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Dairy cow welfare & 3D computer vision
Evaluating cubicle comfort when getting up and lying
down using pose estimation in 3D

Abstract

This thesis sought to apply recent advances in precision livestock farming to
evaluating a specific welfare parameter: cows’ comfort when getting up and lying
down in cubicles. Cows need sufficient space to get up and lie down but rigid metal
bars interfere with their innate motion patterns. A multi-camera system recorded
over 12 cubicles during two data-collection phases. Triangulating 24 anatomical
landmarks detected on each view using computer vision produced 3D pose
estimation throughout posture transitions. From these, the timing, spatial use, and
weight distribution could be measured or modelled. When compared with human
annotations, the system showed high agreement in identifying rising and lying down
events and their phases. While stage detection was not fully repeatable, the results
show that 3D keypoint motion reliably reflects observable kinematic patterns. The
method developed was then applied to evaluate whether replacing metal head and
neck rails with flexible straps improved cows’ movement opportunities. An
experiment was run in which the head and neck rails of cubicles were replaced with
flexible straps. In the flexible setup, cows showed greater head vertical displacement
and straighter lunge during rising, indicating greater movement opportunities. Effect
sizes were small. Lying-down movements showed no consistent difference between
flexible cubicles and both baselines. The duration of lying down movements
increased upon returning to baseline, suggesting that duration alone doesn’t fully
capture comfort. There was a consistent difference in a novel indicator introduced in
this work: the shift of the cows’ centre of mass. The thesis concludes on the
following: (i) Posture transition behaviours consist of multiple, independent
dimensions and single-indicator assessments may not be a sound summarisation. (ii)
Pose estimation in 3D represents a valuable technology to simultaneously monitor
several indicators and uncover different strategies used to cope with restrictive
environments. Finally (iii) that novel indicators such as modelled weight
displacement are adapted to pose data and get a step closer to biomechanical drivers
behind the specific motions and behaviours.

Keywords: precision livestock farming, animal welfare, free stall, rising behaviour,
lying down behaviour, computer vision, dairy cattle, pose estimation






Valfardsbedomning hos mjolkkor och 3D
datorseende

Sammanfattning

Forskningen syftade till att tillimpa precisionsdjurhéllning for att utvdrdera en
specifik vélfardsparameter: kors komfort ndr de reser sig och ligger sig ned i
liggbéset. Kor behover tillriackligt med utrymme och metallstinger kan stdra deras
naturliga rérelsemonster. Kameror anvandes for att filma 12 bés. Triangulering av
24 anatomiska landmérken som detekterades i varje vy med hjilp av datorseende
gav en 3D-uppskattning av kroppsstéillningen under hela rorelsedvergéngarna.
Utifran dessa kunde tidpunkten, utrymmesanvindningen och viktférdelningen métas
eller modelleras. Jamfort med ménskliga annoteringar visade systemet hog
Overensstimmelse gillande att identifiera hdandelser nér korna reste sig och lade sig,
samt liggnings- och resningsbeteendets olika faser. Aven om det inte gick att
detektera stegen fullt ut, visar resultaten att 3D-nyckelpunktsrorelser pa ett
tillforlitligt sitt Aaterspeglar observerbara monster. Den utvecklade metoden
anvindes sedan for att utvirdera om korna fick bittre rorelsefrihet nir
metallstdngerna for huvud och hals ersattes med flexibla remmar. 3D-positioner
samlades in under tre separata perioder om tva veckor vardera, i baskonfigurationen,
med flexibla huvud- och nackbommar och aterigen i baskonfigurationen. I den
flexibla konfigurationen visade korna storre vertikal forskjutning av huvudet och
rakare vinklar vid huvudutfallet under uppresningen, vilket indikerar storre
rorelsefrihet. Effektstorlekarna var dock sma. Laggningsrorelserna visade ingen
konsekvent skillnad mellan flexibla bds och bada baskonfigurationerna.
Laggningsrorelsernas varaktighet 6kade nér man étergick till baslinjen, vilket tyder
pa att varaktigheten i sig inte helt dterspeglar komforten. Avhandlingen drar f6ljande
slutsatser: (i) Beteenden vid stéllningsfordndringar bestdr av flera oberoende
dimensioner och beddmningar baserade pa en enda indikator dr kanske inte en
tillforlitlig sammanfattning. (ii) Poseringsuppskattning i 3D ar en vérdefull teknik
for att samtidigt overvaka flera indikatorer och upptidcka olika strategier som
anvénds for att hantera begransande miljoer. Slutligen (iii) att nya indikatorer sdésom
modellerad viktforskjutning &r anpassade till poseringsdata och kommer ett steg
nirmare de biomekaniska drivkrafterna bakom specifika rorelser och beteenden.



Evaluation du bien-étre en bovins laitiers &
vision par ordinateur

Résumé

Les mouvements de levers et couchers des bovins requiérent un espace suffisant,
mais les barres métalliques peuvent entraver la cinématique naturelle des animaux.
Un systéme de caméras a enregistré douze logettes en deux phases. Vingt-quatre
repéres anatomiques ont été détectés sur chaque vue par vision par ordinateur, puis
triangulés afin d’estimer la posture en 3D tout au long des levers et couchers. Cette
approche a permis de quantifier ou de modéliser le déroulement temporel des
mouvements, 1’utilisation de I’espace et la répartition du poids. Comparée aux
annotations humaines, la méthode a montré une forte concordance pour
I’identification des événements de lever et de coucher ainsi que de leurs phases. Bien
que la détection fine des étapes ne soit pas parfaitement reproductible, les trajectoires
3D des points clés reflétent de maniére fiable les schémas cinématiques observables.
La méthode a ensuite été appliquée pour évaluer I’impact du remplacement des
barres métalliques de téte et de cou par des sangles flexibles. Les poses en 3D ont
été collectées sur trois périodes successives: configuration standard, configuration
flexible, puis retour a la configuration standard. Avec des sangles flexibles, les
vaches ont motré une plus grande amplitude de movements verticaux de la téte et
des angles de fente plus droits lors du lever, suggérant une liberté de mouvement
accrue, bien que les effets observés soient de faible amplitude. Les mouvements de
coucher n’ont montré aucune différence syst’ematique entre les configurations. En
revanche, la durée du couchage a augment¢ lors du retour a la configuration standard,
indiquant que la durée seule ne constitue pas un indicateur exhaustif du confort. Une
différence constante a toutefois été¢ observée pour un nouvel indicateur introduit: le
déplacement du centre de gravité. La thése conclut que : (i) les transitions posturales
sont multidimensionnelles et ne peuvent étre résumées de maniere fiable par un
indicateur unique ; (ii) I’estimation de la pose en 3D constitue un outil pertinent pour
le suivi simultané¢ de plusieurs indicateurs et pour 1’identification de stratégies
d’adaptation a des environnements contraignants ; et (iii) des indicateurs dérivés,
tels que le déplacement du poids modélis¢, sont adaptés aux données de posture et
permettent d’accéder plus directement aux mécanismes biomécaniques sous-jacents
aux mouvements et aux comportements observes.



Dedication

“The dairy cow is entitled to be treated kindly” (Cook & Nordlund, 2009)

There is an inherent paradox to welfare, isn’t there? We seek to ease the
burden created by the conditions that we ourselves impose on the animals.
The progress is slow; each insight recorded in a paper insignificant in
isolation. Yet every step, however modest, is a testimony that their life
matters and would be made worth living.
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Ethical statement

Animal welfare, as a field of study, is inherently tied to the management
of animals under human care. While non-managed wild animals, as sentient
beings, also experience positive and negative physical and mental states,
these unfold mostly without human intervention. These experiences are
framed within the discourse of welfare when impacted by human activities.
To engage in animal welfare research is, in effect, to accept that animals will
be kept in conditions shaped by human needs—such as dairy cows reared for
affordable food. Welfare takes responsibility for evaluating the quality of
those conditions and the outcomes they generate. The aim is not to find
whether the compromise implicit in keeping animals in environments that
differ from their natural state is a fair one (such as protection from freezing
temperatures against restriction of movement), but rather to identify which
practices best support their physical health and mental well-being, and to
learn to interpret the signals animals provide about how they are faring.
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1. Introduction

Assessing the welfare of dairy cows has traditionally relied on visual
observations (Linstddt et al., 2024; Maroto Molina et al., 2020), whether
done systematically or routinely — when a caretaker goes around the barn to
check on the well-being of their animals. Observers detect subtle behaviour
cues, and their ability to interpret them in context is unmatched by sensors
(Smith & Pinter-Wollman, 2021). However, observers are prone to fatigue,
to variable biases, and will have difficulties tracking every animal in larger
herds (Hansson & Lagerkvist, 2015). As a result, at-risk animals may be
overlooked until welfare issues are severe.

Dairy barns are getting increasingly digital, with sensors meant to help
farmers make quantitatively informed decisions, produce more with less,
take better care of their animals, and retain a feeling of control and visibility
over ever larger herds. Sensor technology holds a promise to monitor all
animals with the same level scrutiny and reveal individual variations, for
instance in their personality (Woodrum Setser et al., 2024).

These two observations — difficulty of keeping an eye on the welfare of
large herds and increased digitalization — together represented an
opportunity: to use or develop technology for the purpose of monitoring
welfare. Welfare is in fact a term already frequently found in publications
supporting the development of precision dairy technology. If we scrutinize
the specific applications of these technologies however, we notice that the
parameters monitored are overwhelmingly restricted to dimensions relevant
to economically efficient production. The well-being and behavioural
dimensions of welfare are underrepresented (Liu et al., 2023; Stygar et al.,
2021). This formed a first research gap; digital welfare monitoring.

Welfare remains a broad and complex concept, spanning physical and
mental well-being. Without wanting to arbitrarily simplify welfare — a
concern put forward by specialists when it comes to practical assessment
methods (Foris et al., 2025) — operationalising its assessment meant that a
specific focus needed to be chosen. Finding this focus led us to identify our
second research gap: objective methods for posture transition assessment.
While the lying down aspect of resting is well documented (notably thanks
to sensor technology) transitions to the recumbent position are less explored,
particularly with digital tools (Maroto Molina et al., 2020). These posture
transitions provide information on how comfortable cows are in their
environment (Lidfors, 1989). Visual assessment cannot provide
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measurements of spatial use, and sensor technology might address this
limitation.

This thesis contributes to bridging both gaps by evaluating multi-view

computer vision to monitor the individual variations in getting up and lying
down movements, and use their measurements to infer the level of comfort
offered by cubicles. We deployed, and refined, a multi-camera system over
12 dairy cow cubicles to capture their motions in 3D when transitioning
between postures. The system uses synchronised RGB cameras and detects
cows and anatomical key-points on frames. Using known intersecting lines
of sight, it triangulates the 3D location of the key-points. The output is
comparable to motion capture. This system is a prototype by Sony, who was
a key collaborator on this project. They provided extensive help and
expertise in deploying, maintaining and running the multi-camera system.
This thesis is an interdisciplinary co-creation of knowledge between
academia and industry on the place of 3D pose estimation in dairy cow
welfare monitoring.
The thesis comprises three original studies. The first two focus on system
development, methodological validation, and lessons learnt from automating
posture transition assessment. The first study demonstrates reliable detection
of posture transitions and serves as an early proof-of-concept. The second
extends this validation to all key phases of both lying down and getting up,
using 3D pose data to derive indicators of posture transitions. This analysis
revealed that spatial use, hesitation, and lunge represent uncorrelated
dimensions, suggesting that visual assessments focusing solely on duration
overlook important aspects of comfort. The third study applies this system in
an intervention trial, replacing conventional head and neck rails in cubicles
with flexible straps. It looked at changes in posture transition under the
improved cubicles. Together, these studies present a framework for
interpreting sensor data into information useful to understanding parameters
of cows’ welfare. They showcase an example of how sensors can generate
continuous data to support our understanding of cow comfort and assess
welfare with a degree of automation.

26



2. Background

This thesis aims to bridge two research gaps:

1. Sensor technology is less commonly applied to monitoring the good
environment domain by animal-based measures, and rarely applied to the
appropriate behaviours domain of welfare (the concept of welfare domains
(Mellor et al., 2020) will be explained in greater detail later).

2. Assessing comfort around getting up and lying down in cubicles can
benefit from information on spatial use, yet the current methods are visual
and cannot provide objective kinematic measures.

From these gaps, comes an opportunity to develop sensor technology for
assessing getting up and lying down motions. This endeavour addresses the
second gap, by developing a tool which can complement the assessment of
getting up and lying down with objective measures of spatial use. By doing
so, it also addresses the first gap by strengthening the body of work on
sensors dedicated to the dimension of welfare relevant to comfort behaviour.
This section presents an overview of trends in precision dairy technology and
in welfare assessment and explains how I have come to these research gaps.

2.1 Part 1: Digitalisation in dairy production

The concept of “Precision Livestock Farming” (PLF) draws from the earlier
field of precision agriculture (PA). PA represented a shift in how agricultural
production is managed, wherein operational decisions are made based on
individual variability rather than a field or farm basis (Taylor, 2023). PLF
translates this concept to livestock farming and proposes that health
management, feeding strategies and care be not homogeneous but tailored to
each individual. The rationale being that feed efficiency, sensitivity to
diseases and personality are individual traits, and that managing individuals
separately can, if done adequately, lead to more input-efficient production
and increased welfare. Whates (2008) defined PLF as follows:

Precision livestock farming can be defined as the management of livestock
production using the principles and technology of process engineering.

Process engineering being the continuous optimization of production
systems, making extensive use of data generated during operations to fine
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tune operations. PLF also expands this rationale of individual focus into a
time dimension, recommending all animals be constantly monitored and that
care be adapted to changing responses. Continuous monitoring allows for
timely interventions in case of disease, avoiding the worst consequences in
terms of welfare and production if animals in a compromised state are not
detected early enough. Berckmans (2017) offers the following definition:

The aim of PLF is to manage individual animals by continuous real-time
monitoring of health, welfare, production/reproduction, and environmental
impact.

Continuous monitoring is made possible with a range of sensors. PLF has
become synonymous with sensor technology and data processing for
production animals. It remains important to make the distinction between the
concept (real time care at the individual level) and the means (sensors to
gather the necessary information at individual level).

Dairy production in post-industrial countries like Sweden has become
increasingly digitalized. This ongoing trend is driven by a demand for
automation, aimed at managing larger herds flexibly. It is also driven by a
demand for data, to enhance visibility on herds and take quantitatively
informed management decisions with a low lag-time. Some of the earliest
commercially available sensors detected location using RFID (Rutten et al.,
2013), and oestrus based on changes in activity (Tangorra et al., 2024). Later,
computer vision has garnered a lot of interest, notably because it is none
invasive and highly versatile (Fernandes et al., 2020). Demand and
marketing around these technologies are often driven by concerns of
competitiveness and workload manageability. A question that has emerged
from both academic and industrial spheres (investigated by Stygar et al.
(2021)) can be stated as follows:

“Can technical innovations in dairy cow monitoring be used for welfare
assessment?”.

Vixa, a partner of the project supporting this thesis, conducts an on-farm
welfare assessment with a framework called Frdga Kon (lit. Ask the Cow).
This framework is intended as a lightweight animal-based method to
evaluate welfare with animal-based measures. Acknowledging the
limitations of visual observations in terms of consistency (Bokkers et al.,
2012), scale (Sapkota et al., 2022) and cost (Linstéidt et al., 2024), we saw an
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opportunity to automate this assessment. The question of which technology
to use for this purpose was put forward.

It is important to state that the present thesis is not an attempt at
automating a specific welfare assessment scheme, and that it is not driven by
arequest from the industry. Rather, it brings together academics, extensionist
and industry in seeking a response element about the feasibility of
automating welfare assessment.

2.1.1 Trends and gaps in PLF technology and the data it generates

PLF has gained significant momentum over the past decades and is currently
seeing its highest publication growth rate (Marino et al., 2023). Dairy-cattle
monitoring has shifted from single-purpose sensors (e.g., typically
pedometers for oestrus detection, and milk electrical conductivity) towards
integrated, systems that continuously analyse data on behaviour, physiology,
production, and location to recommend actions (like insemination or
treatment). Wearable accelerometers, usually placed on leg, collars or ear
form the majority of commercially available monitoring solutions (Stygar et
al., 2021), supporting heat detection (e.g. Cattle Watch, South Africa),
activity/rest (e.g Cow Manager, Sweden), feeding/rumination proxies (e.g.
Real Time, Boumatic, USA), and time-budget metrics (e.g. MooMonitor,
Dairy Master, Ireland).

A technology that has gained significant attention in recent years for its
flexibility and non-invasive nature is computer vision (CV). It commonly
relies on automated analysis of 2D video in the RGB spectrum. Computer
vision benefits from high versatility; a review on the potential to automate
WQ presented mainly computer vision as a potential technology to measure
indicators that did not yet have a dedicated sensor (Maroto Molina et al.,
2020). 3D Computer vision has also seen substantial developments. Several
different techniques have been applied to obtaining visual information on
cows in 3D. One method is the time of flight (ToF), which translates the time
it takes for near infrared light to be reflected onto the sensor into a distance.
This was applied to estimating cow body weight (Jang et al., 2020). A way
of generating similar 3D images is stereo active infrared (IR), which projects
an IR pattern onto a scene and analyses differences in the pattern between
two closely located sensors to infer volume. This method was applied to
determining cow postures with the goal of identifying anomalies (Lee et al.,
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2024). Finally, another method for 3D computer vision is to triangulate key-
points from 2D pose estimation between several cameras (Huang & Moliner,
2022; Kroese et al., 2024). 3D pose produces only a limited number of points,
whereas ToF creates a point cloud with volumetric information. It does have
the advantage of needing only affordable 2D cameras. Pose estimation has
applications for monitoring certain behaviours, for example mechanical
brush use (Hogberg et al., 2025). It can potentially substitute motion capture
for measuring kinematics in situations where the latter is too impractical
(Lawin et al., 2023), such as movement amplitude when getting up and lying
down (Kroese et al., 2025) which will be the main focus of this thesis.
When reading works on precision dairy, a pattern seems to emerge: the focus
is mainly on health, nutrition and reproduction (Palczynski, 2019). This
pattern was found in reviews of the existing literature (Liu et al., 2023;
Supplementary material by Stygar et al., 2021). Rutten et al. (2013)
document the typical scope of PLF technologies; they note that, as of
publication, most sensors were dedicated to mastitis (25%), fertility (33%),
locomotion (30%) and metabolic disorders (15%). They attribute their
predominance to economic importance but also to the maturity of their fields
of research.

I wanted to get a quantitative insight into the themes that fellow
academics in precision-dairy had explored. I ran a bibliometrics analysis of
original research papers with the keywords “precision livestock farming” and
either “dairy”, “cow” or “cattle” in the Scopus database. I identified 271
studies with indexed keywords. I retrieved the keywords used for each study
and produced an exhaustive list of unique keywords. I asked Mistral (a LLM)
to group the keywords into themes, and it identified the following: nutrition,
heat stress, productivity, body condition, reproduction, diseases, behaviour,
welfare and environment. I asked it to make disease into a broader health
theme, to add a management theme, and to narrow down environment to
housing (including pasture for outdoor animals). I then asked it to group all
studies in one or more categories. My aim was to see how frequently welfare
occurred and what themes it co-occurred with.

Welfare was a common theme, appearing as a keyword in 85 out of the
271 studies (or 31%). “Welfare” was second to “Behaviour”, which appeared
in 41% of studies. If we look at the co-occurrence of welfare with other
themes we get the following:
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Table 1. Co-occurrence of welfare with other themes from bibliometric
analysis of keywords in precision dairy studies.

Themes co-occurring ~ Number Frequency in original

with welfare of studies selection
Behaviour 41 15
Health 32 12
Heat stress 32 12
Housing 32 12
Productivity 16 6
Management 14 5
Body condition 11 4
Nutrition 10 4
None 10 4
Reproduction 5 2

We do see in Table 1 that behaviour is the top theme co-occurring with
Welfare. The predominance of behaviour is expected, since behaviour serves
as a proxy to derive other information, such as compromised health (Hogberg
et al., 2019), feeding (Riaboff et al., 2022) or mental states (Keeling et al.,
2021). In fact, it was mainly stated in association with the themes of health,
housing and heat stress. 21 studies referred to welfare or behaviour without
a health, fertility or productivity component (it would be a stretch to claim
that they address the behavioural aspect of welfare based only on the
keywords). This contrasts with 83 studies having a health component.

Welfare seems to be a ubiquitous theme, perhaps used as an umbrella term
for any sensor technology which has the potential to assess the state of the
animal or even improve the life of animals (or farmers). Welfare is
predominantly mentioned in the context of health, or other parameters
affecting management, such as reproduction or heat stress. Its behavioural
dimension with other applications than health or management is rarer.

2.1.2 Research gap 1: sensors dedicated to welfare assessment

Upon reviewing drivers of precision livestock farming and available
technology, an imbalance between welfare and production parameters
emerges. According to a bibliometric analysis of themes in PLF publications
(not mine this time), the keyword “health” is the earliest (2014) to become
prominent in scientific articles focused on technology for dairy farming (De
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Oliveira et al., 2024). The keyword “estrus detection” reaches a comparable
prominence in PLF publications in 2016 and “body condition score” in 2018.
“Welfare” appears later as a trending keyword associated with PLF in 2019
(De Oliveira et al., 2024). While health of the animals is an important domain
of animal welfare (and of producers’ mental health) — and while production
can be an indicator of good health — producers, researchers and consumers
recognize that animal welfare extends beyond physical well-being (Skarstad
et al., 2007; Alonso et al., 2020).

Stygar et al. (2021) identified 30 validated sensors aimed at welfare
monitoring presented in scientific articles and 129 additional retailed
technologies, 18 of which were externally validated. They found varying
results regarding performance in classifying behaviours and inferring
welfare states, but performance is not the point at hand. Most tools had
applications for good health and feeding dimensions of welfare. Wearable
accelerometers had potential to assess good housing, but it was not always
their purpose. They conclude that available PLF technologies currently have
low potential to assess behavioural indicators of welfare. If we further
scrutinize the full list of commercial technologies in Stygar et al.'s 2021
supplementary materials, we see that only 5 tools incorporated indicators of
resting behaviour and 1 was primarily focused on welfare parameters other
than health, reproduction, feeding and locomotion. If we look into new
entries since this review was published, we note the release of the DelLaval
Plus Behaviour Analysis (DeLaval international, Sweden) which notably
monitors time budget in resting area. We also have the TriAct package to
detect abnormal motions in cows’ resting behaviours and posture transition
movements using accelerometers (Simmler & Brouwers, 2024).

A review by Liu et al. (2023) identifies the following applications of PLF
in dairy: individual recognition, behaviour monitoring, disease detection,
BCS and feeding. Within the 23 publications fitting the behaviour
application, 5 studies dealt with lying (and standing) behaviour, 9 with
feeding behaviour (including rumination), 6 with oestrus and 4 were
concerned with classifying activity type. For the 5 studies focused on lying
behaviour, their rationales for automating behaviour monitoring are the
following:

e Detecting deviations in lying behaviour as an indicator of
compromised welfare (Achour et al., 2019)
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e Technological advancement (Balasso et al., 2021; Tamura et al.,
2019)

e Detection of idle time (Ma et al., 2022)

e Monitor indicators of economic performance (Balasso et al.,
2021; Wei et al., 2023)

The term “welfare” is mentioned 4 times as a technology application by
studies reviewed by Liu et al (2023): once in the context of lameness, twice
in the context of BCS and once regarding oestrus behaviours. In two of the
mentions, general health is stated as a motive for assessing welfare.

Because of this discrepancy between health-related welfare parameters
and welfare as a broader concept, technology developed with the main
purpose of guiding health and production management likely has blind spots
when it comes to assessing welfare. A notable work supporting that is by
Barry (2025) who evaluated the possibility of monitoring dairy cow welfare
using data available through National Milk Records (Original Norwegian:
Kukontrollen). They compared the routine data to Welfare Quality and did
not find the records adapted to evaluating welfare in its multi-dimensional
aspect.

2.2 Part 2: welfare assessment of dairy cows

What is on-farm welfare assessment? Is it a veterinary inspection? Is it
reporting for compliance with regulation and certification schemes? Is it a
farmer checking if their animals are doing well? Is it a systematic assessment
of the state of the individuals according to strictly defined indicators? In this
context, we will accept all these possibilities and define welfare assessment
as “checking if an animal is doing well”. What the term “well” implies will
be discussed below. We will however operationalise welfare assessment
through the lens of the last aspect: an assessment of key indicators on the
animals, chosen by rigorous validation, such as is done in Welfare Quality
(Blokhuis et al., 2013).

2.2.1 Understanding of animal welfare

Animal welfare is a complex multi-dimensional concept, encompassing
both physical and mental well-being. Animal welfare science has evolved
from an interpretation of welfare focused on the avoidance of negative
experiences (negative welfare) to an increasing recognition that welfare must
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integrate the presence of positive experiences (positive welfare) (Rault et al.,
2025). A framework that includes both positive and negative dimensions is
the 5 domains of animal welfare: good physical health, nutrition, and
environment, positive mental states, and appropriate behaviours (Mellor et
al., 2020). For this thesis, we will use this definition of welfare. The motive
is firstly that the 5 domains are broad enough to encompass both the notions
of freedom from negative experiences, of positive states, and of behavioural
agency. We note that freedom from negative experiences does not mean
complete absence of them, but rather a perceived ability to cope with them
(Broom, 1996) and a balance of experiences remaining positive towards what
can be summarised as “a life worth living” (Mellor, 2016). Secondly, this
definition of welfare can be operationalised for welfare assessment; the well-
established Welfare Quality Protocol uses these same domains, with the
difference that it groups “positive emotional states” under “Appropriate
Behaviour” (Blokhuis et al., 2013). Through the lens of the 5 domains, we
can evaluate both the animals (good health and positive mental states), their
housing (good environment) and the keepers’ practices (notably good
nutrition but not restricted to it).

2.2.2 Cubicle systems in larger dairy operations and their implications
for welfare

Average dairy herd size has substantially increased over recent decades,
in Europe and globally (Barkema et al., 2015). In Sweden, the average herd
size grew from 34 cows in 2000 to 102 cows in 2021 (DG Agriculture and
Rural Development, 2021). This trend is part of a broader pattern observed
throughout Europe, where average herd size varies widely by country and
region but has increased in response to economic pressures and industry
intensification.

The implications of growing herd size for animal care have been the
subject of research and debate (Barkema et al., 2015) but the link between
herd size and welfare is not trivial. Evidence suggests higher welfare in larger
operations, benefitting from greater professionalization, standardized
routines, and technologies that support monitoring and animal health (Beggs
etal., 2019; Lindena & Hess, 2022). This effect of herd size is however small
compared to the wvariability between farms. Each system has its
compromises: smaller herds are more likely to use tie stalls restricting
movement, while larger herds tend toward zero-grazing (Barkema et al.,
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2015; Legrand et al., 2009). Although advanced tools in large herds can
improve detection and care, effective action still depends on farmer training
and engagement. Ultimately, as herds grow, the concern is not that of level
of care, but whether individuals with compromised welfare risk getting
overlooked (Hansson & Lagerkvist, 2015).

The most common housing in large-scale intensive systems is the free
stall, where cows can move freely. The stall is designed in such a way that
space-use efficiency is maximised, and the risks contamination minimized.
Cubicles are designed in such a way that cows lie down with their rear over
the alley to avoid soiling the bed (Gieseke et al., 2020). This is notably
achieved by an intentionally restrictive neck-rail. It is placed in such a way
to prevent a cow from extending too far into the cubicle when initiating the
lying down motion, and to encourage lying over standing. Cubicles will often
have either a head rail or a brisket board to act as a frontal limit. The result
is that, while head and neck rails keep beds mostly clean, cubicles have
effects on comfort around posture transition (Lidfors, 1989). A review by
Nielsen et al. (2023) emphasizes the detrimental effects of inappropriate
cubicle on dairy cow welfare, including hock lesions, claw disorders, and
increase lameness prevalence, alongside a potential impact on mental states.
Cows in restrictive cubicles will take longer to rise and lie down (Brouwers
et al., 2024), will display shorter movement amplitude (Ceballos et al., 2004)
and more frequent of abnormal motions (Brouwers et al., 2024). Abnormal
motions that cows display in cubicles include side lunge (Brouwers et al.,
2023a,b), abnormal order of motions (rising front first) (Lidfors, 1989) or
hind-quarter stepping (Zambelis et al., 2019).

2.2.3 Welfare assessment methods around cubicle comfort

On-farm welfare assessment is structured around validated frameworks;
practical protocols using a variety of indicators. Welfare Quality (WQ)
(Welfare Quality® Consortium, 2009) is one such notable framework, which
is validated (in the sense that the prescribed observations correlate well with
the state of the entire herd) and used as a gold standard in welfare assessment
of production animals (Linstadt et al., 2024). Assessment is performed by
trained assessors, using mostly direct observations of the animals but also
records and evaluation of the environment. WQ offers a standardized
protocol leading to highly comparable results across contexts
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In its evaluation of housing, WQ assesses notably the cubicles with two
indicators: the number of cows taking more than 6.3s to lie down, and the
occurrence of collisions in the process. The time needed to lie down denotes
hesitation, or intentionally slow movements to avoid painful collisions.

The demands of WQ (in terms of time) have prompted the adoption of
lighter protocol, such as the Swedish Frdga Kon (Vixa, Sweden) or the
Danish Dairy Cattle Federation’s (DCF) protocol that instead look at the time
needed for a cow to get up. In a later report, the European Food Safety
Agency (EFSA) identifies risks to the welfare of production animals and
offers metrics to quantify theses risks. To evaluate movement restrictions
and resting problems, they propose gait, hygiene, lesions and deviations from
normal lying down and rising up movement (Nielsen et al., 2023). In other
assessments of stall comfort, lying time and bout frequency are
predominantly used as measures of comfortable cubicles (Cook et al., 2005).

2.2.4 Research gap 2: continuous spatial use measurements in
posture transition assessment

Posture transitions were chosen as a focus for this thesis. As we have seen,
they are relevant to comfort and welfare and are used in welfare assessment
accordingly. Yet, their assessment is mostly summarised by the time
dimension, which does not offer a full picture of the behaviour, and objective
methods to obtain a more fine-grained picture are lacking.

A study aimed at evaluating the potential for automating Welfare Quality
found that overall, many sensors or their combination could be used, or are
already used, to measure most of the criteria from WQ (Maroto Molina et
al., 2020). They do however state that “No references to sensor systems
enabling the measurement of time needed to lie down, collisions with
equipment or cow positioning in the resting area were found”. This quote
omits motion capture, which can do just that (Ceballos et al., 2004), but the
latter technique is not practical in barns, thus limited to specific trials, and
not large-scale monitoring.

Relevance of posture transitions to welfare

Posture transitions are biologically essential activities: cows must rise and
lie down repeatedly in order to access feed, water, and rest. Cows spend more
than half of the day lying (Munksgaard et al., 2005; Tucker et al., 2021;
Wegner & Ternman, 2023) and alterations in lying time and bout structure
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have been associated with lameness (Ito et al., 2010; Thompson et al., 2019),
stall design (Brouwers et al., 2024), and health status (Von Keyserlingk et
al., 2009).

Posture transitions are physically demanding (Schnitzer, 1971).
Difficulty or reluctance in performing these transition motions can reflect
pain, discomfort (Lidfors, 1989) or inadequate space allowance (Cook,
2009). The frequency of posture transitions seems to be affected by the
comfort level of the bed, suggesting that cows are more reluctant to display
these movements in an unsuitable environment (Haley et al., 2001). The
EFSA identifies bad housing as a risk to welfare, notably because it hinders
proper posture transitions (Nielsen et al., 2023). Welfare Quality recognises
that unhindered, swift posture transitions are part of cows’ opportunities to
display natural behaviours and reflect comfort (Blokhuis et al., 2013). For
example, restrictive or poorly designed cubicles can force cows to alter the
trajectory of rising, increasing collision risk and delaying movement (Cook
& Nordlund, 2009). Bedding material affects both the ease and willingness
to lie down; cows provided with deep-bedded sand stalls exhibit shorter
lying-down durations and more frequent bouts compared to those on
mattresses (Haley et al., 2001). Reduced number of posture transitions may
therefore serve as an indicator reflecting an environment where either the
recumbent position is uncomfortable or the act of getting up and lying down
is difficult.

Existing methods and their limitations

Earlier work on posture transitions has highlighted the importance of
space allowance, particularly the ability for cows to lunge their head forward
when getting up (Cook, 2009). A kinematic comparison of cows lying down
showed that they used less space in cubicles than in open packs (Ceballos et
al., 2004). The effect of insufficient space can be seen on cows, for example
with larger cows taking more time to get up, and having more hindquarter
readjustments when lying down (Zambelis et al., 2019).

Clues of uncomfortable cubicles can be seen on the cow, such as neck and
dorsal lesions occurring from contact with the environment when getting up
or lying down (Zambelis et al., 2019). These clues can also be seen on the
cubicle bars, specifically if they are polished in specific spots like under the
head rail, meaning that cows regularly come into contact with it. However,
studies of cubicle comfort largely employ cow comfort index (proportion of
occupied cubicles with cows lying down) (Cook et al., 2005), lying time
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(Abade et al., 2015; Haley et al., 2000), and preference (Abade et al., 2015;
Tucker et al., 20006).

Direct visual observation has traditionally been the main approach to
assess posture transitions, yet this method comes with several important
limitations. First, observations are constrained to the moment in which the
behaviour occurs: once a cow has stood up or lain down the opportunity to
assess details of the transition is lost, as the observer cannot rewind live
events. Second, visual observation does not allow for quantitative
measurement of spatial use or fine-grained kinematic detail. Parameters such
as displacement trajectories, joint angles, or timing of limb movements are
better studied with sensors, motion capture being a gold standard (Lawin et
al., 2023). Third, visual scoring is time-consuming and resource intensive.
Trained observers are required, and assessments are performed irregularly.
The Welfare Quality protocol, for example, requires approximately one full
day of observation per farm (Linstidt et al., 2024). It is impractical for high-
frequency monitoring. Lastly, observer bias also remains a possible
limitation, though training and calibration can reduce variability; Zambelis
et al. (2019) demonstrated very high inter-observer agreement (k=0.93) in
scoring abnormal lying-down behaviour. While visual observations provide
valuable qualitative insight, their inability to deliver continuous, objective,
and quantitative spatial-use measurements limits its application for sensitive
and scalable welfare monitoring of posture transitions.

Sensor systems present an opportunity to automate the assessment of
selected welfare indicators (Maroto Molina et al., 2020), not the least posture
transitions (Brouwers et al., 2023b). We have already mentioned the use of
motion capture, which offers fine-grained kinematic information at the
expense of practicality.

Brouwers et al. (2023b) sought to detect abnormal rising and lying down
movements using accelerometers and supervised learning. Accelerometers
are well adapted to production settings. Their work lead to the creation of an
R package for analysing rising and lying down movements (Simmler &
Brouwers, 2024). When Brouwers et al. (2023b) attempted to automate the
detection of sideways lunge using accelerometers, they reached moderate
accuracy (65%). This is encouraging in terms of technical developments but
insufficient for practical use. The authors impute this to a discrepancy
between the way data was labelled (straight vs angled lunge) and the
continuous nature of sensor data. There were many misclassifications on
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ambiguous edge cases. The author of the aforementioned study later
suggested that “ethograms should be machine-learnable” (also noted by Gris
et al. in 2017). The work presented in this thesis draws on this discovery and
will explore how sensor data can be interpreted in novel ways beyond trying
to automate existing measures.

2.3 Bridging two gaps with digital methods for welfare
assessment

On one hand, sensor technologies for health monitoring have advanced
significantly, but there remains a gap in methods for assessing how comfort
influences behaviour. On the other hand, posture transitions—essential for
expressing lying-down comfort behaviour—are assessed using limited visual
and categorical methods that would benefit from more objective approaches.
There is thus an opportunity to address both gaps by providing a sensor-
based method for posture transition assessment.

This project exemplifies the kind of integrative approach advocated by
Foris et al. (2025) where expertise from engineering and ethology are joined
to co-create solutions that are technically sound and relevant to improving
welfare. Automated evaluation of posture transitions using 3D pose
estimation requires technical expertise, to design robust algorithms capable
of capturing subtle and rapid movements, and to deploy them on the
appropriate suite of hardware. Animal welfare expertise ensures that the
indicators derived are meaningful within the biological and behavioural
context of dairy cows.

Posture transitions are well suited for this co-creative framework: first,
they are discrete, repeated events that can be quantified objectively by
computer vision thus scaled and compared. Secondly, they carry biological
significance as indicators of comfort, health (Lidfors, 1989), and the
suitability of housing systems (Cook & Nordlund, 2009). Thirdly and finally,
applying this technology goes beyond telling us “what is wrong about the
cow” but generates animal-based evidence on the suitability of housing
systems that can be used for their improvement (Brouwers et al., 2024).

2.3.1 Pose estimation in 3D

Pose estimation in 3D is a field of application of computer vision
technology aimed at predicting the (X,y,z) coordinates of keypoints (typically
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joints and other body parts) from 2D images. There are several lines of
development. One is to triangulate synchronized detections across several
2D images (Huang & Moliner, 2022). Another other is to lift 2D into 3D
using neural networks trained on ground truth 3D coordinates (Gosztolai et
al., 2021). A final method is to predict key point location directly on depth
images (Ye et al., 2011).

In this thesis, we worked with the first technique: 3D pose from multi-
view fusion of 2D poses. This method will be the sole focus. The following
section will provide a high-level overview of the method, including computer
vision, pose estimation in 2D and multi-view fusion.

Pose estimation

Pose estimation is a task of computer vision where the aim is to locate the
coordinates of key-points. A subject is detected on a frame as a set of points
(joints) and linkages (bones). Detecting the keypoints usually relies on the
combination of two techniques: neural networks to detect the location of the
points, and geometric constraints to refine the pose based on plausible
linkage length and joint angles (Nogueira et al., 2025).

3D fusion of pose estimation

The process begins by capturing synchronized images from several
cameras positioned around the subjects. The cameras need to be intrinsically
calibrated, that is, determining intrinsic parameters to align the camera’s
coordinate system with world coordinates (Moliner et al., 2021). Pose
estimation in 2D is run independently on the frame from each camera. At this
stage, the algorithm used for 2D pose has little relevance but accurate
detection of the key-point from all angles is conditional for precise 3D
estimation. The 2D keypoints from the different views are geometrically
combined using known intersecting lines of sight. An overview of the
specific process for determining these lines of sight will be presented further
in the methods section. An example of pose estimation in 2D can be seen on
the upper frames on Figure 1.Figure 1. Pose estimation in 2D and 3D fusion of two
cows. The blue cow is in the lunge stage of rising. The result of 3D fusion is shown
as stick figures in the lower part.
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Figure 1. Pose estimation in 2D and 3D fusion of two cows. The blue cow is in the lunge
stage of rising.

Direct triangulation can suffer from noise, occlusions, and inaccuracies in
2D detections, which degrade 3D pose quality. To improve robustness,
algorithms incorporate confidence weighting, optimization based on
reprojection errors, and kinematic constraints such as limb length, joint order
or symmetry to refine initial 3D estimates (Moliner et al., 2021).
Reprojection error minimization refines 3D joint positions by iteratively
adjusting. Each iteration seeks to minimize the discrepancies between the
original 2D keypoint detected on a camera’s frame, and the reprojection of
the 3D estimate of that keypoint against that same camera’s line of sight.

Pose estimation has various applications across scientific research and
practice where the change in position of body joints is of interest, for example
gait of horses (Lawin et al., 2023), neural responses of animals (Gosztolai et
al., 2021), or motions of athletes (Qu et al., 2024), and as we will see, cow
comfort.
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2.3.2 Posture transitions of dairy cows
Rising

Rising movements follow an innate sequence of motions, successively
soliciting specific body regions and muscles groups. Typically, a cow begins
from a lying position by extending her neck and head upward, which shifts
the centre of gravity forward and prepares for limb engagement. Next, the
forelimbs are folded inward, resting on the carpal joints, with the withers
rising slightly as a result. Cows are in some cases observed to crawl
backwards at this stage, hypothesised to be an attempt to increase the space
available in front of them. Crawling is an important qualitative criterion of
insufficient space used in the Frdga Kon framework. This behaviour is not
observed in open environments. The cow then lunges her head forwards. The
forward lunge movement displaces the weight of the cow forward, away
from the hind legs and onto the front limbs (Schnitzer, 1971), with
approximately 2/3 of the total weight being born on the carpal joint at this
point (von Metzner, 1978). Moving weight into the front allows the cow to
lift its hind legs and position them under the body in a swift motion. The cow
then moves upward, pushing with the forelimbs while shifting weight onto
the hind limbs, which extend to elevate the pelvis and sacrum. This action is
followed by final straightening of the forelimbs until the cow has assumed
an upright position. Cows are often observed to stretch their back in an arch
shape after getting up (Schnitzer, 1971). A visual of the sequence of
movements is illustrated in Figure 2. As a reader you might want to bookmark
this figure since it will be referred to quite often.

Cubicles are designed to allow cows to get up and down while prioritising
efficient spatial use and cleanliness. A Trade-off exists between hygiene and
comfort (Bernardi et al., 2009). Studies and guidelines vary in their
recommendations regarding design and dimensions of cubicles. Lunge space
is particularly important to the rising motion (Cook, 2009). Cows require
clear, unobstructed forward and lateral space to complete rising motions
without restriction or injury. Increasing lunge space can effectively decrease
the frequency of abnormal motions, highlighting the importance of stall and
cubicle design for improving welfare (Dirksen et al., 2020). One study
suggests at least 0.9m of forward lunge space (Cook, 2019) but elements like
the head rail can substantially interfere with how much cows can make use
of this forward space.
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Figure 2. Characteristic vertical movement patterns of the head, withers and sacrum
keypoints during rising (top) and lying down (bottom) with stages/phases marked by
dashed lines.

Lying down

Before lying down, once a lying spot has been chosen, cows swipe their
heads to the sides as they inspect the ground. These are referred to as
intention movements (Krohn & Munksgaard, 1993; Lidfors, 1989). They

bend one leg then the next and descends until it rests firmly on its carpal
joints. In some cases, hind limbs are readjusted away from the side they will
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be resting on. The cow stretches its head forwards and down as it and the
hind legs are lowered. Finally, the cow lets herself fall gently on the flank.
The legs are then usually tucked under the body.

Figure 3. Excerpt from an instructional video explaining the leverage effect of the head
lunge. Credit: Vixa Sverige, partner of this project.

Cows can use 2.6m to 2.9m in total longitudinal space when lying down
(Lidfors, 1989). They use approximately 0.7m to 1m of lateral space (120%
to 180% of hip width) (Tucker et al., 2004) and up to 10.9m forward space
(Ceballos et al., 2004). The largest horizontal movements of the hip typically
occurred at two average heights: one between 0.9 and 1.35m (Ceballos et al.,
2004; Tucker, et al., 2004). After the posture transition is complete, space
will also affect lying behaviour: animals spent an additional 42 min/ 24 h
lying in stalls measuring 1.26m in width compared to stalls those 1.6 cm
wide (Tucker, Weary, & Fraser, 2004).
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3. Aims of the thesis

There is a trend in farming systems of post-industrialized countries
seeking to automate animal welfare monitoring (Barry et al., 2024; Buller et
al., 2020; Maroto Molina et al., 2020). This trend is the response to both a
preoccupation and an opportunity. The preoccupation is that herds get
increasingly large and intensified. These intensive systems do not imply bad
welfare (Lindena & Hess, 2022) but individuals in such systems with
compromised welfare risk going unnoticed (because there are so many
animals per caretaker). The opportunity is that digital technologies could
monitor welfare parameters, objectively and continuously, providing real-
time information on how well each individual cow is faring. The overall
project that this thesis is a part of fits in this trend of automated welfare
monitoring.

The project originally asked the question can we automate welfare
assessment? The can term implies not that we meant to automated welfare
assessment but is rather about exploring what is possible. Automate
originally meant reproducing with sensors indicators that are already
established, but I will talk about lessons learnt on this matter. Welfare
assessment refers narrowly to indicators for animal-based measures which
are validated and have an established link with welfare outcomes.

This thesis seeks to contribute to the body of evidence and the available
technology for automated welfare monitoring. It exemplifies the automated
monitoring of animal-based measures by presenting a sensor-based solution
to evaluate the quality of posture transitions. The specific aims of the thesis
are:

» To develop data management and processing tools to generate
insights on cow comfort from continuous pose estimation data
(Paper I, 11 & III).

» To explore a use case for multi-view computer vision addressing
limitations in visual assessment of posture transition comfort
(Paper II & III).

» To apply the system for the improvement of cubicles using
animal measures in a commercial setting (Paper 11 & III).
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4. QOverview and comments on materials
and methods

This section will explain, mostly chronologically, the steps undertaken,
and the methods developed to achieve the aims. It will present a general
overview of the data collection, management and processing procedures
Specific and repeatable descriptions of each method used to generate results
can be found in their respective papers

This thesis lies at the intersection of computer vision, biomechanics, and
animal welfare science. A reader expecting to deepen their expertise in
computer vision might be left unsatisfied from the only high-level overview
of the technology. In the same way, a biomechanics expert might not find the
level of detail they expect regarding the movement of anatomical structures.
An expert in animal welfare might find the operational definition of welfare
too pragmatic. This study sits at the crossroads between these three fields.
Rather than diving into one of these, this thesis attempts to bridge them,
explaining how data on joint kinematics was captured with computer vision
with the aim of informing on welfare indicators.

Previous research has already sought to quantify the spatial use and
displacement of different anatomical structures during posture transitions. A
few decades ago, a grid was placed behind the cow that was recorded with
film during posture transitions. Using known perspective coefficients
between the camera, the cow and the grid, researchers were able to quantify
the total longitudinal space used by cows, and the displacement of the head
when getting up in unrestricted environments (Schnitzer, 1971). Later,
motion capture was used to measure again total longitudinal space and head
displacement with the addition of lateral space used this time when lying
down, using motion capture (Ceballos et al., 2004). Motion capture allowed
precise comparison of spatial use and movement patterns in cubicles versus
open packs. These techniques generated important insights in spatial use
requirement of cows that are used to inform cubicle design and to derive
indicators of abnormal posture transitions. These techniques do have the
downside of requiring a controlled environment. This limitation might
explain the low sample size (n = 5 cows) in the latter study.

Pose estimation in 3D from multi-view computer vision acts as a form of
markerless motion capture. It may not offer the same level of stability and
granularity as true motion capture with reflectors but has the practical
advantage of being scalable without intervention on the animals. This
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enabled us to monitor the movements of 183 and then 85 cows in what I will
refer to as “production settings”. By production settings, | mean conditions
regarding the physical environment, diet and daily activity patterns of cows
such that would likely be found on commercial farms. The research was
conducted in the dairy barn of the Swedish Livestock Research Centre,
which in fact works as a commercial farm with the addition of research and
education activities. For this thesis, we deployed a multi-camera system to
learn to adapt it to deliver actionable insights on the animals’ welfare. The
system outputs the coordinates of selected body parts in a 3D space. This
data needs to be further interpreted into information on the animal.

4.1 Animals, housing and timeline

The multi-camera system for 3D key-point acquisition was set-up in one
of 5 dairy pens of the Livestock Research Centre in Uppsala, Sweden. Each
pen had a milking robot with voluntary access The cameras covered 12 out
66 cubicles. The cubicles model is C1300 (DeLaval, Sweden) from 2010.
They consist of a 2.1m by 1.25m lying surface with neck rails. The beds were
covered in peat in Phase I and with straw in Phase II. Bedding was
replenished several times a day by an automatic dispenser. The end of the
cubicle is marked by a head rail and a concrete step. Rows of cubicles are
facing each other with 1.65m between the front end of each row. Dimensions
and design of cubicles can be seen on Figure 4. The floorplan of the pen and
the covered cubicles can be seen on Figure 5.

Except during the experiment (March — April 2025), cow traffic in the
pen was independent of data collection and was based on the management
needs of the farm. A first data collection phase (phase 1) ran from December
8M 2021 to April 28" 2022, a total of 183 cows were present in the research
pen, although lack of individual identification prevents us from knowing
exactly which individuals expressed the recorded bouts. Sequences showing
bouts were extracted for 32 of those days This material was used for papers
1 and 2. A second phase of data collection (phase II) ran from February 24™
to April 7%, 2025. This phase corresponds to an experiment, where the head
and neck rails were replaced by flexible straps, 85 different individuals were
present in the pen. More details on that experiment will follow.
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Figure 4. Cubicle design and dimensions (meters). Flexible head and neck straps in the
lower left quadrant.

4.2 Multi-camera setup and data acquisition

The multi-camera system is a proprietary technology of Sony (Sweden).
Despite its novelty and technological prowess, the method for acquiring 3D
pose will not be the focus of this thesis, for the simple reason that it is not
my own work. I will still present an overview for the sake of understanding.

The data used for this study are the synchronized video recordings, and
the poses 3D generated from the video. Let’s establish some terminology. A
scene is defined as the number, placement and posture of cows in the area
covered by the cameras at a given timepoint, which is captured on several
synchronized frames and for which there is position information. Each
camera has a view of the scene, meaning its orientation and field of view. A
frame is the tensor of pixels produced by a camera at a given timestamp. The
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frames for one scene are synchronized meaning that they share the same
timestamp. The system is robust against synchronization misalignments of
up to 0.5 seconds for motions equivalent to human walking (Huang &
Moliner, 2022). In terms of computer vision outputs, an object corresponds
to the detection of a single cow. In 3D, each to each object corresponds a set
of keypoints which are the (x, y, z) coordinates of specific anatomical
landmarks. The absolute coordinates are irrelevant, but their change is
expressed in meters and informs on motion amplitude. The keypoints
pertaining to an object together form a peose, which is a set of points and
linkages describing the location of the anatomical structures in space from
which we can derive posture of each animal. The poses corresponding to the
same object across successive scenes are identified by an id, which will be
referred to as track number. In the text, I will often refer to a sequence,
which is the snippet (10 to 60s) of successive poses centred on a posture
transition, along with the video from all cameras used to generate it

4.2.1 Physical installation

3D fusion of pose estimation from multi-view computer vision, as its
name suggests, requires at least two cameras to provide a 3D pose (R. Hartley
& Zisserman, 2003) but more cameras increase robustness of the
triangulation and reduce sensitivity to occlusion. There is no theoretical
maximum number of cameras, this is more a concern of cost, practicality and
processing capacity. The first phase of data collection was done with 6 then
7 cameras (G3Bullet, Ubiquiti, USA). Then, the experiment used 9 cameras
organised in 2 groups of 5 and 4 calibrated separately.

Cameras

The cameras covered 12 cubicles. A different set of cubicles was used for
development (phase I or papers I and II) and the experiment (phase II or
paper I1I) with 4 cubicles overlapping between the phases. The cameras were
positioned between 1.8 and 3.6m high, oriented towards the cubicles so that
all points in the cubicles would be visible by at least two cameras at all times.

50



MU &

9
>

e
S
P

Figure 5. Floorplan of the research pen with the studied cubicles marked in blue for
studies 1 & 2 and in red for study 3. MU = milking robot, C = concentrate feeding, circle
= mechanical brush, square = trough. Rectangles are cubicles, bottom line is feeder bins.

Data retrieval, processing and storage

There seems to be a favourable generalisation of the potential of computer
vision in the research community, as a plug-and-play technology; namely
that it can be easily deployed and start generating interpretable output. The
experiences working with computer vision have taught us that it is not a
general truth. Several layers of hardware and software are needed.

The physical setup can be, in the case of this research, split into two parts.
The first, is the barn part, with cameras, cabling and switches. The second is
the “computer room” hosting a network video recorder (NVR), the
computers processing the images, a proxy server for remote access, and a
storage unit. The setup went through several iterations, both in the “computer
room” and in the barn. During phase I, two switches (Enterprise 8 POE,
Ubiquiti, USA) with power over Ethernet (PoE) ports (necessary to power
the specific cameras used) were placed on the walls on either side of the pen.
RGA45 cables were drawn from the switches to the cameras. This meant that
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a substantial amount of work was necessary to place or move a single camera,
as the entire cable (up to 50m) had to be rerouted. The switches were
connected to a NVR (Dream Machine, Ubiquiti, USA) in the computer room.
The NVR also acted as a cloud gateway to make the live video footage
available remotely via the maker’s own app. It also routed the frames to the
computer to run the pose estimation model. The videos were stored on the
hard drive of the NVR. The results from the 3D pose estimation were stored
on internal hard drives of the processing computers.

During phase 11, a more scalable system had been put in place. Switches
directly over the cow pen were connected to the NVR. In addition, ethernet
plugs with cables running to the switches had been placed in several locations
above the pen, allowing us to easily change camera positions, using cables
from 1 to 3m and rarely 5m or 10. The 3D poses and the videos were stored
on a NAS storage unit (DS1825+, Synology, Taiwan).

4.2.2 Calibration of the system

The calibration of the system involves three steps:

- Intrinsic calibration to determine each camera’s parameters
(distortion, focal point).

- Extrinsic calibration of the multi-camera setup to determine
intersecting lines of sight and relative location of the cameras to each
other.

- Alignment of the multi-camera coordinate system with world
coordinates and known origin and axes.

Intrinsic parameters

Intrinsic calibration determines cameras’ intrinsic parameters using
structure from motion (SFM). These parameters are namely focal lengths,
principal point, and lens distortion coefficients, collectively representing the
intrinsic matrix K;. Techniques for determining intrinsics from SFM are not
the purpose of this work and only presented here for context.

Cameras record while being moved handheld at a slow pace, along a path
describing infinity signs, maintaining the orientation towards a set scene to
maintain overlap across frames. The scene must be between 1 and Sm away
and contain straight ridges. The process begins with establishing epipolar
geometry by detecting ridges and points and matching them across
successive frames. This populates the fundamental matrices of feature
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correspondences between frames. These pairwise relations provided the
basis for self-calibration, where intrinsic parameters are refined by enforcing
geometric constraints across multiple views of the same static scene. The
intrinsic parameters were refined iteratively to achieve consistency across all
image pairs.

Extrinsic parameters

For calibration, a scene is recorded from all cameras with a human
walking throughout the entirety of the volume to be calibrated. Initially,
keypoints on the human (head and joints) are detected on the frames from a
pair of cameras. These keypoints establish correspondence between the
views of both cameras. Since there is only one of each keypoint (chiral
keypoints like shoulders or elbows are labelled as left and right and thus
unique), a single correspondence is made for each point on every camera.
The system represents a camera by the pinhole model as a single point in a
3D space (in world coordinates). Each camera i is represented by a projection
matrix:

P; = Ki[R;T}]

Where K; is the intrinsic matrix, R; the rotation, and T; the translation.
The extrinsic calibration problem is to estimate R; and T;. which align the
local camera coordinate system with the shared world coordinate system.

In the first phase, each keypoint defines a ray (line of sight) in 3D space
that extends from the camera centre through the detected 2D location on the
image plane. The system then uses the 8-point algorithm (Hartley, 1997) to
determine extrinsic parameters (R; and T;) and applies RANSAC across
frames to attenuate the influence of noise in the original prediction. Once a
pair is calibrated, other cameras are added iteratively in pairs. A preliminary
3D pose is estimated based on the initial parameters.

In the second phase, iterative bundle adjustment optimizes extrinsic
parameters and 3D pose. Reprojection error is calculated by retracing each
3D keypoint back onto the cameras and comparing the reprojected point to
the original keypoint predicted by 2D pose estimation. Extrinsic parameters
are refined by optimizing an objective function that minimizes reprojection
error. In addition, it integrates constraints and priors to ensure biomechanical
plausibility. This includes notably constraints on joint angles and limb length
and penalizes abrupt accelerations or other higher-order derivatives in joint
trajectories (Moliner et al., 2021). Optimization uses Huber loss function,
with varying weight assigned to the different keypoints’ reprojection error
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depending on prediction confidence and distance (factors empirically linked
to estimation accuracy) (Huang & Moliner, 2022).

Aligning to known coordinates

Once the multi-camera system has been calibrated, its coordinate
reference can be anchored to a known coordinate system using a calibration
plate of known dimensions shown on Figure 6. The plate contains three
markers arranged to form a 90° angle, with the distance between each marker
fixed at exactly 0.8 m. Each camera detects the markers in its image plane,
and then the system triangulates their 3D positions using the previously
estimated extrinsic parameters. The coordinates of three reconstructed points
are then compared to their known geometric configuration, which serves as
a reference frame with orthogonal axes and fixed scale. By applying a rigid
transformation, the estimated 3D marker positions are aligned to the known
positions of the calibration plate. This allows the entire reconstructed scene,
including all camera extrinsic parameters and subsequent 3D poses, to be
expressed in absolute world coordinates with known origin, orientation and
scale.

rd: 3-8.55 0.80 0-86
id: =000 B B a6

Figure 6. Calibration plate with cameras' lines of sight

4.2.3 3D pose estimation

3D fusion of pose estimation works in three steps: object detection, 2D
pose estimation and 3D fusion. The synchronized 2D frames for each scene
are processed independently. Rectangular regions of interest are defined on
each camera’s view, corresponding as best as possible to the areas
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highlighted on Figure 5. This reduces the processing load by ignoring objects
outside the area of interest. Bounding boxes for cows are detected on the
frames with YOLOx (Ge et al., 2021) and the contents are passed to the next
step. A retrained HRNET identified the location of anatomical landmarks
within the contents of these bounding boxes. The nature of convolutional
neural networks usually used in image analysis downsamples original
images, causing loss of fine-grained detail. HRNet maintains high-resolution
representations throughout its entire network, operating several parallel
subnetworks at different resolutions and continually exchanging information
between them (Wang et al., 2019). A total 24 different keypoints are
detected, but the following were used in this work: head at the poll, withers,
T13 in the middle of the back, sacrum, at the highest point between the ilia,
carpi, and tarsi. This step yields a set of (X, y) coordinates for each frame.
Finally, the system established correspondences between the keypoints on
each frame. This task involves correctly matching the keypoints to their
respective object; that is, identifying which keypoints in one view
corresponds to the same unique instance of this anatomical structure in
another view when there are several keypoints of the same type in the scene
(for example several heads, one head per cow, each head having to be
matched to the correct set of limbs and other keypoints). The system
combines the known intersecting lines of sight with anatomical constraints
(for example, the head is beyond the neck compared to the withers, and the
rear limbs are directly under the pelvis) to match the keypoints to the correct
object. Once the 2D keypoint correspondences are established, the 3D
location of each anatomical keypoint is reconstructed using triangulation.
Triangulation involves finding the point in 3D space that, when reprojected
against each camera’s line of sight, produces a correspondence to the
observed 2D locations in each view. The system also performs a temporal
filtering step to smooth the 3D pose trajectories over time. This helps to
reduce jitter and improve the stability of the pose data. The output of this
process is a time series of 3D poses for each object, where each pose consists
of a set of 3D keypoints corresponding to the location of anatomical
structures.

4.2.4 Data management

The multi-camera system produces 3D coordinates for all 24 keypoints of
each object detected in the scene from synchronized video sources. The
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video is either post-processed, or processed in near-real time, where frames
are sent to a processing buffer. This process involves several machines at
different locations, and conceptual phases to index, store and analyse the
keypoint data.
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Figure 7. Conceptual architecture of the data pipeline from video acquisition to indexing
and long-term storage.

Post-processing synchronized video

In the case of post-processing, pose is estimated on all recorded frames and
3D poses are available at the same framerate as the cameras (29.9 FPS). The
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output is organised in messages for time windows matching the videos (1
full hour).

Real-time and near-real time pose estimation

In this case, frames are sent from the network video recorder (NVR) for
processing. The camera’s framerate is 30 FPS. However, in crowded scenes,
processing all frames requires more than 0.033s, generating a buffered queue
of frames. Computational requirements are also dependant on the number of
cameras employed. In order to align sampling rate with processing capacity,
the last scene in the processing buffer was processed with pose estimation.
This led to occasional variations in sampling rates since crowded frames took
longer to process. To maintain synchronization, the first frame with a
common timestamp was considered frame 0 for each camera (see section on
calibration). All cameras record at the same framerate and the frame’s order
of arrival in the processing buffer is recorded. All frames from every camera
with the same order of arrival are processed together.

The poses for each scene are written into an MQTT message and
appended to a JSON file. When the JSON file reaches 25 000 messages, it is
compressed and stored. Cameras are re-synchronized before starting to write
anew file.

Storage and indexing

A routine was developed to download the archived messages to another
storage unit, decompress and index them. The workflow is shown on the
lower pane of Figure 1Figure 7

Archives are copied from the remote with rsync onto a landing zone. Each
archive’s name is compared against entries in an index, identifying new files
that were not yet indexed. For each new archive, the script extracts and parses
JSON messages contained within. Each message includes a timestamp and
one or more detections of objects in 3D. Messages are expanded so that each
detection becomes an individual record. These records are then organised
into tabular form as Parquet files. The parquet files are stored in a separate
query zone. Processed archives are moved from the landing zone to the
storage zone.

Downloading archives onto the landing zone is handled as a different step
by a user account with writing rights only on that zone. Another user account
with reading rights on the landing zone and writing rights on the query zone
updates the index, in such a way that no process has at any time both read
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and write access on a folder that they are accessing, preventing data losses in
cases of mistakes or crashes.

The indexing process also records the temporal coverage of each archive
by identifying the earliest and latest timestamps within its contents. These
timestamps, along with metadata such as the data source (camera group), and
file path, are appended to the index. A separate function used for the analyses
identifies parquet files of interest based on selected timestamps and
according to the time ranges in the index and reads them into Pandas data
frames.

Archives that do not contain any valid 3D data are flagged, and a log is
generated for traceability. The routine includes versioned backups of the
index before modification and differentiate between development and
production runs by having a mirrored development index and destination
folder.

4.2.5 Data preparation

Defining continuous tracks

After 3D fusion of poses, each detection is assigned a unique id. If a new
object is close in space to an object on the previous scene (thresholds for
distance unknown), the new object is associated the same id as that of the
object on the previous scene. This relates detections pertaining to the same
individuals with an unquantified level of confidence and represents a form
of pseudo-tracking. Occasionally, when individuals are close to one another,
track ids are mistakenly swapped. During real-time processing, the tracking
algorithm can only compare the distance between the keypoint in the current
scenes and the previous ones. In post-processing, the spatial position of
keypoints for a track can be compared to chronologically successive and
anterior scenes, and operate on smoothened trajectories increasing
robustness. Post-processing also allows to run more demanding tracking
algorithms without reducing the framerate.

To identify and rectify these instances, [ developed a function that detects
sustained spatial discontinuities that operates for cows in cubicles. For each
scene, the Euclidian distance between consecutive positions of the withers
and sacrum keypoints is calculated. Sudden discontinuities above 0.63cm
(half the width of a stall) between scenes (approximately 0.05s) are flagged.
The mean position of the keypoints in windows of 5 frames (0.25s) before
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and after the flagged discontinuity is calculated. If the difference in position
persists above the threshold (difference above 0.45cm between the windows
before and after the discontinuity), the event is flagged as a track swap. If
there is a disruption in spatial continuity that returns to its expected value
after 2 scenes and remaining at its expected level, the event is flagged as a
noise peak instead. Object ids are then split into several different tracks, with
a new unique identifier starting at the index of each id swap. These new ids
constitute a form of track. Tracks likely pertaining to the same individual are
then merged.

4.2.5.1 Merging tracks pertaining to the same individual

After identifying and segmenting potential id swaps and creating short
tracks, objects that pertain to the same individual were merged. First, for each
track segment, the mean three-dimensional location of the withers was
computed while the animal was positioned within a stall. The stall area
boundaries were defined along the horizontal axis using empirically
determined limits specific to each camera group. For each track, the mean Y
(parallel to the row of beds) and Z coordinates of the withers were calculated.
The former coordinate represents the placement in a bed along the row of
beds and the later whether the animal was standing or lying.

All tracks were then compared pairwise in terms of their mean Y and Z
coordinates and their temporal extent. Pairs of tracks were considered
candidates for merging if they (1) occupied spatially close positions in the
stall (within 0.63 m in Y and 0.4 m in Z) and (2) either overlapped in time or
were separated by a short temporal gap (less than 90 s). These pairwise
relationships were represented as edges in an undirected graph, where each
node corresponded to a track and each edge connected tracks fulfilling the
proximity and temporal criteria. Connected components in this graph were
treated as clusters representing a single continuous track. To ensure that no
cluster spanned spatially distant beds, an iterative refinement step removed
edges whose cumulative spatial separation along the Y-axis exceeded the
defined distance threshold. After this refinement, all tracks within a
connected component were assigned a common merged track number. To
restore temporal continuity between merged tracks, small gaps between
merged tracks were interpolated.
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Interpolating missing poses

Several events could increase the expected time of 0.033s between
frames: crowded scenes may lead to increased latency, failure of the
matching algorithm to produce a 3D pose or merging tracks. To ensure
temporal consistency, 3D keypoint time series were systematically
resampled to 30Hz. Resampling was done using cubic interpolation. In
previous work aimed at interpolating cow positions, Ren et al. (2022) had
found Akima to be the most faithful method for 2D locations. However, I
observed it to regularly overshoot in the vertical dimension compared to
expected trajectories and used cubic interpolation instead (which the
aforementioned authors had also found satisfactory).

First, consecutive timestamps were examined for irregular temporal gaps.
When the interval between two frames exceeded the nominal recording
interval (0.033 s) 1 rows were inserted at regular intervals between them to
re-establish a uniform temporal sampling. These inserted rows were flagged
as interpolated observations and retained the metadata of their nearest
preceding frame (track id, sequence, and camera group). In the second step,
the missing coordinates were estimated by spatial interpolation. For each
keypoint (e.g., head, withers, sacrum), the available X, Y, and Z coordinates
from neighbouring frames were treated as known samples along a one-
dimensional temporal axis defined by frame indices. The scipy.griddata fits
a local cubic function between adjacent valid observations to estimate
smooth intermediate coordinates, and predict the value at the missing
observation.

Smoothing and filtering

The 3D fusion process can introduce noise from various sources:
vibration of the cameras creating an offset between the calibrated lines of
sight and the view, key-point jittering around the ground truth, and erroneous
detection. The frequency of the occurrence of each was not quantified but in
the methods section of Paper II, you can see how we analysed their effect on
the accuracy of an event detector.

Existing literature recommends applying a low-pass filter with a cut-off
frequency of 10Hz for behaviour classification tasks (Hamdildinen et al.,
2011; Riaboff et al., 2022). These were based on developments with
accelerometers but remain sensible in this case. If we assume keypoint jitter
to be random and normally distributed around the true position, we can

60



consider that it moves at one frame and then goes back, giving a displacement
on 3 frames. At the sampling rate of 30 fps, this gives us a cutoff of 10Hz.
Based on this reasoning, I applied a low-pass filter of order 2 with a cut-off
frequency of 10Hz in phase I and halved it to 5Hz in Phase II. Nyquist factor
was 0.5. I had quantified keypoint jittering by the median 3D Euclidian
displacement across frames during stationary phases (before rising). Median
jittering was lowest at the head (0.01m, interquartile range (IQR) of 0.009m)
and highest at the tarsi (0.07m, IQR = 0.08m). Upon visually inspecting the
displacement of the keypoint before and after smoothing, this method
preserved the key-point displacement information while filtering out small
variations. To attenuate remaining noise, I applied Savintsky-Golay
smoothing to the time series of each coordinate of each key-point separately.
This technique fits a polynomial in a window centred on each point
successively and returns the predicted value of the polynomial at that
location. The parameters were 3™ order polynomial to a window length of 15
(0.5s).

4.3 Event detection

4.3.1 Detection of posture transition events

Two different approaches have been proposed to detect posture transition
events from sensor output. The first case uses the displacement of anatomical
landmarks, used on cows fitted with motion capture reflectors (Ceballos et
al., 2004). The rationale behind it, is that the output data “the 3D positions
of anatomical structures” are immediately interpretable, in the sense that, for
example, a downwards movement of the withers by 0.1cm/s corresponds to
a cow transitioning from a standing to a recumbent position. The second
method was adapted to accelerometers attached to the leg. When cows are
standing, gravity is aligned with the Z axis of the accelerometer, whereas
when the cow is lying down, the leg is rotated, and gravity loads mostly onto
the x axis. When the main axis load is shifted between these axes for a
sustained period (>30s), a posture transition event is flagged (Brouwers et
al., 2023b).

The initial method using the vertical displacement of the withers was
successful in detecting posture transitions but also flagged mounting
behaviours (since the vertical position of the withers does also change
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through these). A refinement was thus to set a vertical displacement
threshold of 40% of the initial position sustained over a period of 30s, or until
data points are available, whichever the smallest.

During Phase I, the sequences were already trimmed around posture
transition events. Several tracks were present in the snippets, and the
detection was applied to identify which track was associated with the cow
getting up on lying down. During Phase II, we had continuous data for 3
blocks of 2 successive weeks, each yielding tracks of varying lengths. The
need this time was to detect when a posture transition occurred. Based on
Phase II, I knew that the detector had a satisfactory sensitivity (88.5%). In
the smoothened Z (vertical) series of the withers, events where the keypoint
crossed the plane at Z = 1m were flagged as potential posture transitions.
Then, the median vertical position in the 30s windows before and after the
crossing where compared. Using the same threshold as in Phase I, a sustained
40 % difference was considered a posture transition. A +£30s window with all
keypoint coordinates for that track was extracted for later analyses.

4.3.2 Detection of stages of the posture transition

Earlier works on cow posture transitions identified 7 stages (Lidfors,
1989; Schnitzer, 1971). In order to measure the selected indicators of posture
transition quality (measuring either duration or displacement), the timing of
5 stages in rising and 4 stages in lying down needed to be known. Paper |
serves as a proof of concept, with the aim of showing that we can detect at
the first of these stages from the 3D keypoint time series. Each phase has a
distinct kinematic pattern, that can be seen on Figure 2 on 43. The stages are
the following:

Rising

e Rising on breastbone: when the cow initiates the movement of
tucking its front limbs under its body.

e Lunge start position: when the cow has gathered its limbs under
its body and performed possible readjustment movements

e Head lunge: the point of furthest extent of the head along the
body axis when the cow lunges its head forward to offload weight
off the hind limbs.

e Lifting of the rear: with the head extended, the cow steps
repeatedly with the hind legs to lift its rear.
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e Lifting of the front: the cow then extends its front limbs in
succession.

e Standing: the first moment the cow is standing with all 4 legs
extended, before it stretches its back.

Lying down

o Initial leg bend: the cow bends one of its front limbs initiating the
downwards movement.

e Thoracic limbs touchdown: both carpal joints are in contact with
the ground.

e Sacrum descent: the cow starts to lower is rear, marked by an
increase in the vertical velocity of the sacrum.

e Recumbent position: the cow is fully lying down.

To detect the stages, the I relied on the interpretability of pose estimation
data: that position obtained directly relate to observable phases without
needing to integrate or differentiate. The method chosen was change-point
detections, which identifies changes in times series without pre-supposing
constant properties throughout the series. This method had already proved
useful in identifying changes in motion on human subjects (Bastian et al.,
2024). A notable advantage is that it does not necessitate a training dataset
to relate a signal to a ground truth, thereby reducing the need for annotations.
A ground truth is nevertheless needed for validation. Change-point detection
was implemented in the python package Ruptures (Truong et al., 2020). The
Pelt method requires a penalty parameter and detects several change-points.
The annotated posture transition stages were used to refine the penalty and
identify the kinematic pattern of the keypoints around the change-point
corresponding to that event. A more in-depth description of the method and
the parameter search can be found in the Methods sections of Paper I and II.
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Table 2. Posture transition phases and methods for detection (modified from

Paper II).

Posture Penalty  Variables for change- Criteria for selecting a change-

transition phase point detection point

Rising (LTS)

Start of rising 10 Withers Y, Withers Z First change point where the

motion median Z withers in the
following 1s window > median
Z withers in the initial 1s of the
sequence

Lunge start Last point before lunge where withers forward velocity = 0

Head lunge Return to head velocity = 0 after highest peak

Standing 5 Withers velocity First change point after the last
velocity peak  of  0.18
(normalized units)

Lying down

(STL)

Initial leg bend 10 Withers vertical velocity — Last change point before the first
peak in withers velocity above
0.2 (normalized units)

Thoracic limbs 3 Withers Z First change-point immediately

touchdown after the first peak above 0.2

Sacrum descent ~ Random forest

Recumbent 10 Withers Y, Withers Z Last change point where the

position median Z withers in the

following 1s window < median
Z withers in the final 1s of the
sequence

4.3.3 Creation of a ground truth and validation

For Phase 1, the ground truth was annotations on the timing of the
selected stages from video. For Paper I, 3 observers annotated the timestamp
of the first stage of the rising motion in 60 rising events randomly sampled
from the 471 complete sequences (sequences without interruptions in the
objects ids). Thirty sequences were common to all observers, 10 were unique
to each observer and 15 were randomly resampled within each observers own
set to measure intra-observer consistency. The sequences were blinded and
shuffled. Observers were given the videos for these sequences from all 6 or
7 camera angles and provided with the following definition: The cow is lying
down and rises on its breastbone and elbows, which causes the withers to
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rise visibly above the rest of the back. Observers then calibrated together by
agreeing on the time to annotate from 5 training sequences different from the
validation set.

For the remainder of the events, labelled for paper II, each observer
annotated 100 sequences for both rising and lying down events, of which 55
(per posture transition type) were common to all observers, 30 were unique,
and 15 were randomly resampled. 10 different sequences were used for
calibration of the observers. The exact definition of the phases provided to
the observers can be found in Table 1 of Paper II.

For Paper 111, observers labelled the individual cow performing each bout
in the selected sequences. Identification sheets were developed, with images
of each individual cow from various angles. For each sequence, one of either
two observers annotated which cow was performing the bout, and the cubicle
number. The cubicles were counted 1 to 6 for each row separately, starting
from the left when facing the front end. If an observer was unsure (for
instance because of an even coat with few distinguishing patterns), they
flagged the annotation as such. They left the annotation blank if they could
not identify the individual. These sequences were excluded from the
analysis.

4.4 Scoring of posture transition indicators

Both scientific literature, and industry guidelines recognize sets of
measures that are used to assess the quality of cubicles when it comes to
allowing for comfortable posture transitions. A measure commonly found is
the “lunge space”, and by extension the “bob-room” (Cook, 2019). This is a
measure of the space available in front of the cubicle, both forward and
upward for the cow to extend its head forward during the lunge movement.
We have seen in Section O that the head lunge is an innate and
biomechanically important movement. It serves as a way of displacing the
cow’s weight forward when getting up, with the effect of relieving some of
the body’s load off of the rear limbs, reducing the effort needed to lift the
rear (Lidfors, 1989) (see Figure 3). The lack of lunge space is an issue raised
with wall-facing cubicle models, and the resulting lunge movements to the
side are characterized as an abnormal motion (Brouwers et al., 2024). More
recent barn designs allow for space in front of the cubicle, however, other
elements, such as a head rail, represent a forward barrier and lead to
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collisions during rising motions (Veissier et al., 2004). As a result, estimating
usable lunge space is not as trivial as measuring the space in front of the
cubicle. This brings us to the usefulness of pose estimation in 3D.

Table 3. Selected indicators of posture transition quality

Rising
Duration of
rising motion

To avoid collisions with the metal bars, cows take slower more
hesitant movements, which result in longer bouts.

Backwards The cows lie down under the neck and head rail. The fast-rising

crawling on motion risks collisions with the bars (Veissier et al., 2004). The cows

carpal joints  therefore crawl backwards to increase the upwards and forward
space before rising. Contact with the straps may not be perceived as
adversely as with the bars, reducing the need for backwards
crawling.

Delayed Readjustment motions that delay the rising motion are a way for the

rising cow to cope with a restrictive environment by positioning its body
before rising. Flexible straps with less adverse contact may shorten
this phase.

Head lunge The rigid head rail represents a physical limit to forward lunge,

distance whereas the flexible strap can, to some extent, move forward with
the cow’s body.

Head “bob” During lunge, the cow should be able to “bob” its head up and down
(Cook, 2009), flexible straps allow for greater amplitude by acting
as a soft boundary.

Side lunge Side lunge is seen as a compensatory mechanism when forward
lunge space is perceived to be insufficient (Cook & Nordlund, 2005).
Cows can push against the strap when lunging, reducing the need to
lunge to the side.

Lying down

Duration of
lying-down
motion

Hind quarter

Comparably to rising, the cow lies down slowly to avoid hitting rigid
structures. Flexible straps are expected to increase movement
swiftness.

Lowered risk of collision decreases hesitation and readjustment

shifting movements.
Head Flexibility of the head rail reduced aversion to contact and favours
displacement  further extension.

Animal-based measures are preferred for welfare assessment and
constitute the majority of indicators in WQ (Blokhuis et al., 2013). The
assessment in WQ is visual, and accurately quantifying lunge distance is
unfeasible. A visual indicator to estimate whether lunge space is perceived
as insufficient is side lunge (Brouwers et al., 2024). However, a study aimed
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at automating the classification of side versus straight lunge ran into many
ambiguous “edge cases” of “slightly sideways lunge”, showcasing that a
dichotomous indicator, practical for visual observations, might not reflect a
continuous reality (Brouwers et al., 2023b).

Using this knowledge, I attempted to compile existing measures and
define them quantitatively rather than classifying abnormal versus normal.
These measures are selected based on the following criteria: (i) animal-based
measures (ii) used in previous studies evaluating cubicle comfort through
cow movements, (iii) can be measured using pose estimation in 3D, and (iv)
are expected to be affected by cubicle design. We will refer to these measures
that relate to the quality of the posture transition as indicators of posture
transition comfort. The indicators are listed in Table 3. The way they were
calculated differed slightly between Phases I and II of data collection and the
exact method can be found in the accompanying articles (Papers II and III)
at the end of this thesis.

4.5 Intervention study

The intervention sought to compare movement patterns and indicators of
comfortable posture transition between cubicles with rigid (metal) head and
neck rails versus cubicles with flexible straps. A quasi-experiment was
conducted where 12 of the cubicles were changes to the flexible design
during two weeks and indicators compared between cubicle designs.

451 Hypothesis development

The aim of the experiment is to test whether cows are more comfortable
transitioning between posture in cubicles with flexible head and neck rails
that in cubicles with rigid metal bars. To test this, we would ideally posit the
following hypothetico-deductive (HD) model, which is exemplified with
lunge distance but works in the same way for the other indicators and their
interactions:

e Hypothesis (H): Cows are more comfortable getting up in
cubicles with flexible head and neck straps.

e Auxiliary assumption (A): when cows are comfortable, they lunge
further and straighter.

e Expected observation (O): cows in flexible cubicles use more
lunge distance than in cubicles with rigid bars.
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The issue with the model above is the limited available evidence for the
auxiliary assumption, although it is highly plausible. The existing evidence-
base regarding lunge distance states that cows in more permissive
environments (larger cubicles, open packs or pasture) lunge further and
exhibit generally more fluid rising motions (Brouwers et al., 2024) but does
not guarantee the immediate corollary: that cows showing more fluid and
ample motions are in a less restrictive environment and automatically more
comfortable. Most of the evidence for a causal relationship between cubicle
design and lunge room concerns restricted environments leading to
insufficient lunge room, and the link with comfort is not trivial. Regarding
the other indicators, it also states that cows take longer time getting up, with
more hesitation and abnormal movements.

Thus, it is more appropriate, given the available evidence for the link
between comfort and restrictive cubicles, to frame the HD model in terms of
discomfort, then interpreting a reduction in discomfort-related behaviours as
an increase in comfort:

e Hypothesis (H): Cows rising in cubicles with flexible head and
neck straps experience less discomfort compared to those in
cubicles with rigid metal bars (all other cubicle features equal).

e Auxiliary assumption (A1): Rigid metal bars limit spatial use and
forward head movements.

e Auxiliary assumption (A2): Limiting movement opportunities
interferes with the cow's natural rising kinematics, causing
collisions, hindering ability to balance weight, and altered rising
patterns, notably shorter or sideways head lunge.

e Auxiliary assumption (A3): Collisions and disruption of normal
rising behaviour create discomfort, which may manifest as
increased effort, hesitation, aversion, or stress.

e Corollary assumption (C): the absence of restriction allows for
more freedom of movement limiting the risk of the
aforementioned externalities.

e Expected observation (O): cows in flexible cubicles use more
forward space than in cubicles with rigid bars.

Al and A2 are supported by biomechanical studies of cows rising
(Brouwers et al., 2024; Ceballos et al., 2004) and state fairly logically that
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physical barriers in the way of cows’ spontaneous, motion patterns will
inevitably induce a change in the movement. When these barriers are in the
way of normal movements, collisions happen (Zambelis et al., 2019). A3
builds on the premise that disruptions in innate motion patterns are associated
with negative affect (Lidfors, 1989), proposing that when rising becomes
more difficult, or abnormal due to restriction, cows experience increased
discomfort (Nielsen et al., 2023). Corollary assumption C follows from the
preceding logic: that reducing physical barriers allows for more freedom of
movement and thus a reduction in the adverse experiences associated with
constrained movements. Together, the assumptions state that restrictive
cubicles form a physical barrier to rising motions, that this barrier leads to
collisions and reduced head lunge, and finally that the adverse experiences
create discomfort. We deduce conversely that increased head lunge is a
visible sign of a less restrictive environment and thus less discomfort.

4.5.2 Experimental design

The experiment follows an intervention quasi-experimental observation
study design, with each animal serving as its own control. Pose estimation in
3D, and location (from the ear tag) were collected in 12 of the cubicles (red
area in Figure 5) out of 65 total in the pen. Cows had access to all cubicles
throughout the experiment but only their bouts occurring in the 12 cubicles
were recorded. This means in practice that cows could chose to lie down in
control cubicles even during the intervention stage.

The control cubicles and their dimensions can be seen on the upper panes
of Figure 4. They consist of a bed, dividers and a head and neck rail. The
experimental cubicles are the same with the head and neck rails replaced with
flexible straps (CC1800 with flexible front and neck bands, DeLaval,
Sweden). These can be seen on the lower pane of Figure 4.

Based on the results of data collection Phase I, I estimated being able to
collect at least 800 true positive sequences of each posture transition with
sufficient data quality (uninterrupted tracks and low noise) in a period of 32
days using 12 cubicles. There was a standard deviation in head lunge distance
of'0.33 (arbitrary spatial units close to the meter but of unknown uncertainty).
A power calculation adjusted for 6 intra-individual repetitions with an intra-
individual correlation of 0.46 revealed a necessary sample size of 41 animals
to find a statistically significant difference in head lunge distance of 0.087m.
This represented 249 events or 10 days. This duration was increased to two
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weeks. More details on the power calculation can be found in the Methods
section of Paper III.

3D poses and location were collected continuously for 14 days in the
control cubicles. The head and neck rails were replaced with the flexible
straps. The holders for the flexible straps had been installed in anticipation
to reduce intervention time strictly, which took two workers about a half
workday. Cows were given a 7-day adaptation period before data was
collected again for 14 days. Then, the rigid bars were re-installed, and after
an adaptation period of 7 days, data was recorded for 14 more days.

4.6 Statistical analyses

The data in Phase I was strictly observational; we recorded bouts without
intervention on the cows that could modify the bout. In this phase, I sought
to test the association between indicators. After the intervention study in
Phase II, the marginal effect of the intervention on the indicators was tested
in a mixed effects model:

Yin = Bo + P1 * flexible; , + B, * Group; + u; + &, Equation 1

Where y is the indicator value for cow i at observation n, Group is a
binary indicating the camera group to account for differences in location of
the calibrated origin, and u is a random effect for cow. Type I risk was set at
a = 0.05 with Benjamini—Hochberg correction to account for the testing of
several potentially correlated indicators. This works by ranking p values

from smallest to highest and assigning each p-value a threshold p; < # * O

where i is the rank (from smallest to largest p-value) and m the number of
tests. The correction was applied within each bout and analysis type so that
Myising = 7 and myy,;g = 4. The following indicators were box-cox
transformed before testing: lunge angle, rising delay, backwards crawling
distance, shifting duration and head displacement when lying down.

The change in indicator distributions between baseline and flexible
cubicle configurations was analysed differently, depending on the indicator’s
distribution found in Phase I.

Backwards crawling and rising delay during LTS and shifting duration
during STL had excessive zeros and were analysed in two steps with a hurdle
model. For the zero component of the model, a logistic regression tested the
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effect of the flexible configuration on the probability of the indicator being
greater than 0 according to equation 14:

logit(P(yi, > 0) = By + By * flexible;, + B, * Group; + u; + &, Equation 2

For the continuous part, a subset of the samples was created excluding
events with y; ,, = 0. A mixed effects model was fit according to the equation
below, to test the effect of flexible configuration on the strictly positive part
of the distribution:

Yin = Bo+ P1* flexiblei_ny>0 U+ &y, Equation 3

The zero component provides information on the likelihood of observing
a null result, while the continuous component provides information on the
effect size on non-zero events.

4.7 Force distribution modelling

After a preliminary analysis of the distribution of indicators, without
correcting for individual variation at this stage, we were surprised to notice
that there were no overall differences in the duration and spatial use,
especially at the head. This prompted a further investigation; either there was
truly no overall difference, either the experimental design was flawed, or we
were not looking in the right direction. The experimental design might have
presented a limitation, but available literature on flexible neck rails, and our
own observations of the video point towards differences between rigid and
flexible head and neck rails. To determine the likelihood of there being no
effect, we had to rule out the fact that we had looked at the wrong indicators.

I went back to the theory behind rising motions. The lunge motion acts as
a way of balancing the weight between the front and the rear (Lidfors, 1989).
Observations of rising bouts in too small cubicles noted unsuccessful rising
attempts (Tschanz & Kémmer, 1979), or attempts where abnormal strain
placed on the limbs lead to skin and muscle lesions (Kohli, 1987). This
produced the subsequent research question: “can we model the shift in
weight distribution throughout the bout?”. If possible, we would effectively
quantify the biomechanical driver behind the lunge motion, rather than an
observable consequence.

Insights from the field of biomechanics showed that modelling forces
imposed on joints, and ground reaction forces using motion capture was an
accepted method, at least in human biomechanics (for example Johnson et
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al., 2018). Translating this method to pose estimation in 3D could allow to
model forces during rising motions.

I proposed a simplified model, representing the cow as a set of two rods
between the sacrum and withers and the withers to the head. These rods are
supported at the sacrum by the rear limbs and at the front by the forelimbs.
The analysis was restricted to the lunge phase of rising between Tyynge start
and Tyynge max> during which the front limbs are folded under the body and
the carpi act as the front support (see Figure 8). During this stage, the cow
extends its rear limbs to lifts its rear. The centre of mass (COM) was set at
55% along the sacrum to withers rod, based on previous work (with load
cells) finding that on average, 55% of the body weight is supported by the
front limbs (Chapinal et al., 2009; Neveux et al., 2006). The model was two-
dimensional; at each time-point, a plane was defined collinear to the
horizontal and to the withers-sacrum axis. The plane is defined by the
orthogonal vectors (0,0,1) and (Xyithers = Xsacrum» Ywithers — Ysacrum »0)
at the timepoint start of lunge motion. The rationale was that we rotate the y
axis so that it becomes longitudinal to the cow’s body. The midpoint of the
carpi projected onto this plane forms the front support point coordinates:

Y'icarpustY'rcarpus ZrcarpustZicarpus

( 2 ! 2
coordinates and subscripts r and [ refer to right and left. Because of occlusion
in the claw keypoints keypoint, the rear-support was estimated by projecting
the tarsi onto the ground so that the rear support is defined by the coordinates:

+ . .
(y'"a”’”;yl“arsus , Zm"pusz Plearpusy Note that the vertical coordinate of the
carpus is intentionally used here because they are in contact with the ground
at this stage and thus represent the best estimate of the ground location.

) where x’ and )’ are the reprojected
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Figure 8. Simplified force loading model

In the first stage of the analysis, I modelled the forward displacement of
the COM projected onto the support-to-support axis (dashed blue vertical
line on Figure 8). The rationale is that when the rear limbs are placed closer
to the front limbs, they support more weight and lie closer to the centre of
gravity. Because the cubicle limits the available longitudinal space,
especially for larger cows, the rear limbs may not be able to extend as far
forward as they would otherwise. Therefore, projecting the COM onto the
support-to-support axis (rather than using its absolute forward displacement)
provides an estimate of how far the cow can shift its centre of gravity away
from the hind limbs, given their actual position. The maximum COM shift
during the lunge phase was extracted and analysed with the mixed-effects
model in Equation 1. To investigate whether the effect of flexible straps was
proportionate to baseline displacement (i.e., whether cows with lower
baseline displacement showed a greater predicted increase than those already
showing a large displacement), the following model was used:

yi,interuention - .ubaselinei = ﬁO + ﬁ3 * .ubaselinei + /32 * Groupi + U; + ei,n Equation 4

Where u is the mean COM forward shift at baseline for individual i.

This first step provides an initial static estimate as to how weight can be
displaced. Translational and rotational acceleration will also affect the forces
on the supports. To that end, we (as in myself together with an expert in
biomechanics) developed the simplified force loading model presented in
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Figure 8. Forward velocity and acceleration of the withers are calculated by
the change in successive observed positions of the smoothened keypoints as
Wxt=Wyxt—1 and  ay _ we—vw,e-1)
At At
reprojected against the back axis, ¢ is the timestamp of one specific frame

and At is the time difference between two successive frames equal to 1 / 305

vy = where x” is the x coordinate

The dynamic equilibrium of the forces is posited in its horizontal and vertical
dimensions respectively as:

Rgscos0, + Ry, cosfy, = 0.91mar, + 0.09may , Equation 5
Rgsinb,. + Ry sinfy, = 0.91mar, + 0.09may , + (0.91 + 0.09) g

Equation 6
where g is gravity, subscript H is the head keypoint and 7 is the midpoint of
the back. Moments were calculated about the withers. The sacrum and head
generate moment through their lever arms, the contribution of the head to the

front reaction is expressed through translational acceleration and torque
exerted at the withers pivot point. The moment about the withers is:

—RgLpqcrSinbs [reaction moments]
+0.91mgLy _7SinBpacx — 0.09mgLy 1y Sinb ,ock [gravity moments Mg]
- 0.91mLWﬁT(sin9backaT,Z + cos@backaT,xf) [back rotation tr]
+ 0.09mLWﬁH(sin9neckaH,Z - cos@necka,.,_xr) [head rotation tu]
= Ipgcrar + Iyay [inertia]

Equation 7

where [ is the inertia of a segment, L is its length, a is the acceleration and &
the angular acceleration. All other subscripts can be found on Figure 8. lpack 18
assumed as %mL2 where L is the length of the segment and /x =0 with the
mass concentrated in the head. We split the ground reaction forces into their
vertical and horizontal components and obtain:

cos 6, cos 6, 0.91may, + 0.09may ,
[ sin 6, sme [R”y"] 091maTz+009maHZ+mg
—Lpacrsin(6s) wan Ipackar —Mg — 17 — Ty

Equation 8
. R . o .
This is noted as A[RS] =y. Since it is over-constrained (1 degree of
w

freedom remaining from 3 equations to solve 2 reaction forces), we solve for
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Rs using least squares [gs] = (ATA)_lATy. The effort placed on the rear
w

limbs was quantified as the cumulative work throughout the lunge motion
Total work of the rear limb throughout the bout was defined as the
cumulative  displacement times the instantaneous rear limb
forces: [ Rg 4ync0s0, * dSacrum, + [ Rg 4,y,sind, * dSacrum,,
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5. Results and discussion

This section presents the main results that will answer the aims of the thesis.
The immediate implication of the results is also discussed in this section.
More objective and systematic reporting of the results can be found in the
papers.

5.1 Detection of posture transition events from
continuous pose estimation data

In Phase I, 979 rising bouts and 1015 lying down bouts were “manually”
selected. Synchronized video snippets were extracted at +15s around the
posture transition event and 3D pose was estimated for these sequences. Each
sequence resulted in several tracks including that of the cow rising or lying
down. Applying the detector based on the change in relative positions of the
sacrum and withers, 814 and 798 tracks were classified as rising and lying
down respectively, equating to false negative rates of 16.9% and 21.4%
respectively. 5 and 26 sequences respectively were wrongly classified. This
equates to sensitivities of 83.1% and 78.7%.

In Paper I, only 493 sequences where the posture transition was captured
in a single uninterrupted track were analysed. In Paper Il, sharing the same
dataset, we sought to test the robustness to discontinuous tracks and to
missing poses (track interrupted for a few scenes). This provided an
additional 305 rising and 301 lying down sequences or 37.7% and 38.1% of
the total events analysed.

After detecting the posture transition, the detection of each of the stages
shown in Figure 2 was necessary to set time bounds within which the
indicators would be measured. In Paper I we only detected the first phase, to
offer a proof of concept, and an indication that movements in the keypoints
did properly capture kinematically meaningful information. Agreement was
measured by intraclass correlation (ICC) of a model predicting event time
based on observer. The ICC was 0.85 between human observers and 0.81
when adding an effect for machine detection, which we interpreted as
similarly acceptable. Disagreement between observers ranged from 0.9s to
1.7s and between observers and machine from 1.0s to 1.3s.

Appending discontinuous tracks (stitching) had a significant effect on the
accuracy of the automated detection (compared with human annotations) for
the stages rise on breastbone of rising (-1.4s difference between human and
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machine) and thoracic limbs touchdown in lying down (-0.5s). Interestingly,
the first stage, rise on breastbone was the most ambiguous to human
observers (1 to 1.8s average difference between observers), which might
reflect a variability in kinematic profiles making it difficult to both annotate
and find a rule flagging the event. Interpolating poses did not have a
significant effect on the agreement between human and machine. This was
an important finding with implications for continuous monitoring, since we
would rely on this data processing methods in the next phase.

In phase II, the added challenge was to detect posture transition in
continuous keypoint data. I did not perform an estimation of the false positive
rate as this was not the scope of the study. However, the lower sample size
at the return to baseline (190 versus 285) could be an indication that the
system got less performant with time. During the experimental period, the 5-
95 IQR of acquisition rates was 6.5 to 30Hz and the median 30Hz, meaning
that the pose estimator was in the vast majority of cases able to keep up with
the arrival of frames in the processing buffer and generated mqtt messages
providing a proof of concept for real-time implementation.

Altogether, 850 rising sequences and 853 lying sequences were detected.
Out of these, 733 rising sequences contained the entire bout, with true
detections at the events of interest (not missing detection at key stages) and
787 lying down sequences. For 733 valid rising sequences, 4 had tracks
wrongfully stitched that belonged to different individuals on the same scene.
This happened for 6 out of 787 valid lying down sequences. The initial power
analysis used to determine the number of samples necessary for Paper III
based on the true positive rate and variance found in paper I required a
sample size of 249 bouts which we estimated to capture in 10 days (25
bouts/day). We captured up to 289 bouts in 14 days (21 bouts/day) from
which we can grossly infer a slightly higher false negative rate in detecting
posture transitions from continuous data compared with the curated
sequences.

5.2 Measuring comfort in cubicles with automated
indicators.

In Paper II, we reported the number of bouts exceeding accepted
thresholds for comfortable posture transitions. Thresholds for rising were
found in the literature or derived from industry guidelines for rising delay
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(10s), backwards crawling (Om) and a resource-based value for lunge space
(0.6m to 0.9m). Thresholds for lying down were found for total duration
(6.3s), shifting duration (3s) and an empirical measure of head displacement
in unrestricted environments was also found (0.59m). Altogether, we found
that 59.9% of rising and 29.1% of lying down movements were abnormal.
Out of all rising bouts, 2.8% exceeded the threshold for rising delay (30.2%
if we apply the more conservative threshold of 5s found in the industry
framework Frdga Kon). Backwards crawling was higher than 0 in 58.2% of
bouts. Regarding lying down, 28.9 % of bouts exceeded the threshold for
total duration and 8.3 % for shifting duration.

The PCA in Paper II suggested that posture-transition quality cannot be
faithfully summarised into a single dimension. Indicators rising delay and
total duration were highly correlated (r=0.88), which is expectable as they
are nested durations. Backwards crawling and rising delay were moderately
correlated (r=0.46), suggesting that duration of the preparation phase (as
done in Frdga Kon) is a sound summarisation but not an “iceberg indicator”.
The PCA showed different uncorrelated strategies, combining for instance
short lunge distance with swift movements. Extended crawling does not
necessarily predict increased effective lunge distance (contrary to initial
hypotheses). The components were interpreted as duration, straight lunge,
spatial use, and fast crawling. Together, the indicators represent distinct,
combinable rising strategies, some of which are considered atypical, and
some combinations of both desirable and atypical motions in the same bout.
These correlation patterns suggest that multiple indicators are required to
describe posture-transition comfort, as each captures a different
biomechanical or behavioural adaptation. Strategies might be driven by cow
size, which is associated with externalities (Zambelis et al., 2019). For rising,
there were only three indicators, with 2 nested durations being correlated,
limiting the conclusions available.

The comparison between metal bars versus flexible straps revealed head
lunge angle (+2.7° £ 1.0 and +2.7° £ 1.1) and head bobbing space (+0.10m
+ 0.03 and +0.14m £ 0.03) to be significantly higher in the flexible
configuration compared to both baseline and return to baseline respectively.
This supports previous results stating that metal bars limit forward space use
and modified neck trajectories (Veissier et al., 2004). There was a significant
decrease in duration upon return to baseline (-0.8s £0.3). Results regarding
spatio-temporal use are compiled in Table 4.
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There was also a significant effect of the flexible straps on the forward
displacement of the centre of mass along the support-to-support axis (2.8%
+ 1.0 to 4.7% * 1.1, p < 0.05) and on the maximum offloading of the rear
limbs (1.9% + 0.9 to 3.1% + 1.0 p < 0.05). Increased forward spatial use
together with differences in the offloading of the rear limbs increases the
available evidence supporting that cows are able to make use of the increased
forward movement opportunities offered by flexible straps when getting up
(Brouwers et al., 2025).

When we model the changes from baseline to intervention only and add
the mean baseline COM displacement in the model explaining changes in
COM displacement, we find that the effect of mean baseline COM shift on
the predicted COM shift at the intervention is negative and significant (p <
0.001). The scale is 0.29 - (0.80+0.12) * (baseline COM shift). This means
that cows with a larger initial shift will have a lower predicted increase under
the intervention than cows with a low initial shift. For example, a cow that
shifts by 30% under baseline will have a predicted increase under flexible
straps by 5% while a cow with a baseline forward shift of 15% will have a
predicted increase by 17%.

Regarding lying down, the interpretation was less straightforward. There
was a significant decrease in total duration between the baseline and the
flexible straps that did not return when putting the metal bars back into place.
This could be interpreted as less influence of metal head and neck rails on
the lying down movement than on lying down, which is supported by earlier
findings suggesting that elements in the front of the cubicle represent more
of an impediment when rising than lying down (Schnitzer, 1971). The
decrease in forward head displacement observed upon returning to metal bars
(-0.07m = 0.03 p = 0.003) is consistent with earlier findings (Ceballos et al.,
2004) but it is intriguing that it was not observed at the baseline. My current
hypothesis as per the reason is that flexible straps allowed the cows to move
in further into the cubicle before lying down. This would not have hindered
their movements in the presence of flexible straps. However, having adjusted
to this new positioning could have decreased their ability to move forward
because of the rigid bars in the way. This will be investigated in an upcoming

paper.
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Table 4. Predicted marginal differences in indicator value between the
intervention (2) as reference level and the two baseline stages (1 and 3), order
by adjusted o limit necessary to accept the hypothesis that the difference is
greater than null. Significant coefficients at adjusted alpha are bolded.
Modified from Paper II1.

. Adjusted Effect” Effect” Pow
Indicator o _limit stage 2—1 P2l stage 2—3 p2-3 ok fcc
Rising

gfl;id bob 0.0083  -0.10£0.03  0.001  -0.14+0.03 <0.001 098 0.9

Lunge angle (°)  0.016 2.741.0 0.014 27411 0010 072 0.11

Duration (s) 0.025 20.4+0.3 0.148 -0.8£0.3 0010 077 049

Backwards 0.033 0 0.23

crawling (m)

(Zeros) 0.194024 0440 001027  0.962

(Non-zero) 20.01£0.02 0578  -0.02£0.02  0.071

Rising delay 0.042 <0.1 0.47

(Zeros) 20.4+0.3 0.191 -0.1£0.3 0.844

(Non-zero) 0.120.2 0.824 0.5+0.3 0.096

(Lm“;‘ge distance 0.05 0.00£0.02 0742  0010:0.02 0497 <01 022
Lying down

(TS‘)’tal duration 0.016 0.6+1.2 0.009 0.4+0.2 0073 091 030

Head

displacement 0.033 20.03£0.02 0167  -0.07£0.03 0011 070 0.12

(m)

Shifting (s) 0.05 <0.1 029

(Zetos) 0.120.3 0.66 0.5+0.4 0.187

(Non-zero) 0.3£0.1 0.024 0.1+0.2 0.455

*For coefficients on which a box-cox transformation was applied, we report the difference in mean
prediction between both levels of experiment stage in lieu of coefficient. Zero part reported log odds.

** Power estimated through Monte-Carlo simulation (with 1000 replications). The values represent
the lower bound of the 95% confidence interval of the estimated power.
The results from force modelling were inconclusive. There was no
significant effect of flexible straps on the amount of work at the rear limbs
in the lunge phase. The model was sensitive to changes on the choice of
support points for example (projection onto the ground or claw keypoints)
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and to rotation of the coordinates along the cow axis. There was also a
considerable residual term in the residuals of the least-squares estimate of
the reaction vertical forces. The median root mean square error of the least
squares estimate of reaction forces averaged across events was 0.41m.s and
the 95™ percentile was 1.0 m.s. This represents an upper range of the error
amounting of approximately 11% of gravity. The means that force modelling
can be a possible indicator of movement opportunities in stalls but that the
work presented here offers a proof of concept rather than a definitive method.
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6. General discussion and roadmap

The original vision for the thesis had been to automate a range of animal
welfare assessment indicators, which was perhaps overly ambitious. A
review on the potential to automate WQ indicators had after all proposed
combinations of different sensors depending on the indicator (Maroto Molina
et al., 2020). What this project prompted however, was a discovery on the
place of pose estimation in 3D for evaluating indicators of welfare for which
the motion of anatomical features informs on ease of movement, beyond
simply reproducing existing indicators. In this last section, I want to discuss
the findings on the improvement of posture transition comfort with flexible
cubicles, on what 3D pose estimation can deliver for welfare assessment, and
how the notion of welfare assessment is approached when it is automated.

6.1 Assessment of posture transition as a welfare
parameter

There will be an inevitable trade-off in cubicle design, notably between
cleanliness and comfort (Gieseke et al., 2020). I proposed earlier in the
ethical statement, that the goal of assessing welfare was not to evaluate how
bad the trade-off was, but rather to find out in which conditions the animals
fared the best. From the methods it seems that pose estimation in 3D was
able to extract answers to this question. From the results it seems that they
fare better in cubicles with flexible straps.

Welfare can be evaluated as the animal’s capacity to cope and adapt
(physically and mentally) to its environment (Arndt et al., 2022; Broom,
1996). Linking this interpretation to cubicle design, we can evaluate how
well the animal is able to adapt to such a system, despite the restrictions they
impose. A cow that can rise and lie down fluidly, with sufficient space and
without repeated contacts with hard surfaces, is able to meet a strong
behavioural need (lying) without excessive physical and psychological cost.
Conversely, a cow that anticipates pain or instability during transitions may
develop avoidance strategies, such as lying down less frequently (Haley et
al., 2000), displaying staggered motions (Brouwers et al., 2024), side lunge
(Brouwers et al., 2023b) or delayed rising (Zambelis et al., 2019) and lying
down (Gieseke et al., 2020). These may constitute coping but at the expense
of comfort and physical health in the form of skin lesions (Zaffino Heyerhoff
et al., 2014). Repeated negative experiences during posture transitions are
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therefore likely to contribute to negative affective states such asa frustration
or anticipatory discomfort, while limiting opportunities for positive
experiences associated with comfortable rest (Nielsen et al., 2023).

The latest update to the five domains of animal welfare presents mental
states as an aggregate of positive and negative experiences arising from the
first four domains (Nutrition, Physical Environment, Health, and
Behavioural Interactions). This means that what matters for the animal is its
own perception of its condition (Mellor et al., 2020). Yet in practice the
results presented in Paper II and III are overall means and marginal effects
of flexible elements. Welfare Quality prescribes observations on a third of
the animals, which is empirically a good estimate of the state of the herd
(Blokhuis et al., 2013). Aggregating welfare indicators such as posture
transition comfort at herd level represents a practical utilitarian stance that
accepts higher burdens on some individuals (Sandee et al., 2019). At the
same time, externalities with cubicle designs differ across individuals for
example the prevalence of injuries is associated with cow size, the direction
of the effect suggesting that larger cows have more difficulty coping with
cubicles (Zambelis et al., 2019). When annotating video, we observed some
specific cows to particularly struggle with their rising motions, with
examples of slipping and falling. While aggregates provide practical insights,
the question at hand is how group-level improvements in posture transition
comfort translate to individual experiences.

Work on both cow limb trajectories (Leclercq et al., 2024; 2025) and
training of heifers (Paranhos Da Costa et al., 2021) has shown that inter-
individual variability can be high, possibly exceeding treatment effects in
some cases (Paranhos Da Costa et al., 2021). We found the highest yet
moderate ICC in rising duration (used as an “iceberg indicator” in Frdga
Kon), reinforcing the importance of individual variability. This highlights the
importance of understanding each animal’s own range of motions, and what
might be considered “normal” for one individual (Tijssen et al., 2021) in
order to tailor welfare assessment to their unique patterns. These baselines
can be established quite fast; Zambelis et al. (2019) showed that after 4
measurements of rising and lying down motions on one individual, the
variability “flattened” and concluded that 4 measurements were a sufficient
predictor of overall daily values. Sensors theoretically offer an opportunity
to obtain these measurements on all individuals in a barn.
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The different rates of changes in Figure 5 of Paper IIl, along with the
significant baseline effect on the COM forward shift suggests not only that
individuals have different patterns but that they respond differently, in this
case to measures for improved welfare. By using sensors to look at the
changes of the “worst-performers” we can see not only how measures
improve overall welfare, but how it levels the field and brings the most at-
risk animals closer to the most comfortable. This is to some extent
speculation, but it aligns with evidence that flexible neck rails
accommodated well for the diversity in cow sizes and movement patterns
(Brouwers et al., 2025).

6.2 Implications

6.2.1 Improving cubicles through objective measures on posture
transitions and 3D pose

One of the criteria for selecting indicators was notably how
straightforward it would be to calculate them from 3D poses. These
indicators do hold a degree of ambiguity. In Paper Il we had found a modest
correlation between rising duration and crawling (r=0.41) supporting its
value in informing on abnormal motions (Blokhuis et al., 2013). Yet,
evidence in earlier cubicle designs found no difference in the duration of the
lying down motion when it was classified as abnormal or as normal (de Vries
1987 reviewed by Lidfors 1989). We similarly found that total duration of
rising did not differ between the rigid and flexible cubicles, and that lying
down duration only differed relative to the first baseline stage. This might
only hold in specific contexts but does show that duration is not an “iceberg
indicator”. The results in the PCA suggest that other rising patterns exist, that
combine fast movement with abnormal motions. One of the strengths of 3D
pose, and of other sensors for this purpose, is that it is able to simultaneously
score a variety of indicators, in the time and space dimension (and their
derivative) to provide a broader picture, and possibly to identify different
clusters of strategies that cows use to cope with a restrictive cubicle.

Studies suggest about 0.9m of forward lunge space; that is unobstructed
space in front of the cubicle to lunge the head forward (Cook, 2019). In the
research farm where the data for this thesis was collected, such space was
provided; 1.65m to be exact. Yet, backwards crawling — which was
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interpreted as cows attempting to increase the space available in front of them
—was still observed in 51.2% of cases (Kroese et al., 2025). In another study,
cows were found to hit the bar work in 0 to 25% of rising bouts depending
on the cow (Zambelis et al., 2019) and in 70% of lying bouts overall. In a
study providing 0.65m of lunge space, cows lunged to the side rather than
the front in 35.5% of cases (Brouwers et al., 2023b). From these results, it
seems that offering forward space is not sufficient for ensuring that all cows
can lunge forward unhindered. Head and neck rail will interfere with the
motions (Veissier et al., 2004), and the provision of forward space may not
be a sufficiently reliable resource-based indicator of movement
opportunities. In-line with Welfare Quality, animal-based measures offer
direct insight as to the effect of the environment on the animals (Blokhuis et
al., 2013).

Motion capture does accurately measure spatial use (Ceballos et al., 2004)
but is impractical for implementation at scale. Pose estimation provides the
same output as motion capture and measures the displacement of anatomical
structures, albeit with different levels of accuracy (Lawin et al., 2023). The
technology presented in this thesis holds the potential to be a practical
method of asking the animals directly if they are able to use the space they
need when getting up and lying down.

We had suggested in Paper 111 that actual lunge distance should rather be
employed to quantify movement opportunities. Interestingly, we found no
change in lunge distance between the metal bars and flexible rails
configurations. There was a considerable change in forward head
displacement when lying down however, when the metal bars were put back
in place. It is possible, and would be aligned with the current consensus, that
forward lunge ability is driven more by the space available in front of the
cubicle (Cook, 2009), rather than by the metal elements. It is also likely that
the head bar was already positioned at a permissive level. Regardless of the
reason, we have found a significant increase in the forward movement of the
COM. This measure, which is made possible by pose estimation brings
measured indicators one step closer to the biomechanical drivers behind the
head lunge, of which the forward displacement is a component visible to the
human eye.

Limitations need to be acknowledged to clarify the scope of the results in
providing evidence towards the aims of the thesis. First, in quasi-
experiments, the absence of randomisation introduces a risk of uncontrolled
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confounders. This limitation is mitigated by the repeated measures design,
where each individual serves as its own control. This is preferable for studies
of biomechanics (Leclercq et al., 2024; Tijssen et al., 2021). The duration of
the intervention was short (2 weeks) compared to the cows’ previous
experience with regular cubicles (since they were heifers), which were
sustained if the cows visited other cubicles outside of the experimental area.
This means that motions in the flexible cubicles may may still have been
influenced by past and daily experiences in rigid cubicles. The changes we
observe do align with a longitudinal study supporting the long-term effects
of flexible cubicles (Brouwers et al., 2025).

Second, technical challenges in pose estimation, such as occasional
missing poses, drift, and difficulties in labelling narrow or occluded
anatomical regions add noise to the estimates. In the return to baseline, we
obtained about half the sample size as in the other phases. This is most likely
due to a shift in calibration that reduced the sensitivity of the 3D tracking.
This in turn means that technical challenges remain for long-term
monitoring.

6.2.2 Continuous monitoring at scale

The technology presented here represents an opportunity to increase the
frequency of welfare assessment (at least the indicators it is capable of
monitoring). If we are cautious about the accuracy of the measured indicators
with 3D poses, we can still take a step to the bigger picture, which is the
estimation of the cow's overall well-being, acknowledge the limitations of
either method and ask: "is it better to measure something accurately 4 times
a year, or to measure it less accurately every day?". Zambelis et al (2019)
measured total daily values for comfort indicators (the average across all
bouts in 24h), and how well different numbers of repetitions correlated with
the mean 24h value. They showed that from 4 measures onwards, it flattened
out (in other words, that 4 repetitions if a good enough approximation of
daily average). This means that capturing all events in one day doesn’t
provide much value. The value of these tools might instead lie in the medium
to long term rather than capturing as many events as possible in the short
term. Berckmans (2017) described the purpose of PLF with the following:
“Farmers get a warning when something goes wrong in such a way that the
PLF system brings them to the animal(s) that need their attention at that
moment.” Although this quote is nearly 10 years old, it reveals a focus on
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negative aspects of welfare that is predominant. We could also argue that the
purpose of PLF, exemplified by cubicle design, can be to elevate the lives of
animals by continuously gathering physiological and behavioural indicators
and seeing in which designs they respond in a way that is favourable to the
animal, before something goes wrong.

Drifts in data generation can stem from changing environmental
conditions, replacement in individual subjects (Moons et al., 2012), and
drifts in the underlying process itself. Drifts can degrade model performance
over time, making prediction of welfare indicators potentially less reliable
over time (Vazquez-Diosdado et al., 2019). Models trained on data collected
in one period often display reduced accuracy when applied to later data.
Empirical studies show that it is harder to predict "the last 20%" of a time
series using “the first 80%” than to predict a random 20%” (Sheridan, 2013).
In my own developments, the methods to detect specific phases of the
posture transition proposed in Paper II did not perform as well in Paper 111,
prompting me to annotate the events instead. This demonstrates that even
when the same setups, facilities, and general conditions are maintained,
repeatability can remain unexpectedly low. This is a common issue and a
threat to the credibility of PLF (Tuyttens et al., 2022).

6.2.3 Monitoring welfare with sensors vs visual observations

What I noticed when conducting this work, and when talking to fellows
researching similar topics, is that as we automate welfare assessment, the
approach to welfare slightly changes.

One example is the type of cues. For example, in the Framework Frdga
Kon, assessors are given a degree of discretion if qualifying the rising bout
as abnormal. Sensors do not have access to these cues (or at least models are
not trained to recognize them, notably because of the difficulty in
establishing a ground truth for subjective assessments). What sensors do
have is the capacity to merge different sources of behavioural and
physiological data which together increase the robustness of welfare-based
alerts (Do et al., 2020).

Most of the existing work on automated behaviour monitoring focuses
narrowly on technical development, attempting to classify a few common
postures or behaviours, without specific applications (Antognoli et al., 2025).
Many of these developments are done on clean datasets, with homogenous
data quality across examples and no occlusion, limiting real-world
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applicability (Menezes et al., 2024). The promise of sensors for welfare
assessment might lie in their ability to continuous, and high-resolution
monitoring integrated into the animal's environment without fatigue. To that
end, much of the further work needed is the interpretation of long-term
patterns.

Brouwers et al. (2023b) sought to detect abnormal rising and lying down
movements using accelerometers and supervised learning. Their work lead
to the creation of an R package for analysing rising and lying down
movements (Simmler & Brouwers, 2024). When they attempted to automate
the detection of sideways lunge using accelerometers, they only reached
moderate accuracy (65%) (Brouwers et al.; 2023b). The authors impute this
to a discrepancy between the way data was labelled (straight vs angled lunge)
and the continuous nature of sensor data. There were many misclassifications
on ambiguous edge cases. In my own results, I have found lunge angle to be
continuous. It had a mean of 166.1° £ 0.5, a median of 168.9° and a skewness
to the left by -1.3. Importantly with regards to labelling sideways lunge, there
was no clear cut-off in the distribution which would have indicated straight
versus angled lunge (Kroese et al., 2024). This distribution can be seen on
Figure 9. While an observer might be able to define side lunge based on the
observed angle combined with subtle behavioural cues, it remains impossible
for a model to learn meaningful binary distinctions in a monomodal
distribution.
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Figure 9. Distribution of lunge angles in rising events with kernel density estimation.
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The main author of the aforementioned study on automating the detection
of abnormal lunge, later made the statement “ethograms should be machine-
learnable” (Brouwers et al., 2023). The system presented in this thesis
applies this rationale, in the sense that we attempted to extract insights from
the continuous data, without forcing labels. In that regard, we benefit from
the high biomechanical interpretability of 3D pose estimation; if the cow
lunges at an angle of, say, 153°, this is directly computable from the relative
position of anatomical structures.

We mentioned earlier that the way the results were presented, reflected a
certain normative stance, where improvements in welfare were sought “on
average”. Benchmarking and practical assessment methods are necessary for
binding welfare regulations (Broom, 2017). Focusing on averages is a more
robust method than taking, for example, the “worst-off” individuals, which
might be subject to temporary ailments. These assessments are conducted by
occasional inspections. With interest to sensor-based monitoring, we gain an
opportunity for continuous monitoring of specific indicators. Thereby, we
could get a more comprehensive timeline as to how each individual is faring,
and if there are consistent clusters with impaired welfare.

6.3 Roadmap

6.3.1 More complex biomechanical modelling

The model used in this study was a simplified 2D, 2-rods 2-beams model.
In our observations, we see that, since the cow is lying on the side, there is a
lateral movement in the lift of the hind legs, suggesting that the model would
benefit from incorporating the 3 dimension. Introducing 3D joint rotations
and capturing the full range of limb angles is expected to reduce errors
generated by orthogonalization (Karashchuk et al., 2025). Differences
between net static vertical forces and gravity show that the assumptions were
imperfect.

In future developments, I hope to implement both 3 dimensions, and the
reaction forces at the joints along the limbs. The existing set of keypoints
were selected through consultation with experts in biomechanics, and
correspond to true landmarks solicitated in posture transitions, providing a
strong foundation for more complex modelling. This model would allow to
understand how reaction forces propagate through the limb depending on
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joint angles. The introduction of supplementary articulations in the model (at
the stifle and tarsi for example) would also increase the unknowns and
address the current over-constraint.

By measuring the ground reaction forces (using loading cells placed
under the hooves for example), we could produce a ground truth regarding
weight distribution. We could “reverse engineer” the torque in each joint
producing the observed trajectories (Ozdil et al., 2025) and forces.
Ultimately, this would allow a robust assessment of force propagation, and
understanding of the constraints that the that the animal is able to sustain
(Karashchuk et al., 2025). This would in turn be used to assess cubicles using
pose estimation in 3D and force modelling, looking not only at the
displacement of the centre of mass, but also the constraints placed on the
joints, which could have a link with skin lesions.

6.3.2 Continuous monitoring with sensor fusion

Pose estimation in 3D applied to animals is a nascent field. The majority of
the work focuses on technological development with testing on
straightforward classification tasks like lying down versus standing
(Antognoli et al., 2025). With this thesis, we contribute to developing the
field one step further towards practical outcomes to improve the conditions
of animals. Firstly, by proposing a data management and event detection
framework that extracts information on data generated in near-real-time,
getting closer to practical implementations. This framework is adapted to
variations in the quality of the detections, although it does suffer from some
false negative detections and limited sensitivity to missing detections.
Secondly, by using the technology to generate meaningful information on
the animal’s comfort for behaviours where visual observations suffered with
limitations in terms of scalability and quantifiability.

6.3.3 Expansion to other behaviours

The project set out to explore the place of multi-view pose estimation for
welfare monitoring. Rising and lying down behaviours were one possible use
case. Welfare assessment tools have tended to draw on a tradition inspired
by the five freedoms in which the emphasis is on avoiding suffering (Broom,
2011). Increased attention has been brought to positive welfare (Rault et al.,
2025), and on the need to develop technology in line with a multi-
dimensional understanding of welfare (Foris et al., 2025). Behaviours
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indicative of positive welfare state such as social interactions or play are
seldom used, and the difficulty in catching their occurrence might be one of
the reasons. If we conceive sufficiently specific algorithms built on top of
computer vision, or even of several sensor streams, we could catch these
behaviours as they occur. In turn, the creation of longitudinal datasets from
continuous monitoring can uncover patterns of occurrence, understanding
the conditions under which these behaviours are displayed, and increase our
knowledge of how they map to welfare.

One candidate behaviour in cattle is position of the ears. An observation
study has linked different ear positions to feeding, brushing or queuing (D.
De Oliveira & Keeling, 2018). Experimental results link ear position to
alertness, stressors, and to positive experiences (Battini et al., 2019). Ear
positioning remains contextual and ambiguous (Keeling et al., 2021), but
continuous monitoring could support the validation of reliable indicators
(Foris et al., 2025).

A different behaviour, likely inducive of positive states is brushing. Using
the 2D poses from separate cameras from the multi-camera system, we were
able to detect brushing bouts and identify which body segment a cow was
brushing (Hogberg et al., 2025). In turn, the objective is to develop a
continuous ground truth, where we can link together the expression of
specific behaviours (like brushing at the withers) and other experiences.
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7. General conclusion

>

Over half of all rising bouts, and over a quarter of lying down bouts
in rigid cubicles were found to be indicative of compromised
comfort, according to the thresholds found in existing literature. This
highlights both the risks associated with cubicles, and specifically
for this thesis, the ability for pose estimation in 3D to detect posture
transitions and evaluate adverse welfare outcomes, at individual and
at group levels.

Flexible straps provide cows with a greater movement amplitude at
the head lunge to get up, and potentially when lying down. The
magnitude difference in lying down head displacement was
comparable to that found in open packs.

By monitoring each individual, we can tailor the assessment of
specific welfare parameters to the variability and motion patterns of
the individual rather than the herd average. Individuals with lower
motion amplitudes disproportionately increased their rising motion
highlighting how 3D pose could capture how the intervention can
adapt to variability in the herd to “level the playing field”.

Features extracted from 3D poses estimation measure both the time
and space dimension of rising bouts from which we can derive
kinematic indicators, at high frequency. Using this technology
provided novel quantitative information on the “bob room” and
lunge angle, which we could not obtain with visual assessment yet
is crucial to designing more comfortable cubicles.
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Popular science summary

How comfortable are cow when they go and lie down in modern dairy barns?
The answer varies between farms but usually not as comfortable as they
could be. Unlike pigs, cows do not defecate in specific “toilet areas” but
rather wherever they are when they need to. Cows are also sensitive to udder
infections that can be caused by contact with faeces. Do you see where this
is going? If cows defecate on their bedding, there is a risk that they lie down
in it and get infected. To prevent that, cows’ beds are delimited by cubicles;
a rectangle made of metal bars on three sides that positions the cow with its
rear over an alley, where an automatic scraper will remove the faeces. The
problem with these metal bars, is that they restrict cows’ movements when
getting up and lying down. You see, cows are heavy, so getting up requires
a lot of effort. To help, they thrust their head forward, which puts less weight
on the hind limbs, facilitating the lift. If there is a metal bar in the way of the
head... bonk! This isn’t a nice feeling. Instead of metal bars, some farms
have been experimenting with ratchet straps that offer a cushioning if the
cow pushes against them. The results are promising, but how do we offer
systematic scientific evidence that they indeed improve cows’ ability to get
up and lie down. To answer this, we teamed up with Sony (yes, the ones
behind the PlayStation). With their cutting-edge technology, we could
automatically detect the position of cows in cubicles, and track the motion
of their heads, limbs, and back with centimetre accuracy. Cows, and specific
parts of their body were detected automatically on the frames of
synchronized cameras. Then, the location of these body parts was
triangulated to produce a position in 3D. Using this, we could accurately
track how much cows moved in regular cubicles and cubicles with flexible
straps. We found that cows had greater movement amplitudes in flexible
cubicles, and even estimated the force borne on the rear limbs. The results
were not straightforward but generally point towards the fact that cubicles
with flexible elements are indeed more comfortable for getting up and lying
down, and accommodate for a greater diversity of cows.
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Popularvetenskaplig sammanfattning

Hur bekviama ar kor nér de lagger sig i moderna mjolkstallar? Svaret varierar
mellan gardar, men vanligtvis ar det inte s& bekvimt som det kunde vara. Till
skillnad fran grisar gor kor inte sina behov pa specifika “toalettplatser”, utan
diar de befinner sig nidr behovet uppstir. Kor ar ocksd kénsliga for
juverinfektioner, som kan orsakas av kontakt med avforing. Forstar du vart
detta leder? Om korna gor sina behov pa sin strobadd finns det en risk att de
lagger sig i det och blir infekterade. For att forhindra detta avgrinsas kornas
baddar av bas, en rektangel gjord av metallstdnger pa tre sidor som placerar
kon med bakdelen &ver en gang dir en automatisk skrapa tar bort avforingen.
Problemet med dessa metallstanger ar att de begriansar kornas rorelser néir de
reser sig och ldgger sig. Kor dr tunga, s& det krdver mycket kraft att resa sig.
For att underldtta detta skjuter de huvudet framat, vilket minskar
belastningen pa bakbenen och underlittar lyftet. Om det finns en metallstang
i vidgen for huvudet... bonk! Det &r ingen trevlig kénsla. Istéllet for
metallstanger har vissa gardar experimenterat med spannband, som ger lite
mer flexibilitet om kon trycker mot dem. Resultaten ar lovande, men hur kan
vi systematiskt bevisa att de verkligen forbéttrar kornas forméga att resa sig
och lagga sig? For att gora detta samarbetade vi med Sony (ja, de som ligger
bakom PlayStation). Med deras banbrytande teknik kunde vi automatiskt
detektera kornas position i bés och spéra rorelserna i deras huvuden, ben och
rygg med centimeterprecision. Korna och specifika delar av deras kroppar
detekterades automatiskt pa synkroniserade kameror. Darefter triangulerades
dessa kroppsdelars position for att skapa en position i 3D. Med hjilp av detta
kunde vi noggrant spara hur mycket korna rorde sig i vanliga bas och bés
med flexibla spannband. Vi fann att korna hade storre rorelseamplituder i
flexibla bas och kunde till och med uppskatta kraften som belastade
bakbenen. Resultaten var inte entydiga, men pekar generellt pa att bas med
flexibla element dr bekvamare for att resa sig och ldgga sig och passar en
storre méngfald av kor.
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ABSTRACT

Freestall comfort is reflected in various indicators,
including the ability for dairy cattle to display unhin-
dered posture transition movements in the cubicles. To
ensure farm animal welfare, it is instrumental for the
farm management to be able to continuously monitor oc-
currences of abnormal motions. Advances in computer
vision have enabled accurate kinematic measurements
in several fields, such as human, equine, and bovine
biomechanics. An important step upstream to measuring
displacement during posture transitions is determining
that the behavior is accurately detected. In this study,
we propose a framework for detecting lying-to-standing
posture transitions from 3-dimensional (3D) pose estima-
tion data. A multiview computer vision system recorded
posture transitions between December 2021 and April
2022 in a Swedish stall housing 183 individual cows. The
output data consisted of the 3D coordinates of specific
anatomical landmarks. The sensitivity of posture transi-
tion detection was 88.2%, and precision reached 99.5%.
In analyzing those transition movements, breakpoints de-
tected the timestamp of onset of the rising motion, which
was compared with that annotated by observers. Agree-
ment between observers, measured by intraclass correla-
tion, was 0.85 between 3 human observers and 0.81 when
adding the automated detection. The intra-observer mean
absolute difference in annotated timestamps ranged from
0.4 sto 0.7 s. The mean absolute difference between each
observer and the automated detection ranged from 1.0 s
to 1.3 s. We found a significant difference in annotated
timestamps between all observer pairs, but not between
the observers and the automated detection, leading to the
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conclusion that the automated detection does not intro-
duce a distinct bias. We conclude that the model is able
to accurately detect the phenomenon of interest and that
it is equitable to an observer.

Key words: computer vision, animal welfare assessment,
freestall cubicle, pose estimation

INTRODUCTION

All cubicles in a dairy barn are usually identical, but
a natural variability exists both in animal size relative to
the cubicle (Dirksen et al., 2020) and in individual motion
patterns and locomotor activity (Shepley et al., 2020). A
factor of stall comfort, which affects lesion prevalence
and lying time, is the ease with which a cow is able to get
up and down in the cubicle (Zambelis et al., 2019). Ease
of movement during posture transition was highlighted
as an evaluation criteria for stall quality in relation to
cow comfort by Lidfors (1989), who noted that cows in
cubicles were more regularly seen performing abnormal
motions (such as sideways lunging or horse-like rising)
than those on pasture. Ceballos et al. (2004) analyzed
the kinematics of posture transitions and found that cows
used less longitudinal space when rising in a cubicle than
on an open pack. Given the evidence for the link between
restrictive movements and signs of reduced welfare
(Beaver et al., 2021), the quality of posture transitions is
included as an indicator in welfare assessment schemes
such as Welfare Quality (Blokhuis et al., 2013).

Assessing ease of posture transition per se, rather
than through indirect signs of reduced comfort such as
hock lesions (Dirksen et al., 2020) or reduced lying time
(Shewbridge Carter et al., 2021), is more challenging,
and practical objective methods are needed (Brouwers et
al., 2023). Visual observations noting the occurrence of
abnormal behaviors are commonplace in farm manage-
ment and welfare assessment schemes. Alternatively,

The list of standard abbreviations for JDS is available at adsa.org/jds-abbreviations-24. Nonstandard abbreviations are available in the Notes.
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ease of movement can be assessed quantitatively by
measuring the displacement of anatomical landmarks
throughout bouts of posture transition (Ceballos et al.,
2004). Drawbacks exist for both approaches. The visual
method relies on time-consuming, sporadic human obser-
vations. Although Zambelis et al. (2019) found excellent
agreement between observers (kappa of 0.93 for getting-
up movement ease), a degree of subjectivity always
exists in visual scoring of animal movements (Chaplin
and Munksgaard, 2001; Vasseur, 2017). The acquisition
of 3-dimensional (3D) kinematics data by Ceballos et
al. (2004) relied on fitting motion-capture reflectors on
cows, requiring lengthy preparation and exposure of the
equipment to damage. These limitations might be a rea-
son behind the low sample size (n = 5 cows with at least
2 bouts per cow) in the latter study.

Considering the variability in cow sizes and kinematic
profiles and the need for objective methods to assess ease
of movement, we propose a framework to detect lying-
to-standing (LTS) posture transitions from 3D pose
estimation data. As a step in validating the potential of
this method, the aim of this study was to measure the
performance of a feature extractor in detecting the onset
of LTS posture transitions compared with the human eye.

MATERIALS AND METHODS

The study presented here was approved by the ethical
committee Uppsala djurfoérsoksetiska ndmnd under ap-
proval 5.8.18-13069/2021. The 3 Rs in animal research
were considered when using existing video material,
previously and noninvasively collected.

Location and Animals

Recordings were obtained at the Swedish Livestock
Research Centre’s dairy barn (Uppsala, Sweden). The
herd comprises Swedish Holstein and Swedish Red
cattle housed indoors with access to pasture 120 d a
year, between May and September. Video was recorded
on 30 separate days (midnight to midnight), sampled for
convenience, between December 8, 2021, and April 28,
2022. Because the barn is lit at all times, recordings were
obtained at all times of day. An average of 51 cows were
present simultaneously in the pen, with individuals being
added and removed throughout, for a total of 183 differ-
ent individuals having visited the pen during the study
period. A total of 7 RGB cameras (G3 Bullet, Ubiquiti)
were placed around an area approximately one-quarter of
the pen, located closest to the sorting gate to the milking
robot, and oriented toward the rows of cubicles so that all
cubicles in the study ward, including forward lunge room
defined as the 60 cm beyond the head rail, were visible
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Figure 1. Schematic of the portion of the stall where recordings were
obtained. The gray shaded areas are passageways unavailable to cows.
Thick borders mark the stall boundaries, and dashed lines indicate a
continuing area that is accessible to the cows beyond that shown here.
Cameras are represented by red circles, placed between 2.8 and 3.6 m
high. The parallel rectangles are cubicles; data were collected in cubicles
marked with asterisks. The arrows indicate movement directions the
cows are able to follow in the passageways.

by at least 2 cameras. The study ward comprised the 12
cubicles (CC1800 cubicle divider with rigid head bar,
Delaval) for which video coverage was optimal, out of
66 total in the pen. The cameras were installed on fixed
metal rails, part of the barn’s infrastructure, between 2.8
and 3.6 m high. The locations of each camera, as well as
the stall layout, are shown in Figure 1.

Cows had access to feeding troughs with ad-libitum
mixed feed as well as 2 rotary brushes, and concentrate
dispensed both at the milking robot and at concentrate
dispensers. Passage through the milking robot’s sorting
gate was compulsory for access to the feed. Milking was
done by one milking robot (VMS V300, Delaval), which
cows had access to on a voluntary basis. Cows were
brought to the robot by farm staff if they had not been
milked in over 12 h.

Key Point Acquisition in 3 Dimensions

This study used 3D pose estimation software (Sony
multi-camera system, Sony Nordic). The software es-
timates the 3D pose by finding cross-view correspon-
dences across inferred 2-dimensional (2D) poses of the
same object on synchronized views. It then creates a
track for each object based on spatial continuity in the
3D location. The initial synchronization is achieved by
reading the timestamp of each frame and relating the first
full-second transition for a common timestamp across all
video recordings as the initial synchronized frame. The
initial frame synchronization is provided as an input to
the multicamera system. Synchronization is maintained
using the estimated time of arrival of each frame in the
processing buffer.
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Figure 2. The 2D pose estimation and 3D fusion of 2 cows. The 2D results are displayed at the top, showing the synchronized frames from
cameras 0 to 6, onto which predicted bounding boxes and key points are overlaid. The rest of the scene shows the projection of 2 cows from key
points in 3D. Cameras 4 and 6 are represented as magenta and gray cuboids, respectively, in the 3D representation, in their spatial position relative
to each other and to the cows. A projection of the frames from cameras 4 and 6 (identical to those in the 2D images above) is shown in front of the
camera’s 3D representation. The 5 other camera representations are not displayed from this angle, and camera 4 occludes the view from camera 0
because of the choice of angle. Only 4 of the key points shown in this figure were used in the study.

The 2D object detector and pose estimator use con-
volutional neural networks to detect cows and specific
anatomical landmarks on RGB images, in the form of
a bounding box and key points, respectively. The land-
marks used in this study were limited to the center-top of
the poll, the highest point at the withers, the spine at the
13th thoracic vertebra, and the top of the sacrum taken
immediately behind the uppermost part of the ilium (re-
ferred to respectively as head, withers, t13, and sacrum).

The output data consists of one key point for each ana-
tomical landmark with X, Y, and Z coordinates for each
object and given frame. Figure 2 shows the estimated
3D position of the key points, linked to create a visual
structure, for 2 objects during an LTS transition, as well
as the video frames used to generate them.

Detection of Posture Transitions

The recordings were sampled visually by one observer
with the aim of finding 1,000 sequences containing LTS
transitions. When a cow was observed fully getting up
from a lying positions, the timestamp was annotated, and
a video sequence corresponding to a window of + 15 s
around the annotated timestamp was extracted. In the fi-
nal data set, an arbitrary 979 sequences were eventually
identified. These sequences were then processed with the
3D pose estimation software.

Journal of Dairy Science Vol. 107 No. 9, 2024

When the cow rises, the line formed by linking the
sacrum and t13 key points increases its angle compared
with the horizontal plane, as the cow’s back is at an
angle with the ground. By calculating the difference
between the sacrum height and withers height, and fol-
lowing this difference through time, we identified peaks
corresponding to LTS motions. When a peak above 0.4
(in the coordinates’ arbitrary spatial reference system)
was detected, the frame was considered to be within a
potential rising motion. The mean withers Z position in
the 120 frames located 330 frames after the peak was
then compared with the mean withers Z position in the
last 120 frames of the sequence. If the ratio of the height
difference after and before the peak was higher than
140%, the track was classified as an LTS motion. Figure
3 illustrates this by showing the vertical position of the
key points. At 16 s, there is an important difference in
the heights of the withers (orange) and sacrum (green).
This difference points toward a potential rising bout.
Calculating the difference in withers position between
the 5-s and 27-s marks, we determine that the animal has
transitioned from a low, lying posture to a high, standing
posture.

In these 979 sequences, this method initially detected
493 LTS motions for which the cow was tracked at each
consecutive frame. For the remainder (486 sequences),
the tracks were interrupted for several frames and the mo-
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Figure 3. The coordinates of the anatomical landmarks of dairy
cows were tracked with 3D pose estimation. This figure shows the Z
coordinate (height) of a cow’s head, withers, and sacrum throughout a
lying-to-standing motion. Initially, the low variability on the vertical
axis indicates that the cow is lying still. At about 11 s, the withers (or-
ange) rise gently as the cow sits on its carps, followed by lunging with
vertical bobbing of the head (blue) from 12 to 17 s. The sacrum (green)
rises rapidly soon after, describing a sigmoid. There is a pause on the
carps, with the sacrum already up, from 16 to 20 s. The cow has risen
by the 22-s mark. The vertical dotted line shows the onset of the posture
transition detected using linearly penalized segmentation. This example
was selected for clarity.

tion was captured in several separate tracks. Detections
were stitched together if they fit the following criteria:

e The tracks are found in the same 30-s sequence.

e The second track starts after the first track vanishes,
and within an interval of 30 frames.

e The Euclidian distance in the 3D pose estimator’s
coordinate system between the last point in the van-
ishing track and the first point of the starting one is
lower than 0.2.

No limit was imposed on the number of tracks appended
together to form one single track, as long as the above
conditions were fulfilled. The resulting stitched track
was kept if it contained more than 700 frames, and dis-
carded otherwise.

Using this method, an additional 370 rising sequences
were detected by applying the height difference rule to the
stitched tracks, giving a total of 863 predicted positives.
For the remaining 116 sequences, either the animal was
not detected by the pose estimation software, the posture
transition detector failed to identify the occurrence, or
the motion was split between different tracks that were
not relatable due to noise or an interruption across more
than 30 frames. Visual inspection of the predicted LTS
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motions revealed 4 false positives. In addition, 22 true
positives were discarded from the data set because the
posture transition was initiated before the start of the
video snippet and thus not captured in its entirety.

Signal Processing

Each series of raw coordinates was processed to at-
tenuate noise. A low pass filter with a cutoff frequency
of 10 Hz was applied to remove high-frequency noise
resulting from key point jittering. This cutoff was cho-
sen based on the recommendations by Hamaéléinen et al.
(2011) and Riaboff et al. (2020) for noise removal on
animal activity data. The filter was applied separately to
each key point and the respective time series of its X, Y,
and Z coordinates. The filter was implemented in Python
3.9 (Python Software Foundation) using the function
“butter” from the SciPy package (Virtanen et al., 2020).
Figure 3 illustrates the filtered Z coordinates time series
during a rising sequence.

From the processed signal, consisting of the coordi-
nates of each key point in 3 dimensions, we detected the
timestamp at which the cow starts rising. Considering
solely the kinematic features available through the 4 key
points, this is most clearly reflected by the change in the
position of the withers, as rising on the elbows will cause
the withers to rise upward slightly, which is visible by
an increase in the withers’ Z (vertical) coordinate. When
doing so, the cow aligns its back along the length of the
cubicle, which is reflected in a change of the withers’ Y
coordinate (axis perpendicular to the cubicle’s length).
Although, from a behavior perspective, there is more to
the LTS transition than solely the withers’ movement, the
system was blind to all but the position of 4 anatomical
landmarks. The withers were chosen for the stability of
the key-point (low jittering) and for their consistent mo-
tion pattern in the LTS transition across sequences. To
detect the exact onset of rising motions, we used linearly
penalized segmentation (Pelt), implemented the Python
library “Ruptures” (Truong et al., 2020). Pelt was applied
to the bivariate series of the Y (lateral, perpendicular to
the cubicles) and Z (height) positions of the withers to
identify breakpoints in the time series. No restrictions
were set on the number of breakpoints to be detected. A
baseline height (Z coordinate) was calculated for each
sequence as the median withers height in the first 30
frames of the sequence. The break points detected by Pelt
were iterated through. If the median withers height in the
30 frames following the breakpoint was higher than the
baseline, the breakpoint was then considered to be the
start of the rising motion. If not, we iterated to the next
breakpoint and applied the same logic.
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Data processing, feature extraction, and analyses were
carried out in Python 3.9.3 using the packages NumPy
1.21.5 (Harris et al., 2020) and SciPy 1.9.1 (Virtanen et
al., 2020).

Validation Experiment

To evaluate the performance of the tool in detecting the
occurrence of LTS bouts, we compared the timestamps
automatically detected to those annotated by 3 human
observers, considered as the gold standard for behavioral
observations. Observers were provided with the follow-
ing definition: “The cow is lying down and rises on its
breastbone and elbows, which causes the withers to rise
visibly above the rest of the back.” This definition is based
on that of Lidfors (1989), but it adds the position of the
withers as an indicator. The animals were seen to initiate
the movement by centering their elbows under the body,
this in turn causes the withers to rise slightly. This mo-
tion of the withers was used to determine the exact onset
of the rising motion. The description was accompanied
by illustrations taken from Schnitzer (1971) and Cermak
(1988), as well as an ethogram describing the sequence
of movements in the LTS transition, in which the move-
ment to label was explicitly identified. This ethogram
described the stages of the posture transition based on
Lidfors (1989) and on Schnitzer (1971). Observers all
received the same training, in which the ethogram was
explained and examples were showcased; they reviewed
5 videos of different cows rising and agreed on the exact
frame to label as the onset of the rising motion. These
5 videos were taken from the original data set and used
solely for training the observers.

The validation data set was sampled randomly from the
471 complete LTS sequences captured in a single track.
In total, 60 unique LTS sequences were annotated by at
least 1 observer. This number was determined a priori,
as no prior data were available on observer variability
in posture transition detection. These sequences were
the original 30 s synchronized video snips from which
the key points were detected. The video was available
to the observers from all 7 cameras used for key point
detection, plus one additional ceiling mounted camera.
Observers were free to choose the camera offering the
best view of the animal performing the bout. Every ob-
server was provided with a total of 55 randomly selected
video clips. Of these 55 sequences, 30 were common to
all observers and 10 were unique to each observer (40
different sequences per observer). The remaining 15
sequences were randomly resampled from the prior 40
and re-annotated by the same observer, to measure intra-
observer reliability. All sequences were blinded, with a
different label each time the sequence appeared.
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Statistical Analysis

The mean absolute difference (MAD) in annotate time-
stamp was calculated between each observer to quantify

15
intra-observer reliability as MAD(i) = % Z ‘As , where
s;=1

i=1,2,0r3 (observers)and A =1t ; —t ,, witht ;and
t,, » being the time stamp of the sth sequence provided at

first and second assessment occasion, respectively, by
observer i. In addition, the inter-rater MAD was calcu-

1

MAD (27]) = %Z} Asy(z,])

As,(z,]):‘ ti — s [,Vi=j=1,23, with ¢ ; being the time

stamp of the sth common sequence by ith observer. Mean
15

differences (MD), as, for example, MD (i) = % >A

8;=1

were calculated, and the normality of A, and AS’( ) was

lated as where

i

ij
assessed visually on a g-q plot. Subscripts i and j refer to
2 distinct observers: i =1, 2, or 3; j =2 or 3. The MD and
MAD indicate interobserver systematic bias and disper-
sion, respectively.

The following mixed effects models were fitted using
statsmodels.formula.api.mixedlm (Seabold and Perktold,
2010) in Python 3.9 to evaluate the observer effect and
intraclass correlation (ICC) with or without the auto-
mated detection:

toir =B+ B (1 =2)+ Bl (i = 3) +u, +¢,,,, [1]

toir =B+ BI(i =2)+ Byl (i = 3)+ BM +u, + ¢,
[2]

where f is the (fixed) intercept, u, ~ N(O,ai) is a ran-
dom sequence effect, s = 1 to 40 is the sequence indica-
tor, £, and S, are fixed observer effects, f; is a fixed ef-
fect corresponding to the automated detection taken as an
additional observer (referred to as the “model” or M),
and ¢, ~ N(O,af) is a (random) error term. The se-

8,0,
quence number is indicated by the subscript s, /; are the
observers, and 7 = 1, 2 is the index for repeated sequenc-
es annotated 1 to 2 times by the same observer. The ob-
server effects were tested using ANOVA. The ICC as a
measure of interobserver agreement were calculated as

2
10C = LQ. A post hoc pairwise #-test with Bonfer-

03 + o,
roni correction for 6 tests was then computed to test the
pairwise differences between observers. The annotated
timestamps were not normalized because a 1 s difference

between observers, for example, has the same practical
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meaning in this context regardless of whether the annota-
tion is done at the 4-s mark or the 12-s mark.

The performance of the algorithm was assessed in the
same way, by treating the algorithm as an additional ob-
server and seeing if it differed from the human observers.
The differences were calculated between the algorithms’
detection (denoted 7*) and the observer annotation,
Bland-Altman plots were prepared for each observer pair
(TZ,T]) = ({tsyi},{tsvj}), and also comparing 7" with 7",
with a view to checking for the absence of a pattern and
points beyond 1.96 standard deviations. Lastly, MAD(H,
M), and MD(H, M) were calculated.

RESULTS

A total of 836 rising bouts were detected out of 979
visually selected sequences equating to a sensitivity of
88.5% or a false negative rate of 11.5%. Four sequences
were wrongly classified as rising motions giving a preci-
sion of 99.5% or false positive rate of 0.5%.

Model 1, comparing only human observers, gave ICC
=0.85. We found a significant observer effect in predict-
ing the annotated timestamps of LTS onset (P < 0.001)
according to the ANOVA. When the model 2 was fitted to
assess performance of the prediction, the ICC decreased
to 0.81, remaining at a similarly satisfactory level of
agreement. However, we found no significant difference
between the predicted timestamp (“model”) and each ob-
server’s annotations according to the post hoc pairwise
t-test with Bonferroni correction of the type-1 error at a
= 0.0083. We identified a significant difference between
all observer pairs: P (7},7,) = 0.0016; P (T},T5) < 0.001;
P (T,,T;) =0.0018.

Mean absolute differences T, are summarized in
Table 1. These values indicate good interobserver agree-
ment and good agreement between humans and machine.
The magnitude of T is identical to that of T,*"¥,
meaning that 7" could be used in further research, as the
model does not deviate from the observers more than
they do from one another. Figure 5 shows the timestamp
annotated by each observer (including the model and re-
peat sequences) for each sequence.

Intra-observer reliability was assessed using the mean
absolute difference in seconds, and consistency using the

Table 1. Interobserver agreement (MAD + o) between the annotations
of all pairs of observers, including the model; pairs between observers
calculate the MAD on 30 sequences, whereas pairs with the model
include an additional 10 annotations, unique to each observer

Item Observer 1 Observer 2 Observer 3
Model 1.02+1.41 1.00 + 1.70 1.30 £ 1.45
Observer 1 1.10+1.26 1.67+1.72
Observer 2 0.89+1.01
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standard deviation (o). Observer 1 had an MAD of 0.55 +
0.88 s (1 + 6). Observer 2 had an MAD of 0.68 + 1.47 s,
and observer 3 had an MAD of 0.36 + 0.48 s. The pooled
standard error was 0.27 s. The standard deviation is
preferred here to the standard error to quantify the vari-
ability in the differences between and within observers
in annotated timestamps, independently of the number of
samples. These results indicate very good intra-observer
reliability (under 1 s on average).

Finally, we compared the annotations to the automated
detections visually using the Bland-Altman plot in Figure
4. The upper left plot shows most points to be centered
around 0, without signs of consistent bias from the model.
More importantly, the spread was similar when compar-
ing observers to the algorithm and observers together.

DISCUSSION

The ICC values show a good agreement between auto-
mated model detection and human observers in detecting
the onset of cows’ rising motions, according to previous
research on the use of ICC as a reliability metric in animal
motion scoring (Kaler et al., 2009). The ANOVA dem-
onstrated a significant observer effect, strengthening the
claim that observations of cows’ movements are prone to
individual variations. The post hoc test showed a signifi-
cant difference in annotated timestamps between all pairs
of observers, but the difference between the model and
the observers was not significant. We conclude from this
that the model’s detection lies somewhere in between the
observers’ annotations. The MD of —0.06 s between ob-
servers and the model (Figure 4) and the proximity of the
points to 0 show that no systematic bias was introduced
by the automated detection. This latter finding is also
supported by Figure 5, showing the timestamp annotated
by each observer at each sequence, in which there is no
evidence of the detection being consistently divergent
from human annotations, as the triangular points (model)
are not systematically above or below the circular ones
(observers). We also see that the predictions do not tend
to be further from the annotations than the annotations
are from each other.

This agreement is a crucial step in validating the capa-
bility of 3D computer vision to accurately identify this
specific kinematic feature in bovine behavior. Notably,
the findings suggest that the model’s performance does
not considerably differ from human observers when
compared with the variability among human observers.
This suggests that the model does not introduce a dis-
tinct source of error in the detection process. Although
discrepancies exist between the model and human ob-
servations, the magnitude of these divergences is not
meaningful in comparison to the overall duration of the
LTS transition.
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Figure 4. Bland-Altman plots comparing the timestamp of onset of cows’ rising motions annotated by human observers to that predicted by the
model. The 3D pose estimation provided the coordinates of cows” anatomical landmarks. Detecting breakpoints in the key point motion enabled

detection of the onset of rising. Diff = difference. All units in seconds.

However, some limitations are important to mention.
One such limitation is the likely over-representation of
specific individuals. The animals were filmed in a lim-
ited area of the barn, and we can expect a degree of site
fidelity from the animal (Vazquez Diosdado et al., 2018),
leading to some individuals being over-represented. Be-
cause there was no individual detection, correcting for
individuals was not possible. It is also unlikely that all
recorded bouts were spontaneous; some may have been
triggered by human intervention or by the presence of
agonistic individuals. Bout motivation could introduce
changes in kinematic patterns and velocity and poten-
tially affect the accuracy of the automated detection.

Limitations also exist regarding external validity, as
the study was conducted in a single cubicle design, under
a limited period of time, and using manually selected
video sequences. This manual selection work upstream
of the automated processing is an important limitation
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that drove the high sensitivity and specificity. The same
system should be tested on continuous recordings. To
counterbalance this limitation, however, the posture tran-
sition is an evident behavior, with a large difference in
key point height before and after, which would easily be
captured even with noisy key points by simply following
the height of the cow’s back.

The scope of this study was determined retrospec-
tively; the decision to compare the automated detection
to manual annotations was made after collecting the
data and visually identifying LTS motions. The inclu-
sion criteria were based on data quality and not experi-
mental considerations. The exclusion of 22 longer bouts
discarded important information with implications for
the most vulnerable individuals when it comes to stall
comfort, as a long pause during the posture transition is
associated with adverse welfare outcomes (Zambelis et
al., 2019)
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The study’s gold standard was human observation,
which is known to be variable across observers due to
individual subjectivity. Although a bias is incorporated
in the model, this bias is consistent across observations.
The accuracy of the model could be improved by both
altering the ethograms to make them more “machine-
learnable” (Brouwers et al., 2023) and by diversifying
the data. Importantly, although human observations are
biased, humans are rarely completely incorrect, espe-
cially when the phenomenon at hand, such as posture
transition, is evident. Algorithms on the other hand
sometimes produce unexpected results, and monitor-
ing and understanding their occurrence is essential for
practical application. For instance, a difference of 6 s
is found between the model and observer 2 in sequence
31 (Figure 5). Upon visual inspection of this sequence,
the algorithm picked up on the onset of the adjustment
movements, which were particularly lengthy in this se-
quence, making up the initial part of the posture transi-
tion. The second observer, on the other hand, noted the
moment the fast rising motion occurred. This is not an
error of either method, but a misalignment in the inter-
pretation of the behavior. Referring to the description
of the behavior provided to the observers, and quoted
in the Materials and Methods section, the timestamp
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automatically detected is closer to the phenomenon of
interest.

Most significant for this research is that automated
detection via computer vision offers an objective meth-
od for detecting specific motions, which is desirable
for studies of behavior and motion patterns. Judging by
the advances in equine kinematic research, markerless
computer vision constitutes both a robust and practi-
cal data acquisition tool to measure the displacement
of anatomical landmarks, offering similar accuracy to
motion capture, albeit for specific motions (Lawin et
al., 2023). Reliably identifying the motion of interest is
only a step in the study of posture transition kinemat-
ics, which contain welfare indicators (Zambelis et al.,
2019), the measure of which can be automated (Brou-
wers et al., 2023). Future studies using this technol-
ogy aim at implementing individual recognition, which
could contribute to a pool of sensor data at individual
level. However, in the absence of individual identifica-
tion, this technology is still able to deliver meaningful
information either at herd or at cubicle level. The au-
tomated detection through 3D computer vision could,
after further validation, serve as a new gold standard
for the task of detecting LTS transitions (and other
movements), similar to how interpreting accelerometer
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data has become standard in behavior classification of
ruminants (Riaboff et al., 2022).

CONCLUSIONS

In summary, our results demonstrate good agreement
between human observations and automated detection
of cows’ rising motions. Notably, they indicate that the
model introduces no more bias than human observers.
This finding validates the use of multiview 3D pose
estimation for detecting the onset of rising motions in
bovine behavior, albeit in the conditions of a single farm.
Automating the task with computer vision presents an
opportunity to scale up bovine kinematic measurements
and behavior monitoring and apply objective methods to
further study.
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ABSTRACT
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The structure of cubicles can hinder cows’ movements when transitioning between postures, leading to atypical
motion patterns. Assessing posture transitions relies on visual observations. This study presents a framework for
complementing these assessments with kinematic measurements using 3D pose estimation. A total 809 rising and
791 lying down posture transitions were recorded over 12 cubicles by 7 synchronized cameras and processed
with 3D pose estimation locating the position of the poll, withers, T13 and sacrum. First, the displacement of the
keypoints was used to detect phases of the posture transitions. This detection was compared with visual ob-
servations of 200 recordings. The average mean absolute difference in detected timestamps between human and
machine across all phases was 0.5 s (average ¢ = 0.7) and was under 0.9 s for all phases. Second, indicators were
scored based on spatial use and duration, and their distribution compared to existing thresholds. We observed
that 59.9 % of rising bouts and 29.1 % of lying down bouts exceeded at least one threshold. Rising delay occurred
in 2.8 % of rising bouts and backwards crawling in 59.2 %. Lying down duration exceeded the threshold in 28.9
% of bouts, and rear limbs shifting duration in 8.3 %. Side lunge had a binary threshold which was not adapted to
continuous sensor data. Finally, we investigated the association between indicators and found distinct di-
mensions for head lunge and crawling. We conclude that 3D pose is useful to score posture transition indicators,
and that several indicators should be used together to capture distinct dimensions.

1. Introduction

frequency and comfort — is important to dairy cows, studies having
shown that cows will work to access resting spots [8]. Brouwers et al. [4]

Free stall cubicles are designed to encourage cows to lie down rather
than stand, and to defecate outside of the bed. Balancing design ele-
ments involves a trade-off at the expense of movement opportunities.
For instance, neck rails improve hygiene but increase the incidence of
abnormal movements [1]. The ability for cows to comfortably transition
between postures is an important parameter of cow comfort in stalls [2,
3]

The ability to perform unhindered posture transitions, such as get-
ting up and lying down, is recognized as a critical component of cow
welfare and resting [4,5]. Sufficient space and stable footing are needed
to perform these transitions smoothly [6]. It has been hypothesised that
the ability to comfortably transition between postures promotes the
occurrence of lying behaviour [7]. Adequate rest — in terms of duration,
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found that in cubicles with flexible dividers, which allow for a more
ample movements, cows lied down more frequently and that daily lying
duration was higher, suggesting that the ability to lie down without
obstruction promotes resting behaviour.

Comfortably transitioning between postures extends beyond phys-
ical health, these movements are linked with behavioural expressions of
comfort and well-being [5]. Cows that struggle with these transitions
may experience increased stress and discomfort, which can affect their
overall behaviour and productivity. Providing an environment that fa-
cilitates posture transitions can lead to increased resting, and to
improved welfare outcomes [9,10]. The quality of posture transition
movements is used as a welfare assessment indicator, reflecting the
comfort offered by the stall [6,11,12].
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In practice, the assessment of posture transition comfort is typically
performed visually by a trained assessor, scoring indicators associated
with adverse welfare outcomes, such as bumping the head on the cubicle
bars [12]. The Welfare Quality assessment framework contains 2 criteria
which are the duration of standing-to-lying (STL) posture transitions and
collisions with equipment [11]. The Swedish framework Fréga Kon
(Vaxa, Stockholm, Sweden), which is meant as a practical on-farm
assessment of welfare through animal-based measures, assesses the
quality of lying-to-standing (LTS). Visual evaluation has limitations,
mainly low observation frequency, the inability to re-evaluate when
scoring live, and the need for the observer to note various behaviours
which may occur simultaneously. Observer disagreement does not seem
to be a major risk however; for instance Zambelis et al. [12] reported a
Kappa of 0.93 at its lowest when assessing abnormal posture transition
indicators. The assessment frameworks presented earlier rely on few or
single quantitative indicators for each posture transition.

Precision livestock farming (PLF) technology offers an opportunity to
monitor posture transition movements continuously, simultaneously
and objectively, and to automatically detect abnormalities in posture
transitions.

Sensors have already been used to assess posture transitions. Motion
capture has been applied to measuring head lunge (the forward
displacement of the head) and showed that cows in open packs lunged
further when lying down by a mean of 6 cm while using the same total
longitudinal space [13]. Motion capture is a gold standard for kinematic
measurements of animals [14] but remains impractical in production
settings, which may explain the low sample size (n = 5) in the former
study [13]. Brouwers et al. [15] developed a machine learning model to
detect abnormal lunge movements from accelerometer data. They used
annotations by trained observers of the occurrence of abnormal lunges
as labels and tri-dimensional acceleration features as input. The accu-
racy of their model reached up to 74 %, with the class having the highest
accuracy being backwards crawling. This metric is encouraging but
needs refining for practical implementation. It is important to note that
this result is unlikely due to limitations in the model. Rather, the training
labels were annotated using ethograms developed for visual observa-
tions, in which the same behaviour class can be reflected by vastly
different motion patterns [15].

A possible technology to assess kinematic features during posture
transitions is pose estimation [16]. A widespread example of applica-
tions of pose estimation in detecting bovine kinematic abnormalities is
lameness assessment [17,18]. Pose estimation will track the displace-
ment of key anatomical features to quantify indicators of abnormal
locomotion [19]. Kinematic assessment with 2D pose estimation, as is
commonly done to assess lameness [19-21] relies on straight walks
along an assigned path, perpendicular to the camera’s line of sight [17].
Such setup with a fixed orientation of the camera is not feasible for
assessing posture transitions of several animals in a production setting.
The challenge is that the angle between a single camera’s field of view
and each stall varies with the stall location, distorting joint angles and
perspectives. Pose estimation fusion in 3D from multi-view computer
vision however is invariant to camera placement [22] and thus offers
more flexibility, when sensor placement is constrained by the existing
barn design. Importantly for practical application, pose estimation does
not rely on markers (unlike motion capture) and applies to all subjects in
the scene (all cows in the cubicles being filmed).

From the state-of-the art in visual assessment there are two chal-
lenges that sensor-based posture transition assessment could overcome;
the difficulty in scoring multiple indicators in a single event and the time
needed to assess regularly. We thus propose a method to identify the
phases of posture transitions using multi-view fusion of pose estimation
in 3D, and detect the occurrences of abnormalities.

The aim of the study was (i) to develop a method to detect successive
phases of cows’ posture transitions from 3D poses and score comfort
indicators during these phases, (ii) to validate the detection against the
human eye and assess its robustness to noisy data and (iii) to study the
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distribution and possible association of posture transition indicators. To
do so, we used a Sony multi-camera system (Sony Sweden, Lund, Swe-
den) to generate 3D poses of dairy cows in a free stall barn during both
posture transitions. Using the 3D pose, we detected the different phases
of the posture transitions using change-point detection and supervised
learning to then compare the detected timestamps to those annotated by
human observers. Then, we measured the duration of each phase as well
as kinematic features to identify bouts with indicators exceeding
thresholds for comfortable movements. Finally, we investigated whether
there existed an association between indicators.

2. Materials and methods

In this study, we use 3D pose to measure indicators of posture
transition quality. Here is a general overview: video sequences showing
posture transition bouts were recorded with synchronized cameras with
overlapping fields of view. The multi-camera system was calibrated to
determine intersecting lines of sight. The 3D pose of cows was inferred
from 2D poses estimated on synchronized frames across several cameras.
The displacement of anatomical features of cows was tracked
throughout bouts and the timestamp of specific phases was detected and
compared with manual annotations. Finally, kinematic indicators of
posture transition were measured and compared to existing thresholds.

2.1. Location and animals

2.1.1. Study area

Video recordings from 7 cameras (G3 Bullet, Ubiquiti) were collected
on 30 separate days between 2021 and 12-08 and 2022-04-28 at all
times of day and night. The cameras were placed around an area of a
free-stall barn covering 12 stalls (Cubicle divider cc1800 with rigid head
bar, Delaval International, Tumba, Sweden) located next the sorting
gate of the automatic milking system (VMS 300, DeLaval International,
Tumba, Sweden). The cameras were installed around the rows of stalls,
between 2.8 and 3.6 m high, and oriented towards the rows of cubicles
so that all cubicles in the study ward, including forward lunge room
defined as the 60 cm beyond the head rail, were visible by at least 2
cameras. All recordings were obtained at the Swedish Livestock
Research Centre’s dairy barn (Uppsala, Sweden).

2.1.2. Animals

The herd comprises Swedish Holstein and Swedish Red cattle housed
indoors during the study period but with pasture access between May
and September. On average, 51 lactating cows were present simulta-
neously in the pen, with individuals being added and removed
throughout, for a total of 183 different individuals having visited the pen
during the study period. The average parity of the animals at the start of
data collection was 2 with a mode of 1. Days since calving ranged from 6
to 447 with an average of 149. 7 animals were diagnosed with non-
reproductive health disorders during the study. Specifically, 3 cows
were treated for mastitis, 1 cow was identified with severe lameness, 1
cow with a hoof inflammation, and 2 cows were diagnosed with paresis.
Average individual body condition score as measured by the BCS camera
(BCS, DeLaval International, Tumba, Sweden) during the trial was 3.4 +
0.33 (u+o0).

Cows are milked robotically with voluntary access up to 12 h until
which they are brought to milking if they have not gone voluntarily.
Passage through the milking robot’s sorting gate is necessary to access
feed. Cows underwent claw health inspection and trimming every 6
months

2.2. 3D pose estimation
This study employs a synchronized multi-camera system (Sony

Sweden) with known intersecting lines of sight to reconstruct 3D poses
from 2D key-point estimates. Each pose comprises the coordinates of
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anatomical landmarks (head at the poll, highest point of the withers,
T13, and sacrum at the uppermost point of the ilium) in an arbitrary
coordinate system at a given timestamp. HRNET [23] is used to estimate
key-points in 2D for each frame. These poses are then fused to obtain 3D
key-points.

Frames are synchronized by reading the frame timestamp in the
metadata and using the first frame with a common full second transition
as frame 0. Synchronization is maintained throughout the recording of
up to 35 s by reading the frame order of arrival in the processing buffer
for each camera, recording at the same framerate. The 3D fusion of poses
is robust to misalignments of up to 0.5 s for movements corresponding to
the velocity of a human walking.

Intrinsic calibration parameters are determined using structure-
from-motion algorithm [24]. This step determines the cameras’ distor-
tion parameters and ensures alignment of all cameras’ origin and axes
with world coordinates [25]. Then, the system was extrinsically cali-
brated to determine intersecting lines of sight between cameras using
the technique described by Moliner et al. [26]. A single human is tracked
by the pose estimator through the area of interest (twelve cubicles and
they alley between them or a surface area of 7.5 x 6.4 m). A preliminary
3D pose of the human is determined by triangulating each unique
key-point across 2D poses. The system refines the calibration data
through an optimization process that minimizes a reprojection errors
function [26]. Reprojection error measures the difference between the
observed 2D key-points in the images and the projected 2D locations of
the 3D points calculated using the current calibration data. Pose quality
assesses the plausibility of the calculated poses based on expected ori-
entations and distances between key-points which have a defined range
based on biological constraints (relative position of anatomical
key-points to each other). The calibration parameters are then refined
iteratively to reduce the reprojection error [26]. The system is robust to
temporary occlusions and outliers by using temporal consistency checks.

The system outputs coordinates of the key-points in a 3D space for all
objects present in the scene, and associates each keypoint to an object,
differentiable by their track number consistent over frames, and a con-
fidence metric (average 2D confidence from HRNET estimation over all
2D poses used to generate the 3D pose). The number of objects is
determined by the number of unique key-points. To maintain tracking
consistency in assigning key-points to the correct object across time-
stamps, the system employs a combination of spatial-temporal conti-
nuity and trajectory analysis. Once key-points are identified in each
frame, the system tracks these points over time by assuming smooth and
continuous motion, thereby associating key-points in one frame with
their corresponding points in subsequent frames. This process creates
trajectories for each keypoint, which are then used to distinguish be-
tween different objects based on their unique movement patterns.
Additionally, the system incorporates a smooth motion error function
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during optimization, which penalizes non-uniform acceleration of key-
points between frames, further ensuring spatio-temporal consistency.
Fig. 1 exemplifies the 3D pose in two separate events by showing the
vertical coordinate of key-points during STL for each track.

The pose estimator expresses coordinates in an approximation of the
meter. It is important to note that while the scale of units expressed by
the 3D key-points is consistent across locations, its exact resolution is
unknown. This means that all values given in meters should be consid-
ered as m = C where C is an unknown constant. The implications of this
limitation is that great caution should be exercised when comparing
absolute values to other studies but that analysis of association and
change rates are unaffected.

2.3. Video sequence selection

Initially, 979 videos showing a lying-to-standing bout and 1015
showing standing-to-lying were visually identified for development
purposes [27] and reused for this study. We applied a simple event de-
tector calculating the difference in average withers Z position (height)
across 10 frames (0.3 s) between the start and end of the sequence. An
absolute difference above 0.4 m was considered to be a posture transi-
tion, and the direction of change (downwards for STL and inversely)
informed on the type. This is visible in Fig. 1 where the withers go from a
height of about 1.7 m to 1 m.

After detecting events, 814 and 798 sequences were classified as
lying to standing and standing to lying respectively. This corresponds to
respective false negative rates of 16.9 % and 21.4 %. After visually
inspecting the key-point series for each sequence, 5 and 26 sequences
were noticed to have been misclassified as LTS and STL and subse-
quently removed, giving false positive rates of under 1 % and 3.2 %. The
sequences contained the 30 to 35 s video recorded by 7 synchronized
cameras and show cows transitioning between postures in a cubicle.
Removal of false positives left 809 and 791 LTS and STL sequences
respectively.

2.4. Signal processing of 3D pose time series

2.4.1. Filtering

A low-pass filter with a cut-off frequency of 10 Hz was applied to
each key-point and its corresponding X, Y and Z coordinates’ time series
individually. This approach is based on recommendation by Hamélainen
et al. [28] and by Riaboff et al. [29] for noise removal on animal motion
data (originally intended for accelerometer data). The filter was
implemented in Python 3.9 using the function “butter” from the SciPy
package [30].
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Fig. 1. Vertical coordinate of 3 key-points during two lying down motions, comparing slow with swift posture transitions. Dashed lines correspond to the detection of
the initial leg bend, thoracic limbs on ground, sacrum descent and completion. On the right pane, the rapid sacrum descent initiates just before the front limbs touch

the ground. These examples were cherry-picked for clarity.
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2.4.2. Stitching discontinuous tracks

Object tracking could be interrupted by factors such as noise peaks or
temporary occlusions, leading to instances where successive detections
of the same animal were split between multiple tracks. To address this
issue, we implemented a post-processing track-stitching algorithm that
merges fragmented tracks corresponding to the same animal into a
single continuous track, based on spatial continuity of the smoothened
key-point coordinates. The track-stitching algorithm operates by first
identifying all tracks within a given sequence and calculating the time
and position at which each track ends. The algorithm then searches for
subsequent tracks that begin within a temporal window of 1 s and spatial
proximity of 0.3 (in the pose estimator’s coordinate system, corre-
sponding approximately to 30 cm). Candidate tracks that start shortly
after the end of the previous track are evaluated based on their
Euclidean distance in the 3D space, using the wither key-point’s coor-
dinate. The algorithm prioritizes merging tracks that are closest in space.
Tracks are iteratively processed until no further stitching opportunities
are detected. This method resulted in the inclusion of 305 LTS and 301
STL posture transitions sequences, representing 37.7 % and 38.1 %
respectively of the total sequences used.

2.4.3. Interpolating missing poses

The tracking algorithm has a tolerance to punctual missing de-
tections and stitched tracks had a gap up to 1 s. This resulted in instances
where consecutive 3D poses were separated by more than the expected
interval of 0.033 s. To ensure consistency, poses were interpolated for
missing frames, thereby standardizing the time intervals between
consecutive poses. First, gaps were identified based on the timestamp
difference between consecutive poses, and the number of missing frames
was calculated. We estimated missing poses using 3D cubic spline
interpolation — a method Ren et al. [31] found to be highly faithful for
interpolating missing positions in cow movement data—thereby
achieving uniform temporal resolution across sequences and facilitating
further calculations.

2.5. Indicators of posture transition quality

Indicators relevant to assessing the quality of the posture transition
were retrieved from the literature and are listed in Table 1. This study
focuses on the movement opportunities offered by the cubicles, and the
occurrence of atypical motions. For this reason, inclusion criteria for
indicators were (i) measurable during the posture transition movement
and (ii) measurable through kinematic features at a specific phase of the
posture transition. The start and end of the posture transition move-
ments are described in Table 1. Atypical motions such as dog sitting and
horse-like rising were initially selected but did not occur. The selected
indicators, their definition and corresponding phase, as well as existing
thresholds beyond which the motion is considered abnormal are gath-
ered in Table 1.

Out of the selected indicators, lying down duration, hind quarters
shifting, delayed rising, backwards crawling and head lunge space had
quantified thresholds found in the literature. Side lunge was described as
yes or no in the ethograms found in Brouwers et al. [15] and in Dirksen
et al. [32].

2.6. Event detection during posture transition and indicator calculations

To measure the indicators of comfortable posture transition it was
necessary to accurately detect the occurrence of specific phases during
the motion using the key-points’ displacement. These phases are listed in
the third column of Table 1.

The main method here is change-point detection in the key-point
coordinates, specifically the Y (perpendicular to the stall) and Z (verti-
cal) coordinates of the withers. Change-point detection involves iden-
tifying indices in a time series where there is a shift in the series’
statistical properties, such as mean or variance. In the case of the key-
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Table 1
Selected indicators of posture transition comfort.

Indicator Definition Corresponding Threshold for
phases acceptable
comfort
Rising
Duration of Start of the motion: Rising on
rising motion the cow gathers its breastbone,
front limbs under the Standing
body causing a visible
rise in the withers
position [27]
End of the motion: the
cow is fully up with all
limbs extended [6]
Backwards When resting on Rising on None/0 m [12]
crawling on carpal joints, the cow breastbone, lunge

carpal joints moves its front leg
backwards before the
lunge motion [12]
The cow rests on its
carpal joints before
lunging.

Euclidian distance
projected in 2D above beyond the end
the bed, measured of the cubicle
between the point of [22]

furthest extension of

the head and the

position of the withers

just before the lunge

(after possible

backwards

movements)

Maximum angle Lunge
formed between the

lines joining the poll to

the neck and the neck

to the t13 during the

lunge [27].

Delayed rising Rising on

breastbone, lunge

<10s[12]

Head lunge > 0.6 m

distance

Lunge, head
baseline location

Side lunge No side lunge

[15,32]

Lying down

Duration of
lying-down
motion

Start of the motion:
one carpal joint is bent
and lowered [11].
End of motion: the
cow is fully lying
down and the body is
stable [12]
Duration between the
moment both carpal
joints touch the
ground and the rapid
descent of the sacrum.
Head Length of the
displacement  horizontal vector
between the head at
start of the movement
and its point of
furthest forward
displacement

Initial leg bend, <6.3s[11]
recumbent

position

Thoracic limbs
touchdown,
sacrum descent

Hind quarter
shifting

<3s[12]

Head maximum
extension

0.59 m (mean
maximum in
open pen) [13]

points 3D coordinates time series, change-points represent movements
from one posture to another. The detection process involves segmenting
the time series into distinct windows where the statistical properties are
consistent within each segment but differ between segments. The
change-points are the boundaries of these segments. Linearly penalized
segmentation (Pelt) used here [33] optimizes the segmentation by
balancing the number of change points against the fit to the data, using a
penalty parameter to control the trade-off. The Pelt algorithm is
implemented in the Python library Ruptures [34]. Parameters for
change-point detection were optimized through a grid search testing the
penalties of 3, 5 and 10 with any combination of the x and y coordinates
of the withers or sacrum, and their movement velocity. For each com-
bination, the mean absolute difference (MAD) was calculated between
the annotated timestamp for that phase and the timestamp
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corresponding to the nearest change-point. The variables and penalty
creating a change point closest to the annotation are reported in the
respective sub-section for each phase.

This method outputs several change-points in each sequence, cor-
responding to the different phases, as well as other events and also
possibly noise. Thus it was necessary to select the right change point
corresponding to the phase of interest amongst the various change-
points detected.

The velocity of the withers and sacrum display specific patterns in
between each phase as the cow moves parts of its body in succession.
Thresholds in velocity peaks were used to constrain time windows for
each phase and thus select the correct change-point. Rules and thresh-
olds for change-point selection are described in Table 2 and in the
subsections dealing with the detection of specific phase. It was not
possible to detect all events in all sequences, and the final sample sizes
used to calculate each indicator are found as labels on 3 and Fig. 5
respectively in the results section.

Fig. 1 Illustrates two STL sequences on which the timestamps
detected for the phases have been marked by dashed vertical lines. On
the left panel, the initial drop of the withers (orange curve), corre-
sponding to the leg bend, was detected to have occurred at 9.6 s (first
vertical dashed line). This is followed by readjustment movements of the
hind quarters while the cow is standing on its thoracic limbs between the
11.8 s and 14.1 s timestamps. This characterised by a plateau of the
withers height, as the cow rests on its anterior limbs during the posterior
readjustment movements. On the example on the right, the motion is a
lot swifter, with only a brief deceleration of the withers’ descents, as
both anterior limbs reach the ground at 15.2 s.

The methods to detect most phases are listed in Table 2. Other phases
as well as kinematic indicators have a dedicated sub-section.

2.6.1. Backwards crawling

Before lunging, when forward space is perceived as insufficient the
cow moves its front limbs backwards [12]. Identifying this movement
enables to quantify the crawling distance but also enables the estab-
lishment of a consistent baseline position of the withers immediately
prior to the head lunge, which is crucial for calculating the displacement
of the head during the lunge. Backwards crawling was defined as the
total backwards displacement of the withers key-point’s coordinate
along the x axis, between the start of the rising motion and the head

Table 2
Posture transition phases and methods for detection.

Posture Penalty  Variables for Threshold for selecting a cv-
transition change-point hange-point
phase detection

Rising (LTS)

Start of rising 10 Withers Y, First change point where the
motion Withers Z median Z withers in the
following 1 s window > median
Z withers in the initial 1 s of the
sequence
Head lunge Maximum Head X coordinate
Standing 5 Withers velocity First change point after the last
velocity peak of 0.18
(normalized units)
Lying down
(STL)

Initial leg bend 10 Withers vertical Last change point before the first

velocity peak in withers velocity above
0.2 (normalized units)
Thoracic limbs 3 Withers Z First change-point immediately
touchdown after the first peak above 0.2
Sacrum descent ~ Random forest
Recumbent 10 Withers Y, Last change point where the
position Withers Z median Z withers in the

following 1 s window < median
Z withers in the final 1 s of the
sequence
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2.6.2. Head displacement and angle

For the analysis of head lunge, sequences were only used if the head
key-point maintained a confidence level above 0.77 during lunge. The
confidence threshold was decided by plotting the distribution of confi-
dence values of the head around the predicted lunge timestamp, and
visually identifying an elbow in the plot.

The withers baseline position was defined as the X coordinate of the
withers after backwards crawling, also corresponding to the minimum X
coordinate between start of the rising motion and lunge when crawling
was not detected to have occurred. Lunge distance was defined as the
distance on the x axis between the head at lunge and the withers baseline
location, to which was subtracted the distance between the head and the
withers at lunge. The rationale behind this calculation was to determine
how far forward the head was able to lunge, not compared to the cubicle,
but to the initial placement of the cow before lunging.

Head lunge angle was calculated as the 2D projected angle over the
horizontal plane, formed by the line of the back (joining the withers to
the sacrum) and the neck (joining the withers to head keypoint) at the
moment of furthest extension. An angle of 180° represents straight
lunge, where the head is exactly aligned with the back. A lower angle
represents a sideways neck, independent of lunge side. (Fig. 2)

For the head displacement when lying down, the maximum filtered
coordinate of the head on the X axis (parallel to the stalls) was sub-
tracted to the head’s position on the X axis at the time of initial leg bend.

2.6.3. Thoracic limb touchdown

This refers to the earliest point at which both anterior limbs are
folded and the cow touches the bed with both carpal joints. The withers’
coordinate was normalized and their vertical velocity was computed.
Change-point detection with a penalty of 3 was applied to the withers Z
coordinate series. Peaks in the wither’s vertical displacement above 0.2
normalized distance units per second were detected, with a minimum
distance between peaks of 40 points or 1.33 s. We selected the first
change-point following the peak first.

2.6.7. Sacrum descent

The change-point method failed to produce detections corresponding
to the sacrum descent timestamp. Instead, the following methods were
tried: recurrent neural network with dropout and one of each 1
dimension convolutional, bi-directional long-short-term-memory and
dense layers, against a random forest with 50 estimators predicting the
index of the event. The RNN produced a MAE on unseen data between
detections and annotations of 0.81 s at the stabilisation of the loss term
after 12 epochs while the random forest produced a MAE of 0.41 s and
was thus chosen. Since the sequences were of varying length and usually
centred on the posture transition, and to avoid overfitting the model to a
specific location in the sequence, the key-point series were randomly
padded before training the models. Padding was added at the beginning
and end of each series, for a total length of 1147 (arbitrary value above
the length of the longest series) according to the following equations:

Lpaa, is the total padding length for sequence s: Ly, = 1100 — Ls
with Lg being the length of sequence S.

Lgar, is the padding length at the start of sequence s: Lyqr, ~
Uniform(0, Lpag,)

Leng, is the padding length at the end: Lend, = Lpad, — Lstart,- The
padding values are calculated as follows:

Ppos, k. x = €00Tdposex @ Iy + N (¢)]

where P is the matrix of padding values of size 6 x Ly, with pos taking
values start or end, coord being the first or last value in the series for
coordinate x = X or Z and key-point k = withers or sacrum. N ~
Uniform(0, 0.05) is a vector of random noise. Considering S, the original
sequence of key-point positions, the padded sequence used as input in



A. Kroese et al.

Smart Agricultural Technology 12 (2025) 101205

afnde

Fig. 2. 3D pose of cows with one cow rising (blue pose) taken at furthest head extension (lunge). Head lunge angle is defined as the angle between the segments in
yellow on pane A, joining the head, withers and sacrum (highlighted). A: top down view of all 3D poses in the row of cubicles. B: side view 3D pose of the cow rising.

C: corresponding frame.

the random forest is:

2.7. Validation

2.7.1. Agreement between observers and with event detection

To validate the accuracy of the detection of the various phases, video
sequences showing posture transitions by a single cow were annotated
by 3 observers. The observers annotated the timestamps for each event
listed in column 3 of Table 1. Observers first trained on 10 sequences for
each posture transition and agreed on the timestamps to annotate. Then,
each observer was provided with a total of 100 video sequences for each
posture transition, which were randomly assigned, shuffled and blinded.
The 100 sequences contained 55 videos which were common to all ob-
servers. This overlap was to score inter-observer agreement. The 100
videos also contained 30 sequences which were unique to each observer.
Among the resulting 85, 15 were randomly resampled to assess intra-
observer agreement. For each sequence to be annotated, the material
provided to the observers contained the synchronized video from all 7
cameras. Observers were free to choose the camera offering the best
view of the cow performing the posture transition.

Agreement was measured as MAD between annotated and detected
timestamps. MAD(i,m) = 3% 30 |Asom)| where Ag(om) = |tsi —tsm]|
with m being the automated detection and t;; the time stamp of the s:th
sequence by o:th observer.

2.7.2. Agreement depending on interruptions in the poses

Sequences contained 637 to 1013 consecutive poses, including se-
quences stitched from spatio-temporally continuous tracks. We ran a
regression to analyse the effect of the presence of a stitchina + 1.7 s
window around the annotation, as well as the duration of interpolated
poses on the agreement between annotations and detections. The model
is described as follows:

To, = f1 + oM + B35S + I+ 1|sequence + & 2
where T'is the observed timestamp, either annotated or detected. e is the

event (taking values of all 7 events in both posture transitions). M is the
observer type indicating whether the timestamp was annotated by a

human or detected by the model. S is a dichotomous variable repre-
senting the presence of a track-stitch in the 3D pose sequence. It always
takes the value of 0 in the case of human annotation (because stitches in
the 3D pose have no meaningful effect on human annotations performed
on the video), and 1 or 0 in the case of model detections, depending on
the presence of a stitch in the +1.7 s window around the mean human
annotation. The value of 1.7 s corresponds to the 95th percentile of
differences between human and machine. Similarly, I is the interpolated
duration in case of detections and 0 in the case of annotations. Finally,
1|sequence represents a random intercept for the sequence number, as
the predicted timestamp in each sequence has no tangible meaning and
is relative to the start of the video but should theoretically be equal for
all annotations in the same sequence. We report the value and the sig-
nificance of f,, f3 and f,. p, represents the difference in predicted event
timestamp if the observation was done by the model compared to a
human, f; the change in predicted timestamp if the observation was
done by the model and a stitch was present in the 1.7 s window and g,
the change in predicted timestamp for 1 s of interpolated poses in the
window. Significance is accepted at a risk of @ = 0.05.

2.8. Exclusion criteria

Sequences were first included if a posture transition was detected
from the key-point data. This produced 809 sequences in which the
occurrence of a LTS posture transition was visually identified, and 791
STL. Regarding annotations, 145 sequences of each posture transition
were originally annotated. 4 annotated STL sequences were discarded as
well as 4 LTS sequences because of data quality issues.

After the events of interest were detected using the methods
described above for the entirety of the sequences, including all se-
quences which had not been annotated, the validity of the detection was
visually assessed using the vertical displacement graphs, of which Fig. 1
shows an example for two different sequences. The time-series of the key
points’ vertical coordinate were plotted for all sequences, and the
detected timestamps were added to the plots. Sequences were excluded
based on visual assessment if any of the detected timestamps did not
match the kinematic pattern corresponding to the event. 84 LTS and 87
STL sequences were excluded, the number of events that were inaccu-
rately detected is listed in Table 3.
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Table 3

Count and frequency of detection errors per event. Note that the total errors
amount to more than the total, as several events could be off in the same
sequence.

Event Errors Frequency
Rising (LTS)

Rise on breastbone 22 2.7 %
Lunge 34 42 %
Standing 37 4.6 %
Any 84 10.4 %
Lying down (STL)

Initial leg bend 17 2.2%
Thoracic limbs touchdown 29 3.7 %
Sacrum descent 36 4.6 %
Recumbent position 13 1.6 %
Any 87 11.0 %

2.9. Statistical analysis of indicator scores

To explore the association between indicators, Spearman’s correla-
tion was calculated between indicators in the same posture transition
sequence. A principal component analysis (PCA) was conducted to
identify more complex correlations between indicators in LTS transi-
tions using PCA function from SciKit-Learn [35].

3. Results

The purpose of this study was to evaluate the accuracy in the
detection of the successive stages in the posture transitions, to detect the
occurrence of indicators exceeding thresholds for comfortable posture
transition and to explore possible indicator association.

3.1. Comfort indicators exceeding thresholds

In the stalls used for this study, and regarding duration, we found
that 2.8 % of LTS posture transitions exceeded the threshold for indi-
cator ‘Rising delay’. If we use the 5 s threshold used in Fraga Kon,
instead of 10 s found by Zambelis et al. [12], 30.2 % of LTS bouts would
exceed the threshold. Crawling backwards occurred in 59.2 % of LTS
transitions. 28.9 % of STL exceeded the threshold for total duration and
8.3 % for shifting duration. Altogether, 59.9 % of LTS and 29.1 % of STL
exceeded thresholds for at least one indicator.

Table 4
Mean absolute difference (in seconds, + standard deviation) in annotated or

detected timestamps for each pair of observers and with the automated
detection.

Observer pair

Feature Obs1-2 Obs1-3 Obs2-3  Observers—
machine
Rising (LTS)
Rise on breastbone 1.1+ 1.8+ 1.0+ 09+1.1
14 1.6 1.3
Head lunge 0.2+ 0.2+ 0.2+ 0.3+ 0.6
0.3 0.4 0.4
Standing 0.5+ 0.6 = 0.4 £ 0.7 £ 0.9
1.1 1.1 0.4
Lying down (STL)
Leg bend descent 0.3+ 0.2+ 0.2+ 0.4 +0.7
0.2 0.2 0.2
thoracic limbs 0.2+ 0.2 + 0.2 + 0.4+ 0.6
touchdown 0.1 0.1 0.1
Sacrum descent 0.4 + 0.4+ 0.3+ 0.4+05
0.4 0.4 0.4
Recumbent position 0.8 + 0.5+ 0.5+ 0.4+ 0.7
0.4 0.5 0.6

Smart Agricultural Technology 12 (2025) 101205
3.2. Agreement on phase detection and robustness to interrupted poses

The results in Table 4 show agreement under half a second for most
events. The first phase of the rising movement showed the most
disagreement between observers. (Table 5)

When missing positions were interpolated, the average interpolated
duration was 0.5 s & 0.5 (u+0) or 31 % of frames in the window around
the event for LTS and 0.7 + 0.7 or 43 % of frames for STL. For both rising
and lying down transitions, interpolating poses on missing frames did
not have a significant effect on the timestamp prediction by the model.
Only for the rising on breastbone and the thoracic limbs touchdown
phases did the presence of a stitch have a significant effect on the dif-
ference between annotated and detected timestamps (at @ = 0.05). The
observed timestamp being detected by the model rather than a human
observer was only significant for the thoracic limbs touchdown.

3.3. Distribution and association of posture transition comfort indicators

The analysis of association between indicators was aimed at under-
standing whether there existed a combination of indicators which by
themselves offer a summary of the posture transition quality, or rather if
indicators showed no association and that there was thus no relation
between the qualities of the different phases. Both posture transitions
were analysed separately.

3.3.1. Lying to standing

Rising duration had a median of 8.3s+2.8 (median + Standard de-
viation) and a skewness of 1.4. Total duration does not have a threshold
on Fig. 3 since no recommendations were found. For rising delay, it was
4.0s+2.4 with a skewness of 1.4. Crawling distance had a median of 0.1
+ 0.1 and a skewness of 1.1. Lunge distance showed an important range
from 0.3 to 1.5. Its median was 0.66+0.33 and its skewness 0.44. Lunge
angle had a median of 159.7°+ 11 and its distribution was skewed to the
left (skewness —0.6).

Spearman’s pairwise correlations, shown as labels on Fig. 3 revealed
a set of moderately to strongly correlated variables (p < 0.001): dura-
tion, crawling distance and rising delay. Lunge angle and distance had a
negligible yet significant correlation (p = 0.005), the significance driven
by the high sample size (n = 548). (Fig. 4, Fig. 5)

The principal component analysis aimed at exploring whether the
indicators could be combined into subsets that better explain the
movement patterns. The first 4 components were retained, explaining 98
% of the variance in the dataset.

The first component (PC1) explains 45 % of variance. Variables with
the highest loading on PC1 were delay, crawling and duration. The
second component (PC2) explains 23 % of the variance and is loaded by
head lunge distance and angle.

Table 5
Coefficients for the effect of the processing method and event detection on the
predicted timestamp based on Eq. (2). Significant coefficients are bolded.

Coefficient for the effect on predicted timestamp
(seconds)
(n sequences with processing method)

Feature Presence of Duration of Model 1cc
stitch interpolation detection

Rising (LTS)

Rise on breastbone ~ —1.4 (7) 0.0 (27) 0.83

Head lunge —0.4 (10) 0.1(72) 0.87

Standing 0.3(14) 0.4 (32) 0.78

Lying down (STL)

Leg bend descent —0.0(9) —0.3 (38) -0.1 0.91

thoracic limbs —0.5 (18) 0.1 (91) —0.4 0.95
touchdown

Sacrum descent —-0.1(29) 0.0 (14 -0.0 0.94

Recumbent 0.2 (7) 0.3 (30) -0.0 0.83

position
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Fig. 3. Distribution with kernel density estimation and pairwise scatterplots of lying to standing posture transition indicators. Cut-offs for comfort assessment are
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(p-value) on the scatterplots.

Components 3 and 4 explained 17 and 13 % of variance respectively.
Component 3 had lunge angle and distance load with opposing signs.
Component 4 showed opposed loading signs between duration and
crawling distance.

3.3.2. Standing to lying

The Spearman correlation between shifting duration and lying down
duration is 0.66 (p < 0.001). Lying down duration had a median of 5.6 +
1.7 and a skewness of 2.2 while shifting duration had a median of 1.4 +
1.2 and skewness of 2.4. The distribution of shifting duration is unbal-
anced, with a high frequency at 0 because of bouts not displaying a
window for hind quarter shifting.

4. Discussion

The study comprises several final and intermediate results, which all
have implications for dairy cow comfort monitoring in free stalls using

pose estimation in 3D This discussion will first offer a summary of key
findings regarding both validation of the method and indicator scores, it
will then compare them with earlier research and discuss limitations and
implications for future cattle welfare monitoring.

4.1. Validation and agreement with human observation

The results confirmed a high agreement between human and algo-
rithmic detection of posture transition phases. The agreement between
human and machine in detecting the timestamp of specific events has
two implications. The first one is that we can use the system to measure
the duration of the successive phases of the posture transition, which is a
comfort indicator. The second implication is that the 3D capture system
properly captures the kinematics of events of interest since what is seen
on the video matches change points in the 3D coordinates. We note that
the development was done with a single cubicle design and that the
algorithm may not perform equally well in other systems. Supervised
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Fig. 4. PCA biplot for lying to standing indicators showing variable loadings and individual scores on 4 components.

learning methods for event detection using diverse sequences can likely
address this limitation. The failure rate of up to 11 % does mean that
human supervision is required before making meaningful conclusions.

4.2. Comparison of the results with previous studies

Most STL sequences (71 %) were within the accepted duration,
however backwards crawling during LTS was highly prevalent. This
prevalence comes in stark contrast to results by Brouwers et al. [36] who
found a probability of backwards crawling no higher than 5 % in
different cubicles. These differences are likely imputable to different
stall designs. Zambelis et al. [12] did not find backwards crawling to be
associated with characteristics of the cow, nor with adverse welfare
outcomes. We still found the indicator be included in the Fraga Kon
manual. Combined with the fact that it is rarely observed in unrestricted
environments [6], lead us to advocate for its inclusion when evaluating
cubicle designs.

Delayed rising; or a pause before the swift head lunge movement,
above the suggested threshold had a low prevalence in our study (2.8
%), compared with the 19.5 % reported by Zambelis et al. [12], hinting
again at the fact that indicator distributions vary greatly with stall
design and thus that the results presented here should not be extrapo-
lated to other farm settings.

The range of forward head displacement shows that even if forward
lunge space is offered, cows use this space very differently. We observed
on the video that some cows had slow and hesitant movements, with the
head not extending beyond the head rail, while others would lunge far
forward, potentially explaining the measured variability. Thresholds
exist for lunge room, for example 0.9m according to Cook [3]. The 3D
coordinates in the system used here however were not precisely

expressed in meters. Although the system approximates the meter by
design in the calibration phase, caution is warranted when comparing
displacement measurements to previous results.

Rising duration is dependent on the identification of the start of the
rising motion, which is the phase with the highest ambiguity to ob-
servers (over 1 s average difference). Rising duration was positively
associated with cow width in the study by Zambelis et al. [12], while
delayed rising was not. Delayed rising was a binary indicator in the latter
study [12]. Larger cows were predicted to lunge further in an earlier
study [37]. A possible explanation for both these results is that larger
cows are more hesitant throughout the bout but not specifically before
lunge. In the Friga Kon framework, the threshold for delayed rising was
5 s instead of 10, which would lead to a different observed prevalence.

4.3. Assessing comfort with a combination of indicators and 3D pose

In the Welfare Quality framework, posture transitions are assessed
using two indicators; duration and collisions [11]. In their “Flowchart
for Evaluating Free Stalls”, Nordlund [38] assesses posture transitions
through lunge and “bob” spaces, and rising room (measured as the
absence of collisions). The manual for Fraga Kon uses the duration of the
pause on the front limbs as main indicator. It exemplifies abnormal
rising with backwards crawling, dog sitting and difficulty to rise (as-
sessors have also stated looking at side lunge), and gives the expert
assessor the discretion to judge, looking at a more complete picture of
the cow. Taken separately, indicators provide a simplified view, which is
practical for on-farm applications but may not capture the full
complexity of the posture transition process.

According to the PCA, there are several uncorrelated patterns of
rising motions. PC1 is interpreted as corresponding to hesitation,
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creating pauses in the rising motion. This is because the variables
loading the highest on PC1 are delay, crawling distance and total
duration. These variables are correlated, which is sensible since the
further a cow will crawl, the more time it needs to do so, which increases
delay and total duration directly. PC2 represents straight lunge, which is
a desirable pattern. Lunge distance and angle had a low correlation, but
they loaded similarly on PC2, suggesting that they measure distinct but
complementary aspects of lunge behaviour. There is seemingly an upper
diagonal bound on the scatterplot for these two variables (Fig. 3) which
would indicate that angled lunges rarely are associated with longer
distance. Components 3 and 4 seem to show exceptions from the most
common motion patterns; component 3 had lunge angle and distance
load with opposing signs, representing both lateral and longitudinal
spatial use while bouts scoring high on PC 4 would represent cows
crawling an important distance but quickly.

Principal components being uncorrelated implies that crawling
(PC1) is not associated with straight lunge (PC2), contrary to what we
had previously hypothesized (the rationale being that crawling back-
wards offered more forward space to then lunge straight). We know that
the stall design in the study farm promotes backwards crawling, which
tends to increase delayed rising through readjustments as is reflected in
PC1. Loadings on PC4 however show an opposite pattern where cows do
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crawl but swiftly. Taken together, PC1 and PC4 imply that duration is
not systematically an indication of crawling. The first component sug-
gests that the proxy indicator found in Welfare Quality or Fraga Kon are
sound summarisation of the parameters explaining the most variability,
but the other components suggest that there are additional dimensions
to the quality of posture transitions which we should not summarise into
a single indicator.

4.4. Defining thresholds based on existing variability and quantitative
measurements

The distribution of indicator values presented in the results high-
lights that the range of posture transition movements, and the duration
of the different phases exist on a continuum. This comes in stark contrast
with the rigid thresholds found in the literature which may not be
adapted to assessment using sensor data, of which lunge angle is a clear
example. In a similar development, Brouwers et al. [15] found moderate
accuracy (60 %) in detecting the occurrence of side lunge using accel-
erometer data. While the class for side lunge was yes or no, there seems
to exist a continuum of lunge angles as shown on the first density plot of
Fig. 3. It is worth exploring if misclassifications happen more consis-
tently when the head lunge is at a slight angle. This would mean that the
challenge in classifying side lunge in the latter study is not a short-
coming in the algorithm but rather a limitation in the ethogram used in
annotations which is not adapted to continuous data [15]. This might
lead to misalignments between the sensor output and the annotation,
especially in the range of neck angles that represent the borderline be-
tween normal and abnormal lunge angle. Bewley et al. [39] describe
side lunge as that performed in cubicles designed specifically to allow
for cows to lunge their head side, instead of forward (because the cow
could be impeded by a wall or another cow). We saw accordingly, in
studies assessing posture transitions, that side lunge was a yes/no in-
dicator [12,15]. In the study presented here, the cubicles were designed
for forward lunge. However, we did both observe and record bouts in
which the neck was at an angle compared to the head. It is important to
define whether this form of angled forward lunge classifies as side lunge,
if it is another form of abnormal lunge, or if rather it should not be
considered abnormal but an individual preference. Anecdotally expert
assessors judged some of the lunges in our study as being sideways, yet
we found no apparent cut-off in the distribution of lunge angles. This
hints to the fact that side lunge is more complex than forward versus
sideways, but that there also may not be a universal threshold for what
angle constitutes side lunge. This trend towards not observing clear
cut-offs from the distribution is visible in all the indicators measured
here. We propose that assessment of posture transitions using sensor
data should not be done against a rigid threshold. This technology paired
with individual recognition could quantify the variability within the
herd and individuals, help understand individual motion patterns and
tailor the benchmarks to each cow.

4.5. Limitations and necessary improvements for practical
implementation

In our previous study, validating a data processing method to detect
the start of the rising motion, using the same key-points, we had
excluded sequences for which the rising motion was split into several
tracks [27]. In real world settings, data generation mechanisms will
inevitably produce gaps. In order to move towards implementing such
tools in practice, it was important to test whether interrupted sequences
could still provide an accurate detection of the posture transition phases.
The results were encouraging and showed that stitching tracks and
interpolating poses had little effect on the accuracy of the event
detection.

Improvements should be made in the system to obtain coordinates in
meters, which would allow comparing lunge room with earlier studies
[6,13,40]. This would also help provide recommendations regarding
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cubicle dimensions based on spatial use [2].

Challenges remain for practical application, namely dealing with
inaccuracies in event detection and the high false negative rate. The
current detection method was a rule-based approach, which relies on the
high interpretability of 3D pose estimation, reflecting the actual move-
ment amplitude and location of the anatomical features. This high
interpretability can reduces the amount of annotated data needed for
event detection and can be relied upon to verify the validity of the de-
tections by setting numerical constraints based on the assumed relative
location of the key-points, to each other and to their previous location.
Once we identify the kinematic pattern of a phase, we can split longer
key-point time series into windows and find matching patterns.

For the head lunge space threshold, we used an average forward
displacement of 0.6 m reported by [6]. It is consistent with the findings
of [13] who reported a mean maximum displacement of 0.59 m when
lying down. This however remains an average and quantifying the
variability within the herd is instrumental in designing stall elements
which can accommodate all cows.

More posture transition indicators exist than were used in this study.
A detailed list can be found in Zambelis et al., [12]. This study was,
limited to kinematic indicators.

5. Conclusion

This study showed that 3D fusion of pose estimation is a possible
sensor technology to complement posture transition assessment with
kinematic measurements. It shows good accuracy on detecting events,
with disagreements with human-made visual observations being under
0.5 s for most phases and 0.9 s at most. Human oversight is needed for
final evaluation since up to 11 % of sequences had at least one incorrect
detection.

Measuring posture transition indicators showed that over half of
rising events and under a third of lying down events were considered
abnormal. Backwards crawling before rising was particularly prevalent
in the farm and cubicles studied.

Analysing the association of indicators with a PCA showed that the
dimensions of lunge, hesitation and spatial use were uncorrelated.
Backwards crawling, delay, and head lunge should be assessed through
specific indicators to cover these distinct dimensions separately. In
practice, this is challenging to perform visually, and pose estimation
offers a method to increase the information available to assessors.
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