Koutsos, E., Modica, B. and Freel, T., 2022. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. *Translational Animal Science* 6: txac084.

Kuznetsova, T.A., Vecherskii, M.V., Khayrullin, D.R., Stepankov, A.A., Maximova, I.A., Kachalkin, A.V. and Ushakova, N.A., 2022. Dramatic effect of black soldier fly larvae on fungal community in a compost. *Journal of the Science of Food and Agriculture* 102: 2598-2603.

LAGAT, M.K., Were, S., Ndwigah, F., Kemboi, V.J., Kipkoech, C. and Tanga, C.M., 2021. Antimicrobial activity of chemically and biologically treated chitosan prepared from black soldier fly (*Hermetia illucens*) pupal shell waste. *Microorganisms* 9: 122417. <https://doi.org/10.3390/microorganisms9122417>.

Lalander, C., Diener, S., Zurbrügg, C. and Vinnerås, B., 2019. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (*Hermetia illucens*). *Journal of Cleaner Production* 208: 211-219.

Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Guillén Fiallos, C., Diéguez-Santana, K. and Ruiz-Mercado, G.J., 2022. Anaerobic digestate management, environmental impacts and techno-economic challenges. *Waste Management* 140: 14-30.

Lees, K., Fitzsimons, M., Snape, J., Tappin, A. and Comber, S., 2018. Soil sterilisation methods for use in OECD 106: How effective are they? *Chemosphere* 209: 61-67.

Leytem, P., Dungan, R., Spiehs, M. and Miller, D., 2024. Safe and sustainable use of bio-based fertilizers in agricultural production systems. In: Amon, B. (ed.) *Developing circular agricultural production systems*. Burleigh Dodds, Cambridge, pp. 179-214. <https://doi.org/10.19103/AS.2023.0120.16>

Li, K., Xing, R., Liu, S. and Li, P., 2020. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. *Journal of Agricultural and Food Chemistry American Chemical Society* 68: 12203-12211.

Liu, Y., Lan, X., Hou, H., Ji, J., Liu, X. and Lv, Z., 2024. Multi-faceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: review and perspectives. *Agronomy*: 14 <https://doi.org/10.3390/agronomy14061141>

Łochyńska, M. and Frankowski, J., 2018. The biogas production potential from silkworm waste. *Waste Management* 79: 564-570.

Loel, J., Kenter, C., Märlander, B. and Hoffmann, C.M., 2014. Assessment of breeding progress in sugar beet by testing old and new varieties under greenhouse and field conditions. *European Journal of Agronomy* 52: 146-156.

Lomonaco, G., Franco, A., De Smet, J., Scieuzzo, C., Salvia, R. and Falabella, P., 2024. Larval frass of *hermetia illucens* as organic fertilizer: composition and beneficial effects on different crops. *Insects* 15: 293. <https://doi.org/10.3390/insects15040293>

Lopes, I.G., Lalander, C., Vidotti, R.M. and Vinnerås, B., 2020. Reduction of bacteria in relation to feeding regimes when treating aquaculture waste in fly larvae composting. *Frontiers in Microbiology*: 11. <https://doi.org/10.3389/fmicb.2020.01616>

Lopes, I.G., Wiklicky, V., Vinnerås, B., Yong, J.W.H. and Lalander, C., 2024. Recirculating frass from food waste bioconversion using black soldier fly larvae: Impacts on process efficiency and product quality. *Journal of Environmental Management* 366: 121869.

Lopes, I.G., Yong, J.W.H. and Lalander, C., 2022. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. *Waste Management* 142: 65-76.

Luo, Y., Liang, J., Zeng, G., Chen, M., Mo, D., Li, G. and Zhang, D., 2018. Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. *Waste Management* 71: 109-114.

Magro, A.D., Lovarelli, D., Bacenetti, J. and Guarino, M., 2024. The potential of insect frass for sustainable biogas and biomethane production: a review. *Bioresource Technology* 412: 131384.

Manniello, M.D., Moretta, A., Salvia, R., Scieuzzo, C., Lucchetti, D., Vogel, H., Sgambato, A. and Falabella, P., 2021. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. *Cellular and Molecular Life Sciences* 78: 4259-4282.

Mantravadi, P.K., Kalesh, K.A., Dobson, R.C.J., Hudson, A.O. and Parthasarathy, A., 2019. The quest for novel antimicrobial compounds: emerging trends in research, development and technologies. *Antibiotics* 8: 8. <https://doi.org/10.3390/antibiotics8010008>

Marusich, E., Mohamed, H., Afanasev, Y. and Leonov, S., 2020. Fatty acids from *Hermetia illucens* larvae fat inhibit the proliferation and growth of actual phytopathogens. *Microorganisms*: 8. <https://doi.org/10.3390/microorganisms8091423>.

Mas-Carrió, E., Dini-Andreote, F., Brossi, M.J. de L., Salles, J.F. and Olff, H., 2018. Organic amendment under increasing agricultural intensification: effects on soil bacterial communities and plant productivity. *Frontiers in Microbiology*: 9. <https://doi.org/10.3389/fmicb.2018.02612>.

Mbow, C., Rosenzweig, C., Barioni, L.G., Benton, T.G., Herrero, M., Krishnapillai, M., Liwenga, E., Pradhan, P., Rivera-Ferre, M.G., Sapkota, T., Tubiello, F.N., Xu, Y. and Blanchard, J., 2019. Food security. University of Tasmania, Hobart. Available online at <https://hdl.handle.net/102.100.100/494856>

Moretta, A., Salvia, R., Scieuzzo, C., Di Somma, A., Vogel, H., Pucci, P., Sgambato, A., Wolff, M. and Falabella, P., 2020. A bioinformatic study of antimicrobial peptides identified in the black soldier fly (BSF) *Hermetia illucens* (Diptera: Stratiomyidae). *Scientific Reports* 10: 16875.

Moschou, C.E., Papadimitriou, D.M., Galliou, F., Markakis, N., Papastefanakis, N., Daskalakis, G., Sabathianakis, M., Stathopoulou, E., Bouki, C., Daliakopoulos, I.N. and Manios, T., 2022. Grocery waste compost as an alternative hydroponic growing medium. *Agronomy* 12: 789. <https://doi.org/10.3390/agronomy12040789>

Mudalungu, C.M., Tanga, C.M., Kelemu, S. and Torto, B., 2021. An Overview of Antimicrobial compounds from african edible insects and their associated microbiota. *Antibiotics* 10: 621. <https://doi.org/10.3390/antibiotics10060621>.

Müller, A., Wolf, D. and Gutzeit, H.O., 2017. The black soldier fly, *Hermetia illucens* – a promising source for sustainable production of proteins, lipids and bioactive substances. *Zeitschrift für Naturforschung* 72: 351-363.

Naveed, M., Ahmed, M.A., Benard, P., Brown, L.K., George, T.S., Bengough, A.G., Roose, T., Koebernick, N. and Hallett, P.D., 2019. Surface tension, rheology and hydrophobicity of rhizodeposits and seed mucilage influence soil water retention and hysteresis. *Plant Soil* 437: 65-81.

Nayak, S.K., Dash, B., Nayak, S., Mohanty, S. and Mishra, B.B., 2020. Chitinase producing soil bacteria: prospects and applications. In: *Frontiers in soil and environmental microbiology*. CRC Press, Boca Raton, FL, pp. 289-298. <https://doi.org/10.1201/9780429485794-30>

Nazeer, N., Uribe-Diaz, S., Rodriguez-Lecompte, J.C. and Ahmed, M., 2021. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. *British Poultry Science* 62: 672-685.

Nelissen, H., Moloney, M. and Inzé, D., 2014. Translational research: from pot to plot. *Plant Biotechnology Journal* 12: 277-285.

Niese, G., 1963. Experiments to determine the degree of decomposition of refuse compost by its self-heating capa-

bility. Information Bulletin 17. Bureau of Solid Waste, Giessen.

Niyonsaba, H.H., Groeneveld, I.L., Vermeij, I., Höhler, J., van der Fels-Klerx, H.J. and Meuwissen, M.P.M., 2023. Profitability of insect production for *T. molitor* farms in The Netherlands. *Journal of Insects as Food and Feed* 10: 895-902.

Niyonsaba, H.H., Höhler, J., Kooistra, J., van der Fels-Klerx, H.J. and Meuwissen, M.P.M., 2021. Profitability of insect farms. *Journal of Insects as Food and Feed* 7: 923-934.

Nurfikari, A., Leite, M.F.A., Kuramae, E.E. and de Boer, W., 2024. Microbial community dynamics during decomposition of insect exuviae and frass in soil. *Soil Biology and Biochemistry* 194: 109426.

Onincx, D.G.A.B. and Finke, M.D., 2021. Nutritional value of insects and ways to manipulate their composition. *Journal of Insects as Food and Feed* 7: 639-660.

Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., Pasquini, M., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Petruzzelli, A., Foglini, M., Gabucci, C., Tonucci, F. and Aquilanti, L., 2018. The bacterial biota of laboratory-reared edible mealworms (*Tenebrio molitor* L.): From feed to frass. *International Journal of Food Microbiology* 272: 49-60.

Ott, H., 2012. Fertilizer markets and their interplay with commodity and food prices. Publications Office of the European Union, Luxembourg. <https://doi.org/10.2791/82136>

Oxborough, K. and Baker, N.R., 1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv-/Fm-; without measuring Fo. *Photosynthesis Research* 54: 135-142.

Pamuru, S.T., Morash, J., Lea-Cox, J.D., Ristvey, A.G., Davis, A.P. and Aydilek, A.H., 2024. Nutrient transport, shear strength and hydraulic characteristics of topsoils amended with mulch, compost and biosolids. *Science of The Total Environment* 918: 170649.

Pauwels, R., Graefe, J. and Bitterlich, M., 2023. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. *Mycorrhiza* 33: 165-179.

Pickard, J.M., Zeng, M.Y., Caruso, R. and Núñez, G., 2017. Gut microbiota: role in pathogen colonization, immune responses and inflammatory disease. *Immunological Reviews* 279: 70-89.

Poveda, J., 2021. Insect frass in the development of sustainable agriculture. A review. *Agronomy for Sustainable Development* 41: 5.

Poveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui Martín, R., Rivas, R. and García-Fraile, P., 2019. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. *Applied Soil Ecology* 142: 110-122.

Praeg, N. and Klammsteiner, T., 2024. Primary study on frass fertilizers from mass-reared insects: Species variation, heat treatment effects and implications for soil application at laboratory scale. *Journal of Environmental Management* 356: 120622.

Radzikowska-Kujawska, D., Sawinska, Z., Grzanka, M., Kowalczewski, P.Ł., Sobiech, Ł., Świtak, S., Skrzypczak, G., Drożdżyńska, A., Ślachciński, M. and Nowicki, M., 2023. *Hermetia illucens* frass improves the physiological state of basil (*Ocimum basilicum* L.) and its nutritional value under drought. *PLoS ONE* 18: e0280037.

Raviv, M., Oka, Y., Katan, J., Hadar, Y., Yoge, A., Medina, S., Krasnovsky, A. and Ziadna, H., 2005. High-nitrogen compost as a medium for organic container-grown crops. *Bioresource Technology* 96: 419-427.

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M. and Bloodworth, H., 2003. Effect of soil organic carbon on soil water retention. *Geoderma* 116: 61-76.

Ray, S., Basu, S., Rivera-Vega, L.J., Acevedo, F.E., Louis, J., Felton, G.W. and Luthe, D.S., 2016. Lessons from the far end: caterpillar frass-induced defenses in maize, rice, cabbage and tomato. *Journal of Chemical Ecology* 42: 1130-1141.

Rehan, I., Lopes, I.G., Murta, D., Lidon, F., Fareleira, P., Esteves, C., Moreira, O. and Menino, R., 2025. Agronomic potential of *Hermetia illucens* frass in the cultivation of ryegrass in distinct soils. *Journal of Insects as Food and Feed* 11: 803-818. <https://doi.org/10.1163/23524588-00001242>

Rehman, S.U., De Castro, F., Aprile, A., Benedetti, M. and Fanizzi, F.P., 2023. Vermicompost: enhancing plant growth and combating abiotic and biotic stress. *Agronomy* 13: 1134. <https://doi.org/10.3390/agronomy13041134>.

Ren, C., Liu, S., van Grinsven, H., Reis, S., Jin, S., Liu, H. and Gu, B., 2019. The impact of farm size on agricultural sustainability. *Journal of Cleaner Production* 220: 357-367.

Rillig, M.C. and Mummey, D.L., 2006. Mycorrhizas and soil structure. *New Phytologist* 171: 41-53.

Rivier, P.-A., Jamniczky, D., Nemes, A., Makó, A., Barna, G., Uzinger, N., Rékási, M. and Farkas, C., 2022. Short-term effects of compost amendments to soil on soil structure, hydraulic properties and water regime. *Journal of Hydrology and Hydromechanics* 70: 74-88.

Robertson, J.B. and Van Soest, P.J., 1981. The detergent system of analysis and its application for human foods. In: Sames, W.T.P. and Theander, O. (eds.) *The analysis of dietary fiber in food*. Marcel Dekker, New York, NY, pp. 123-158.

Rogers, M.A., 2017. Organic vegetable crop production in controlled environments using soilless media. *HortTechnology* 27: 166-170.

Romano, N., Fischer, H., Powell, A., Sinha, A.K., Islam, S., Deb, U. and Francis, S., 2022a. Applications of black soldier fly (*Hermetia illucens*) larvae frass on sweetpotato slip production, mineral content and benefit-cost analysis. *Agronomy* 12: 928. <https://doi.org/10.3390/agronomy12040928>

Romano, N., Powell, A., Islam, S., Fischer, H., Renukdas, N., Sinha, A.K. and Francis, S., 2022b. Supplementing aquaponics with black soldier fly (*Hermetia illucens*) larvae frass tea: Effects on the production and composition of sweetpotato slips and sweet banana peppers. *Aquaculture* 555: 738160.

Setti, L., Francia, E., Pulvirenti, A., Gigliano, S., Zaccardelli, M., Pane, C., Caradonia, F., Bortolini, S., Maistrello, L. and Ronga, D., 2019. Use of black soldier fly (*Hermetia illucens* (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. *Waste Management* 95: 278-288.

Shaji, H., Chandran, V. and Mathew, L., 2021. Organic fertilizers as a route to controlled release of nutrients. In: Lewu, F.B., Volova, T., Thomas, S. and Rakhimol, K.R. (eds.) *Controlled release fertilizers for sustainable agriculture*. Academic Press, San Diego, CA, pp. 231-245.

Sheehan, G., Farrell, G. and Kavanagh, K., 2020. Immune priming: the secret weapon of the insect world. *Virulence* 11: 238-246.

Shin, C.-S., Kim, D.-Y. and Shin, W.-S., 2019. Characterization of chitosan extracted from mealworm beetle (*Tenebrio molitor*, *Zophobas morio*) and rhinoceros beetle (*Allomyrina dichotoma*) and their antibacterial activities. *International Journal of Biological Macromolecules* 125: 72-77.

Song, S., Ee, A.W.L., Tan, J.K.N., Cheong, J.C., Chiam, Z., Arora, S., Lam, W.N. and Tan, H.T.W., 2021. Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. *Journal of Cleaner Production* 288: 125664.

Suraporn, S., Cansee, S., Hupfauf, S. and Klammsteiner, T., 2024. Lactic acid bacteria from bombyx mori frass: probiotic properties and antagonistic activities. *Agriculture* 14: 924. <https://doi.org/10.3390/agriculture14060924>

Surendra, K.C., Tomberlin, J.K., van Huis, A., Cammack, J.A., Heckmann, L.-H.L. and Khanal, S.K., 2020. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (*Hermetia illucens* (L.)) (Diptera: Stratiomyidae) (BSF). *Waste Management* 117: 58-80.

Tan, J.K.N., Lee, J.T.E., Chiam, Z., Song, S., Arora, S., Tong, Y.W. and Tan, H.T.W., 2021. Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. *Waste Management* 130: 155-166.

Tang, Q., Cotton, A., Wei, Z., Xia, Y., Daniell, T. and Yan, X., 2022. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? *Science of The Total Environment* 803: 149933.

Tomberlin, J.K. and van Huis, A., 2020. Black soldier fly from pest to 'crown jewel' of the insects as feed industry: an historical perspective. *Journal of Insects as Food and Feed* 6: 1-4.

Vambe, M., Coopooosamy, R.M., Arthur, G. and Naidoo, K., 2023. Potential role of vermicompost and its extracts in alleviating climatic impacts on crop production. *Journal of Agriculture and Food Research* 12: 100585.

Van Arnam, E.B., Currie, C.R. and Clardy, J., 2018. Defense contracts: molecular protection in insect-microbe symbioses. *Chemical Society Reviews* 47: 1638-1651.

Van Looveren, N., Vandeweyer, D. and Van Campenhout, L., 2022. Impact of heat treatment on the microbiological quality of frass originating from black soldier fly larvae (*Hermetia illucens*). *Insects* 13: 22. <https://doi.org/10.3390/insects13010022>

Van Moll, L., De Smet, J., Cos, P. and Van Campenhout, L., 2021. Microbial symbionts of insects as a source of new antimicrobials: a review. *Critical Reviews in Microbiology* 47: 562-579.

Varotto Boccazzì, I., Ottoboni, M., Martin, E., Comandatore, F., Vallone, L., Spranghers, T., Eeckhout, M., Mereghetti, V., Pinotti, L. and Epis, S., 2017. A survey of the myco-biota associated with larvae of the black soldier fly (*Hermetia illucens*) reared for feed production. *PLoS ONE* 12: e0182533.

Vergani, C. and Graf, F., 2016. Soil permeability, aggregate stability and root growth: a pot experiment from a soil bio-engineering perspective. *Ecohydrology* 9: 830-842.

Vlot, A.C., Sales, J.H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M. and Nayem, S., 2021. Systemic propagation of immunity in plants. *New Phytologist* 229: 1234-1250.

Vogel, H., Müller, A., Heckel, D.G., Gutzeit, H. and Vilcinskas, A., 2018. Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly *Hermetia illucens*. *Developmental and Comparative Immunology* 78: 141-148.

Vrobel, O. and Tarkowski, P., 2023. Can plant hormonomics be built on simple analysis? A review. *Plant Methods* 19: 107.

Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H. and Wu, W., 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. *Biotechnology for Biofuels* 9: 22.

Wang, G., Zietz, C.M., Mudgapalli, A., Wang, S. and Wang, Z., 2022. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. *Protein Science* 31: 92-106.

Wang, H., Rehman, K. ur, Feng, W., Yang, D., Rehman, R. ur, Cai, M., Zhang, J., Yu, Z. and Zheng, L., 2020. Physicochemical structure of chitin in the developing stages of black soldier fly. *International Journal of Biological Macromolecules* 149: 901-907.

Wantulla, M., van Zadelhoff, K., van Loon, J.J.A. and Dicke, M., 2023. The potential of soil amendment with insect exuviae and frass to control the cabbage root fly. *Journal of Applied Entomology* 147: 181-191.

Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L., 2008. Optimisation of the anaerobic digestion of agricultural resources. *Bioresource Technology* 99: 7928-7940.

Wedwitschka, H., Gallegos Ibanez, D. and Jáquez, D.R., 2023. Biogas production from residues of industrial insect protein production from black soldier fly larvae *Hermetia illucens* (L.): an evaluation of different insect frass samples. *Processes* 11: 362. <https://doi.org/10.3390/pr11020362>.

White, A. and Hughes, J.M., 2019. Critical Importance of a One Health Approach to Antimicrobial Resistance. *EcoHealth* 16: 404-409.

Wichuk, K.M. and McCartney, D., 2010. Compost stability and maturity evaluation – a literature review. *Canadian Journal of Civil Engineering* 37: 1505-1523.

Wu, N., Yu, X., Liang, J., Mao, Z., Ma, Y., Wang, Z., Wang, X., Liu, X. and Xu, X., 2023. A full recycling chain of food waste with straw addition mediated by black soldier fly larvae: focus on fresh frass quality, secondary composting and its fertilizing effect on maize. *Science of The Total Environment* 885: 163386.

Yakti, W., Schulz, S., Marten, V., Mewis, I., Padmanabha, M., Hempel, A.-J., Kobelski, A., Streif, S. and Ulrichs, C., 2022. The effect of rearing scale and density on the growth and nutrient composition of *Hermetia illucens* (L.) (Diptera: Stratiomyidae) larvae. *Sustainability* 14: 1772.

Yamori, W., Hikosaka, K. and Way, D.A., 2014. Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. *Photosynthesis Research* 119: 101-117.

Yin, Q. and Wu, G., 2024. A holistic metabolic pathway of anaerobic digestion integrating substrate degradation, electron transfer, energy conservation and information flow. In: Wu, G. (ed.) *Anaerobic Digestion: fundamentals, modelling and applications*. Springer Nature, Cham, pp. 17-39.

Yost, J.L. and Hartemink, A.E., 2019. Soil organic carbon in sandy soils: a review. In: Sparks, D.L. (ed.) *Advances in agronomy*. Academic Press, San Diego, CA, pp. 217-310.

Zarcinas, B.A., Cartwright, B. and Spouncer, L.R., 1987. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. *Communications in Soil Science and Plant Analysis* 18: 131-146.

Zharkova, M.S., Orlov, D.S., Golubeva, O.Yu., Chakchir, O.B., Eliseev, I.E., Grinchuk, T.M. and Shamova, O.V., 2019. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics – a novel way to combat antibiotic resistance? *Frontiers in Cellular and Infection Microbiology* 9: 128.

Zucconi, F., Forte, M., Monac, A. and De Beritodi, M., 1981. Biological evaluation of compost maturity. *Biocycle* 22: 27-29.