

Differential effects of freshwater browning across fish species: consequences for individual- to community-level fish traits in north temperate lakes

Allison M. Roth^{1,2,3,*} , Vincent Fugère^{3,4}, Marco A. Rodríguez^{3,4}, Jean-François Lapierre^{3,5}, Joe Sánchez Schacht², Sapna Sharma⁶, Mehdi M. Aqdam^{7,8} , Jeremy Fonvielle^{9,10}, Michelle Gros², Andrew J. Tanentzap^{9,10,11}, Matilda L. Andersson¹², Renee M. van Dorst^{13,14}, Jan Karlsson¹⁵, Christopher T. Solomon¹⁶, Christer Brönmark¹⁷, Peter Eklöv¹⁸, Kristin Scharnweber^{19,20}, Magnus Huss¹², Beatrix E. Beisner^{3,21}, Fernando Chaguaceda²², Cristina Charette^{3,21} , Alison M. Derry^{3,21} , Gregor F. Fuessmann^{2,3}, Andrew P. Hendry^{2,3}, Kaj Hulthén¹⁷, Sandra Klemet-N'Guessan^{23,24} and Irene Gregory-Eaves^{2,3}

¹University of Missouri – Columbia, Division of Biological Sciences, Tucker Hall, 105, 612 Hitt St, Columbia, MO 65201, USA

²Department of Biology, McGill University, 1205 av. Dr-Penfield, Montréal, QC H3A 1B1, Canada

³Groupe de recherche interuniversitaire en limnologie (GRIL), Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada

⁴Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada

⁵Département de sciences biologiques, faculté des arts et sciences, Complexe des Sciences, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada

⁶Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada

⁷Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada

⁸Azimuth Consulting Group Inc., 218 – 2902 West Broadway, Vancouver, BC V6K 2G8, Canada

⁹Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK

¹⁰Ecosystems and Global Change Group, School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada

¹¹Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg 26129, Germany

¹²Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala SE-750 07, Sweden

¹³Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 907 36, Sweden

¹⁴Norwegian Institute for Nature Research, Sognsveien 68, Oslo 0855, Norway

¹⁵Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, Umeå 90187, Sweden

¹⁶Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA

¹⁷Functional Ecology Unit, Department of Biology, Lund University, Naturvetarvägen 6A, Lund SE-22362, Sweden

¹⁸Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 d, Uppsala SE-752 36, Sweden

¹⁹University of Potsdam, Plant Ecology and Nature Conservation, Am Mühlenberg, Potsdam-Golm 314476, Germany

²⁰University of Cologne, Ecological Research Station Rees, Dores-Albrecht-Straße 12, Rees-Bienen 46459, Germany

²¹Département des sciences biologiques, Université du Québec à Montréal (UQAM), 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada

* Author for correspondence (Tel.: +1 573 882 6659; E-mail: ar9f8@missouri.edu).

²²Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, Uppsala 750 07, Sweden

²³Environmental and Life Sciences Graduate Program, 1600 West Bank Drive, Trent University, Peterborough, ON K9L 0G2, Canada

²⁴School of Environment, Resources, and Sustainability, 200 University Avenue West, University of Waterloo, Waterloo, ON N2L 3G1, Canada

ABSTRACT

The browning of freshwater ecosystems is increasingly evident in temperate and northern regions, with widespread ramifications for lake physics, chemistry, and biology. Contrasting results on how freshwater browning may impact fish have been reported, but there has been no comprehensive examination of how browning may cause cascading effects on individual- to population- to community-level traits of freshwater fishes. We addressed this knowledge gap by summarizing the existing literature and conducting a series of original analyses to: (i) explore the effects of a brown water gradient on populations of eight economically important species of fish across 871 lakes; and (ii) examine how a brown water gradient may influence community trait compositions across 303 lakes. From our literature synthesis, we found that fish growth is often negatively associated with browner waters, despite browning generally showing no effect on fish foraging. We also demonstrated that browner waters had greater abundances of northern pike (*Esox lucius*) and walleye (*Sander vitreus*), but lower numbers of lake trout (*Salvelinus namaycush*), yellow perch (*Perca flavescens*), largemouth bass (*Micropterus salmoides*), smallmouth bass (*M. dolomieu*), and lake whitefish (*Coregonus clupeaformis*). Moreover, we showed that fish communities were significantly more likely to contain species with larger eyes in browner lakes. Lastly, we examined relationships between various metrics of browning (i.e. dissolved organic carbon, Secchi transparency, water colour) and present a framework for how the effects of freshwater browning on fish may scale from individuals to populations to communities.

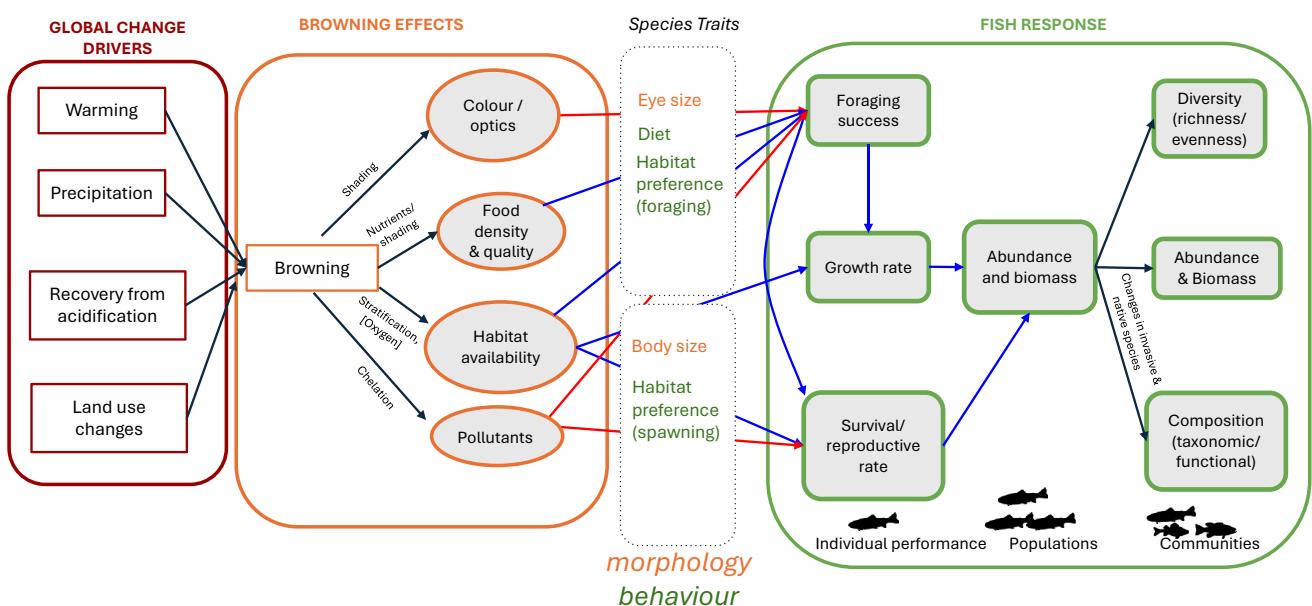
Key words: freshwater browning, fish, dissolved organic carbon, Secchi transparency, water colour, individual-level traits, population-level traits, community-level traits.

CONTENTS

I. Introduction	129
II. Methods	131
(1) Literature review	131
(2) Tallies of past work	131
(a) Individual-level effects of browning	131
(3) Empirical data analyses	132
(a) Relationships between various browning metrics	132
(b) Population-level effects of browning	132
(i) Population model details: zero-inflated negative binomial (ZINB) regression model with random effects	134
(ii) A model for counts based on the classical catch equation	134
(c) Community-level effects of browning	134
III. Results	135
(1) Individual-level effects of browning	135
(2) Population-level effects of browning	136
(3) Community-level effects of browning	138
IV. Discussion	138
(1) A conceptual framework for assessing the overarching effects of browning	142
V. Conclusions	142
VI. Acknowledgements	142
VII. References	142
VIII. Supporting information	146

I. INTRODUCTION

Inland waters are home to a disproportionately large diversity of fishes, hosting 40% of the world's fish species, despite representing less than 1% of all water on the planet


(Dudgeon *et al.*, 2006; Likens, 2009). Unfortunately, fresh waters are increasingly exposed to multiple stressors, including climate change, alterations in land use, and species invasions, all of which vary by region (Birk *et al.*, 2020; Griffiths *et al.*, 2022). The darkening of fresh waters – hereafter

'browning' – is one form of environmental change that has been altering many physical, chemical, and biological attributes of freshwater habitats over the past few decades, especially those in northeastern North America and northern Europe (Monteith *et al.*, 2007; Garmo *et al.*, 2014; Solomon *et al.*, 2015; Meyer-Jacob *et al.*, 2019; Anderson *et al.*, 2021; Räike *et al.*, 2024). Analyses of water-column time-series data from 49 eastern Canadian lakes have revealed regionally specific trends (Imtiaz *et al.*, 2025). Specifically, areas with historically intense acid deposition appear to have increased in browning from the late 1980s until ~2010, followed by a stabilizing trend or slight decline (Imtiaz *et al.*, 2025). By contrast, a more remote area has demonstrated a pronounced increase in browning since ~2015 (Imtiaz *et al.*, 2025).

Browning is most often caused by increased concentrations of terrestrial dissolved organic carbon (DOC; Monteith *et al.*, 2007; Kritzberg, 2017; Anderson *et al.*, 2021), although augmented iron levels may also cause browner waters (Kritzberg & Ekström, 2012; Lebret *et al.*, 2018; Anderson *et al.*, 2021). Anthropogenic stressors such as climate change (Weyhenmeyer & Karlsson 2009; de Wit *et al.*, 2016; Meyer-Jacob *et al.*, 2019), land use change (Meyer-Jacob *et al.*, 2015; de Wit *et al.*, 2016; Finstad *et al.*, 2016; Kritzberg, 2017), decreased atmospheric acid deposition (Monteith *et al.*, 2007; Clark *et al.*, 2010; de Wit *et al.*, 2021), and heightened nitrogen deposition (Rowe *et al.*, 2014; Sawicka *et al.*, 2017) can increase terrestrial DOC export, resulting in browning. By altering both chemical and physical properties of freshwater ecosystems (e.g. oxygen availability, light attenuation, and nutrient availability), browning may trigger ecosystem responses across spatiotemporal, biological, and ecological scales (Fig. 1; Solomon *et al.*, 2015;

Albrecht *et al.*, 2023). For instance, Sherbo *et al.* (2023) found that browner lakes within the Experimental Lakes Area in Ontario, Canada ($N = 286$) had shallower euphotic and thermocline depths. Furthermore, within a subset of these lakes, browner lakes had lower gross and net primary productivity rates in the euphotic zone (Sherbo *et al.*, 2023). Browning may also influence pelagic–benthic energy pathways (e.g. Vasconcelos *et al.*, 2018, 2019; Koizumi *et al.*, 2023), and there has been considerable effort dedicated to studying the effects of browning at lower trophic levels, such as plankton (reviewed in Creed *et al.*, 2018; Blanchet *et al.*, 2022). For example, Tanentzap *et al.* (2017) compiled stable isotope data from 147 lakes to show that the median relative contribution of terrestrially derived organic matter to zooplankton biomass was 42% and increased with DOC concentration.

Despite fish being an important structuring force in fresh waters, most current evidence detailing the effects of browning on fish is either species specific, lake specific, or experimental. As such, we do not fully understand the overarching effects of browning on fish, especially on a global scale. Furthermore, because different studies often use variable metrics (e.g. DOC concentration, Secchi transparency, water colour) to quantify browning, comparing the biological effects of browning on fish among projects can be difficult. Even a single metric like water colour may be measured in different ways (e.g. the concentration of platinum in the solution (mg Pt l^{-1}), with higher concentrations indicating darker water, *versus* absorbance (a) at different wavelengths – often around 420 nm). For example, Robak Enbratt (2020) found that water colour (a_{420}) was negatively correlated with both length-at-age for Eurasian perch (*Perca fluviatilis*) individuals

Fig. 1. Global change drivers can trigger browning, which, in turn, influences many physical, chemical, and biological properties of inland waters. The physical, chemical, and biological changes may consequently affect organismal traits and responses in fish at the individual, population, and community levels. Blue and red arrows indicate expected increases and decreases, respectively.

at least 1 year old and length-at-age for individuals at least 5 years old, while total organic carbon (TOC) concentration had no effect on either response variable. These contrasts may arise because each metric reflects different aspects of browning (e.g. water colour might provide information about a fish's visual environment, whereas DOC and TOC concentration may be correlated to the amount of nutrients present for basal resources and eventually fish), and it is important to note that water colour and DOC and/or TOC are not always tightly correlated (Rodríguez-Cardona *et al.*, 2023).

Fish provide numerous fundamental ecosystem services (e.g. nutrient recycling, linking aquatic and terrestrial ecosystems, redistribution of bottom substrates) and demand-derived services (e.g. commercial and recreational fishing, tourism; reviewed in Holmlund & Hammer, 1999; Sterner *et al.*, 2020). For example, in 2018, harvests from inland fisheries represented over 12% of global fisheries production, a multibillion-dollar industry (FAO 2020). Because environmental changes, such as increased levels of browning, may pose challenges for freshwater fish, such as decreased visibility, and ultimately may impact the vital ecosystem services fish provide, it is critical to understand the extent to which browning is influencing fish across multiple biological and spatial scales.

When examining the effects of browning on fish, we must consider that distinct levels of biological organization may respond differently (Fig. 1). In addition to contrasts among species and study systems, the strength and directionality of relationships between browning and fish traits may vary between individuals, populations, and communities. For example, browning may appear to cause beneficial increases in the biomass of a particular population, but such increases may disrupt community structure, *via* top-down or bottom-up effects, and alter many ecosystem functions (e.g. a decline in species diversity, nutrient recycling rates, etc.; Creed *et al.*, 2018). Similarly, compensatory responses or adaptations may mask perceived responses to browning at the individual or population levels. Our lack of understanding regarding the influence of browning across multiple levels of biological organization currently limits our ability to develop and implement informed conservation and management strategies.

Here, we aim to provide a more comprehensive understanding of the effects of browning on fish by exploring the influence of browning on individual-, population-, and community-level traits. We conducted a literature review detailing the findings and efforts of past researchers examining the impacts of browning on fish and paired this review with several new analyses. We quantified the effects of a brown water gradient on the abundance of eight ecologically and economically important species of fish and examined how fish community trait composition – specifically with respect to eye diameter, mouth size, and mouth position – vary along a brown water gradient. We also explored relationships among commonly reported browning metrics (i.e. DOC concentration, Secchi transparency, water colour) and discussed the implications of these relationships for understanding the effects

of browning on fish. Lastly, we developed a conceptual framework for identifying how browning-induced changes at the individual level may impact freshwater populations and, in turn, communities.

II. METHODS

(1) Literature review

We began our investigation into the relationships between browning and fish traits by building a metadata table to quantify the literature that has been published on this subject to date. We used this metadata table to summarize and report on the current state of the field and inform our decisions about knowledge gaps in the literature that would benefit from new analyses. We searched both *Google Scholar* and *Web of Science*, using a defined set of key words (see online Supporting Information, Table S1), between October 28, 2021 and August 20, 2022. We present the results of our search in Appendix S1. We included both peer-reviewed articles and non-peer-reviewed sources (i.e. theses, non-peer-reviewed research reports) in our metadata table, but we omitted results relating to fish eggs or embryos. We identified 59 papers containing 305 data sets (i.e. discrete sets of browning-related predictor variables coupled with fish-related response variables; range of data sets per paper = 1–16; mean data sets per paper = 5.17), including both observational and experimental studies that measured the association between browning and fish traits (Appendix S1). We included studies that measured a fish response variable across either a temporal (i.e. multiple observations from the same ecosystem) or a spatial brown water gradient (i.e. observations made across different ecosystems). We did not include papers that used Secchi depth as a measure of turbidity, but we retained papers where it was clear that Secchi depth was used to measure a brown water gradient.

(2) Tallies of past work

(a) Individual-level effects of browning

Using our metadata table, we counted tallies to summarize the effects (i.e. no effect, negative linear effect, positive linear effect, negative quadratic effect, positive quadratic effect) of browning on three common response variables related to individual organisms: (i) fish foraging/capture rates; (ii) fish growth rates; and (iii) fish survival. For fish foraging/capture rates, we included multiple measures of fish foraging/capture rates in our tally, including number of prey captured or consumed per unit time, empty *versus* not empty stomach, ingested prey biomass, and stomach fullness. For fish growth rates, we included studies that measured growth rate as: change in mean length or mass over time, length–age data, and back-calculated size-at-age from annulus widths of otoliths, cleithra, opercular bones, or other metrics. For fish survival, we included studies looking at both mortality and survival, and we switched the reported directionality of

browning–mortality relationships to match browning–survival relationships. To combine studies that measured browning in different ways (e.g. DOC concentration, Secchi transparency, water colour), we considered how the response variable related to increasing water darkness, despite the directionalities of relationships reported by the authors. For example, if the authors of a study reported a negative relationship between Secchi transparency and growth rate (Devine, 2017), we added this to our tally summary as a positive relationship between browning and growth rate, given that Secchi transparency is negatively correlated with water darkness. Furthermore, because some studies examined relationships between browning and foraging/capture rates, growth rates, and/or survival in multiple species or age classes, we occasionally counted studies multiple times within each tally, with each data set within the study receiving a single count. Similarly, we included several data points per reference in our tally summary because some studies examined multiple response variables within the same category. For example, Scharnweber *et al.* (2016) measured the foraging rate of *Perca fluviatilis* on two different prey items: *Daphnia* spp. and *Ephemeroptera* spp. Similarly, Miller (2017) investigated two response variables related to foraging/capture rate: (i) proportion of zooplankton consumed in 2 h; and (ii) empty *versus* not empty stomachs. Similarly, some studies examined more than one browning metric. For example, Robak Enbratt (2020) examined the effect of both TOC concentration and water colour (a_{420}) on variables related to growth rate, and we counted both relationships towards our tally results. Although this approach in counting could be viewed as non-independent, we felt that it was better to be more inclusive, given the potential for differences in results based on how browning was measured (all metadata are available in Appendix S1). Lastly, we excluded Robbins *et al.* (2020) from our tally examining the effects of browning on growth rate, as the authors only reported results for an interaction effect, preventing us from drawing interpretations of the main effects.

(3) Empirical data analyses

(a) Relationships between various browning metrics

Researchers measure the brown nature of waters using a variety of metrics (e.g. DOC concentration, Secchi transparency, water colour), yet such metrics may produce slightly different interpretations of how browning affects fish. As such, we compiled data from several large lake survey data sets from across Canada (i.e. 1533 lakes; Sandstrom, Rawson & Lester, 2010; Huot *et al.*, 2019; Sánchez Schacht *et al.*, 2023; Wu *et al.*, 2023), the northern USA (Solomon *et al.*, 2018; 127 lakes), and Europe (Miljödata-MVM, 2023; 167 lakes) and conducted a Bayesian Principal Component Analysis (BPCA; Oba *et al.*, 2003) to derive a composite measure of browning that integrated three commonly used browning metrics: DOC concentration (mg l^{-1}), Secchi transparency (m), and water colour (Pt, mg l^{-1}). To

improve linearity and stabilize variances, we applied Box-Cox transformations (Sakia, 1992) to DOC concentration (log), Secchi transparency (fourth-root), and water colour (fourth-root) prior to the BPCA. Distributional features such as kurtosis and skewness markedly differed among the original untransformed metrics; we therefore used the profile log-likelihood generated by the *boxcox* function in the R package *MASS* (Venables & Ripley, 2002) to select an appropriate Box-Cox transformation for each metric. BPCA has several advantages over conventional (non-probabilistic) PCA (Oba *et al.*, 2003) that were helpful in our study: (i) the use of a hierarchical prior provided shrinkage of component vectors such that less-relevant principal components are automatically suppressed; (ii) related to the previous point, BPCA allowed us to extract only one component from the three browning metrics, in line with our goal of creating a single composite metric to measure browning; and (iii) the BPCA algorithm implemented an efficient expectation–maximization procedure to impute missing values for the three browning metrics, an important consideration given that, on average, 7.4% of these values were missing. The imputation procedure allowed us to include in the analysis all lakes with missing values for DOC ($N = 187$; 10.2%), Secchi ($N = 198$; 10.8%), and water colour ($N = 23$; 1.3%).

The scores from the single (first) BPCA component (BPC1; estimated using the *pcaMethods* package in R; Stacklies *et al.*, 2007) accounted for 86% of the variation in the three browning metrics and were strongly correlated with the transformed DOC concentration ($r = 0.89$), Secchi transparency ($r = -0.90$), and water colour ($r = 0.89$), indicating a strong alignment between BPC1 and all three browning metrics. These correlations were stronger than those among transformed DOC, Secchi transparency, and water colour, the strongest of which ($r = -0.70$) was between DOC and Secchi transparency (Table S2). We used a graphical representation to match our BPC1 scores to the back-transformed values of the three focal variables (i.e. DOC concentration, Secchi transparency, and water colour; Fig. S1; Appendix S2).

(b) Population-level effects of browning

To assess the effects of browning on populations of eight commercially important species of fish, we obtained data on Secchi transparency (m), DOC concentration (mg l^{-1}), water colour (Pt, mg l^{-1}), and fish abundances (counts per lake) across 871 lakes in Ontario, Canada from the Ontario Ministry of Natural Resources Broadscale Monitoring Program. Information on lake geography (latitude, longitude), morphology (surface area, depth), and water chemistry (i.e. DOC, Secchi transparency, pH, etc.) were collected concurrently (Sandstrom *et al.*, 2010; Wu *et al.*, 2023).

Counts of lake trout (*Salvelinus namaycush*), northern pike (*Esox lucius*), walleye (*Sander vitreus*), yellow perch (*Perca flavescens*), largemouth bass (*Micropterus salmoides*), smallmouth bass (*Micropterus dolomieu*), lake whitefish (*Coregonus clupeaformis*), and brook trout (*Salvelinus fontinalis*) were available from between 2008 and 2017 using standardized large and small mesh

gillnet surveys as part of the Ontario Ministry of Natural Resources Broad Scale Monitoring Program (Sandstrom *et al.*, 2010). Large mesh gill nets were set for 16–22 h to target fish larger than 20 cm, whereas small mesh gill nets were set for 12–22 h to target fishes less than 20 cm long. Sampling effort for both types of gill net varied between lakes. For example, gill nets were set for a longer time period in larger and deeper lakes.

The fish counts are the sum across two gear types, each with their measure of nominal fishing effort. Given the synoptic nature of our analysis of browning, we focus on counts per lake aggregated over the two gears as an indicator of fish abundance, rather than examining the determinants of abundance separately for the two gears, such as in Chu *et al.* (2016). Accounting for fishing effort to achieve a consistent estimator of abundance in this context is not simple, because it is not obvious how the effort from the two gears should be combined. Additionally, effort is measured with errors arising from differences in soaking times and day of the year, which can cause errors-in-variables problems when adjusting for nominal effort and catchability (Cooke & Beddington, 1984; Richards & Schnute, 1986). Finally, adjusting for effort across samples is difficult even in standardized surveys, because other variables affecting catchability (e.g. fish characteristics, habitat, operating conditions) are also changing (Thompson, White & Gowan, 1998). The approach we used herein assumes that effort and catchability are unknown and must be estimated. Adjustment for these unknowns is achieved by using random effects which represent latent, lake-specific variables that account for differences in both effort and unmeasured environmental variables that may affect catchability.

Counts of all species had a high proportion of zeros and were heavily over dispersed relative to a Poisson distribution (Fig. S2). These features of the data can lead to lack of fit, underestimation of the standard errors of estimates, and confidence intervals that are too narrow when using generalized linear mixed models (Hall, 2000; Arab *et al.*, 2008; Silesi, Hailu & Nyadzi, 2009). To account for these features of the data, we examined whether fish counts increased or declined along a brown water gradient using a zero-inflated negative binomial (ZINB) regression model (Martin *et al.*, 2005; Blasco-Moreno *et al.*, 2019; Stoklosa, Blakey & Hui, 2022). A detailed description of the model is provided in Section II.3.c.i after we highlight the main features of the model.

The counts were assumed to arise from a mixture of two distributions. The first is a Bernoulli distribution that generates ‘structural’, or ‘excess’, zeros with probability π ; these zeros reflect inherent ecological restrictions that preclude a species’ occurrence in a given lake, such as barriers to colonization. The second is a negative binomial distribution that generates counts, some of which may be zeros (and are usually referred to as sampling or random zeros). For the negative binomial component, we used BPC1 as the predictor, with intercept and slope varying randomly across species. We included lake identity as a random effect to account for intra-lake correlations induced by sampling effort or

environmental covariates not included in the model (e.g. maximum lake depth or surface area). The lake-specific random effect is a proxy for effort (Thogmartin, Sauer & Knutson, 2004; Knape & Lindén, 2021) and also helps to account for the local effects of environmental variables that are not included in the model (Warton *et al.*, 2015). To account for larger-scale spatial gradients that may influence fish abundance but were not measured in this study (e.g. lake productivity, thermal regime), we also included as a predictor a smooth trend surface represented by a two-dimensional thin-plate spline on easting and northing lake coordinates. We modelled the mean of the negative binomial on the log scale as a linear additive function of BPC1, BPC1², and the random effects. For the structural zeros component, we modelled the Bernoulli probability on the logit scale and included random effects for species and lake identity to account for variation in the probability of occurrence. We estimated model parameters in a Bayesian framework using the *bmw* package in R (Bürkner, 2017, 2018). Posterior distributions were obtained from four Markov chain Monte Carlo (MCMC) chains of 7000 iterations each, with a burn-in of 5000 iterations and a thinning factor of 2, yielding a total of 4000 retained iterations.

For each species, we used the model output to obtain the mean position of the species along a synthetic BPC1 gradient and used this position as a measure of species performance along the gradient. To calculate the mean position, we used the posterior predictive distribution of fish counts, which fully captures the uncertainty from all sources of variation to the predicted counts. First, the synthetic BPC1 gradient was represented as a set of fixed equidistant BPC1 values which covered the observed range of BPC1 values. Then, the posterior predictive distribution derived from the model was used to obtain the distribution of predicted counts at each BPC1 value. Finally, the predictive distribution of the mean position along the gradient, B , was calculated as an average of BPC1 values weighted by predicted counts:

$$B_i = \sum_{j=1}^M \frac{c_{ij}}{\sum_{j=1}^M c_{ij}} x_j, \quad (1)$$

where B_i is the predicted mean position at MCMC iteration $i = 1, \dots, 4000$, c_{ij} is the predicted count at iteration i and BPC1 value x_j and $M = 2001$ is the number of fixed values used to represent the synthetic BPC1 gradient. The posterior predictive distribution for the mean position B was then summarized by its mean and 95% credible interval calculated across the 4000 MCMC iterations.

This analysis allowed us to explore how a composite measure of browning, which simultaneously incorporates the effects of browning on multiple key processes, such as primary production, ultraviolet (UV) protection, and optical environment for foraging may influence fish abundance. Developing a more holistic browning metric was needed as it is unclear whether DOC concentration is a consistent measure of the optical environment, given that DOC can range

from highly coloured to colourless, due to differences in sources and photo-oxidation (Massicotte *et al.*, 2017). Some drivers of fish abundance, such as predator–prey interactions may instead be more strongly influenced by aspects of browning other than DOC concentration, such as water colour or transparency (Jönsson *et al.*, 2013). Nevertheless, we also examined an alternative analysis by refitting the ZINB model using DOC concentration as a measure of browning instead of BPC1.

(i) *Population model details: zero-inflated negative binomial (ZINB) regression model with random effects.* The zero-inflated negative binomial model assumes that the excess zero counts come from a logit or probit model (and occur with probability π) and the remaining (zero or greater) counts come from a negative binomial model. The probability mass function of y_{ij} , the total counts for species $i=1,\dots,S=8$ and lake $j=1,\dots,N=871$, is given by:

$$p(y_{ij}|\mu_{ij}, \phi) = \begin{cases} \pi_{ij} \text{NegBin}(0|\mu_{ij}, \phi), & \text{if } y_{ij} = 0 \\ (1-\pi_{ij}) \text{NegBin}(y_{ij}|\mu_{ij}, \phi), & \text{if } y_{ij} \neq 0, \end{cases} \quad (2)$$

where μ_{ij} and ϕ are respectively the mean and the dispersion or scale parameters of the negative binomial distribution, and π_{ij} is the species- and lake-specific probability modelled by the logit component.

The mean of the negative binomial component is modelled on the logarithmic scale with fixed and random effects as predictors:

$$\log \mu_{ij} = \beta_{0i} + \beta_{1i} x_{1j} + \dots + \beta_{ki} x_{kj} + f(u_{kj}, v_{kj}) + \gamma_i + \lambda_j, \quad (3)$$

where β are regression coefficients, x are lake-specific covariates (e.g. environmental measurements), f is a smoother term representing a two-dimensional trend surface built on spatial coordinates u (easting) and v (northing), and γ and λ are, respectively, species- and lake-specific random effects. A site-specific random variable such as λ can be a useful proxy for ‘nuisance’ variables that impinge on abundance but are not the focus of the analysis, such as effort or detectability (Thogmartin *et al.*, 2004; Knape & Lindén, 2021). It can also help account for the effects of local environmental variables that are not included in the model (Warton *et al.*, 2015), whereas the spatial trend surface can represent larger-scale non-linear gradients (e.g. Rufener *et al.*, 2017).

The logit probability of excess zeros is modelled as a function of random effects for species (η) and lake (δ):

$$\text{logit } \pi_{ij} = \eta_i + \delta_j, \quad (4)$$

where η and δ are, respectively, species- and lake-specific random effects.

(ii) *A model for counts based on the classical catch equation.* The classical catch equation assumes that catch is proportional to the product of fishing effort and density:

$$C = qEN, \quad (5)$$

where q is the catchability coefficient (the fraction of the abundance that is captured by one unit of effort), E is the fishing effort, and N is a measure of fish abundance, such as the population density (Maunder & Punt, 2004).

From the catch equation it follows that the expected value of the catch for species i at lake j , $\langle C_{ij} \rangle$, can be modelled on the logarithmic scale as:

$$\log \langle C_{ij} \rangle = \log q_i + \log E_j + \log N_{ij}, \quad (6)$$

which represents the species- and lake-specific catch as a function of species-specific catchability, lake-specific effort, and species- and lake-specific abundance.

In ecological and fisheries applications, abundance is often modelled on the logarithmic scale as a function of k environmental predictors and a spatial trend surface:

$$\log N_{ij} = \beta_{0i} + \beta_{1i} x_{1j} + \dots + \beta_{ki} x_{kj} + f(u_{kj}, v_{kj}), \quad (7)$$

and so:

$$\log \langle C_{ij} \rangle = \log q_i + \log E_j + \beta_{0i} + \beta_{1i} x_{1j} + \dots + \beta_{ki} x_{kj} + f(u_{kj}, v_{kj}). \quad (8)$$

If we assume that the catchability and effort terms are unknown and must be estimated, we can replace these terms with random effects:

$$\log \langle C_{ij} \rangle = \beta_{0i} + \beta_{1i} x_{1j} + \dots + \beta_{ki} x_{kj} + f(u_{kj}, v_{kj}) + \theta_i + \psi_j, \quad (9)$$

where θ and ψ are, respectively, species- and lake-specific random effects. Similar generalized linear mixed model formulations incorporating the catch equation are commonly used in fisheries (Candy, 2004; Maunder & Punt, 2004; Baum & Blanchard, 2010; Zhou, Campbell & Hoyle, 2019; Robertson *et al.*, 2024). In these models, nominal effort is usually included as an offset or a covariate.

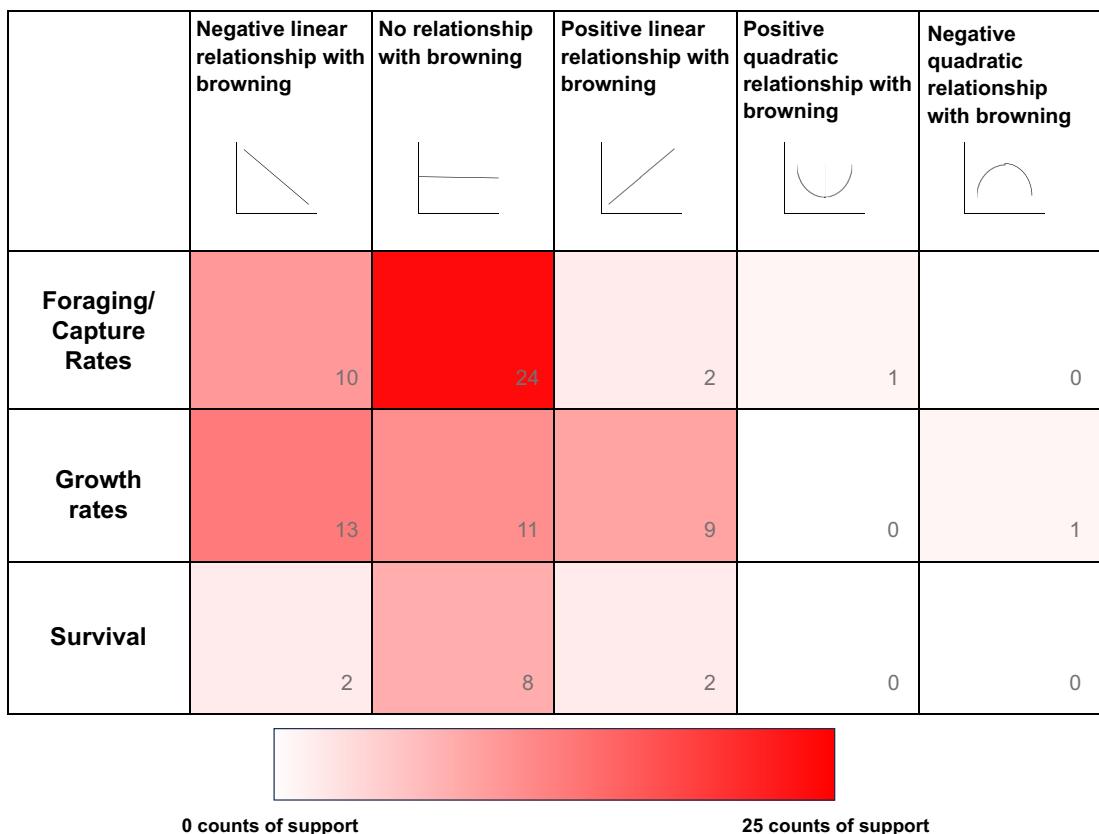
Equations 3 and 8 have identical structure, which shows that our approach based on ZINB regression is equivalent to a model for counts based on the classical catch equation in which effort is estimated rather than included as an offset or a covariate.

(c) Community-level effects of browning

To examine how browning influences fish communities, we conducted an analysis at a larger spatial scale than the population-level analysis and used fish occurrence (but not abundance) data that were available across Canada. We

sourced complementary environmental data from the ‘Lake Pulse’ data set (Huot *et al.*, 2019), a recent, standardized survey of lakes distributed across Canada. The ‘Lake Pulse’ data set provided values of transparency (m), DOC concentration (mg l^{-1}), and water colour for 662 North American lakes included in the BPCA discussed above (see Section II.3.a). To obtain fish species checklists for all ‘Lake Pulse’ sites located in their province, we contacted provincial governments (fisheries, wildlife, or natural resource ministries). These fish data were collected through numerous standardized and non-standardized government monitoring programs using various fishing methods; we thus treat the data as presence–absence data even when abundance information was available. Fish data were available for 332 lakes. Most sites (303 lakes) were located in the contiguous provinces of British Columbia ($N = 159$), Alberta ($N = 28$), Saskatchewan ($N = 19$), Manitoba ($N = 4$), Ontario ($N = 19$), Québec ($N = 14$), New Brunswick ($N = 16$), and Nova-Scotia ($N = 42$). We excluded 29 lakes from other provinces or territories, as these geographically sparse data posed problems for convergence of the spatial autocorrelation term during model fitting.

We also compiled a database of 21 morphological, behavioural, and life-history traits for all fish species in the data set. We obtained trait information from FishBase (Froese & Pauly, 2000) and Su *et al.* (2021). We used the FishBase API (Application Programming Interface) to extract data from the *species*, *morphology*, *ecology*, *food items*, *stocks*, and *maturity* tables (*rfishbase* package in R; Boettiger, Lang & Wainwright, 2012). The number of species with missing values varied per trait, with morphological traits from Su *et al.* (2021) offering the most complete trait information, including data for 100 out of 103 species. We focused the analysis on the following morphological traits for which we had *a priori* hypotheses regarding the effect of browning: (i) mouth size – measured as the ratio of jaw length to head diameter, which is generally larger in piscivorous fish; (ii) mouth position, which is the vertical position of the mouth divided by body depth and reflects feeding position in the water column (e.g. with small values (subterminal mouth) more typical of bottom feeders); and (iii) relative eye size – measured as the ratio of eye diameter to head diameter, with large values more typical of species with greater visual acuity (Caves, Sutton & Johnsen, 2017). We selected these traits because the effect of browning on species has been shown to vary with diet/trophic level, habitat use (benthic *versus* pelagic), and sensory ecology. More specifically, we hypothesized that browning would negatively affect benthic, piscivorous, and/or small-eyed species. Note that all trait values correspond to measurements taken on adult specimens. To account for phylogenetic autocorrelation (closely related species responding similarly to browning, irrespective of their traits), we also obtained a phylogeny for the 100 species retained in the analysis using the R package *FishTree* (Chang *et al.*, 2019).


We fitted a Bayesian joint species distribution model to the presence–absence data for each species across the 303 study lakes with the R package *Hmsc* (Tikhonov *et al.*, 2022). The model had a probit error structure with BPC1 (i.e. the first BPCA component from our BPCA described in

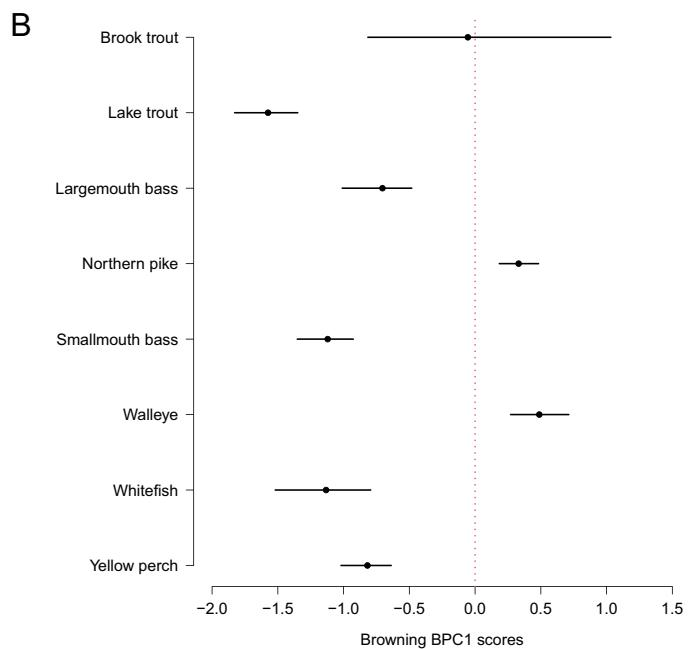
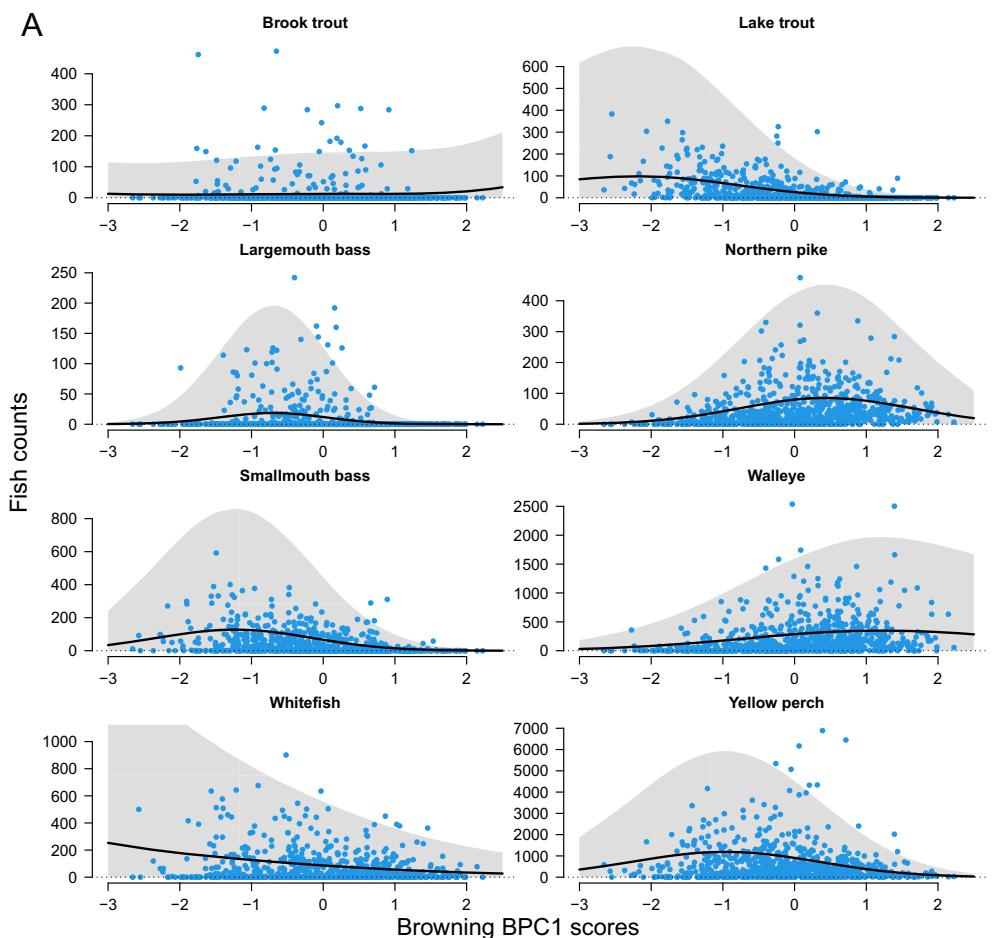
Section II.3.a) as a fixed effect, as well as a spatially structured random effect capturing exponential decay in correlation with increasing geodesic distance between points (using the default Gaussian process structure in *Hmsc*). The model also included the three focal traits and a phylogenetic variance–covariance matrix, obtained from the species phylogeny using the function *vcv* from the R package *ape* (assuming a Brownian motion model). Uniform priors were used for the spatial and phylogenetic terms, while default priors in *Hmsc* were used for all other model coefficients. Posterior distributions were obtained from three MCMC chains of 10,000 iterations each, with a burn-in of 5000 iterations and a thinning factor of 5. The model was validated by inspecting MCMC traces for adequate mixing, by examining Gelman convergence diagnostic values for model coefficients and Tjur R^2 values of species-specific models and by comparing observed *versus* predicted species prevalence and site richness. Model coefficients (effects of browning on species and traits) corresponded to the means of posterior distributions. Variance partitioning (function *computeVariancePartitioning* in *Hmsc*) was also used to assess the relative effect of browning *versus* the spatial autocorrelation on the probability of occurrence in each species-specific model, to verify that browning was a relevant predictor of community composition.

III. RESULTS

(1) Individual-level effects of browning

Past studies examining the effects of browning on fish traits have primarily focused on individual-level consequences and suggest substantial variation in the directionality of relationships between brownness and individual-level responses, including foraging, growth, and survival (see Appendix S1). We identified 38 data sets across 20 studies that examined fish foraging/capture rates and found that there was the most evidence for no effect of browning, followed by evidence for a negative linear effect of browning, and even some evidence for a positive linear effect of browning (Fig. 2, Table S3). There was also one study that demonstrated a positive quadratic effect of browning on fish foraging/capture rates (Fig. 2, Table S3). Considering fish growth rates, we identified 35 data sets across 16 studies and found that most of the results reported a negative linear relationship between browning and fish growth rates, followed by data sets reporting no relationship between browning and fish growth rates, and data sets reporting a positive linear relationship between browning and fish growth rates (Fig. 2, Table S4). Additionally, one study suggested a negative quadratic relationship between browning and fish growth rates (Fig. 2, Table S4). Lastly, we examined 12 data sets across 10 studies for fish survival and found that most evidence suggested that there was no relationship between browning and survival, followed equally by limited evidence for both negative and positive linear effects of browning on survival (Fig. 2, Table S5).

Fig. 2. Number of data sets showing negative linear, positive linear, positive quadric, negative quadratic, or no relationship between browning and (1) foraging/capture rates, (2) growth rates, and (3) survival. Numbers in the bottom right-hand corners indicate tally counts for each cell. See Tables S3–S5 and Appendix S1 for details.



Our compilation of the literature also revealed that there has been some research examining the effects of browning on various other facets of fish behaviour, performance, and morphology but this pool of literature is too limited to tease out trends at this point (see Appendix S1). Examples include prey selectivity (e.g. Estlander *et al.*, 2010; Jönsson *et al.*, 2013; Ranåker *et al.*, 2014; Weidel *et al.*, 2017; Leech *et al.*, 2021; van Dorst *et al.*, 2022), diet composition (e.g. Estlander *et al.*, 2010; Bartels *et al.*, 2012; Schaefer, 2014; Hedström *et al.*, 2017; Koizumi *et al.*, 2018; Berg, 2021), and behaviours such as attack/reaction distance, prey escape distance, encounter rate/duration, etc. (e.g. Jönsson *et al.*, 2012; Ranåker *et al.*, 2012, 2014; Mobley, Weigel & Boughman, 2020; see Appendix S1). There have also been several studies examining the effects of browning on non-foraging-related behaviours, like spawning depth (e.g. Williamson *et al.*, 1997; see Appendix S1), as well as physical and performance-related traits, such as morphology and colouration [e.g. body shape, fin shape/size, eye size, gill raker characteristics, belly/skin/fin/tail colour (e.g. Kekäläinen *et al.*, 2010; Bartels *et al.*, 2016; Giery & Layman, 2017; Bishop *et al.*, 2022)], body condition (e.g. Hedström *et al.*, 2016, 2017; Koizumi *et al.*, 2018; Symons *et al.*, 2019; Berg, 2021), and fecundity

(e.g. Craig *et al.*, 2017; see Appendix S1). These papers are generally limited in number relative to the work on foraging, growth, and survival (see Appendix S1).

(2) Population-level effects of browning

Our literature compilation showed that the majority of previous work examining the effects of browning on population-level traits has focused on abundance-related measures such as Catch Per Unit Effort (CPUE) or Biomass Per Unit Effort (BPUE), although there has been some research examining measures unrelated to abundance, such as sex ratio and size structure (e.g. Meinelt *et al.*, 2004; Olin *et al.*, 2017; see Appendix S1). Typically, studies have only examined one or two species.

Our analyses here expand the scope of this past work by quantitatively examining the effects of browning (measured as BPC1) on fish abundance for eight economically valuable species in Ontario lakes. Of these, we found that seven were associated with BPC1, with lower abundance in brown waters for five species (lake trout, yellow perch, largemouth bass, small-mouth bass, lake whitefish) and higher abundance in brown waters for two species (northern pike and walleye; Fig. 3). Brook trout abundance did not appear to systematically decline or increase along the brown water gradient (Fig. 3).

(Figure 3 legend continues on next page.)

When we reran our analysis examining the effect of BPC1 on the abundance of these same species, using DOC concentration as the predictor rather than BPC1, our results closely mirrored those from our original analysis (Fig. S3).

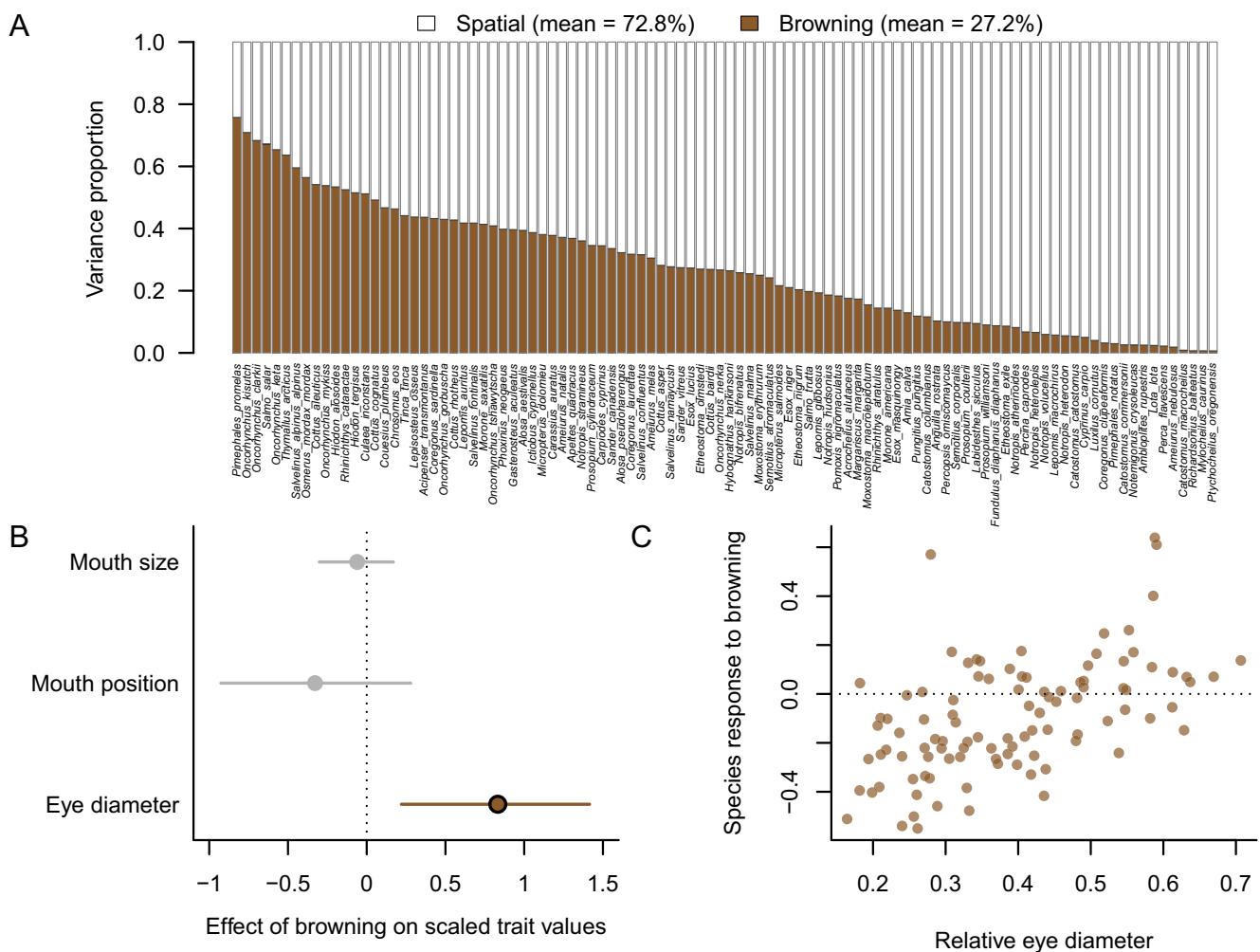
(3) Community-level effects of browning

Our literature compilation identified relatively little research that examined the effects of browning at the community level, although there has been some effort to examine the association between browning metrics and community biomass, species richness, or mean community body size (see Appendix S1; e.g. Rodrigues, Fontoura & da Motta Marques, 2015; Seekell, Byström & Karlsson, 2018; Koch, 2019; Murdoch *et al.*, 2021). To address this gap in the literature, we examined how lake fish communities responded to a brown to clear water gradient across Canada (Fig. S4) and linked species response to browning with three morphological traits. In a joint species distribution model including 100 species-specific models, we found that browning contributed 27% of the variance explained by models, when averaging across all species (range = 0–78% for individual species; Fig. 4A). The remaining variance was attributable to the spatial random effect, and presumably, to other abiotic or biotic variables that are correlated in space (e.g. temperature or stocking practices). Browning lowered the probability of occurrence of most species in the data set, but species with larger eyes tended to respond more positively to browning than smaller-eyed species, on average (Fig. 4B, C). Mouth size did not predict species responses to browning, while mouth position had a weak and uncertain effect, with sub-terminal mouths more typical of benthic species being loosely associated with a negative response to browning (Fig. 4B; for mouth position, the credible interval overlaps 0 but the posterior distribution is mostly negative).

IV. DISCUSSION

Many freshwater ecosystems across northeastern North America and northern Europe are browning and experiencing physical, chemical, and biological changes related to this phenomenon (Monteith *et al.*, 2007; Garmo *et al.*, 2014; Meyer-Jacob *et al.*, 2019; Anderson *et al.*, 2021). Our literature review on browning and fish has shown that most work has focused on individual-level responses. Although some patterns emerged in our summary of the literature, notably that fish growth rates were often negatively correlated with browning, we found that the directionality of results was often inconsistent across studies. Herein, we explore possible

reasons for the contrasting responses across studies, including the range and relative position of the gradient in browning measured, the browning metric used, and variation within and across the taxa considered. Moreover, we have developed a generalized approach to compare disparate measures of browning in the absence of locally collected data. Finally, we conducted original analyses of large fish population and community data sets and highlighted the taxa and traits that responded positively, negatively, or not at all to browning. Collectively, this body of research allowed us to build a conceptual framework to advance the field and lay the groundwork for further research.


Interestingly, we found that browning often negatively influenced fish growth rates, despite also finding that browning generally had no effect on fish foraging rates. This suggests that the indirect effects of browning on fish growth rates (i.e. the effects of browning on resource availability) may be more important than the direct effects of browning on fish growth rates (i.e. the effects of browning on foraging and capture rates). Despite some patterns emerging in our review of the literature, however, we found that often the directionality of the effects of browning on individual-level fish traits differed across studies.

Differences between studies in the range or relative position of the browning gradient measured may produce contrasting results in the strength, directionality, or shape of relationships between browning and fish traits. For example, if one examines a small section of the browning gradient, one might find a linear relationship, whereas a quadratic/non-linear relationship may be seen if one were to expand the range in the browning variable explored. Similarly, the change in response variables that one observes at a range which encompasses only low levels of browning may differ from what one observes at a range which encompasses only high levels of browning. Moreover, lake characteristics such as lake size can mediate the response of multiple fish attributes to browning *via* their effects on stratification, water residence time, and other properties (Kelly *et al.*, 2018). We recommend that future studies examine these possibilities in more detail.

At low levels of browning, light supply is typically high, thus additions of carbon (in the forms of DOC or TOC) and the nutrients bound to it can promote primary production and increase nutrient availability to higher trophic levels (reviewed in Creed *et al.*, 2018). Furthermore, DOC has also been shown to buffer the negative effects of some toxic compounds. For instance, DOC reduces the lethality of many metals (reviewed in Wood, Al-Reasi & Smith, 2011). The composition and lability of DOC, and its relationship with mercury, can mediate methyl mercury (MeHg) bioaccumulation in fish (Braaten *et al.*, 2018). At

(Figure legend continued from previous page.)

Fig. 3. (A) Abundance (counts per lake) of eight fish species as a function of Bayesian Principal Component Analysis component 1 (BPC1; blue symbols) in 871 study lakes across Ontario, and summary for the posterior predictive distribution of the zero-inflated negative binomial (ZINB) model (mean: black curves; 95% credible intervals: grey areas). (B) Posterior summary (mean and 95% credible interval) of the position along the BPC1 gradient.

Fig. 4. Joint species distribution model linking browning to fish communities. (A) Variance partitioning results showing the relative contribution of browning Bayesian Principal Component Analysis component 1 (PC1) versus the spatial (random) effect to the total variance explained by each species-specific model (bars). Variance proportion refers to the variance in probability of occurrence across the 303 lakes; the sum for browning + the spatial term is always equal to 1. The mean proportion explained by browning versus space across all models is shown in the legend. (B) Response of fish traits to browning. Circles indicate model coefficients while error bars provide 95% credible intervals. Intervals overlapping zero are shown in light grey, while the one trait with strong statistical support for an effect of browning (eye diameter) is shown in brown. (C) Species response to browning (model coefficients for the browning term) versus species-specific trait values for eye diameter. Each circle represents a single species. The horizontal dotted line distinguishes species that responded negatively to browning (below the line) versus positively to browning (above the line).

lower to intermediate DOC concentrations, DOC can enhance Hg bioaccumulation by (i) increasing Hg transport from land to lakes, (ii) stimulating microbial activity, and (iii) through a combination of these processes, releasing bound Hg available for subsequent methylation (Porcal *et al.*, 2009; French *et al.*, 2014). At higher DOC concentrations, DOC can inhibit MeHg bioaccumulation *via* formation of large, recalcitrant Hg-DOC complexes that are less available for direct biological uptake and methylation (Barkay, Gillman & Turner, 1997; Tsui & Finlay, 2011; French *et al.*, 2014). Combined, these effects could explain why positive relationships between browning and growth/survival are sometimes observed.

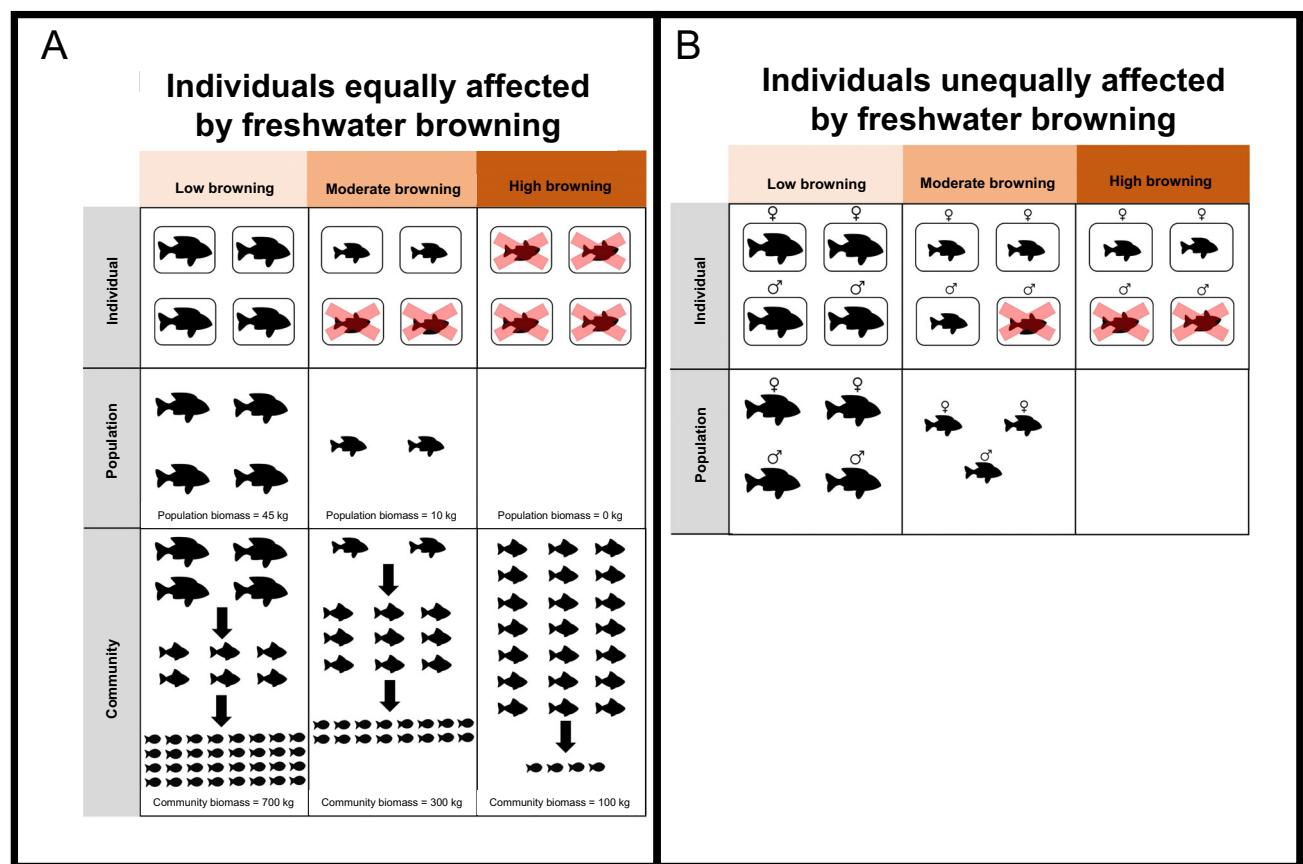
At high levels of browning, increased browning may decrease fish growth or survival *via* several mechanisms. For example, high DOC concentrations may depress food web productivity, including both zooplanktonic and zoobenthic prey availability for fish (Karlsson *et al.*, 2009; Jones, Solomon & Weidel, 2012; Kelly *et al.*, 2014; Craig *et al.*, 2015; Solomon *et al.*, 2015; Benoit, Beisner & Solomon, 2016; Tonin *et al.*, 2022; Tang *et al.*, 2023). Negative relationships between browning and zoobenthic biomass may occur as a result of browning-mediated changes in stratification depth reducing dissolved oxygen concentrations and generating physiological restrictions on zoobenthos production (Craig *et al.*, 2015; Benoit

et al., 2016), or from browning-mediated light attenuation reducing benthic primary production, and thus overall zoobenthos biomass (Ask *et al.*, 2009; Godwin *et al.*, 2014; Karlsson *et al.*, 2009; Benoît *et al.*, 2016). High levels of browning may also change the temperature and dissolved oxygen concentrations of aquatic systems, which may influence fish growth rates and survival directly or indirectly by imposing foraging habitat limitations (Houser, 2006; Stasko, Gunn & Johnston, 2012; Zwart *et al.*, 2016; Koizumi *et al.*, 2018; Moslemi-Aqdam *et al.*, 2021). Lastly, decreased visibility, arising from increased browning, may reduce or alter fish foraging rates or preferences and, therefore, affect fish growth and survival (Horppila *et al.*, 2011; Stasko *et al.*, 2012; Scharnweber *et al.*, 2016; Hedström *et al.*, 2017; Weidel *et al.*, 2017; Koizumi *et al.*, 2018; Leech *et al.*, 2021). Thus, increasing browning may be disadvantageous for fish growth or biomass production (Finstad *et al.*, 2014; Karlsson *et al.*, 2015; van Dorst *et al.*, 2019; Moslemi-Aqdam *et al.*, 2021), despite the fact that fish may increasingly and indirectly rely on terrestrial carbon sources.

Because studies may measure browning differently (e.g. DOC concentration, water colour, or Secchi transparency), apparent discrepancies among studies in relationships between browning and fish traits may also arise as a result of heterogeneity in the browning metrics used. For example, when local DOC concentration and water colour are weakly correlated, or when there are regional differences in relationships between DOC concentration and water colour (Lapierre *et al.*, 2021; Rodríguez-Cardona *et al.*, 2023), studies examining the effects of browning on fish may arrive at different conclusions depending on the metric used. In general, we recommend that researchers measure multiple browning-related metrics moving forward to provide a comprehensive view of how browning is operating in their system(s). In our case, we found that analyses examining the effects of browning on the abundance of eight economically important species of fish in Ontario yielded similar results, regardless of whether we used BPC1 (i.e. the first principal component of a Bayesian Principal Component Analysis which included DOC concentration, Secchi transparency, and colour) or DOC concentration as our predictor variable, providing strong support for our use of the composite metric of browning in this study. We also did not identify any strong regional signal in the relationships between BPC1 and DOC (see Fig. S5). In our systems, DOC is generally coloured and thus is a good measure of the overarching effects of browning.

It is also possible that the effect of browning may vary due to differences seen within or across taxa. Within species, variation in traits such as age, size, sex, or ecomorph (e.g. benthic *versus* limnetic) may cause individuals of the same species to respond differently to browning. For example, juveniles undergoing rapid growth may benefit more from DOC-mediated increases in food availability compared to more slowly growing adults. Individuals from different sexes

or ecomorphs may also have different energetic requirements and benefit to different degrees from DOC-mediated increases in nutrient supply. Furthermore, males and females, or different ecomorphs, may rely on different food resources, and browning may differentially influence the availability or abundance of these disparate prey items. Similarly, inconsistencies in the effects of browning may arise because different species respond in contrasting ways to browning. For example, we might expect individuals inhabiting distinct trophic niches to respond differently to changes in browning. Indeed, in our population-level analyses, we found that increased browning corresponded with notable declines in lake trout, yellow perch, largemouth bass, smallmouth bass, and lake whitefish, and notable increases in northern pike and walleye. Both walleye and pike tend to feed at higher trophic levels than the other species (Vander Zanden, Cabana & Rasmussen, 1997).


Interspecific differences in response to browning may also be due to variation in traits. For example, differences in eye size between species may influence how well individuals respond to browning. On one hand, species with relatively large eyes may be more robust to changes in water colour, as there may be a selective advantage of a large eye (that can house a larger pupil) which increases light-gathering capacity, and thus sensitivity to contrast and visual acuity (Land & Nilsson, 2012; Nilsson *et al.*, 2012). Relatively large eyes may thus allow for a sufficient perceptual range to maintain key activities (e.g. foraging) under darker conditions (Vinterstare *et al.*, 2020). By contrast, species with larger eyes, which presumably rely mostly on vision when foraging, may show larger decreases in foraging success with increased browning, as browning should reduce visibility, compared to species with smaller eyes or species that predominantly rely on non-visual sensory modes. Revisiting our population-level analysis which demonstrated that, of the eight species examined, only northern pike and walleye abundance exhibited increases with browning, it is important to consider that both walleye and pike have specific adaptations that may explain their robust performance in browner waters. For example, walleye have a specialized retina that enhances low-light visual performance (Ryder, 1977; Wahl, 1994). Similarly, pike have a well-developed lateral line system which complements their visual abilities, and which plays an important role in prey capture (New, Fewkes & Khan, 2001). Past work has shown that pike may perform better than visually oriented prey under poor light conditions (Dobler, 1977). There could also be indirect effects on fish, whereby different taxa show varied responses to a warmer but shallower epilimnion and/or lower oxygen concentrations in the hypolimnion as browning intensifies (Stasko *et al.*, 2012; Solomon *et al.*, 2015). Overall, it is important to recognize that interactions between terrestrial organic matter loading and lake size could further influence species distributions along a browning gradient. For example, large deep lakes provide ideal conditions for lake trout, and such lakes are less likely to possess higher DOC concentrations (Toming *et al.*, 2020). As

such, it is possible that lake characteristics such as size/depth, which might be linked to DOC, could partially explain our finding that lake trout abundance decreased with increasing DOC concentrations. Indeed, we found that with the Ontario lake set, mean depth was moderately negatively correlated with the browning BPC1 scores ($BPC1 \sim \log(\bar{Z}_{\text{mean}})$; $r = -0.47$; $N = 867$), but BPC1 scores were not significantly related to lake area measures. Whole-lake experimental manipulations are recommended in the future to disentangle the effects of browning from differences in morphometry.

Expanding our focus to the level of freshwater fish communities, it is important to keep in mind that individual- and population-level, species-specific responses to browning can have cascading effects on community and ecosystem variables, as shown by our joint species distribution analysis that quantified the effect of browning on both community composition and fish traits. Indeed, we found

that fish communities inhabiting browner lakes were significantly more likely to contain species with larger eyes, which supports our hypothesis that larger-eyed species are better adapted to see under low-light conditions. Overall, our results suggest that individual-level traits have the potential to influence population abundance, which can carry over to affect community composition, highlighting the importance of studying the effects of browning across multiple biological levels.

Despite the growing body of literature examining fish responses to browning, much work is needed to gain a comprehensive understanding regarding the effects of browning on fish. We recommend that future work focuses on assessing the effects of browning on a greater range of species and traits, and we recommend increased longitudinal sampling efforts. Furthermore, studies should focus on large gradients of variables spanning both extremes of browning (i.e. from

Fig. 5. Synthesis of possible response models at different levels of browning. (A) In cases where all individuals in a population are equally affected by browning, increases in browning may reduce fish growth or survival, which may decrease population- and community-level biomass (or *vice versa*). Similarly, browning-mediated changes in growth or survival at the individual level may alter the abundance of a certain species and lead to shifts in species composition *via* (1) the removal of the species in question (direct effect) or (2) alterations in the food web structure which may trigger trophic cascades (indirect effect). (B) In cases where individuals in a population are unequally affected by browning, for example, due to different energetic requirements or prey preferences which may be mediated by browning, interindividual differences in survival may influence how populations are structured. Here, we present the example of how browning may prompt sex-specific differences in survival, which would influence population sex ratios, but such interindividual differences could also apply to individuals from different ecomorphs or age classes.

very clear to very brown water) and investigate potential non-linear relationships between browning and fish traits. Future work should include multiple metrics related to browning (e.g. DOC concentration, Secchi transparency, water colour), rather than relying on single metrics, which may not capture all aspects of browning. Additionally, future work should consider how browning may influence the success of invasive species, and how this may, in turn, influence freshwater fish communities. Conversely, stocking could modulate relationships between browning and fish community composition by maintaining populations with maladapted traits in brown lakes, something we could not consider in our analyses given the lack of information on stocking history for the majority of our study lakes. Overall, we also need more mesocosm or whole-lake experimental evidence to quantify population- and community-level effects better, as well as ecosystem productivity changes brought about by shifts in browning. Finally, we summarized patterns in the literature but hope that with a more standardized reporting of multiple browning metrics, as well as further research, meta-analyses can be used in the future to quantify fish responses to browning clearly.

(1) A conceptual framework for assessing the overarching effects of browning

By considering multiple levels of biological organization, we identified numerous processes that may act on fish across a browning gradient. The most widely studied aspect of browning to date is individual performance *via* behavioural or physical traits, and investigators have paid little attention to how these measurements could affect fish communities. Here we develop a couple of example scenarios to map the possible consequences of browning across multiple levels of organization (Fig. 5).

It is very plausible that the effects of browning on individual-level performance could have population- and community-level consequences. For example, browning-related decreases in fish growth or survival may decrease population biomass (Fig. 5A). Furthermore, if different sexes, age/size classes, or ecomorphs are differentially affected by browning, this may have important consequences for the sex ratio, age/size structure, or phenotypic composition of a population (Fig. 5B). Population-level changes in biomass may, in turn, influence community-level biomass or composition. For example, if a given species of fish cannot survive beyond a certain browning threshold, then the loss of the focal species may cause indirect changes by altering the structure of the food web, potentially leading to trophic cascades (Fig. 5A). Our analysis of the literature, as well as our empirical analyses, highlight the complexities in combining understanding across scales, but such integration is nonetheless essential to understand the mechanistic basis for responses of fish communities to browning. Given that climatic warming can interact with browning and squeeze available habitat for coldwater fish, there is an urgent need to advance this field of science (Jane *et al.*, 2024).

V. CONCLUSIONS

- (1) In this synthesis, we summarized the current literature to show that browning and fish growth rates are often negatively correlated, even though browning typically had no effect on fish foraging rates. Nevertheless, our literature review also highlighted the fact that the effects of browning on fish often vary across studies, suggesting the need for future work to expand on topics such as the range in browning gradients explored, as well as the species and trophic levels examined.
- (2) We began to fill this gap in the literature by demonstrating relationships between a brown water gradient and population counts of eight economically important species of fish, where we showed that browner waters increased northern pike and walleye abundance and decreased lake trout, yellow perch, largemouth bass, smallmouth bass, and lake whitefish abundance. Although we focused on eight economically important species of fish in our analyses, future research should expand on this work and explore the effects of freshwater browning on a broader variety of species to develop a more comprehensive understanding of the effects of freshwater browning on fish populations.
- (3) In addition to exploring how freshwater browning influences population-level traits, we demonstrated that, in browner lakes, fish communities were significantly more likely to contain species with larger eyes.
- (4) Lastly, we present a unique generalized approach to compare disparate measures of browning in instances where locally collected data are unavailable, providing a useful framework for future work.

VI. ACKNOWLEDGEMENTS

This contribution was made possible by a working group grant, led by A. M. R., from the Groupe de Recherche Interuniversitaire en Limnologie/the Interuniversity Research Group in Limnology (GRIL; <https://doi.org/10.69777/341034>), which is funded by the Fonds de recherche du Québec Nature et Technologie (FRQNT). The GRIL also provided funding for a postdoctoral fellowship to A. M. R. Additional funding for research assistants J. S. S., M. G. was provided by a Canada Research Chair awarded to I. G.-E. Additional support was provided to C. T. S. by the US National Science Foundation under grant numbers 1754363 and 1754561 and to J. F. and A. J. T. by the Horizon 2020 European Research Council Grant 804673 sEEIngDOM.

VII. REFERENCES

- References identified with an asterisk (*) are cited only within the online Supporting Information.
- ALBRECHT, E., HANNONEN, O., PALACÍN-LIZARBE, C., SUNI, J., HÄRKÖNEN, L. H., SOININEN, N. & VAINIKKA, A. (2023). Browning of boreal lakes: do public perceptions and governance meet the biological foundations? *Ecological Applications* 33, e2856.
- ARAB, A., WILDHABER, M. L., WIKLE, C. K. & GENTRY, C. N. (2008). Zero-inflated modeling of fish catch per unit area resulting from multiple gears: application to

- channel catfish and shovelnose sturgeon in the Missouri River. *North American Journal of Fisheries Management* **28**, 1044–1058.
- ANDERSON, L. E., TRUEMAN, B. F., DUNNINGTON, D. W. & GAGNON, G. A. (2021). Relative importance of organic- and iron-based colloids in six Nova Scotian lakes. *Npj Clean Water* **4**, 1–10.
- ASK, J., KARLSSON, J., PERSSON, L., ASK, P., BYSTRÖM, P. & JANSSON, M. (2009). Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. *Limnology and Oceanography* **54**, 2034–2040.
- *BAGENAL, T. B. & TESCH, F. W. (1978). Age and growth. In *Methods for Assessment of Fish Production in Freshwaters* (eds T. B. BAGENAL and F. W. TESCH), pp. 101–136. Blackwell Scientific Publications, Hoboken.
- *BALDIGO, B. P. & MURDOCH, P. S. (1997). Effect of stream acidification and inorganic aluminum on mortality of brook trout (*Salvelinus fontinalis*) in the Catskill Mountains, New York. *Canadian Journal of Fisheries and Aquatic Sciences* **54**, 603–615.
- BARKAY, T., GILLMAN, M. & TURNER, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. *Applied and Environmental Microbiology* **63**, 4267–4271.
- BARTELS, P., HIRSCH, P. E., SVANBÄCK, R. & EKLÖV, P. (2012). Water transparency drives intra-population divergence in Eurasian perch (*Perca fluviatilis*). *PLoS One* **7**, e43641.
- BARTELS, P., HIRSCH, P. E., SVANBÄCK, R. & EKLÖV, P. (2016). Dissolved organic carbon reduces habitat coupling by top predators in lake ecosystems. *Ecosystems* **19**, 955–967.
- BAUM, J. K. & BLANCHARD, W. (2010). Inferring shark population trends from generalized linear mixed models of pelagic longline catch and effort data. *Fisheries Research* **102**, 229–239.
- BENOÎT, P. O., BEISNER, B. E. & SOLOMON, C. T. (2016). Growth rate and abundance of common fishes is negatively related to dissolved organic carbon concentration in lakes. *Canadian Journal of Fisheries and Aquatic Sciences* **73**, 1230–1236.
- BERG, I. (2021). *Effects of DOC and water temperature on prey use and performance of nine-spine stickleback*. Masters Thesis: Umeå University.
- *BERTOLO, A. & MAGNAN, P. (2007). Logging-induced variations in dissolved organic carbon affect yellow perch (*Perca flavescens*) recruitment in Canadian shield lakes. *Canadian Journal of Fisheries and Aquatic Sciences* **64**, 181–186.
- BIRK, S., CHAPMAN, D., CARVALHO, L., SPEARS, B. M., ANDERSEN, H. E., ARGILLIER, C. & HERING, D. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. *Nature Ecology & Evolution* **4**, 1060–1068.
- BISHOP, C. E., GAHM, K., HENDRY, A. P., JONES, S. E., STANGE, M. & SOLOMON, C. T. (2022). Benthic-limnetic morphological variation in fishes: dissolved organic carbon concentration produces unexpected patterns. *Ecosphere* **13**, e3965.
- BLANCHET, C. C., ARZEL, C., DAVRANCHE, A., KAHILAINEN, K. K., SECONDI, J., TAIPALE, S. & NUMMI, P. (2022). Ecology and extent of freshwater browning—what we know and what should be studied next in the context of global change. *Science of The Total Environment* **812**, 152420.
- BLASCO-MORENO, A., PÉREZ-CASANY, M., PUIG, P., MORANTE, M. & CASTELLS, E. (2019). What does a zero mean? Understanding false, random and structural zeros in ecology. *Methods in Ecology and Evolution* **10**, 949–959.
- BOETTIGER, C., LANG, D. T. & WAINWRIGHT, P. C. (2012). Rfishbase: exploring, manipulating and visualizing FishBase data from R. *Journal of Fish Biology* **81**, 2030–2039.
- BRAATEN, H. F. V., DE WIT, H. A., LARSEN, T. & POSTE, A. E. (2018). Mercury in fish from Norwegian lakes: the complex influence of aqueous organic carbon. *Science of The Total Environment* **627**, 341–348.
- BÜRKNER, P. (2017). Brms: an R package for Bayesian multilevel models using Stan. *Journal of Statistical Software* **80**, 1–28.
- BÜRKNER, P. (2018). Advanced Bayesian multilevel modeling with the R package brms. *The R Journal* **10**, 395–411.
- CANDY, S. G. (2004). Modelling catch and effort data using generalised linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects. *CCAMLR Science* **11**, 59–80.
- CAVES, E. M., SUTTON, T. T. & JOHNSEN, S. (2017). Visual acuity in ray-finned fishes correlates with eye size and habitat. *Journal of Experimental Biology* **220**, 1586–1596.
- CHANG, J., RABOSKY, D. L., SMITH, S. A. & ALFARO, M. E. (2019). An R package and online resource for macroevolutionary studies using the ray-finned fish tree of life. *Methods in Ecology and Evolution* **10**, 1118–1124.
- CHU, C., LESTER, N. P., GIACOMINI, H. C., SHUTER, B. J. & JACKSON, D. A. (2016). Catch-per-unit-effort and size spectra of lake fish assemblages reflect underlying patterns in ecological conditions and anthropogenic activities across regional and local scales. *Canadian Journal of Fisheries and Aquatic Sciences* **73**, 535–546.
- CLARK, J. M., BOTTRELL, S. H., EVANS, C. D., MONTEITH, D. T., BARTLETT, R., ROSE, R. & CHAPMAN, P. J. (2010). The importance of the relationship between scale and process in understanding long-term DOC dynamics. *Science Of The Total Environment* **408**, 2768–2775.
- COOKE, J. G. & BEDDINGTON, J. R. (1984). The relationship between catch rates and abundance in fisheries. *Mathematical Medicine and Biology* **1**, 391–405.
- CRAIG, N., JONES, S. E., WEIDEL, B. C. & SOLOMON, C. T. (2015). Habitat, not resource availability, limits consumer production in lake ecosystems. *Limnology and Oceanography* **60**, 2079–2089.
- CRAIG, N., JONES, S. E., WEIDEL, B. C. & SOLOMON, C. T. (2017). Life history constraints explain negative relationship between fish productivity and dissolved organic carbon in lakes. *Ecology and Evolution* **7**, 6201–6209.
- CREED, I. F., BERGSTRÖM, A. K., TRICK, C. G., GRIMM, N. B., HESSEN, D. O., KARLSSON, J. & WEYHENMEYER, G. A. (2018). Global change-driven effects on dissolved organic matter composition: implications for food webs of northern lakes. *Global Change Biology* **24**, 3692–3714.
- *DEGERMAN, R., LEFÉBURE, R., BYSTRÖM, P., BÄMSTEDT, U., LARSSON, S. & ANDERSSON, A. (2018). Food web interactions determine energy transfer efficiency and top consumer responses to inputs of dissolved organic carbon. *Hydrobiologia* **805**, 131–146.
- DE WIT, H. A., STODDARD, J. L., MONTEITH, D. T., SAMPLE, J. E., AUSTNES, K., COUTURE, S. & EVANS, C. D. (2021). Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters. *Environmental Research Letters* **16**, 104009.
- DE WIT, H. A., VALINIA, S., WEYHENMEYER, G. A., FUTTER, M. N., KORTELAINEN, P., AUSTNES, K. & VUORENMAA, J. (2016). Current browning of surface waters will be further promoted by wetter climate. *Environmental Science & Technology Letters* **3**, 430–435.
- DEVINE, M. T. (2017). *Juvenile river herring in freshwater lakes: sampling approaches for evaluating growth and survival*. MSc Thesis, University of Massachusetts, Amherst.
- *DEVINE, M. T., ROSSET, J., ROY, A. H., GAHAGAN, B. I., ARMSTRONG, M. P., WHITELEY, A. R. & JORDANA, A. (2021). Feeling the squeeze: adult run size and habitat availability limit juvenile river herring densities in lakes. *Transactions of the American Fisheries Society* **150**, 207–221.
- DOBBLER, E. (1977). Correlation between the feeding time of the pike (*Esox lucius*) and the dispersion of a school of *Leucaspis delineatus*. *Oecologia* **27**, 93–96.
- DUDGEON, D., ARTHINGTON, A. H., GESSNER, M. O., KAWABATA, Z.-I., KNOWLER, D. J., LÉVÉQUE, C., NAIMAN, R. J., PRIEUR-RICHARD, A.-H., SOTO, D., STIASSNY, M. L. J. & SULLIVAN, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. *Biological Reviews* **81**(2), 163–182.
- *ESTLANDER, S., HORPPILA, J., OLIN, M., VINNI, M., LEHTONEN, H., RASK, M. & NURMINEN, L. (2012). Troubled by the humics: effects of water colour and interspecific competition on the feeding efficiency of planktivorous perch. *Boreal Environment Research* **17**, 305–312.
- *ESTLANDER, S., NURMINEN, L., MRKVÍČKA, T., OLIN, M., RASK, M. & LEHTONEN, H. (2015). Sex-dependent responses of perch to changes in water clarity and temperature. *Ecology of Freshwater Fish* **24**, 544–552.
- ESTLANDER, S., NURMINEN, L., OLIN, M., VINNI, M., IMMONEN, S., RASK, M. & LEHTONEN, H. (2010). Diet shift and food selection of perch *Perca fluviatilis* and roach *Rutilus rutilus* in humic lakes of varying water colour. *Journal of Fish Biology* **77**, 241–256.
- FAO (2020). *The State of World Fisheries and Aquaculture 2020. Sustainability in Action*. FAO, Rome.
- *FEUCHTMAYR, H., POTTINGER, T. G., MOORE, A., DE VILLE, M. M., CAILLOUET, L., CARTER, H. T. & MABERLY, S. C. (2019). Effects of brownification and warming on algal blooms, metabolism and higher trophic levels in productive shallow lake mesocosms. *Science of The Total Environment* **678**, 227–238.
- FINSTAD, A. G., ANDERSEN, T., LARSEN, S., TOMINAGA, K., BLUMENTRATH, S., DE WIT, H. A. & HESSEN, D. O. (2016). From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. *Scientific Reports* **6**, 1–8.
- FINSTAD, A. G., HELLAND, I. P., UGEDAL, O., HESTHAGEN, T. & HESSEN, D. O. (2014). Unimodal response of fish yield to dissolved organic carbon. *Ecology Letters* **17**, 36–43.
- *FRASER, C. M. (1916). Growth of spring salmon. *Transactions of the Pacific Fisheries Society* **1916**, 29–39.
- FRENCH, T. D., HOUVEN, A. J., DESFORGES, J.-P. W., KIMPE, L. E., KOKELJ, S. V., POULAIN, A. J. & BLAIS, J. M. (2014). Dissolved organic carbon thresholds affect mercury bioaccumulation in Arctic lakes. *Environmental Science & Technology* **48**, 3162–3168.
- FROESE, R. & PAULY, D. (eds) (2000). FishBase (2000). In *Concepts, Design and Data Sources*. ICLARM, Los Baños, Laguna, Philippines.
- *GALLUCCI, V. F. & QUINN, T. J. (1979). Reparameterizing, fitting, and testing a simple growth model. *Transactions of the American Fisheries Society* **108**, 14–25.
- GARMO, Ø. A., SKJELKVÅLE, B. L., DE WIT, H. A., COLOMBO, L., CURTIS, C., FÖLSTER, J. & WORSZTYNOWICZ, A. (2014). Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. *Water, Air, and Soil Pollution* **225**, 1–14.
- GIERY, S. T. & LAYMAN, C. A. (2017). Dissolved organic carbon and unimodal variation in sexual signal colouration in mosquitofish: a role for light limitation? *Proceedings of the Royal Society B: Biological Sciences* **284**, 20170163.

- GODWIN, S. C., JONES, S. E., WEIDEL, B. C. & SOLOMON, C. T. (2014). Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes. *Limnology and Oceanography* **59**, 2112–2120.
- GRIFFITHS, K., JEZIORSKI, A., ANTONIADES, D., BEAULIEU, M., SMOL, J. P. & GREGORY-EAVES, I. (2022). Pervasive changes in algal indicators since pre-industrial times: a paleolimnological study of changes in primary production and diatom assemblages from ~200 Canadian lakes. *Science of the Total Environment* **838**, 155938.
- HALL, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: a case study. *Biometrics* **56**, 1030–1039.
- *HANRATTY, E. (2013). *The impact of dissolved organic carbon on the feeding effectiveness of bluegills*. Undergraduate Practicum: University of Notre Dame Environmental Research Center.
- HEDSTRÖM, P., BYSTEDT, D., KARLSSON, J., BOKMA, F. & BYSTRÖM, P. (2017). Brownification increases winter mortality in fish. *Oecologia* **183**, 587–595.
- HEDSTRÖM, P., RODRÍGUEZ, P., KARLSSON, J., VASCONCELOS, R. F. & BYSTRÖM, P. (2016). Warming but not increased terrestrial DOC has negative effects on fish recruitment. Preprint, <https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1048299&dswid=-4647>.
- HOLMLUND, C. M. & HAMMER, M. (1999). Ecosystem services generated by fish populations. *Ecological Economics* **29**, 253–268.
- HORPPILA, J., ESTLANDER, S., OLIN, M., PIHLAJAMÄKI, J., VINNI, M. & NURMINEN, L. (2011). Gender-dependent effects of water quality and conspecific density on the feeding rate of fish-factors behind sexual growth dimorphism. *Oikos* **120**, 855–861.
- *HORPPILA, J., OLIN, M., VINNI, M., ESTLANDER, S., NURMINEN, L., RASK, M. & LEHTONEN, H. (2010). Perch production in forest lakes: the contribution of abiotic and biotic factors. *Ecology of Freshwater Fish* **19**, 257–266.
- *HORPPILA, J. & PELTONEN, H. (1994). The fate of a roach *Rutilus rutilus* stock under an extremely strong fishing pressure and its predicted development after the cessation of mass removal. *Journal of Fish Biology* **45**, 777–786.
- HOUSER, J. N. (2006). Water colour affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. *Canadian Journal of Fisheries and Aquatic Sciences* **63**, 2447–2455.
- HUOT, Y., BROWN, C. A., POTVIN, G., ANTONIADES, D., BAULCH, H. M., BEISNER, B. E., BÉLANGER, S., BRAZEAU, S., CABANA, H., CARDILLE, J. A., DEL GIORGIO, P. A., GREGORY-EAVES, I., FORTIN, M.-J., LANG, A. S., LAURION, I., ET AL. (2019). The NSERC Canadian Lake pulse network: a national assessment of lake health providing science for water management in a changing climate. *Science of the Total Environment* **695**, 133668.
- IMTAZIY, M. N., PATERSON, A. M., HIGGINS, S. N., YAO, H., HOULE, D. & HUDSON, J. J. (2025). Has lake brownification ceased? Stabilization, re-browning, and other factors associated with dissolved organic matter trends in eastern Canadian lakes. *Water Research* **269**, 122814.
- JANE, S. F., DETMER, T. M., LARRICK, S. L., ROSE, K. C., RANDALL, E. A., JIRKA, K. J. & MCINTYRE, P. B. (2024). Concurrent warming and browning eliminate cold-water fish habitat in many temperate lakes. *Proceedings of the National Academy of Sciences of the United States of America* **121**, e2306906120.
- JONES, S. E., SOLOMON, C. T. & WEIDEL, B. C. (2012). Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes? *Freshwater Reviews* **5**, 37–49.
- JÖNSSON, M., RANÄKER, L., ANDERS NILSSON, P. & BRÖNMARK, C. (2012). Prey-type-dependent foraging of young-of-the-year fish in turbid and humic environments. *Ecology of Freshwater Fish* **21**, 461–468.
- JÖNSSON, M., RANÄKER, L., NILSSON, P. A. & BRÖNMARK, C. (2013). Foraging efficiency and prey selectivity in a visual predator: differential effects of turbid and humic water. *Canadian Journal of Fisheries and Aquatic Sciences* **70**, 1685–1690.
- *KANKALA, P., ARVOLA, L., HILTUNEN, M., HUOTARI, J., JONES, R. I., NYKÄNEN, H. & VESALA, S. (2019). Ecosystem responses to increased organic carbon concentration: comparing results based on long-term monitoring and whole-lake experimentation. *Inland Waters* **9**, 489–502.
- KARLSSON, J., BYSTRÖM, P., GUDASZ, C., RODRÍGUEZ, P. & HEIN, C. (2015). Terrestrial organic matter input suppresses biomass production in lake ecosystems. *Limnology and Oceanography* **57**, 1042–1048.
- KARLSSON, J., BYSTRÖM, P., ASK, J., ASK, P., PERSSON, L. & JANSSON, M. (2009). Light limitation of nutrient-poor lake ecosystems. *Nature* **460**, 506–509.
- KEKÄLÄINEN, J., HUUSKONEN, H., KIVINIEMI, V. & TASKINEN, J. (2010). Visual conditions and habitat shape the colouration of the Eurasian perch (*Perca fluviatilis* L.): a trade-off between camouflage and communication? *Biological Journal of the Linnean Society* **99**, 47–59.
- KELLY, P. T., SOLOMON, C. T., WEIDEL, B. C. & JONES, S. E. (2014). Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. *Ecology* **95**, 1236–1242.
- KELLY, P. T., SOLOMON, C. T., ZWART, J. A. & JONES, S. E. (2018). A framework for understanding variation in pelagic gross primary production of lake ecosystems. *Ecosystems* **21**, 1364–1376.
- KNAPE, J. & LINDÉN, A. (2021). Abundance based approaches. In *Demographic Methods across the Tree of Life* (eds R. SALGUERO-GÓMEZ and M. GAMELON), pp. 131–147. Oxford University Press, Oxford.
- KOCH, S. (2019). Fish Community Responses to Water Colour. MSc Thesis, Swedish University of Agricultural Sciences.
- KOIZUMI, S., CRAIG, N., ZWART, J. A., KELLY, P. T., ZIEGLER, J. P., WEIDEL, B. C. & SOLOMON, C. T. (2018). Experimental whole-lake dissolved organic carbon increase alters fish diet and density but not growth or productivity. *Canadian Journal of Fisheries and Aquatic Sciences* **75**, 1859–1867.
- KOIZUMI, S., HAMDAN, M., PUTS, I. C., BERGSTROM, A.-K., KARLSSON, J. & BYSTRÖM, P. (2023). Experimental warming and browning influence autumnal pelagic and benthic invertebrate biomass and community structure. *Freshwater Biology* **68**, 1224–1237.
- KRITZBERG, E. S. (2017). Centennial-long trends of lake browning show major effect of afforestation. *Limnology and Oceanography Letters* **2**, 105–112.
- KRITZBERG, E. S. & EKSTRÖM, S. M. (2012). Increasing iron concentrations in surface waters – a factor behind brownification? *Biogeosciences* **9**, 1465–1478.
- *LAMKA, G. (2017). *The effect of dissolved organic carbon on fish foraging*. Undergraduate Practicum: University of Notre Dame Environmental Research Center.
- LAND, M. F. & NILSSON, D. E. (2012). *Animal eyes*, Second Edition. Oxford University Press, Oxford and New York.
- LAPIERRE, J. F., COLLINS, S. M., OLIVER, S. K., STANLEY, E. H. & WAGNER, T. (2021). Inconsistent browning of northeastern US lakes despite increased precipitation and recovery from acidification. *Ecosphere* **12**, e03415.
- LEBRET, K., ÖSTMAN, Ö., LANGENHEDER, S., DRAKARE, S., GUILMETTE, F. & LINDSTRÖM, E. S. (2018). High abundances of the nuisance raphidophyte *Gonyostomum semen* in brown water lakes are associated with high concentrations of iron. *Scientific Reports* **8**, 1–10.
- *LEE, R. M. (1920). A review of the methods of age and growth determination in fishes by means of scales. *Fisheries Investigations, Series II, Marine Fisheries, Great Britain Ministry of Agriculture, Fisheries and Food* **4**, 1–35.
- LEECH, D. M., CLIFT, T. L., LITTLEFIELD, J. L., RAVAGLI, N. R. & SPAIN, J. E. (2021). Indirect versus direct effects of freshwater browning on larval fish foraging. *Canadian Journal of Fisheries and Aquatic Sciences* **78**, 969–983.
- LIKENS, G. E. (ed.) (2009). *Encyclopedia of Inland Waters*. Academic Press, Amsterdam.
- MARTIN, T. G., WINTLE, B. A., RHODES, J. R., KUHNERT, P. M., FIELD, S. A., LOW-CHOY, S. J., TYRE, A. J. & POSSINGHAM, H. P. (2005). Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. *Ecology Letters* **8**, 1235–1246.
- MASSICOTTE, P., ASMALA, E., STEDMON, C. & MARKAGER, S. (2017). Global distribution of dissolved organic matter along the aquatic continuum: across rivers, lakes and oceans. *Science of the Total Environment* **609**, 180–191.
- MAUNDER, M. N. & PUNT, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. *Fisheries Research* **70**, 141–159.
- MEINELT, T., SCHRECKENBACH, K., KNOPF, K., WIENKE, A., STÜBER, A. & STEINBERG, C. E. (2004). Humic substances affect physiological condition and sex ratio of swordtail (*Xiphophorus helleri* Heckel). *Aquatic Sciences* **66**, 239–245.
- MEYER-JACOB, C., MICHELUTTI, N., PATERSON, A. M., CUMMING, B. F., KELLER, W. B. & SMOL, J. P. (2019). The browning and re-browning of lakes: divergent lake-water organic carbon trends linked to acid deposition and climate change. *Scientific Reports* **9**, 1–10.
- MEYER-JACOB, C., TOLU, J., BIGLER, C., YANG, H. & BINDERL, R. (2015). Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. *Proceedings of the National Academy of Sciences* **112**, 6579–6584.
- MILJÖDATA-MVM (2023). Swedish University of Agricultural Sciences (SLU). National data host lakes and watercourses, and national data host agricultural land. <https://miljodata.slu.se/mvm/> Accessed 11.07.2023.
- MILLER, E. G. (2017). Effects of light availability and source lake DOC concentration on Bluegill (*Lepomis macrochirus*) foraging habits. Undergraduate Practicum: University of Notre Dame Environmental Research Center.
- MOBLEY, R. B., WEIGEL, E. G. & BOUGHMAN, J. W. (2020). Does humic acid alter visually and chemically guided foraging in stickleback fish? *Animal Cognition* **23**, 101–108.
- MONTEITH, D. T., STODDARD, J. L., EVANS, C. D., DE WIT, H. A., FORSIUS, M., HØGÅSEN, T., WILANDER, A., SKJELKVÅLE, B. L., JEFFRIES, D. S., VUORENMAA, J., KELLER, B., KOPÁCEK, J. & VESELY, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. *Nature* **450**, 537–540.
- MOSLEMI-AQDAM, M., LOW, G., LOW, M., BRANFIREUN, B. A. & SWANSON, H. K. (2021). Catchments affect growth rate of northern pike, *Esox lucius*, in subarctic lakes. *Aquatic Sciences* **83**, 1–14.
- MURDOCH, A., GRAY, D. K., KOROSI, J., VUCIC, J. M., COHEN, R. S. & SHARMA, S. (2021). Drivers of fish biodiversity in a rapidly changing permafrost landscape. *Freshwater Biology* **66**, 2301–2321.
- NEW, J. G., FEWKES, L. A. & KHAN, A. N. (2001). Strike feeding behavior in the muskellunge, *Esox masquinongy*: contributions of the lateral line and visual sensory systems. *Journal of Experimental Biology* **204**, 1207–1221.
- NILSSON, D. E., WARRANT, E. J., JOHNSEN, S., HANLON, R. & SHASHAR, N. (2012). A unique advantage for giant eyes in giant squid. *Current Biology* **22**, 683–688.

- OBA, S., SATO, M. A., TAKEMASA, I., MONDEN, M., MATSUBARA, K. I. & ISHII, S. (2003). A Bayesian missing value estimation method for gene expression profile data. *Bioinformatics* **19**, 2088–2096.
- OLIN, M. J., RASK, M., ESTLANDER, S. K., HORPPILA, J. A., NURMINEN, L. K. L., TIAINEN, J. M., VINNI, M. & LEHTONEN, H. V. T. (2017). Roach (*Rutilus rutilus*) populations respond to varying environment by altering size structure and growth rate. *Boreal Environment Research* **22**, 119–136.
- PORCAL, P., KOPRIVNJK, J.-F., MOLOT, L. A. & DILLON, P. J. (2009). Humic substances — part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. *Environmental Science and Pollution Research* **16**, 714–726.
- RÄIKE, A., TASKINEN, A., HÄRKÖNEN, L. H., KORTELAINEN, P. & LEPISTÖ, A. (2024). Browning from headwaters to coastal areas in the boreal region: trends and drivers. *Science of the Total Environment* **927**, 171959.
- *RAITANIEMI, J. (1995). The growth of young pike in small Finnish lakes with different acidity-related water properties and fish species composition. *Journal of Fish Biology* **47**, 115–125.
- RÄNÄKER, L., JÖNSSON, M., NILSSON, P. A. & BRÖNMARK, C. (2012). Effects of brown and turbid water on piscivore–prey fish interactions along a visibility gradient. *Freshwater Biology* **57**, 1761–1768.
- RÄNÄKER, L., PERSSON, J., JÖNSSON, M., NILSSON, P. A. & BRÖNMARK, C. (2014). Piscivore–prey fish interactions: mechanisms behind diurnal patterns in prey selectivity in brown and clear water. *PLoS One* **9**, e102002.
- RICHARDS, L. J. & SCHNUTE, J. T. (1986). An experimental and statistical approach to the question: is CPUE an index of abundance? *Canadian Journal of Fisheries and Aquatic Sciences* **43**, 1214–1227.
- ROBAK ENBRATT, E. (2020). Eurasian Perch (*Perca fluviatilis*) Is Negatively Affected by Lake Browning in Southern Sweden. MSc. Thesis, Halmstad University.
- ROBBINS, C. J., YEAGER, A. D., COOK, S. C., DOYLE, R. D., MAURER, J. R., WALKER, C. M., BACK, J. A., WHIGHAM, D. F. & KING, R. S. (2020). Low-level dissolved organic carbon subsidies drive a trophic upsurge in a boreal stream. *Freshwater Biology* **65**, 920–934.
- ROBERTSON, M. D., MIDWAY, S. R., EMBKE, H. S., KAZ, A. L., LANG, M., PAUKERT, C., SIEVERT, N. A., Wszola, L. & LYNCH, A. J. (2024). Estimating lentic recreational fisheries catch and effort across the United States. *Fisheries Management and Ecology* **31**, e12650.
- RODRIGUES, L. H. R., FONTOURA, N. F. & DA MOTTA MARQUES, D. (2015). Fish community in a large coastal subtropical lake: how an environmental gradient may affect the structure of trophic guilds. *Limnetica* **34**, 495–506.
- RODRÍGUEZ-CARDONA, B. M., HOULE, D., COUTURE, S., LAPIERRE, J. F. & DEL GIORGIO, P. A. (2023). Long-term trends in carbon and colour signal uneven browning and terrestrialization of northern lakes. *Communications Earth & Environment* **4**, 338.
- *ROUBEIX, V., DAUFRESNE, M., ARGILLIER, C., DUBLON, J., MAIRE, A., NICOLAS, D., RAYMOND, J.-C. & DANIS, P. A. (2017). Physico-chemical thresholds in the distribution of fish species among French lakes. *Knowledge and Management of Aquatic Ecosystems* **418**, 41.
- ROWE, E. C., TIPPING, E., POSCH, M., OULEHLE, F., COOPER, D. M., JONES, T. G., BURDEN, A., HALL, J. & EVANS, C. D. (2014). Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter. *Environmental Pollution* **184**, 271–282.
- RUFENER, M. C., KINAS, P. G., NÓBREGA, M. F. & OLIVEIRA, J. E. L. (2017). Bayesian spatial predictive models for data-poor fisheries. *Ecological Modelling* **348**, 125–134.
- RYDER, R. A. (1977). Effects of ambient light variations on behavior of yearling, subadult, and adult walleyes (*Stizostedion vitreum vitreum*). *Journal of the Fisheries Research Board of Canada* **34**, 1481–1491.
- SAKIA, R. M. (1992). The box-cox transformation technique: a review. *Journal of the Royal Statistical Society: Series D (The Statistician)* **41**, 169–178.
- SÁNCHEZ SCHACHT, J. R., MACKEIGAN, P. W., TARANU, Z. E., HUOT, Y. & GREGORY-EAVES, I. (2023). Agricultural land use and morphometry explain substantial variation in nutrient and ion concentrations in lakes across Canada. *Canadian Journal of Fisheries and Aquatic Sciences* **80**, 1785–1797.
- SANDSTROM, S., RAWSON, M. & LESTER, N. P. (2010). *Manual of Instructions for Broad-Scale Fish Community Monitoring: Using Large Mesh Gillnets and Small Mesh Gillnets*. Ontario Ministry of Natural Resources, Peterborough.
- SAWICKA, K., ROWE, E. C., EVANS, C. D., MONTEITH, D. T., VANGUELOVA, E. I., WADE, A. J. & CLARK, J. M. (2017). Modelling impacts of atmospheric deposition and temperature on long-term DOC trends. *Science of the Total Environment* **578**, 323–336.
- SCHAFFER, J. (2014). *Dissolved organic carbon and the foraging and prey selection of largemouth bass*. Undergraduate Practicum: University of Notre Dame Environmental Research Center.
- SCHARNWEBER, K., STRANDBERG, U., KARLSSON, K. & EKLÖV, P. (2016). Decrease of population divergence in Eurasian perch (*Perca fluviatilis*) in browning waters: role of fatty acids and foraging efficiency. *PLoS One* **11**, e0162470.
- SEEKELL, D. A., BYSTRÖM, P. & KARLSSON, J. (2018). Lake morphometry moderates the relationship between water colour and fish biomass in small boreal lakes. *Limnology and Oceanography* **63**, 2171–2178.
- *SERRANO, I., BUFFAM, I., PALM, D., BRÄNNÄS, E. & LAUDON, H. (2008). Thresholds for survival of brown trout during the spring flood acid pulse in streams high in dissolved organic carbon. *Transactions of the American Fisheries Society* **137**, 1363–1377.
- SHERBO, B. A., TONIN, J., PATERSON, M. J., HANN, B. J., KOZAK, J. & HIGGINS, S. N. (2023). The effects of terrestrial dissolved organic matter on phytoplankton biomass and productivity in boreal lakes. *Freshwater Biology* **68**, 2109–2119.
- SILESHI, G., HAILU, G. & NYADZI, G. I. (2009). Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data. *Ecological Modelling* **220**, 1764–1775.
- *SIMONIN, H. A., KRETSE, W. A., BATH, D. W., OLSON, M. & GALLAGHER, J. (1993). In situ bioassays of brook trout (*Salvelinus fontinalis*) and blacknose dace (*Rhinichthys atratulus*) in Adirondack streams affected by episodic acidification. *Canadian Journal of Fisheries and Aquatic Sciences* **50**, 902–912.
- SOLOMON, C. T., JONES, S. E., WEIDEL, B. C., BUFFAM, I., FORK, M. L., KARLSSON, J., LARSEN, S., LENNON, J. T., READ, J. S., SADRO, S. & SAROS, J. E. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. *Ecosystems* **18**, 376–389.
- SOLOMON, C., JONES, S., WEIDEL, B. C., BERTOLET, B., BISHOP, C. & COLOSO, J. (2018). *MFE database: data from ecosystem ecology research by Jones, Solomon, and collaborators on the ecology and biogeochemistry of lakes and lake organisms in the upper Midwest, USA* [dataset]. Cary Institute. Millbrook, NY. <https://doi.org/10.25390/caryinstitute.7438598.v6>.
- STACKLES, W., REDESTIG, H., SCHOLZ, M., WALTHER, D. & SELBIG, J. (2007). *pcaMethods—a bioconductor package providing PCA methods for incomplete data*. *Bioinformatics* **23**, 1164–1167.
- STASKO, A. D., GUNN, J. M. & JOHNSTON, T. A. (2012). Role of ambient light in structuring north-temperate fish communities: potential effects of increasing dissolved organic carbon concentration with a changing climate. *Environmental Reviews* **20**, 173–190.
- STERNER, R. W., KEELER, B., POLASKY, S., POUDEL, R., RHUDE, K. & ROGERS, M. (2020). Ecosystem services of Earth's largest freshwater lakes. *Ecosystem Services* **41**, 101046.
- STOKLOSA, J., BLAKEY, R. V. & HUI, F. K. (2022). An overview of modern applications of negative binomial modelling in ecology and biodiversity. *Diversity* **14**, 320.
- SU, G., LOGEZ, M., XU, J., TAO, S., VILLÉGER, S. & BROSSE, S. (2021). Human impacts on global freshwater fish biodiversity. *Science* **371**, 835–838.
- SYMONS, C. C., SCHULHOF, M. A., CAVALHERI, H. B. & SHURIN, J. B. (2019). Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes. *Oecologia* **189**, 231–241.
- TANENTZAP, A. J., KIELSTRA, B. W., WILKINSON, G. M., BERGGREN, M., CRAIG, N., DEL GIORGIO, P. A., GREY, J., GUNN, J. M., JONES, S. E., KARLSSON, J., SOLOMON, C. T. & PACE, M. L. (2017). Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. *Science Advances* **3**, e1601765.
- *TANENTZAP, A. J., SZKOKAN-EMILSON, E. J., KIELSTRA, B. W., ARTS, M. T., YAN, N. D. & GUNN, J. M. (2014). Forests fuel fish growth in freshwater deltas. *Nature Communications* **5**, 1–9.
- TANG, Y., SU, L., XU, R., WANG, S., SU, Y., LIU, Z., YU, J., DUMONT, H. J. & JEPPESEN, E. (2023). Response of zooplankton to inputs of terrestrial dissolved organic matter: food quality constraints induced by microbes. *Limnology and Oceanography* **68**, 709–722.
- THOGMARTIN, W. E., SAUER, J. R. & KNUTSON, M. G. (2004). A hierarchical spatial model of avian abundance with application to cerulean warblers. *Ecological Applications* **14**, 1766–1779.
- THOMPSON, W. L., WHITE, G. C. & GOWAN, C. (1998). Fish. In *Monitoring Vertebrate Populations*, pp. 191–232. Academic Press, San Diego, CA.
- TIKHONOV, G., OVASKAINEN, O., OKSANEN, J., DE JONGE, M., OPEDAL, O. & DALLAS, T. (2022). Hmsc: hierarchical model of species communities. R package version 3.0–13.
- TOMING, K., KOTTA, J., UUEMAA, E., SOBEK, S., KUTSER, T. & TRANVIK, L. J. (2020). Predicting lake dissolved organic carbon at a global scale. *Scientific Reports* **10**, 8471.
- TONIN, J., SHERBO, B., HIGGINS, S. N., SCHIFF, S. L. & PATERSON, M. J. (2022). Dissolved organic carbon affects the occurrence of deep chlorophyll peaks and zooplankton resource use and biomass. *Freshwater Biology* **67**, 1357–1369.
- TSUI, M. T. K. & FINLAY, J. C. (2011). Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. *Environmental Science & Technology* **45**, 5981–5987.
- VANDER ZANDEN, M. J., CABANA, G. & RASMUSSEN, J. B. (1997). Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios ($\delta^{15}\text{N}$) and literature dietary data. *Canadian Journal of Fisheries and Aquatic Sciences* **54**, 1142–1158.

- VAN DORST, R. M., GÅRDMARK, A., SVANBÄCK, R., BEIER, U., WEYHENMEYER, G. A. & HUSS, M. (2019). Warmer and browner waters decrease fish biomass production. *Global Change Biology* **25**, 1395–1408.
- *VAN DORST, R. M., GÅRDMARK, A., SVANBÄCK, R. & HUSS, M. (2020). Does browning-induced light limitation reduce fish body growth through shifts in prey composition or reduced foraging rates? *Freshwater Biology* **65**, 947–959.
- VAN DORST, R. M., GÅRDMARK, A., SVANBÄCK, R. & HUSS, M. (2022). Zooplanktivore fish body growth responses to browning-induced light limitation vary over ontogeny, but not with fish density. *Ecology of Freshwater Fish* **31**, 17–28.
- *VAN SICKLE, J., BAKER, J. P., SIMONIN, H. A., BALDIGO, B. P., KRETSER, W. A. & SHARPE, W. E. (1996). Episodic acidification of small streams in the northeastern United States: fish mortality in field bioassays. *Ecological Applications* **6**, 408–421.
- VASCONCELOS, F. R., DIEHL, S., RODRÍGUEZ, P., HEDSTRÖM, P., KARLSSON, J. & BYSTRÖM, P. (2019). Bottom-up and top-down effects of browning and warming on shallow lake food webs. *Global Change Biology* **25**, 504–521.
- VASCONCELOS, F., DIEHL, S., RODRÍGUEZ, P., KARLSSON, J. & BYSTRÖM, P. (2018). Effects of terrestrial organic matter on aquatic primary production as mediated by pelagic–benthic resource fluxes. *Ecosystems* **21**, 1255–1268.
- VENABLES, W. N. & RIPLEY, B. D. (2002). *Modern Applied Statistics with S*, Fourth Edition. Springer, New York.
- VINTERSTARE, J., HULTHÉN, K., NILSSON, D. E., NILSSON, P. A. & BRÖNMARK, C. (2020). More than meets the eye: predator-induced pupil size plasticity in a teleost fish. *Journal of Animal Ecology* **89**, 2258–2267.
- WAHL, C. M. (1994). Periodic cone cell twists in the walleye, *Stizostedion vitreum*; a new type of retinomotor activity. *Vision Research* **34**, 11–18.
- WARTON, D. I., BLANCHET, F. G., O'HARA, R. B., OVASKAINEN, O., TASKINEN, S., WALKER, S. C. & HUI, F. K. (2015). So many variables: joint modeling in community ecology. *Trends in Ecology & Evolution* **30**, 766–779.
- WEIDEL, B. C., BAGLINI, K., JONES, S. E., KELLY, P. T., SOLOMON, C. T. & ZWART, J. A. (2017). Light climate and dissolved organic carbon concentration influence species-specific changes in fish zooplanktivory. *Inland Waters* **7**, 210–217.
- WEYHENMEYER, G. A. & KARLSSON, J. (2009). Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. *Limnology and Oceanography* **54**, 2513–2519.
- WILLIAMSON, C. E., METZGAR, S. L., LOVERA, P. A. & MOELLER, R. E. (1997). Solar ultraviolet radiation and the spawning habitat of yellow perch, *Perca flavescens*. *Ecological Applications* **7**, 1017–1023.
- WOOD, C. M., AL-REASI, H. A. & SMITH, D. S. (2011). The two faces of DOC. *Aquatic Toxicology* **105**, 3–8.
- WU, T., IMRIT, M. A., MOHAVEDI, Z., KONG, J., WOOLWAY, R. I. & SHARMA, S. (2023). Climate tracking by freshwater fishes suggests that fish diversity in temperate lakes may be increasingly threatened by climate warming. *Diversity and Distributions* **29**, 300–315.
- ZHOU, S., CAMPBELL, R. A. & HOYLE, S. D. (2019). Catch per unit effort standardization using spatio-temporal models for Australia's eastern tuna and billfish fishery. *ICES Journal of Marine Science* **76**, 1489–1504.
- ZWART, J. A., CRAIG, N., KELLY, P. T., SEBESTYEN, S. D., SOLOMON, C. T., WEIDEL, B. C. & JONES, S. E. (2016). Metabolic and physiochemical responses to

a whole-lake experimental increase in dissolved organic carbon in a north-temperate lake. *Limnology and Oceanography* **61**, 723–734.

VIII. SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. Metadata table.

Appendix S2. Nomogram data.

Table S1. Defined set of key words we used in our search of the literature.

Table S2. Pearson pairwise correlations among browning metrics.

Fig. S1. Nomogram linking Bayesian Principal Component Analysis component 1 (BPC1) scores to back-transformed values for dissolved organic carbon (DOC) concentration, Secchi transparency, and water colour.

Fig. S2. Distribution of catches (individual fish counts per lake) for eight species in the Ontario data set used to model the population-level effects of browning ($N = 871$ lakes).

Table S3. Studies examining relationships between browning and fish foraging/capture rates.

Table S4. Studies examining relationships between browning and fish growth rates.

Table S5. Studies examining relationships between browning and fish survival (not including eggs/embryos).

Fig. S3. Fish abundance as a function of dissolved organic carbon (DOC) concentration, and summary for the posterior predictive distribution of the zero-inflated negative binomial (ZINB) model; and posterior summary of the position along the log(DOC) gradient.

Fig. S4. Map of lakes included in the community-level analysis, with colours representing values of browning Bayesian Principal Component Analysis component 1 (BPC1).

Fig. S5. Correlation between browning BPC1 scores derived from a Bayesian Principal Component Analysis (browning BPC1) and dissolved organic carbon concentrations.

(Received 5 November 2024; revised 2 September 2025; accepted 5 September 2025; published online 23 September 2025)