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ABSTRACT: A substantial body of evidence exists demonstrating
that exposure to environmental contaminants can alter animal
behavior. Moreover, methodological and technological advance-
ments, as well as increasing standardization, mean that behavioral
ecotoxicity studies are more rigorous and reliable than ever before.
Despite this, behavioral data are still seldom used in the risk
assessment and regulation of chemicals. This is partly due to a lack
of clarity among some stakeholders about whether changes in
behavior at the individual level result in population-level outcomes.
To address this, we first consider the state of evidence within the
field of behavioral ecotoxicology linking individual-level behavioral
alterations with population-level consequences. We then assess the
evidence from behavioral ecology and other neighboring fields that
supports this link. Further, we evaluate whether some behavioral endpoints are more easily tied to population-level changes than
others. In this regard, we propose combining insights from two complementary ecological frameworks�the functional trait
framework and the limiting traits framework�to evaluate which behaviors should be prioritized in ecotoxicological research and
regulatory efforts. We contend that the link between behavioral changes and population-level outcomes is evident, with behavioral
endpoints representing a highly valuable yet so far underutilized line of evidence in applied environmental protection.
KEYWORDS: behavior, chemical, ecology, ecotoxicology, hazard assessment, regulation, risk assessment

■ INTRODUCTION
While research investigating the impacts of contaminant
exposure on animal behavior dates back to the 1960s,1 the
field of behavioral ecotoxicology has seen particularly rapid
growth over the last two decades (reviewed in refs 2−18).
Demonstrating this, a recent study synthesizing research on the
impacts of pharmaceuticals on aquatic animal behavior
identified 901 published studies in that subdiscipline alone,
reporting a 19-fold increase in the number of studies published
per year between 2007 and 2022.19 This surge in research
attention is in large part due to methodological and
technological advances in recent years that have enhanced
the accessibility and reliability of behavioral ecotoxicology
research.15 In addition, there has been a recent emphasis in
behavioral ecotoxicology on improving experimental rigor and
transparency, including through the EthoCRED framework
reporting recommendations, which aim to reduce the potential
for underreporting and information gaps in published
studies.18

Despite recent progress in the field of behavioral
ecotoxicology, behavioral endpoints are still seldom used in
applied environmental protection.20 Indeed, a recent study
identified just six instances where behavioral studies were used,
or were at least considered for use, in European Union
regulatory decision-making.21 This lack of uptake in applied
environmental protection persists despite evidence demon-
strating that animal behavior can be exceptionally sensitive to
disruption by pollutant exposure when compared to conven-
tional endpoints (e.g., mortality, development, reproduction).9

Behavior represents the connection between an organism and
its environment, meaning that disruptions in the ability to
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appropriately perform and regulate behaviors can have severe
impacts on species ecology and evolution.22−25 So, given that
the quality and quantity of behavioral ecotoxicology research
has increased substantially in recent years, and that behavior is
key to the ecology and evolution of species and populations,
why do behavioral endpoints remain largely absent from risk
assessment and regulatory decision-making?
We use the term “risk assessment” to denote regulatory

environmental risk assessment (ERA): prospective (premar-
ket) and retrospective (postmarket) processes used by
regulators to combine hazard and exposure. In these
assessments, thresholds (e.g., predicted no-effect concentra-
tions, PNECs) are derived from dose−response data�
typically using classical endpoints such as mortality, growth,
and reproduction, and are then compared with exposure
estimates (predicted environmental concentrations, PECs) to
characterize risk deterministically, often via risk quotients
(PEC/PNEC). Examples of chemical regulations under which
ERAs are performed include the EU REACH regulation and
the Plant Protection Products Regulation, as well as the U.S.
Toxic Substances Control Act (TSCA). The regulations and
associated guidance documents set ERA rules and translate
ERA outcomes into decisions (e.g., authorization, restrictions,
monitoring). Factors that have hindered the incorporation of
behavioral data into environmental risk assessment and
chemical regulation include a lack of standardization in
academic studies (see ref 18), limited familiarity among risk
assessors and regulators with regard to behavioral endpoints
(see ref 20), and technical and analytical challenges (see ref
15). We also recognize that current ERA includes threshold-
based dose−response models and probabilistic Species
Sensitivity Distributions (SSDs) that are often supported by
classical apical endpoints such as survival, growth, and
reproduction compiled in databases (e.g., the ECOTOXicol-
ogy Knowledgebase, ECOTOX26), whereas many behavioral
studies still test few concentrations (see ref 19) and some
chemicals show nonlinear responses (see ref 27)�issues that
complicate, but need not preclude, regulatory integration.
However, perhaps the most critical unresolved issue is the
uncertainty among some stakeholders about whether and how
individual-level behavioral changes are linked to population-
level outcomes. Underscoring this, a recent survey of academic,
government, and industry scientists on the perceptions and
role of behavioral (eco)toxicology in environmental protection
found that 35% of respondents disagreed or strongly disagreed
and 30% were neutral with regard to the statement “Behavioral
endpoints are easily linked to apical endpoints (growth,
reproduction, mortality) and population-level effects.”28 This
link to population-level outcomes is vital given that environ-
mental assessments almost always consider population-level
effects, unlike human health assessments that typically
prioritize individual-level protection.21

To address this uncertainty, we first review the state of the
evidence within behavioral ecotoxicology concerning a link
between individual- and population-level impacts, including
highlighting recent field-based studies directly demonstrating
the impacts of pollutant exposure on fitness-related behaviors
and population-level outcomes in the wild. We then consider
evidence from neighboring fields, including behavioral ecology,
evolutionary biology, population biology, and community
ecology, which is rarely considered in this context but stands
to provide valuable insights. Finally, we discuss whether the
disruption of certain behavioral endpoints may be especially

likely to result in population-level impacts, drawing on
evidence both from behavioral ecotoxicology and neighboring
fields.

State of the Evidence within Behavioral Ecotoxicol-
ogy. Over the last 25 years, more than 3600 publications have
explored whether and how environmental contaminants�
including pesticides, pharmaceuticals, and metals�can alter
animal behavior.18 These studies span a diverse range of taxa
and reveal a wide array of behavioral impacts, including altered
patterns of movement, risk-taking behavior, aggression,
sociality, reproduction, foraging, and antipredator responses
(reviewed in refs 15,18). Collectively, this body of evidence
demonstrates that environmental pollutants have the potential
to interfere with virtually all dimensions of animal behavior.
Laboratory studies, in particular, have been instrumental in

identifying pollutant-induced effects on animal behavior. For
instance, neurotoxic insecticides such as neonicotinoids can
impair bee locomotion, foraging, and navigation, thereby
diminishing critical pollination services,29−32 while metals like
copper can disrupt fish olfaction, reducing detection of food
and predator cues and increasing predation risks.33−36 Further,
endocrine-disrupting chemicals found in wastewater effluents
have been shown to suppress essential reproductive behaviors
in fish, such as courtship and nest-building, thus compromising
reproductive success.8,37 Similarly, fish exposed to trace levels
of psychoactive pharmaceuticals�such as antidepressants and
antianxiety medications�exhibit altered antipredator behavior,
increased risk-taking, and reduced social cohesion.38−40 The
erosion of natural antipredator behavior resulting from
exposure to such pollutants has been associated with increased
predation risk in a range of species.41−46 One striking example
projected a 60% decline in the abundance of adult fathead
minnows (Pimephales promelas) in a population exposed to the
endocrine disruptor 17β-oestradiol (E2), based on increased
larval predation due to behavioral impairment.44 Notably,
many of these effects occur at pollutant concentrations that are
well below lethal thresholds, underscoring the value of
behavior as a sensitive indicator of environmental stress.7,9

There has been a significant push in recent years for
researchers to employ environmentally realistic exposures and
behavioral observations in the field to validate laboratory-based
findings, thereby generating a more direct link to real-world
outcomes.15,47 For instance, a recent study tracking juvenile
Atlantic salmon (Salmo salar) during river-to-sea migration
revealed that benzodiazepine pharmaceutical exposure altered
migratory success, in addition to impacting anxiety-like
behaviors and sociality in the laboratory.48 Indeed, a growing
number of studies have demonstrated pharmaceutical-induced
disruptions in fish movement and behavior in natural settings,
including ponds,49 lakes,50 and rivers.51 Further, field-based
research in terrestrial systems has revealed that white-crowned
sparrows (Zonotrichia leucophrys) exposed to neonicotinoids
exhibited rapid declines in food intake and impaired migratory
performance, with likely subsequent effects on fitness and
survival.52 Similarly, sublethal lead exposure in wild golden
eagles (Aquila chrysaetos) reduced flight height and movement
rates and was associated with elevated mortality risk.53

Although field-based studies in this research area are still
relatively uncommon, the available evidence demonstrates that
exposure to environmentally realistic contaminant concen-
trations can alter animal behavior in the wild, with implied as
well as demonstrated consequences for fitness.
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Despite this, unequivocally linking pollution-induced behav-
ioral changes to population-level outcomes�such as declines
in population size, altered growth trajectories, or demographic
shifts within the complexity of real-world environments�
remains one of the most pressing and complicated challenges
in behavioral ecotoxicology.14,15 From a logistical perspective,
establishing such connections often requires long-term, large-
scale monitoring of individual animals, populations, and
communities, which is both resource-intensive and difficult
to experimentally control. Isolating the specific contribution of
pollutant-induced behavioral disruptions from disturbances
produced by other human-induced stressors (e.g., noise, heat,
and light pollution, habitat loss, climate change) also
complicates (causal) inference. This challenge is amplified
because contaminants can alter behavior in multiple interacting
species simultaneously,45,54 making net system responses more
challenging to predict (discussed in refs 14,55). These
constraints mean that, while behavioral endpoints are highly
sensitive and ecologically meaningful, translating individual-
level disruptions into clear predictions of population-level
impacts requires innovative study designs, integrative pop-
ulation modeling approaches, and strong interdisciplinary
collaboration. In this regard, several recent methodological
and technological advances offer promising pathways for-
ward.15,55 These include (1) the integration of advancements
in automated tracking and remote sensing technologies for
large-scale behavioral monitoring in natural environments,56

(2) the further application of Adverse Outcome Pathways
(AOPs) to mechanistically link molecular initiating events with
behavioral and fitness-related outcomes,57 and (3) the use of
individual-based and agent-based models to predict population
dynamics based on behavioral metrics.58,59 Embracing these
innovations is expected to further strengthen the link between
individual-level behavioral changes and population-level
disruptions.

Evidence from Neighboring Fields in the Life
Sciences. Research in the life sciences over the last three
decades has established the importance of animal behavior in
influencing individual fitness, population dynamics, and even
ecosystem-level processes.60−63

Numerous studies in behavioral and evolutionary ecology
have demonstrated that behavioral traits are directly linked to
individual survival and reproductive success. For example,
bolder roach (Rutilus rutilus) experienced increased survival in
the presence of predatory northern pike (Esox lucius)
compared to their shyer conspecifics.64 Such findings have
been reinforced by several meta-analyses linking individual
risk-taking behavior (e.g., active, explorative, aggressive, and
bold behaviors) to survival in the wild.65−67 Similarly,
behavioral changes have been shown to influence disease
dynamics and animal health.68−70 Studies in wood frogs
(Lithobates sylvaticus), for instance, report that individual
activity influenced parasite load71 and infection susceptibility,72

with research across 227 wetlands indicating that the individual
behavioral traits of amphibian hosts can influence infection
success and parasite aggregation.68 Animal behavior can also
mediate mating dynamics and reproductive performance.
Indeed, behavior is often central to reproductive success
through its involvement in courtship, mate choice, and parental
care,73−78 with a meta-analysis demonstrating that individuals
with more risk-prone behavioral strategies experience higher
reproductive success than their risk-averse counterparts.65,67

Collectively, this research and numerous other studies

conducted over the last several decades have established that
animal behavior is integral to understanding variation in
reproduction and survival.
Importantly, the fitness consequences of individual behav-

iors can influence population-level outcomes.60,79 Behavioral
processes, such as movement and habitat selection, funda-
mentally drive dispersal decisions and are therefore central to
population dynamics.80−83 Much work has documented
behavior-dependent dispersal patterns and habitat selection
in a wide range of species, including birds,84−87 fish,88−91

mammals,92−94 reptiles,95−98 and invertebrates.99−101 Further,
modeling studies have demonstrated that such movement
effects can lead to eco-evolutionary consequences for local
populations and changes to metapopulation structure.102,103

For example, a genetic correlation between aggression and
dispersal ability in western bluebirds (Sialia mexicana) resulted
in more recently established populations at the edge of the
species range being more aggressive.85,104 These highly
aggressive populations, in turn, displaced the resident
mountain bluebirds (Sialia currucoides), leading to reduced
competition and increases in the size of local western bluebird
populations.85 Similar analyses of 44 bird species reported
higher risk-taking behavior in birds from human-modified
habitats, potentially facilitating population growth and
resulting in larger population sizes in urban environments.105

Studies have also shown that individual reproductive decisions
can influence local population dynamics. For instance,
avoidance of sites occupied by predators during egg laying in
adult female mosquitoes (Culiseta longiareolata) resulted in
greater adult population sizes.106 Similarly, population
modeling of Amur bitterling fish (Rhodeus sericeus) demon-
strated that behavioral decisions that alter reproductive success
can ultimately influence local population sizes107�emphasiz-
ing how individual behaviors, through their link with variation
in individual fitness, can scale up to impact population
processes.
The consequences of altered reproductive behaviors on

population dynamics are exacerbated in an increasingly
changing world. For example, numerous studies have shown
that species often exhibit breeding habitat preferences for
human-altered environments that can reduce individual fitness
(i.e., ecological traps), conceivably with important population-
level consequences.108,109 Indeed, preferences of Montagu’s
harriers (Circus pygargus) for nesting within agricultural fields
were associated with increased breeding failure and likely
explain the almost 80% decline in their population size over the
last 20 years.110 Similarly, many aquatic ovipositing insects
show greater behavioral preferences for laying their eggs on
solar panels than in water bodies due to their reflectance
properties, ultimately leading to reproductive failure and
population declines.111 Human-driven shifts in mating
behaviors can also substantially alter population composi-
tion.112 A case in point is seen in changes to chorusing
behavior and mating calls in human-modified habitats, which is
suspected to have resulted in the hybridization of two closely
related songbirds in urban environments.113

Altered animal behavior can not only influence population
dynamics but can ultimately affect community structure and
ecosystem dynamics.114−116 For example, less-social western
mosquitofish (Gambusia affinis) groups reduced initial prey
density to a greater extent than more-social groups.117

Similarly, more-active predatory dragonfly nymphs (Epitheca
canis) disproportionately reduced the abundance of zooplank-
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ton when compared to less-active conspecifics.118 Predators are
also known to cause shifts in the behavior and habitat use of
prey via nonconsumptive effects, resulting in changes to
nutrient cycling and community dynamics.119,120 Indeed,
broader work has now emphasized the role of animal behavior
in influencing trophic interactions,121 pollination and seed
dispersal,114,122 information flow within populations and
ecological networks,123,124 and the success of biological
invasions125,126�further highlighting how behavioral changes
at the individual level can scale up to affect population-level
outcomes and even community and ecosystem dynamics.

Are Certain Behaviors More Relevant at the Pop-
ulation Level? Behavior can be a powerful indicator of
individual performance and fitness�and, by extension,
broader outcomes at the population, community, and
ecosystem levels.7,127 However, not all behavioral traits are
equally predictive of demographic trends. To evaluate which
behaviors should be prioritized in ecotoxicological research
and regulatory efforts, we propose combining insights from
two complementary ecological frameworks: the functional trait
framework and the limiting traits framework.
The functional trait framework, widely applied in commun-

ity and trait-based ecology, provides a system for classifying
traits based on their role in survival and reproduction.128,129 In

this framework, behaviors can be placed along a gradient of
fitness relevance. At one end are “functional trait proxies,” such
as general locomotor activity and exploration, group cohesion
and shoaling tendency, light attraction/avoidance, and startle-
response latency, which tend to correlate with fitness via
indirect, context-dependent pathways. In the middle are
“functional traits” such as foraging efficiency and prey-capture
success, courtship behavior and mate choice, and antipredator
behavior, which influence key processes (e.g., energy
acquisition, mating success, predator avoidance) that affect
performance. At the other end of the gradient are “perform-
ance traits,” such as survival, daily food-intake rate, growth,
migration success, and number of offspring produced, which
directly determine fitness. This framework also acknowledges
that trait importance is shaped by the ecological context. For
instance, activity level may be more important�and more
tightly linked with fitness�in high-predator-risk environments
than in low-predator-risk environments.128 While ecologically
informative, the functional trait framework alone does not
identify which traits are the most sensitive or consequential
under chemical stress.
The limiting traits framework, developed in behavioral

ecology, addresses this shortcoming by focusing on traits
(termed “limiting traits”) that constrain population perform-

Figure 1. A two-tiered strategy combining the functional trait (1) and limiting traits (2) frameworks to identify those behavioral traits during key
life-history stages that are the most tightly linked with fitness (functional trait framework) and whose disruption is the most immediate and
consequential at the population level (limiting traits framework), typically with flow-on effects at the community and ecosystem levels. Such traits
can be considered to be the most predictive and actionable. From a risk assessment and regulatory perspective, combining these frameworks can be
used to predict the likely population-level impacts of contaminant-induced behavioral changes. As two hypothetical examples: (i) a study reporting
light avoidance (a functional behavioral trait proxy) in postspawning adult fish (a relatively nonlimiting demographic window) which occurs after
one generation (high latency of effect) of chemical exposure would be considered to have a relatively low probability of affecting population-level
outcomes; (ii) a study finding reduced daily food-intake rate (performance trait) in juvenile birds (limiting demographic window) that occurs
immediately after 1 week (low latency of effect) of exposure to a contaminant would be considered to have a relatively high probability of having
population-level impacts.
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ance under stress (termed “limiting factor,” e.g., contaminant
exposure).130 The framework emphasizes that trait sensitivity
and ecological consequences may vary across demographic
windows (termed “limiting demographic window”), high-
lighting the importance of key life-history stages (e.g.,
migration, first reproduction), where behavioral disruptions
can have disproportionately large effects on population
dynamics.131 This idea aligns with principles from population
ecology such as elasticity analysis, which identifies life stages
with the greatest influence on population growth.131

Importantly, this framework also considers the timing of
behavioral disruption relative to population-level consequences
(termed “latency of effect”). Immediate impairments, such as a
failure to avoid predators, can lead to rapid and observable
demographic declines, whereas delayed effects, such as subtle
reproductive changes, may be harder to detect. In this regard, it
is important to note that a key behavior-mediated route to
population-level consequences operates via sexual selection.
Pollutants can alter courtship signaling, mate choice, and
postcopulatory processes, and individuals may differ in the
extent to which their reproductive behavior is impaired under
exposure (reviewed in refs 37,112,132). Such genotype-by-
environment effects can reshape the variance in male and
female reproductive success, skewing who breeds and how
much, thereby potentially narrowing the genetic mix carried
forward and eroding genetic diversity over time. However,
despite their clear importance, such delayed consequences may
be weighted less heavily than immediate ones, a concept
referred to as “temporal discounting” borrowed from
behavioral ecology and decision theory.133,134 From both
ecological and regulatory perspectives, behavioral traits with
immediate and measurable fitness impacts may therefore be
the most predictive and actionable. In addition, the limiting
traits approach asks why such fitness-limiting behaviors persist.
Constraints such as developmental plasticity or phylogenetic
conservatism may explain why populations cannot readily
adapt to certain stressors, even when traits are closely linked to
fitness.135 As such, the framework integrates mechanistic,
ecological, and evolutionary insights.
Together, these two frameworks offer a two-tiered strategy

for identifying behavioral endpoints of regulatory relevance
(Figure 1). The functional trait framework provides an
ecological classification system, helping to position behaviors
along a gradient of fitness relevance, from proxies to direct
fitness components. It tells us which behaviors matter in
ecological terms, and in which context. The limiting traits
framework contributes a stress-oriented focus on vulnerability,
aiding the identification of behaviors that are the most likely to
mediate population-level responses under chemical stress. It is
particularly concerned with identifying traits that are the most
sensitive, least compensable, or most influential during
vulnerable life-history stages. Combining these two frameworks
may help researchers, risk assessors, and regulators to move
beyond endpoint inventories and toward a more ecologically
meaningful and evidence-based prioritization of behavioral
endpoints that are relevant for environmental protection.
Host−parasite systems provide an illustration of how

behaviors expressed in a single context can span the
functional-trait gradient while simultaneously acting as limiting
traits. Specifically, parasites such as trematodes and acantho-
cephalans manipulate host behavior to enhance their trans-
mission.136−139 In crustacean hosts, these parasites modulate
serotonin pathways to alter phototaxis�causing infected

individuals to swim toward light (a functional trait proxy),
thereby increasing their visibility and decreasing their
avoidance of fish predators (a functional trait once it is
shown to elevate predation risk140). Predation rates on infected
individuals can be 10- to 28-fold higher than on uninfected
individuals, with the resulting survival differential comprising a
performance trait.141,142 Moreover, this phototactic switch is
expressed only during the parasite’s transmission window�the
point at which the parasite’s survival depends on its host being
consumed by the correct predator. Because this behavior is
highly susceptible to disruption during that crucial stage, it
fulfills the limiting-traits criterion of a behavior that is both
especially sensitive to disturbance and expressed at a stage
when even small changes can have outsized population-level
effects. These studies not only demonstrate the fitness
consequences of altered behavior but have directly inspired
research into how serotonin-modulating pharmaceuticals,
including various antidepressants, can similarly influence
invertebrate behavior and predation risk.143−145

Implications. When considering the evidence both within
behavioral ecotoxicology and across related disciplines in the
life sciences, it is clear that disruption of animal behavior due
to pollutant exposure can be expected to result in population-
level consequences and even have far-reaching impacts on
communities and ecosystems. By aligning behavioral ecotox-
icity testing and findings with established ecological theory,
such as the functional trait and limiting traits frameworks,
researchers and regulators can better prioritize those behavioral
endpoints with the highest predictive relevance. Moreover,
integrating behavioral approaches into both risk assessments
and regulatory testing will strengthen environmental protection
by ensuring that sublethal yet consequential effects are not
overlooked.
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