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Dairy cow welfare & 3D computer vision 
Evaluating cubicle comfort when getting up and lying 
down using pose estimation in 3D

Abstract 
This thesis sought to apply recent advances in precision livestock farming to 
evaluating a specific welfare parameter: cows’ comfort when getting up and lying 
down in cubicles. Cows need sufficient space to get up and lie down but rigid metal 
bars interfere with their innate motion patterns. A multi-camera system recorded 
over 12 cubicles during two data-collection phases. Triangulating 24 anatomical 
landmarks detected on each view using computer vision produced 3D pose 
estimation throughout posture transitions. From these, the timing, spatial use, and 
weight distribution could be measured or modelled. When compared with human 
annotations, the system showed high agreement in identifying rising and lying down 
events and their phases. While stage detection was not fully repeatable, the results 
show that 3D keypoint motion reliably reflects observable kinematic patterns. The 
method developed was then applied to evaluate whether replacing metal head and 
neck rails with flexible straps improved cows’ movement opportunities. An 
experiment was run in which the head and neck rails of cubicles were replaced with 
flexible straps. In the flexible setup, cows showed greater head vertical displacement 
and straighter lunge during rising, indicating greater movement opportunities. Effect 
sizes were small. Lying-down movements showed no consistent difference between 
flexible cubicles and both baselines. The duration of lying down movements 
increased upon returning to baseline, suggesting that duration alone doesn’t fully 
capture comfort. There was a consistent difference in a novel indicator introduced in 
this work: the shift of the cows’ centre of mass. The thesis concludes on the 
following: (i) Posture transition behaviours consist of multiple, independent 
dimensions and single-indicator assessments may not be a sound summarisation. (ii) 
Pose estimation in 3D represents a valuable technology to simultaneously monitor 
several indicators and uncover different strategies used to cope with restrictive 
environments. Finally (iii) that novel indicators such as modelled weight 
displacement are adapted to pose data and get a step closer to biomechanical drivers 
behind the specific motions and behaviours. 

Keywords: precision livestock farming, animal welfare, free stall, rising behaviour, 
lying down behaviour, computer vision, dairy cattle, pose estimation 





Välfärdsbedömning hos mjölkkor och 3D 
datorseende 

Sammanfattning  
Forskningen syftade till att tillämpa precisionsdjurhållning för att utvärdera en 
specifik välfärdsparameter: kors komfort när de reser sig och ligger sig ned i 
liggbåset. Kor behöver tillräckligt med utrymme och metallstänger kan störa deras 
naturliga rörelsemönster. Kameror användes för att filma 12 bås. Triangulering av 
24 anatomiska landmärken som detekterades i varje vy med hjälp av datorseende 
gav en 3D-uppskattning av kroppsställningen under hela rörelseövergångarna. 
Utifrån dessa kunde tidpunkten, utrymmesanvändningen och viktfördelningen mätas 
eller modelleras. Jämfört med mänskliga annoteringar visade systemet hög 
överensstämmelse gällande att identifiera händelser när korna reste sig och lade sig, 
samt läggnings- och resningsbeteendets olika faser. Även om det inte gick att 
detektera stegen fullt ut, visar resultaten att 3D-nyckelpunktsrörelser på ett 
tillförlitligt sätt återspeglar observerbara mönster. Den utvecklade metoden 
användes sedan för att utvärdera om korna fick bättre rörelsefrihet när 
metallstängerna för huvud och hals ersattes med flexibla remmar. 3D-positioner 
samlades in under tre separata perioder om två veckor vardera, i baskonfigurationen, 
med flexibla huvud- och nackbommar och återigen i baskonfigurationen. I den 
flexibla konfigurationen visade korna större vertikal förskjutning av huvudet och 
rakare vinklar vid huvudutfallet under uppresningen, vilket indikerar större 
rörelsefrihet. Effektstorlekarna var dock små. Läggningsrörelserna visade ingen 
konsekvent skillnad mellan flexibla bås och båda baskonfigurationerna. 
Läggningsrörelsernas varaktighet ökade när man återgick till baslinjen, vilket tyder 
på att varaktigheten i sig inte helt återspeglar komforten. Avhandlingen drar följande 
slutsatser: (i) Beteenden vid ställningsförändringar består av flera oberoende 
dimensioner och bedömningar baserade på en enda indikator är kanske inte en 
tillförlitlig sammanfattning. (ii) Poseringsuppskattning i 3D är en värdefull teknik 
för att samtidigt övervaka flera indikatorer och upptäcka olika strategier som 
används för att hantera begränsande miljöer. Slutligen (iii) att nya indikatorer såsom 
modellerad viktförskjutning är anpassade till poseringsdata och kommer ett steg 
närmare de biomekaniska drivkrafterna bakom specifika rörelser och beteenden. 



Evaluation du bien-être en bovins laitiers & 
vision par ordinateur 

Résumé 
Les mouvements de levers et couchers des bovins requièrent un espace suffisant, 
mais les barres métalliques peuvent entraver la cinématique naturelle des animaux. 
Un système de caméras a enregistré douze logettes en deux phases. Vingt-quatre 
repères anatomiques ont été détectés sur chaque vue par vision par ordinateur, puis 
triangulés afin d’estimer la posture en 3D tout au long des levers et couchers. Cette 
approche a permis de quantifier ou de modéliser le déroulement temporel des 
mouvements, l’utilisation de l’espace et la répartition du poids. Comparée aux 
annotations humaines, la méthode a montré une forte concordance pour 
l’identification des événements de lever et de coucher ainsi que de leurs phases. Bien 
que la détection fine des étapes ne soit pas parfaitement reproductible, les trajectoires 
3D des points clés reflètent de manière fiable les schémas cinématiques observables. 
La méthode a ensuite été appliquée pour évaluer l’impact du remplacement des 
barres métalliques de tête et de cou par des sangles flexibles. Les poses en 3D ont 
été collectées sur trois périodes successives: configuration standard, configuration 
flexible, puis retour à la configuration standard. Avec des sangles flexibles, les 
vaches ont motré une plus grande amplitude de movements verticaux de la tête et 
des angles de fente plus droits lors du lever, suggérant une liberté de mouvement 
accrue, bien que les effets observés soient de faible amplitude. Les mouvements de 
coucher n’ont montré aucune différence syst´ematique entre les configurations. En 
revanche, la durée du couchage a augmenté lors du retour à la configuration standard, 
indiquant que la durée seule ne constitue pas un indicateur exhaustif du confort. Une 
différence constante a toutefois été observée pour un nouvel indicateur introduit: le 
déplacement du centre de gravité. La thèse conclut que : (i) les transitions posturales 
sont multidimensionnelles et ne peuvent être résumées de manière fiable par un 
indicateur unique ; (ii) l’estimation de la pose en 3D constitue un outil pertinent pour 
le suivi simultané de plusieurs indicateurs et pour l’identification de stratégies 
d’adaptation à des environnements contraignants ; et (iii) des indicateurs dérivés, 
tels que le déplacement du poids modélisé, sont adaptés aux données de posture et 
permettent d’accéder plus directement aux mécanismes biomécaniques sous-jacents 
aux mouvements et aux comportements observés. 
  



Dedication 

“The dairy cow is entitled to be treated kindly” (Cook & Nordlund, 2009) 
 
 
There is an inherent paradox to welfare, isn’t there? We seek to ease the 
burden created by the conditions that we ourselves impose on the animals. 
The progress is slow; each insight recorded in a paper insignificant in 
isolation. Yet every step, however modest, is a testimony that their life 
matters and would be made worth living. 
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1. Introduction 
Assessing the welfare of dairy cows has traditionally relied on visual 
observations (Linstädt et al., 2024; Maroto Molina et al., 2020), whether 
done systematically or routinely – when a caretaker goes around the barn to 
check on the well-being of their animals. Observers detect subtle behaviour 
cues, and their ability to interpret them in context is unmatched by sensors 
(Smith & Pinter‐Wollman, 2021). However, observers are prone to fatigue, 
to variable biases, and will have difficulties tracking every animal in larger 
herds (Hansson & Lagerkvist, 2015). As a result, at-risk animals may be 
overlooked until welfare issues are severe. 

Dairy barns are getting increasingly digital, with sensors meant to help 
farmers make quantitatively informed decisions, produce more with less, 
take better care of their animals, and retain a feeling of control and visibility 
over ever larger herds. Sensor technology holds a promise to monitor all 
animals with the same level scrutiny and reveal individual variations, for 
instance in their personality (Woodrum Setser et al., 2024). 

These two observations – difficulty of keeping an eye on the welfare of 
large herds and increased digitalization – together represented an 
opportunity: to use or develop technology for the purpose of monitoring 
welfare. Welfare is in fact a term already frequently found in publications 
supporting the development of precision dairy technology. If we scrutinize 
the specific applications of these technologies however, we notice that the 
parameters monitored are overwhelmingly restricted to dimensions relevant 
to economically efficient production. The well-being and behavioural 
dimensions of welfare are underrepresented (Liu et al., 2023; Stygar et al., 
2021). This formed a first research gap; digital welfare monitoring. 

Welfare remains a broad and complex concept, spanning physical and 
mental well-being. Without wanting to arbitrarily simplify welfare – a 
concern put forward by specialists when it comes to practical assessment 
methods (Foris et al., 2025) – operationalising its assessment meant that a 
specific focus needed to be chosen. Finding this focus led us to identify our 
second research gap: objective methods for posture transition assessment. 
While the lying down aspect of resting is well documented (notably thanks 
to sensor technology) transitions to the recumbent position are less explored, 
particularly with digital tools (Maroto Molina et al., 2020). These posture 
transitions provide information on how comfortable cows are in their 
environment (Lidfors, 1989). Visual assessment cannot provide 
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measurements of spatial use, and sensor technology might address this 
limitation. 

This thesis contributes to bridging both gaps by evaluating multi-view 
computer vision to monitor the individual variations in getting up and lying 
down movements, and use their measurements to infer the level of comfort 
offered by cubicles. We deployed, and refined, a multi-camera system over 
12 dairy cow cubicles to capture their motions in 3D when transitioning 
between postures. The system uses synchronised RGB cameras and detects 
cows and anatomical key-points on frames. Using known intersecting lines 
of sight, it triangulates the 3D location of the key-points. The output is 
comparable to motion capture. This system is a prototype by Sony, who was 
a key collaborator on this project. They provided extensive help and 
expertise in deploying, maintaining and running the multi-camera system. 
This thesis is an interdisciplinary co-creation of knowledge between 
academia and industry on the place of 3D pose estimation in dairy cow 
welfare monitoring. 
The thesis comprises three original studies. The first two focus on system 
development, methodological validation, and lessons learnt from automating 
posture transition assessment. The first study demonstrates reliable detection 
of posture transitions and serves as an early proof-of-concept. The second 
extends this validation to all key phases of both lying down and getting up, 
using 3D pose data to derive indicators of posture transitions. This analysis 
revealed that spatial use, hesitation, and lunge represent uncorrelated 
dimensions, suggesting that visual assessments focusing solely on duration 
overlook important aspects of comfort. The third study applies this system in 
an intervention trial, replacing conventional head and neck rails in cubicles 
with flexible straps. It looked at changes in posture transition under the 
improved cubicles. Together, these studies present a framework for 
interpreting sensor data into information useful to understanding parameters 
of cows’ welfare. They showcase an example of how sensors can generate 
continuous data to support our understanding of cow comfort and assess 
welfare with a degree of automation. 
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2. Background 
This thesis aims to bridge two research gaps: 

1. Sensor technology is less commonly applied to monitoring the good 
environment domain by animal-based measures, and rarely applied to the 
appropriate behaviours domain of welfare (the concept of welfare domains 
(Mellor et al., 2020) will be explained in greater detail later). 

2. Assessing comfort around getting up and lying down in cubicles can 
benefit from information on spatial use, yet the current methods are visual 
and cannot provide objective kinematic measures. 

From these gaps, comes an opportunity to develop sensor technology for 
assessing getting up and lying down motions. This endeavour addresses the 
second gap, by developing a tool which can complement the assessment of 
getting up and lying down with objective measures of spatial use. By doing 
so, it also addresses the first gap by strengthening the body of work on 
sensors dedicated to the dimension of welfare relevant to comfort behaviour. 
This section presents an overview of trends in precision dairy technology and 
in welfare assessment and explains how I have come to these research gaps. 

2.1 Part 1: Digitalisation in dairy production 
The concept of “Precision Livestock Farming” (PLF) draws from the earlier 
field of precision agriculture (PA). PA represented a shift in how agricultural 
production is managed, wherein operational decisions are made based on 
individual variability rather than a field or farm basis (Taylor, 2023). PLF 
translates this concept to livestock farming and proposes that health 
management, feeding strategies and care be not homogeneous but tailored to 
each individual. The rationale being that feed efficiency, sensitivity to 
diseases and personality are individual traits, and that managing individuals 
separately can, if done adequately, lead to more input-efficient production 
and increased welfare. Whates (2008) defined PLF as follows: 

Precision livestock farming can be defined as the management of livestock 
production using the principles and technology of process engineering. 

Process engineering being the continuous optimization of production 
systems, making extensive use of data generated during operations to fine 
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tune operations. PLF also expands this rationale of individual focus into a 
time dimension, recommending all animals be constantly monitored and that 
care be adapted to changing responses. Continuous monitoring allows for 
timely interventions in case of disease, avoiding the worst consequences in 
terms of welfare and production if animals in a compromised state are not 
detected early enough. Berckmans (2017) offers the following definition: 

The aim of PLF is to manage individual animals by continuous real-time 
monitoring of health, welfare, production/reproduction, and environmental 
impact. 

Continuous monitoring is made possible with a range of sensors. PLF has 
become synonymous with sensor technology and data processing for 
production animals. It remains important to make the distinction between the 
concept (real time care at the individual level) and the means (sensors to 
gather the necessary information at individual level). 

Dairy production in post-industrial countries like Sweden has become 
increasingly digitalized. This ongoing trend is driven by a demand for 
automation, aimed at managing larger herds flexibly. It is also driven by a 
demand for data, to enhance visibility on herds and take quantitatively 
informed management decisions with a low lag-time. Some of the earliest 
commercially available sensors detected location using RFID (Rutten et al., 
2013), and oestrus based on changes in activity (Tangorra et al., 2024). Later, 
computer vision has garnered a lot of interest, notably because it is none 
invasive and highly versatile (Fernandes et al., 2020). Demand and 
marketing around these technologies are often driven by concerns of 
competitiveness and workload manageability. A question that has emerged 
from both academic and industrial spheres (investigated by Stygar et al. 
(2021)) can be stated as follows:  

“Can technical innovations in dairy cow monitoring be used for welfare 
assessment?”. 

Växa, a partner of the project supporting this thesis, conducts an on-farm 
welfare assessment with a framework called Fråga Kon (lit. Ask the Cow). 
This framework is intended as a lightweight animal-based method to 
evaluate welfare with animal-based measures. Acknowledging the 
limitations of visual observations in terms of consistency (Bokkers et al., 
2012), scale (Sapkota et al., 2022) and cost (Linstädt et al., 2024), we saw an 
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opportunity to automate this assessment. The question of which technology 
to use for this purpose was put forward. 

It is important to state that the present thesis is not an attempt at 
automating a specific welfare assessment scheme, and that it is not driven by 
a request from the industry. Rather, it brings together academics, extensionist 
and industry in seeking a response element about the feasibility of 
automating welfare assessment. 

2.1.1 Trends and gaps in PLF technology and the data it generates 
 
PLF has gained significant momentum over the past decades and is currently 
seeing its highest publication growth rate (Marino et al., 2023). Dairy-cattle 
monitoring has shifted from single-purpose sensors (e.g., typically 
pedometers for oestrus detection, and milk electrical conductivity) towards 
integrated, systems that continuously analyse data on behaviour, physiology, 
production, and location to recommend actions (like insemination or 
treatment). Wearable accelerometers, usually placed on leg, collars or ear 
form the majority of commercially available monitoring solutions (Stygar et 
al., 2021), supporting heat detection (e.g. Cattle Watch, South Africa), 
activity/rest (e.g Cow Manager, Sweden), feeding/rumination proxies (e.g. 
Real Time,  Boumatic, USA), and time-budget metrics (e.g. MooMonitor, 
Dairy Master, Ireland). 

A technology that has gained significant attention in recent years for its 
flexibility and non-invasive nature is computer vision (CV). It commonly 
relies on automated analysis of 2D video in the RGB spectrum. Computer 
vision benefits from high versatility; a review on the potential to automate 
WQ presented mainly computer vision as a potential technology to measure 
indicators that did not yet have a dedicated sensor (Maroto Molina et al., 
2020). 3D Computer vision has also seen substantial developments. Several 
different techniques have been applied to obtaining visual information on 
cows in 3D. One method is the time of flight (ToF), which translates the time 
it takes for near infrared light to be reflected onto the sensor into a distance. 
This was applied to estimating cow body weight (Jang et al., 2020). A way 
of generating similar 3D images is stereo active infrared (IR), which projects 
an IR pattern onto a scene and analyses differences in the pattern between 
two closely located sensors to infer volume. This method was applied to 
determining cow postures with the goal of identifying anomalies (Lee et al., 
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2024). Finally, another method for 3D computer vision is to triangulate key-
points from 2D pose estimation between several cameras (Huang & Moliner, 
2022; Kroese et al., 2024). 3D pose produces only a limited number of points, 
whereas ToF creates a point cloud with volumetric information. It does have 
the advantage of needing only affordable 2D cameras. Pose estimation has 
applications for monitoring certain behaviours, for example mechanical 
brush use (Högberg et al., 2025). It can potentially substitute motion capture 
for measuring kinematics in situations where the latter is too impractical 
(Lawin et al., 2023), such as movement amplitude when getting up and lying 
down (Kroese et al., 2025) which will be the main focus of this thesis. 
When reading works on precision dairy, a pattern seems to emerge: the focus 
is mainly on health, nutrition and reproduction (Palczynski, 2019). This 
pattern was found in reviews of the existing literature (Liu et al., 2023; 
Supplementary material by Stygar et al., 2021). Rutten et al. (2013) 
document the typical scope of PLF technologies; they note that, as of 
publication, most sensors were dedicated to mastitis (25%), fertility (33%), 
locomotion (30%) and metabolic disorders (15%). They attribute their 
predominance to economic importance but also to the maturity of their fields 
of research. 

I wanted to get a quantitative insight into the themes that fellow 
academics in precision-dairy had explored. I ran a bibliometrics analysis of 
original research papers with the keywords “precision livestock farming” and 
either “dairy”, “cow” or “cattle” in the Scopus database. I identified 271 
studies with indexed keywords. I retrieved the keywords used for each study 
and produced an exhaustive list of unique keywords. I asked Mistral (a LLM) 
to group the keywords into themes, and it identified the following: nutrition, 
heat stress, productivity, body condition, reproduction, diseases, behaviour, 
welfare and environment. I asked it to make disease into a broader health 
theme, to add a management theme, and to narrow down environment to 
housing (including pasture for outdoor animals). I then asked it to group all 
studies in one or more categories. My aim was to see how frequently welfare 
occurred and what themes it co-occurred with. 

Welfare was a common theme, appearing as a keyword in 85 out of the 
271 studies (or 31%). “Welfare” was second to “Behaviour”, which appeared 
in 41% of studies. If we look at the co-occurrence of welfare with other 
themes we get the following: 
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Table 1. Co-occurrence of welfare with other themes from bibliometric 
analysis of keywords in precision dairy studies. 

Themes co-occurring 
with welfare 

Number 
of studies 

Frequency in original 
selection 

Behaviour 41 15 
Health 32 12 
Heat stress 32 12 
Housing 32 12 
Productivity 16 6 
Management 14 5 
Body condition 11 4 
Nutrition 10 4 
None 10 4 
Reproduction 5 2 

 
We do see in Table 1 that behaviour is the top theme co-occurring with 

Welfare. The predominance of behaviour is expected, since behaviour serves 
as a proxy to derive other information, such as compromised health (Högberg 
et al., 2019), feeding (Riaboff et al., 2022) or mental states (Keeling et al., 
2021). In fact, it was mainly stated in association with the themes of health, 
housing and heat stress. 21 studies referred to welfare or behaviour without 
a health, fertility or productivity component (it would be a stretch to claim 
that they address the behavioural aspect of welfare based only on the 
keywords). This contrasts with 83 studies having a health component. 

Welfare seems to be a ubiquitous theme, perhaps used as an umbrella term 
for any sensor technology which has the potential to assess the state of the 
animal or even improve the life of animals (or farmers). Welfare is 
predominantly mentioned in the context of health, or other parameters 
affecting management, such as reproduction or heat stress. Its behavioural 
dimension with other applications than health or management is rarer.  

2.1.2 Research gap 1: sensors dedicated to welfare assessment 
Upon reviewing drivers of precision livestock farming and available 

technology, an imbalance between welfare and production parameters 
emerges. According to a bibliometric analysis of themes in PLF publications 
(not mine this time), the keyword “health” is the earliest (2014) to become 
prominent in scientific articles focused on technology for dairy farming (De 
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Oliveira et al., 2024). The keyword “estrus detection” reaches a comparable 
prominence in PLF publications in 2016 and “body condition score” in 2018. 
“Welfare” appears later as a trending keyword associated with PLF in 2019 
(De Oliveira et al., 2024). While health of the animals is an important domain 
of animal welfare (and of producers’ mental health) – and while production 
can be an indicator of good health – producers, researchers and consumers 
recognize that animal welfare extends beyond physical well-being (Skarstad 
et al., 2007; Alonso et al., 2020).  

Stygar et al. (2021) identified 30 validated sensors aimed at welfare 
monitoring presented in scientific articles and 129 additional retailed 
technologies, 18 of which were externally validated. They found varying 
results regarding performance in classifying behaviours and inferring 
welfare states, but performance is not the point at hand. Most tools had 
applications for good health and feeding dimensions of welfare. Wearable 
accelerometers had potential to assess good housing, but it was not always 
their purpose. They conclude that available PLF technologies currently have 
low potential to assess behavioural indicators of welfare. If we further 
scrutinize the full list of commercial technologies in Stygar et al.'s 2021 
supplementary materials, we see that only 5 tools incorporated indicators of 
resting behaviour and 1 was primarily focused on welfare parameters other 
than health, reproduction, feeding and locomotion. If we look into new 
entries since this review was published, we note the release of the DeLaval 
Plus Behaviour Analysis (DeLaval international, Sweden) which notably 
monitors time budget in resting area. We also have the TriAct package to 
detect abnormal motions in cows’ resting behaviours and posture transition 
movements using accelerometers (Simmler & Brouwers, 2024). 

A review by Liu et al. (2023) identifies the following applications of PLF 
in dairy: individual recognition, behaviour monitoring, disease detection, 
BCS and feeding. Within the 23 publications fitting the behaviour 
application, 5 studies dealt with lying (and standing) behaviour, 9 with 
feeding behaviour (including rumination), 6 with oestrus and 4 were 
concerned with classifying activity type. For the 5 studies focused on lying 
behaviour, their rationales for automating behaviour monitoring are the 
following: 

• Detecting deviations in lying behaviour as an indicator of 
compromised welfare (Achour et al., 2019) 
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• Technological advancement (Balasso et al., 2021; Tamura et al., 
2019) 

• Detection of idle time (Ma et al., 2022) 
• Monitor indicators of economic performance (Balasso et al., 

2021; Wei et al., 2023) 
The term “welfare” is mentioned 4 times as a technology application by 

studies reviewed by Liu et al (2023): once in the context of lameness, twice 
in the context of BCS and once regarding oestrus behaviours. In two of the 
mentions, general health is stated as a motive for assessing welfare.  

Because of this discrepancy between health-related welfare parameters 
and welfare as a broader concept, technology developed with the main 
purpose of guiding health and production management likely has blind spots 
when it comes to assessing welfare. A notable work supporting that is by 
Barry (2025) who evaluated the possibility of monitoring dairy cow welfare 
using data available through National Milk Records (Original Norwegian: 
Kukontrollen). They compared the routine data to Welfare Quality and did 
not find the records adapted to evaluating welfare in its multi-dimensional 
aspect. 

2.2 Part 2: welfare assessment of dairy cows 
What is on-farm welfare assessment? Is it a veterinary inspection? Is it 

reporting for compliance with regulation and certification schemes? Is it a 
farmer checking if their animals are doing well? Is it a systematic assessment 
of the state of the individuals according to strictly defined indicators? In this 
context, we will accept all these possibilities and define welfare assessment 
as “checking if an animal is doing well”. What the term “well” implies will 
be discussed below. We will however operationalise welfare assessment 
through the lens of the last aspect: an assessment of key indicators on the 
animals, chosen by rigorous validation, such as is done in Welfare Quality 
(Blokhuis et al., 2013).  

2.2.1 Understanding of animal welfare 
Animal welfare is a complex multi-dimensional concept, encompassing 

both physical and mental well-being. Animal welfare science has evolved 
from an interpretation of welfare focused on the avoidance of negative 
experiences (negative welfare) to an increasing recognition that welfare must 
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integrate the presence of positive experiences (positive welfare) (Rault et al., 
2025). A framework that includes both positive and negative dimensions is 
the 5 domains of animal welfare: good physical health, nutrition, and 
environment, positive mental states, and appropriate behaviours (Mellor et 
al., 2020). For this thesis, we will use this definition of welfare. The motive 
is firstly that the 5 domains are broad enough to encompass both the notions 
of freedom from negative experiences, of positive states, and of behavioural 
agency. We note that freedom from negative experiences does not mean 
complete absence of them, but rather a perceived ability to cope with them 
(Broom, 1996) and a balance of experiences remaining positive towards what 
can be summarised as “a life worth living” (Mellor, 2016). Secondly, this 
definition of welfare can be operationalised for welfare assessment; the well-
established Welfare Quality Protocol uses these same domains, with the 
difference that it groups “positive emotional states” under “Appropriate 
Behaviour” (Blokhuis et al., 2013). Through the lens of the 5 domains, we 
can evaluate both the animals (good health and positive mental states), their 
housing (good environment) and the keepers’ practices (notably good 
nutrition but not restricted to it). 

2.2.2 Cubicle systems in larger dairy operations and their implications 
for welfare 

Average dairy herd size has substantially increased over recent decades, 
in Europe and globally (Barkema et al., 2015). In Sweden, the average herd 
size grew from 34 cows in 2000 to 102 cows in 2021 (DG Agriculture and 
Rural Development, 2021). This trend is part of a broader pattern observed 
throughout Europe, where average herd size varies widely by country and 
region but has increased in response to economic pressures and industry 
intensification. 

The implications of growing herd size for animal care have been the 
subject of research and debate (Barkema et al., 2015) but the link between 
herd size and welfare is not trivial. Evidence suggests higher welfare in larger 
operations, benefitting from greater professionalization, standardized 
routines, and technologies that support monitoring and animal health (Beggs 
et al., 2019; Lindena & Hess, 2022). This effect of herd size is however small 
compared to the variability between farms. Each system has its 
compromises: smaller herds are more likely to use tie stalls restricting 
movement, while larger herds tend toward zero-grazing (Barkema et al., 
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2015; Legrand et al., 2009). Although advanced tools in large herds can 
improve detection and care, effective action still depends on farmer training 
and engagement. Ultimately, as herds grow, the concern is not that of level 
of care, but whether individuals with compromised welfare risk getting 
overlooked (Hansson & Lagerkvist, 2015). 

The most common housing in large-scale intensive systems is the free 
stall, where cows can move freely. The stall is designed in such a way that 
space-use efficiency is maximised, and the risks contamination minimized. 
Cubicles are designed in such a way that cows lie down with their rear over 
the alley to avoid soiling the bed (Gieseke et al., 2020). This is notably 
achieved by an intentionally restrictive neck-rail. It is placed in such a way 
to prevent a cow from extending too far into the cubicle when initiating the 
lying down motion, and to encourage lying over standing. Cubicles will often 
have either a head rail or a brisket board to act as a frontal limit. The result 
is that, while head and neck rails keep beds mostly clean, cubicles have 
effects on comfort around posture transition (Lidfors, 1989). A review by 
Nielsen et al. (2023) emphasizes the detrimental effects of inappropriate 
cubicle on dairy cow welfare, including hock lesions, claw disorders, and 
increase lameness prevalence, alongside a potential impact on mental states. 
Cows in restrictive cubicles will take longer to rise and lie down (Brouwers 
et al., 2024), will display shorter movement amplitude (Ceballos et al., 2004) 
and more frequent of abnormal motions (Brouwers et al., 2024). Abnormal 
motions that cows display in cubicles include side lunge (Brouwers et al., 
2023a,b), abnormal order of motions (rising front first) (Lidfors, 1989) or 
hind-quarter stepping (Zambelis et al., 2019). 

2.2.3 Welfare assessment methods around cubicle comfort 
On-farm welfare assessment is structured around validated frameworks; 

practical protocols using a variety of indicators. Welfare Quality (WQ) 
(Welfare Quality® Consortium, 2009) is one such notable framework, which 
is validated (in the sense that the prescribed observations correlate well with 
the state of the entire herd) and used as a gold standard in welfare assessment 
of production animals (Linstädt et al., 2024). Assessment is performed by 
trained assessors, using mostly direct observations of the animals but also 
records and evaluation of the environment. WQ offers a standardized 
protocol leading to highly comparable results across contexts 
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In its evaluation of housing, WQ assesses notably the cubicles with two 
indicators: the number of cows taking more than 6.3s to lie down, and the 
occurrence of collisions in the process. The time needed to lie down denotes 
hesitation, or intentionally slow movements to avoid painful collisions. 

The demands of WQ (in terms of time) have prompted the adoption of 
lighter protocol, such as the Swedish Fråga Kon (Växa, Sweden) or the 
Danish Dairy Cattle Federation’s (DCF) protocol that instead look at the time 
needed for a cow to get up.  In a later report, the European Food Safety 
Agency (EFSA) identifies risks to the welfare of production animals and 
offers metrics to quantify theses risks. To evaluate movement restrictions 
and resting problems, they propose gait, hygiene, lesions and deviations from 
normal lying down and rising up movement (Nielsen et al., 2023). In other 
assessments of stall comfort, lying time and bout frequency are 
predominantly used as measures of comfortable cubicles (Cook et al., 2005). 

2.2.4 Research gap 2: continuous spatial use measurements in 
posture transition assessment 

Posture transitions were chosen as a focus for this thesis. As we have seen, 
they are relevant to comfort and welfare and are used in welfare assessment 
accordingly. Yet, their assessment is mostly summarised by the time 
dimension, which does not offer a full picture of the behaviour, and objective 
methods to obtain a more fine-grained picture are lacking. 

A study aimed at evaluating the potential for automating Welfare Quality 
found that overall, many sensors or their combination could be used, or are 
already used, to measure most of the criteria from WQ (Maroto Molina et 
al., 2020). They do however state that “No references to sensor systems 
enabling the measurement of time needed to lie down, collisions with 
equipment or cow positioning in the resting area were found”. This quote 
omits motion capture, which can do just that (Ceballos et al., 2004), but the 
latter technique is not practical in barns, thus limited to specific trials, and 
not large-scale monitoring. 

Relevance of posture transitions to welfare 
Posture transitions are biologically essential activities: cows must rise and 

lie down repeatedly in order to access feed, water, and rest. Cows spend more 
than half of the day lying (Munksgaard et al., 2005; Tucker et al., 2021; 
Wegner & Ternman, 2023) and alterations in lying time and bout structure 
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have been associated with lameness (Ito et al., 2010; Thompson et al., 2019), 
stall design (Brouwers et al., 2024), and health status (Von Keyserlingk et 
al., 2009). 

Posture transitions are physically demanding (Schnitzer, 1971). 
Difficulty or reluctance in performing these transition motions can reflect 
pain, discomfort (Lidfors, 1989) or inadequate space allowance (Cook, 
2009). The frequency of posture transitions seems to be affected by the 
comfort level of the bed, suggesting that cows are more reluctant to display 
these movements in an unsuitable environment (Haley et al., 2001). The 
EFSA identifies bad housing as a risk to welfare, notably because it hinders 
proper posture transitions (Nielsen et al., 2023). Welfare Quality recognises 
that unhindered, swift posture transitions are part of cows’ opportunities to 
display natural behaviours and reflect comfort (Blokhuis et al., 2013). For 
example, restrictive or poorly designed cubicles can force cows to alter the 
trajectory of rising, increasing collision risk and delaying movement (Cook 
& Nordlund, 2009). Bedding material affects both the ease and willingness 
to lie down; cows provided with deep-bedded sand stalls exhibit shorter 
lying-down durations and more frequent bouts compared to those on 
mattresses (Haley et al., 2001). Reduced number of posture transitions may 
therefore serve as an indicator reflecting an environment where either the 
recumbent position is uncomfortable or the act of getting up and lying down 
is difficult. 

Existing methods and their limitations 
Earlier work on posture transitions has highlighted the importance of 

space allowance, particularly the ability for cows to lunge their head forward 
when getting up (Cook, 2009). A kinematic comparison of cows lying down 
showed that they used less space in cubicles than in open packs (Ceballos et 
al., 2004). The effect of insufficient space can be seen on cows, for example 
with larger cows taking more time to get up, and having more hindquarter 
readjustments when lying down (Zambelis et al., 2019). 

Clues of uncomfortable cubicles can be seen on the cow, such as neck and 
dorsal lesions occurring from contact with the environment when getting up 
or lying down (Zambelis et al., 2019). These clues can also be seen on the 
cubicle bars, specifically if they are polished in specific spots like under the 
head rail, meaning that cows regularly come into contact with it. However, 
studies of cubicle comfort largely employ cow comfort index (proportion of 
occupied cubicles with cows lying down) (Cook et al., 2005), lying time 
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(Abade et al., 2015; Haley et al., 2000), and preference (Abade et al., 2015; 
Tucker et al., 2006). 

Direct visual observation has traditionally been the main approach to 
assess posture transitions, yet this method comes with several important 
limitations. First, observations are constrained to the moment in which the 
behaviour occurs: once a cow has stood up or lain down the opportunity to 
assess details of the transition is lost, as the observer cannot rewind live 
events. Second, visual observation does not allow for quantitative 
measurement of spatial use or fine-grained kinematic detail. Parameters such 
as displacement trajectories, joint angles, or timing of limb movements are 
better studied with sensors, motion capture being a gold standard (Lawin et 
al., 2023). Third, visual scoring is time-consuming and resource intensive. 
Trained observers are required, and assessments are performed irregularly. 
The Welfare Quality protocol, for example, requires approximately one full 
day of observation per farm (Linstädt et al., 2024). It is impractical for high-
frequency monitoring. Lastly, observer bias also remains a possible 
limitation, though training and calibration can reduce variability; Zambelis 
et al. (2019) demonstrated very high inter-observer agreement (k=0.93) in 
scoring abnormal lying-down behaviour. While visual observations provide 
valuable qualitative insight, their inability to deliver continuous, objective, 
and quantitative spatial-use measurements limits its application for sensitive 
and scalable welfare monitoring of posture transitions. 

Sensor systems present an opportunity to automate the assessment of 
selected welfare indicators (Maroto Molina et al., 2020), not the least posture 
transitions (Brouwers et al., 2023b). We have already mentioned the use of 
motion capture, which offers fine-grained kinematic information at the 
expense of practicality. 

Brouwers et al. (2023b) sought to detect abnormal rising and lying down 
movements using accelerometers and supervised learning. Accelerometers 
are well adapted to production settings. Their work lead to the creation of an 
R package for analysing rising and lying down movements (Simmler & 
Brouwers, 2024). When Brouwers et al. (2023b) attempted to automate the 
detection of sideways lunge using accelerometers, they reached moderate 
accuracy (65%). This is encouraging in terms of technical developments but 
insufficient for practical use. The authors impute this to a discrepancy 
between the way data was labelled (straight vs angled lunge) and the 
continuous nature of sensor data. There were many misclassifications on 
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ambiguous edge cases. The author of the aforementioned study later 
suggested that “ethograms should be machine-learnable” (also noted by Gris 
et al. in 2017). The work presented in this thesis draws on this discovery and 
will explore how sensor data can be interpreted in novel ways beyond trying 
to automate existing measures. 

2.3 Bridging two gaps with digital methods for welfare 
assessment 

On one hand, sensor technologies for health monitoring have advanced 
significantly, but there remains a gap in methods for assessing how comfort 
influences behaviour. On the other hand, posture transitions—essential for 
expressing lying-down comfort behaviour—are assessed using limited visual 
and categorical methods that would benefit from more objective approaches. 
There is thus an opportunity to address both gaps by providing a sensor-
based method for posture transition assessment. 

This project exemplifies the kind of integrative approach advocated by 
Foris et al. (2025) where expertise from engineering and ethology are joined 
to co-create solutions that are technically sound and relevant to improving 
welfare. Automated evaluation of posture transitions using 3D pose 
estimation requires technical expertise, to design robust algorithms capable 
of capturing subtle and rapid movements, and to deploy them on the 
appropriate suite of hardware. Animal welfare expertise ensures that the 
indicators derived are meaningful within the biological and behavioural 
context of dairy cows. 

Posture transitions are well suited for this co-creative framework: first, 
they are discrete, repeated events that can be quantified objectively by 
computer vision thus scaled and compared. Secondly, they carry biological 
significance as indicators of comfort, health (Lidfors, 1989), and the 
suitability of housing systems (Cook & Nordlund, 2009). Thirdly and finally, 
applying this technology goes beyond telling us “what is wrong about the 
cow” but generates animal-based evidence on the suitability of housing 
systems that can be used for their improvement (Brouwers et al., 2024). 

2.3.1 Pose estimation in 3D 
Pose estimation in 3D is a field of application of computer vision 

technology aimed at predicting the (x,y,z) coordinates of keypoints (typically 
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joints and other body parts) from 2D images. There are several lines of 
development. One is to triangulate synchronized detections across several 
2D images (Huang & Moliner, 2022). Another other is to lift 2D into 3D 
using neural networks trained on ground truth 3D coordinates (Gosztolai et 
al., 2021). A final method is to predict key point location directly on depth 
images (Ye et al., 2011). 

In this thesis, we worked with the first technique: 3D pose from multi-
view fusion of 2D poses. This method will be the sole focus. The following 
section will provide a high-level overview of the method, including computer 
vision, pose estimation in 2D and multi-view fusion. 

Pose estimation 
Pose estimation is a task of computer vision where the aim is to locate the 

coordinates of key-points. A subject is detected on a frame as a set of points 
(joints) and linkages (bones). Detecting the keypoints usually relies on the 
combination of two techniques: neural networks to detect the location of the 
points, and geometric constraints to refine the pose based on plausible 
linkage length and joint angles (Nogueira et al., 2025). 

3D fusion of pose estimation 
The process begins by capturing synchronized images from several 

cameras positioned around the subjects. The cameras need to be intrinsically 
calibrated, that is, determining intrinsic parameters to align the camera’s 
coordinate system with world coordinates (Moliner et al., 2021). Pose 
estimation in 2D is run independently on the frame from each camera. At this 
stage, the algorithm used for 2D pose has little relevance but accurate 
detection of the key-point from all angles is conditional for precise 3D 
estimation. The 2D keypoints from the different views are geometrically 
combined using known intersecting lines of sight. An overview of the 
specific process for determining these lines of sight will be presented further 
in the methods section. An example of pose estimation in 2D can be seen on 
the upper frames on Figure 1.Figure 1. Pose estimation in 2D and 3D fusion of two 
cows. The blue cow is in the lunge stage of rising. The result of 3D fusion is shown 
as stick figures in the lower part. 
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Figure 1. Pose estimation in 2D and 3D fusion of two cows. The blue cow is in the lunge 
stage of rising. 

Direct triangulation can suffer from noise, occlusions, and inaccuracies in 
2D detections, which degrade 3D pose quality. To improve robustness, 
algorithms incorporate confidence weighting, optimization based on 
reprojection errors, and kinematic constraints such as limb length, joint order 
or symmetry to refine initial 3D estimates (Moliner et al., 2021). 
Reprojection error minimization refines 3D joint positions by iteratively 
adjusting. Each iteration seeks to minimize the discrepancies between the 
original 2D keypoint detected on a camera’s frame, and the reprojection of 
the 3D estimate of that keypoint against that same camera’s line of sight. 

Pose estimation has various applications across scientific research and 
practice where the change in position of body joints is of interest, for example 
gait of horses (Lawin et al., 2023), neural responses of animals (Gosztolai et 
al., 2021),  or  motions of athletes (Qu et al., 2024), and as we will see, cow 
comfort. 
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2.3.2 Posture transitions of dairy cows 

Rising 
Rising movements follow an innate sequence of motions, successively 

soliciting specific body regions and muscles groups. Typically, a cow begins 
from a lying position by extending her neck and head upward, which shifts 
the centre of gravity forward and prepares for limb engagement. Next, the 
forelimbs are folded inward, resting on the carpal joints, with the withers 
rising slightly as a result. Cows are in some cases observed to crawl 
backwards at this stage, hypothesised to be an attempt to increase the space 
available in front of them. Crawling is an important qualitative criterion of 
insufficient space used in the Fråga Kon framework. This behaviour is not 
observed in open environments. The cow then lunges her head forwards. The 
forward lunge movement displaces the weight of the cow forward, away 
from the hind legs and onto the front limbs (Schnitzer, 1971), with 
approximately 2/3 of the total weight being born on the carpal joint at this 
point (von Metzner, 1978). Moving weight into the front allows the cow to 
lift its hind legs and position them under the body in a swift motion. The cow 
then moves upward, pushing with the forelimbs while shifting weight onto 
the hind limbs, which extend to elevate the pelvis and sacrum. This action is 
followed by final straightening of the forelimbs until the cow has assumed 
an upright position. Cows are often observed to stretch their back in an arch 
shape after getting up (Schnitzer, 1971). A visual of the sequence of 
movements is illustrated in Figure 2. As a reader you might want to bookmark 
this figure since it will be referred to quite often. 

Cubicles are designed to allow cows to get up and down while prioritising 
efficient spatial use and cleanliness. A Trade-off exists between hygiene and 
comfort (Bernardi et al., 2009). Studies and guidelines vary in their 
recommendations regarding design and dimensions of cubicles. Lunge space 
is particularly important to the rising motion (Cook, 2009). Cows require 
clear, unobstructed forward and lateral space to complete rising motions 
without restriction or injury. Increasing lunge space can effectively decrease 
the frequency of abnormal motions, highlighting the importance of stall and 
cubicle design for improving welfare (Dirksen et al., 2020). One study 
suggests at least 0.9m of forward lunge space (Cook, 2019) but elements like 
the head rail can substantially interfere with how much cows can make use 
of this forward space. 
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Figure 2. Characteristic vertical movement patterns of the head, withers and sacrum 
keypoints during rising (top) and lying down (bottom) with stages/phases marked by 
dashed lines. 

Lying down 
Before lying down, once a lying spot has been chosen, cows swipe their 

heads to the sides as they inspect the ground. These are referred to as 
intention movements (Krohn & Munksgaard, 1993; Lidfors, 1989). They 
bend one leg then the next and descends until it rests firmly on its carpal 
joints. In some cases, hind limbs are readjusted away from the side they will 
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be resting on. The cow stretches its head forwards and down as it and the 
hind legs are lowered. Finally, the cow lets herself fall gently on the flank. 
The legs are then usually tucked under the body. 

 

 
Figure 3. Excerpt from an instructional video explaining the leverage effect of the head 
lunge. Credit: Växa Sverige, partner of this project. 

Cows can use 2.6m to 2.9m in total longitudinal space when lying down 
(Lidfors, 1989). They use approximately 0.7m to 1m of lateral space (120% 
to 180% of hip width) (Tucker et al., 2004) and up to 10.9m forward space 
(Ceballos et al., 2004). The largest horizontal movements of the hip typically 
occurred at two average heights: one between 0.9 and 1.35m (Ceballos et al., 
2004; Tucker, et al., 2004). After the posture transition is complete, space 
will also affect lying behaviour: animals spent an additional 42 min/ 24 h 
lying in stalls measuring 1.26m in width compared to stalls those 1.6 cm 
wide (Tucker, Weary, & Fraser, 2004). 
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3. Aims of the thesis 

There is a trend in farming systems of post-industrialized countries 
seeking to automate animal welfare monitoring (Barry et al., 2024; Buller et 
al., 2020; Maroto Molina et al., 2020). This trend is the response to both a 
preoccupation and an opportunity. The preoccupation is that herds get 
increasingly large and intensified. These intensive systems do not imply bad 
welfare (Lindena & Hess, 2022) but individuals in such systems with 
compromised welfare risk going unnoticed (because there are so many 
animals per caretaker). The opportunity is that digital technologies could 
monitor welfare parameters, objectively and continuously, providing real-
time information on how well each individual cow is faring. The overall 
project that this thesis is a part of fits in this trend of automated welfare 
monitoring. 

The project originally asked the question can we automate welfare 
assessment? The can term implies not that we meant to automated welfare 
assessment but is rather about exploring what is possible. Automate 
originally meant reproducing with sensors indicators that are already 
established, but I will talk about lessons learnt on this matter. Welfare 
assessment refers narrowly to indicators for animal-based measures which 
are validated and have an established link with welfare outcomes. 

This thesis seeks to contribute to the body of evidence and the available 
technology for automated welfare monitoring. It exemplifies the automated 
monitoring of animal-based measures by presenting a sensor-based solution 
to evaluate the quality of posture transitions. The specific aims of the thesis 
are: 

 To develop data management and processing tools to generate 
insights on cow comfort from continuous pose estimation data 
(Paper I, II & III). 

 To explore a use case for multi-view computer vision addressing 
limitations in visual assessment of posture transition comfort 
(Paper II & III). 

 To apply the system for the improvement of cubicles using 
animal measures in a commercial setting (Paper II & III). 
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4. Overview and comments on materials 
and methods 

This section will explain, mostly chronologically, the steps undertaken, 
and the methods developed to achieve the aims. It will present a general 
overview of the data collection, management and processing procedures 
Specific and repeatable descriptions of each method used to generate results 
can be found in their respective papers 

This thesis lies at the intersection of computer vision, biomechanics, and 
animal welfare science. A reader expecting to deepen their expertise in 
computer vision might be left unsatisfied from the only high-level overview 
of the technology. In the same way, a biomechanics expert might not find the 
level of detail they expect regarding the movement of anatomical structures. 
An expert in animal welfare might find the operational definition of welfare 
too pragmatic. This study sits at the crossroads between these three fields. 
Rather than diving into one of these, this thesis attempts to bridge them, 
explaining how data on joint kinematics was captured with computer vision 
with the aim of informing on welfare indicators. 

Previous research has already sought to quantify the spatial use and 
displacement of different anatomical structures during posture transitions. A 
few decades ago, a grid was placed behind the cow that was recorded with 
film during posture transitions. Using known perspective coefficients 
between the camera, the cow and the grid, researchers were able to quantify 
the total longitudinal space used by cows, and the displacement of the head 
when getting up in unrestricted environments (Schnitzer, 1971). Later, 
motion capture was used to measure again total longitudinal space and head 
displacement with the addition of lateral space used this time when lying 
down, using motion capture (Ceballos et al., 2004). Motion capture allowed 
precise comparison of spatial use and movement patterns in cubicles versus 
open packs. These techniques generated important insights in spatial use 
requirement of cows that are used to inform cubicle design and to derive 
indicators of abnormal posture transitions. These techniques do have the 
downside of requiring a controlled environment. This limitation might 
explain the low sample size (n = 5 cows) in the latter study. 

Pose estimation in 3D from multi-view computer vision acts as a form of 
markerless motion capture. It may not offer the same level of stability and 
granularity as true motion capture with reflectors but has the practical 
advantage of being scalable without intervention on the animals. This 
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enabled us to monitor the movements of 183 and then 85 cows in what I will 
refer to as “production settings”. By production settings, I mean conditions 
regarding the physical environment, diet and daily activity patterns of cows 
such that would likely be found on commercial farms. The research was 
conducted in the dairy barn of the Swedish Livestock Research Centre, 
which in fact works as a commercial farm with the addition of research and 
education activities. For this thesis, we deployed a multi-camera system to 
learn to adapt it to deliver actionable insights on the animals’ welfare. The 
system outputs the coordinates of selected body parts in a 3D space. This 
data needs to be further interpreted into information on the animal. 

4.1 Animals, housing and timeline 
The multi-camera system for 3D key-point acquisition was set-up in one 

of 5 dairy pens of the Livestock Research Centre in Uppsala, Sweden. Each 
pen had a milking robot with voluntary access The cameras covered 12 out 
66 cubicles. The cubicles model is C1300 (DeLaval, Sweden) from 2010. 
They consist of a 2.1m by 1.25m lying surface with neck rails. The beds were 
covered in peat in Phase I and with straw in Phase II. Bedding was 
replenished several times a day by an automatic dispenser. The end of the 
cubicle is marked by a head rail and a concrete step. Rows of cubicles are 
facing each other with 1.65m between the front end of each row. Dimensions 
and design of cubicles can be seen on Figure 4. The floorplan of the pen and 
the covered cubicles can be seen on Figure 5. 

Except during the experiment (March – April 2025), cow traffic in the 
pen was independent of data collection and was based on the management 
needs of the farm. A first data collection phase (phase 1) ran from December 
8th 2021 to April 28th 2022, a total of 183 cows were present in the research 
pen, although lack of individual identification prevents us from knowing 
exactly which individuals expressed the recorded bouts. Sequences showing 
bouts were extracted for 32 of those days This material was used for papers 
1 and 2. A second phase of data collection (phase II) ran from February 24th 
to April 7th, 2025.  This phase corresponds to an experiment, where the head 
and neck rails were replaced by flexible straps, 85 different individuals were 
present in the pen. More details on that experiment will follow. 
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Figure 4. Cubicle design and dimensions (meters). Flexible head and neck straps in the 
lower left quadrant. 

4.2 Multi-camera setup and data acquisition 
The multi-camera system is a proprietary technology of Sony (Sweden).  

Despite its novelty and technological prowess, the method for acquiring 3D 
pose will not be the focus of this thesis, for the simple reason that it is not 
my own work. I will still present an overview for the sake of understanding. 

The data used for this study are the synchronized video recordings, and 
the poses 3D generated from the video. Let’s establish some terminology. A 
scene is defined as the number, placement and posture of cows in the area 
covered by the cameras at a given timepoint, which is captured on several 
synchronized frames and for which there is position information. Each 
camera has a view of the scene, meaning its orientation and field of view. A 
frame is the tensor of pixels produced by a camera at a given timestamp. The 
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frames for one scene are synchronized meaning that they share the same 
timestamp. The system is robust against synchronization misalignments of 
up to 0.5 seconds for motions equivalent to human walking (Huang & 
Moliner, 2022). In terms of computer vision outputs, an object corresponds 
to the detection of a single cow. In 3D, each to each object corresponds a set 
of keypoints which are the (x, y, z) coordinates of specific anatomical 
landmarks. The absolute coordinates are irrelevant, but their change is 
expressed in meters and informs on motion amplitude. The keypoints 
pertaining to an object together form a pose, which is a set of points and 
linkages describing the location of the anatomical structures in space from 
which we can derive posture of each animal. The poses corresponding to the 
same object across successive scenes are identified by an id, which will be 
referred to as track number. In the text, I will often refer to a sequence, 
which is the snippet (10 to 60s) of successive poses centred on a posture 
transition, along with the video from all cameras used to generate it 

4.2.1 Physical installation 
3D fusion of pose estimation from multi-view computer vision, as its 

name suggests, requires at least two cameras to provide a 3D pose (R. Hartley 
& Zisserman, 2003) but more cameras increase robustness of the 
triangulation and reduce sensitivity to occlusion. There is no theoretical 
maximum number of cameras, this is more a concern of cost, practicality and 
processing capacity. The first phase of data collection was done with 6 then 
7 cameras (G3Bullet, Ubiquiti, USA). Then, the experiment used 9 cameras 
organised in 2 groups of 5 and 4 calibrated separately. 

Cameras 
The cameras covered 12 cubicles. A different set of cubicles was used for 
development (phase I or papers I and II) and the experiment (phase II or 
paper III) with 4 cubicles overlapping between the phases. The cameras were 
positioned between 1.8 and 3.6m high, oriented towards the cubicles so that 
all points in the cubicles would be visible by at least two cameras at all times. 
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Figure 5. Floorplan of the research pen with the studied cubicles marked in blue for 
studies 1 & 2 and in red for study 3. MU = milking robot, C = concentrate feeding, circle 
= mechanical brush, square = trough. Rectangles are cubicles, bottom line is feeder bins. 

Data retrieval, processing and storage 
There seems to be a favourable generalisation of the potential of computer 

vision in the research community, as a plug-and-play technology; namely 
that it can be easily deployed and start generating interpretable output. The 
experiences working with computer vision have taught us that it is not a 
general truth. Several layers of hardware and software are needed. 

The physical setup can be, in the case of this research, split into two parts. 
The first, is the barn part, with cameras, cabling and switches. The second is 
the “computer room” hosting a network video recorder (NVR), the 
computers processing the images, a proxy server for remote access, and a 
storage unit. The setup went through several iterations, both in the “computer 
room” and in the barn. During phase I, two switches (Enterprise 8 POE, 
Ubiquiti, USA) with power over Ethernet (PoE) ports (necessary to power 
the specific cameras used) were placed on the walls on either side of the pen. 
RG45 cables were drawn from the switches to the cameras. This meant that 
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a substantial amount of work was necessary to place or move a single camera, 
as the entire cable (up to 50m) had to be rerouted. The switches were 
connected to a NVR (Dream Machine, Ubiquiti, USA) in the computer room. 
The NVR also acted as a cloud gateway to make the live video footage 
available remotely via the maker’s own app. It also routed the frames to the 
computer to run the pose estimation model. The videos were stored on the 
hard drive of the NVR. The results from the 3D pose estimation were stored 
on internal hard drives of the processing computers. 

During phase II, a more scalable system had been put in place. Switches 
directly over the cow pen were connected to the NVR. In addition, ethernet 
plugs with cables running to the switches had been placed in several locations 
above the pen, allowing us to easily change camera positions, using cables 
from 1 to 3m and rarely 5m or 10. The 3D poses and the videos were stored 
on a NAS storage unit (DS1825+, Synology, Taiwan). 

4.2.2 Calibration of the system 
The calibration of the system involves three steps: 

- Intrinsic calibration to determine each camera’s parameters 
(distortion, focal point). 

- Extrinsic calibration of the multi-camera setup to determine 
intersecting lines of sight and relative location of the cameras to each 
other. 

- Alignment of the multi-camera coordinate system with world 
coordinates and known origin and axes. 

Intrinsic parameters 
Intrinsic calibration determines cameras’ intrinsic parameters using 

structure from motion (SFM). These parameters are namely focal lengths, 
principal point, and lens distortion coefficients, collectively representing the 
intrinsic matrix 𝐾𝐾𝑖𝑖. Techniques for determining intrinsics from SFM are not 
the purpose of this work and only presented here for context. 

Cameras record while being moved handheld at a slow pace, along a path 
describing infinity signs, maintaining the orientation towards a set scene to 
maintain overlap across frames. The scene must be between 1 and 5m away 
and contain straight ridges. The process begins with establishing epipolar 
geometry by detecting ridges and points and matching them across 
successive frames. This populates the fundamental matrices of feature 
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correspondences between frames. These pairwise relations provided the 
basis for self-calibration, where intrinsic parameters are refined by enforcing 
geometric constraints across multiple views of the same static scene. The 
intrinsic parameters were refined iteratively to achieve consistency across all 
image pairs. 

Extrinsic parameters 
For calibration, a scene is recorded from all cameras with a human 

walking throughout the entirety of the volume to be calibrated. Initially, 
keypoints on the human (head and joints) are detected on the frames from a 
pair of cameras. These keypoints establish correspondence between the 
views of both cameras. Since there is only one of each keypoint (chiral 
keypoints like shoulders or elbows are labelled as left and right and thus 
unique), a single correspondence is made for each point on every camera. 
The system represents a camera by the pinhole model as a single point in a 
3D space (in world coordinates). Each camera 𝑖𝑖 is represented by a projection 
matrix: 

𝑃𝑃𝑖𝑖 = 𝐾𝐾𝑖𝑖[𝑅𝑅𝑖𝑖𝑇𝑇𝑖𝑖] 
Where 𝐾𝐾𝑖𝑖 is the intrinsic matrix,  𝑅𝑅𝑖𝑖 the rotation, and 𝑇𝑇𝑖𝑖 the translation. 

The extrinsic calibration problem is to estimate 𝑅𝑅𝑖𝑖 and 𝑇𝑇𝑖𝑖. which align the 
local camera coordinate system with the shared world coordinate system. 

In the first phase, each keypoint defines a ray (line of sight) in 3D space 
that extends from the camera centre through the detected 2D location on the 
image plane. The system then uses the 8-point algorithm (Hartley, 1997) to 
determine extrinsic parameters (𝑅𝑅𝑖𝑖 and 𝑇𝑇𝑖𝑖) and applies RANSAC across 
frames to attenuate the influence of noise in the original prediction. Once a 
pair is calibrated, other cameras are added iteratively in pairs. A preliminary 
3D pose is estimated based on the initial parameters. 

In the second phase, iterative bundle adjustment optimizes extrinsic 
parameters and 3D pose. Reprojection error is calculated by retracing each 
3D keypoint back onto the cameras and comparing the reprojected point to 
the original keypoint predicted by 2D pose estimation. Extrinsic parameters 
are refined by optimizing an objective function that minimizes reprojection 
error. In addition, it integrates constraints and priors to ensure biomechanical 
plausibility. This includes notably constraints on joint angles and limb length 
and penalizes abrupt accelerations or other higher-order derivatives in joint 
trajectories (Moliner et al., 2021). Optimization uses Huber loss function, 
with varying weight assigned to the different keypoints’ reprojection error 
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depending on prediction confidence and distance (factors empirically linked 
to estimation accuracy) (Huang & Moliner, 2022). 

Aligning to known coordinates 
Once the multi-camera system has been calibrated, its coordinate 

reference can be anchored to a known coordinate system using a calibration 
plate of known dimensions shown on Figure 6. The plate contains three 
markers arranged to form a 90° angle, with the distance between each marker 
fixed at exactly 0.8 m. Each camera detects the markers in its image plane, 
and then the system triangulates their 3D positions using the previously 
estimated extrinsic parameters. The coordinates of three reconstructed points 
are then compared to their known geometric configuration, which serves as 
a reference frame with orthogonal axes and fixed scale. By applying a rigid 
transformation, the estimated 3D marker positions are aligned to the known 
positions of the calibration plate. This allows the entire reconstructed scene, 
including all camera extrinsic parameters and subsequent 3D poses, to be 
expressed in absolute world coordinates with known origin, orientation and 
scale. 

 
Figure 6. Calibration plate with cameras' lines of sight 

4.2.3 3D pose estimation 
3D fusion of pose estimation works in three steps: object detection, 2D 

pose estimation and 3D fusion. The synchronized 2D frames for each scene 
are processed independently. Rectangular regions of interest are defined on 
each camera’s view, corresponding as best as possible to the areas 
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highlighted on Figure 5. This reduces the processing load by ignoring objects 
outside the area of interest. Bounding boxes for cows are detected on the 
frames with YOLOx (Ge et al., 2021) and the contents are passed to the next 
step. A retrained HRNET identified the location of anatomical landmarks 
within the contents of these bounding boxes. The nature of convolutional 
neural networks usually used in image analysis downsamples original 
images, causing loss of fine-grained detail. HRNet maintains high-resolution 
representations throughout its entire network, operating several parallel 
subnetworks at different resolutions and continually exchanging information 
between them (Wang et al., 2019). A total 24 different keypoints are 
detected, but the following were used in this work: head at the poll, withers, 
T13 in the middle of the back, sacrum, at the highest point between the ilia, 
carpi, and tarsi. This step yields a set of (x, y) coordinates for each frame. 
Finally, the system established correspondences between the keypoints on 
each frame. This task involves correctly matching the keypoints to their 
respective object; that is, identifying which keypoints in one view 
corresponds to the same unique instance of this anatomical structure in 
another view when there are several keypoints of the same type in the scene 
(for example several heads, one head per cow, each head having to be 
matched to the correct set of limbs and other keypoints). The system 
combines the known intersecting lines of sight with anatomical constraints 
(for example, the head is beyond the neck compared to the withers, and the 
rear limbs are directly under the pelvis) to match the keypoints to the correct 
object. Once the 2D keypoint correspondences are established, the 3D 
location of each anatomical keypoint is reconstructed using triangulation. 
Triangulation involves finding the point in 3D space that, when reprojected 
against each camera’s line of sight, produces a correspondence to the 
observed 2D locations in each view. The system also performs a temporal 
filtering step to smooth the 3D pose trajectories over time. This helps to 
reduce jitter and improve the stability of the pose data. The output of this 
process is a time series of 3D poses for each object, where each pose consists 
of a set of 3D keypoints corresponding to the location of anatomical 
structures. 

4.2.4 Data management 
The multi-camera system produces 3D coordinates for all 24 keypoints of 

each object detected in the scene from synchronized video sources. The 



56 
 

video is either post-processed, or processed in near-real time, where frames 
are sent to a processing buffer. This process involves several machines at 
different locations, and conceptual phases to index, store and analyse the 
keypoint data. 
 

 
Figure 7. Conceptual architecture of the data pipeline from video acquisition to indexing 
and long-term storage. 

Post-processing synchronized video 
In the case of post-processing, pose is estimated on all recorded frames and 
3D poses are available at the same framerate as the cameras (29.9 FPS). The 
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output is organised in messages for time windows matching the videos (1 
full hour). 

Real-time and near-real time pose estimation 
In this case, frames are sent from the network video recorder (NVR) for 

processing. The camera’s framerate is 30 FPS. However, in crowded scenes, 
processing all frames requires more than 0.033s, generating a buffered queue 
of frames. Computational requirements are also dependant on the number of 
cameras employed. In order to align sampling rate with processing capacity, 
the last scene in the processing buffer was processed with pose estimation. 
This led to occasional variations in sampling rates since crowded frames took 
longer to process. To maintain synchronization, the first frame with a 
common timestamp was considered frame 0 for each camera (see section on 
calibration). All cameras record at the same framerate and the frame’s order 
of arrival in the processing buffer is recorded. All frames from every camera 
with the same order of arrival are processed together. 

The poses for each scene are written into an MQTT message and 
appended to a JSON file. When the JSON file reaches 25 000 messages, it is 
compressed and stored. Cameras are re-synchronized before starting to write 
a new file. 

Storage and indexing 
A routine was developed to download the archived messages to another 

storage unit, decompress and index them. The workflow is shown on the 
lower pane of Figure 1Figure 7 

Archives are copied from the remote with rsync onto a landing zone. Each 
archive’s name is compared against entries in an index, identifying new files 
that were not yet indexed. For each new archive, the script extracts and parses 
JSON messages contained within. Each message includes a timestamp and 
one or more detections of objects in 3D. Messages are expanded so that each 
detection becomes an individual record. These records are then organised 
into tabular form as Parquet files. The parquet files are stored in a separate 
query zone. Processed archives are moved from the landing zone to the 
storage zone. 

Downloading archives onto the landing zone is handled as a different step 
by a user account with writing rights only on that zone. Another user account 
with reading rights on the landing zone and writing rights on the query zone 
updates the index, in such a way that no process has at any time both read 
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and write access on a folder that they are accessing, preventing data losses in 
cases of mistakes or crashes. 

The indexing process also records the temporal coverage of each archive 
by identifying the earliest and latest timestamps within its contents. These 
timestamps, along with metadata such as the data source (camera group), and 
file path, are appended to the index. A separate function used for the analyses 
identifies parquet files of interest based on selected timestamps and 
according to the time ranges in the index and reads them into Pandas data 
frames.  

 Archives that do not contain any valid 3D data are flagged, and a log is 
generated for traceability. The routine includes versioned backups of the 
index before modification and differentiate between development and 
production runs by having a mirrored development index and destination 
folder. 

4.2.5 Data preparation 

Defining continuous tracks 
After 3D fusion of poses, each detection is assigned a unique id. If a new 
object is close in space to an object on the previous scene (thresholds for 
distance unknown), the new object is associated the same id as that of the 
object on the previous scene. This relates detections pertaining to the same 
individuals with an unquantified level of confidence and represents a form 
of pseudo-tracking. Occasionally, when individuals are close to one another, 
track ids are mistakenly swapped. During real-time processing, the tracking 
algorithm can only compare the distance between the keypoint in the current 
scenes and the previous ones. In post-processing, the spatial position of 
keypoints for a track can be compared to chronologically successive and 
anterior scenes, and operate on smoothened trajectories increasing 
robustness. Post-processing also allows to run more demanding tracking 
algorithms without reducing the framerate. 

To identify and rectify these instances, I developed a function that detects 
sustained spatial discontinuities that operates for cows in cubicles. For each 
scene, the Euclidian distance between consecutive positions of the withers 
and sacrum keypoints is calculated. Sudden discontinuities above 0.63cm 
(half the width of a stall) between scenes (approximately 0.05s) are flagged. 
The mean position of the keypoints in windows of 5 frames (0.25s) before 
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and after the flagged discontinuity is calculated. If the difference in position 
persists above the threshold (difference above 0.45cm between the windows 
before and after the discontinuity), the event is flagged as a track swap. If 
there is a disruption in spatial continuity that returns to its expected value 
after 2 scenes and remaining at its expected level, the event is flagged as a 
noise peak instead. Object ids are then split into several different tracks, with 
a new unique identifier starting at the index of each id swap. These new ids 
constitute a form of track. Tracks likely pertaining to the same individual are 
then merged. 

4.2.5.1 Merging tracks pertaining to the same individual 
After identifying and segmenting potential id swaps and creating short 

tracks, objects that pertain to the same individual were merged. First, for each 
track segment, the mean three-dimensional location of the withers was 
computed while the animal was positioned within a stall. The stall area 
boundaries were defined along the horizontal axis using empirically 
determined limits specific to each camera group. For each track, the mean Y 
(parallel to the row of beds) and Z coordinates of the withers were calculated. 
The former coordinate represents the placement in a bed along the row of 
beds and the later whether the animal was standing or lying. 

All tracks were then compared pairwise in terms of their mean Y and Z 
coordinates and their temporal extent. Pairs of tracks were considered 
candidates for merging if they (1) occupied spatially close positions in the 
stall (within 0.63 m in Y and 0.4 m in Z) and (2) either overlapped in time or 
were separated by a short temporal gap (less than 90 s). These pairwise 
relationships were represented as edges in an undirected graph, where each 
node corresponded to a track and each edge connected tracks fulfilling the 
proximity and temporal criteria. Connected components in this graph were 
treated as clusters representing a single continuous track. To ensure that no 
cluster spanned spatially distant beds, an iterative refinement step removed 
edges whose cumulative spatial separation along the Y-axis exceeded the 
defined distance threshold. After this refinement, all tracks within a 
connected component were assigned a common merged track number. To 
restore temporal continuity between merged tracks, small gaps between 
merged tracks were interpolated. 
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Interpolating missing poses 
Several events could increase the expected time of 0.033s between 

frames: crowded scenes may lead to increased latency, failure of the 
matching algorithm to produce a 3D pose or merging tracks. To ensure 
temporal consistency, 3D keypoint time series were systematically 
resampled to 30Hz. Resampling was done using cubic interpolation. In 
previous work aimed at interpolating cow positions, Ren et al. (2022) had 
found Akima to be the most faithful method for 2D locations. However, I 
observed it to regularly overshoot in the vertical dimension compared to 
expected trajectories and used cubic interpolation instead (which the 
aforementioned authors had also found satisfactory). 

First, consecutive timestamps were examined for irregular temporal gaps. 
When the interval between two frames exceeded the nominal recording 
interval (0.033 s) l rows were inserted at regular intervals between them to 
re-establish a uniform temporal sampling. These inserted rows were flagged 
as interpolated observations and retained the metadata of their nearest 
preceding frame (track id, sequence, and camera group). In the second step, 
the missing coordinates were estimated by spatial interpolation. For each 
keypoint (e.g., head, withers, sacrum), the available X, Y, and Z coordinates 
from neighbouring frames were treated as known samples along a one-
dimensional temporal axis defined by frame indices. The scipy.griddata fits 
a local cubic function between adjacent valid observations to estimate 
smooth intermediate coordinates, and predict the value at the missing 
observation. 

Smoothing and filtering 
The 3D fusion process can introduce noise from various sources: 

vibration of the cameras creating an offset between the calibrated lines of 
sight and the view, key-point jittering around the ground truth, and erroneous 
detection. The frequency of the occurrence of each was not quantified but in 
the methods section of Paper II, you can see how we analysed their effect on 
the accuracy of an event detector. 

Existing literature recommends applying a low-pass filter with a cut-off 
frequency of 10Hz for behaviour classification tasks (Hamäläinen et al., 
2011; Riaboff et al., 2022). These were based on developments with 
accelerometers but remain sensible in this case. If we assume keypoint jitter 
to be random and normally distributed around the true position, we can 
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consider that it moves at one frame and then goes back, giving a displacement 
on 3 frames. At the sampling rate of 30 fps, this gives us a cutoff of 10Hz. 
Based on this reasoning, I applied a low-pass filter of order 2 with a cut-off 
frequency of 10Hz in phase I and halved it to 5Hz in Phase II. Nyquist factor 
was 0.5. I had quantified keypoint jittering by the median 3D Euclidian 
displacement across frames during stationary phases (before rising). Median 
jittering was lowest at the head (0.01m, interquartile range (IQR) of 0.009m) 
and highest at the tarsi (0.07m, IQR = 0.08m). Upon visually inspecting the 
displacement of the keypoint before and after smoothing, this method 
preserved the key-point displacement information while filtering out small 
variations. To attenuate remaining noise, I applied Savintsky-Golay 
smoothing to the time series of each coordinate of each key-point separately. 
This technique fits a polynomial in a window centred on each point 
successively and returns the predicted value of the polynomial at that 
location. The parameters were 3rd order polynomial to a window length of 15 
(0.5s). 

4.3 Event detection 

4.3.1 Detection of posture transition events 
Two different approaches have been proposed to detect posture transition 

events from sensor output. The first case uses the displacement of anatomical 
landmarks, used on cows fitted with motion capture reflectors (Ceballos et 
al., 2004). The rationale behind it, is that the output data “the 3D positions 
of anatomical structures” are immediately interpretable, in the sense that, for 
example, a downwards movement of the withers by 0.1cm/s corresponds to 
a cow transitioning from a standing to a recumbent position. The second 
method was adapted to accelerometers attached to the leg. When cows are 
standing, gravity is aligned with the Z axis of the accelerometer, whereas 
when the cow is lying down, the leg is rotated, and gravity loads mostly onto 
the x axis. When the main axis load is shifted between these axes for a 
sustained period (>30s), a posture transition event is flagged (Brouwers et 
al., 2023b). 

The initial method using the vertical displacement of the withers was 
successful in detecting posture transitions but also flagged mounting 
behaviours (since the vertical position of the withers does also change 
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through these). A refinement was thus to set a vertical displacement 
threshold of 40% of the initial position sustained over a period of 30s, or until 
data points are available, whichever the smallest. 

During Phase I, the sequences were already trimmed around posture 
transition events. Several tracks were present in the snippets, and the 
detection was applied to identify which track was associated with the cow 
getting up on lying down. During Phase II, we had continuous data for 3 
blocks of 2 successive weeks, each yielding tracks of varying lengths. The 
need this time was to detect when a posture transition occurred. Based on 
Phase II, I knew that the detector had a satisfactory sensitivity (88.5%). In 
the smoothened Z (vertical) series of the withers, events where the keypoint 
crossed the plane at Z = 1m were flagged as potential posture transitions. 
Then, the median vertical position in the 30s windows before and after the 
crossing where compared. Using the same threshold as in Phase I, a sustained 
40 % difference was considered a posture transition. A ±30s window with all 
keypoint coordinates for that track was extracted for later analyses. 

4.3.2 Detection of stages of the posture transition 
Earlier works on cow posture transitions identified 7 stages (Lidfors, 

1989; Schnitzer, 1971). In order to measure the selected indicators of posture 
transition quality (measuring either duration or displacement), the timing of 
5 stages in rising and 4 stages in lying down needed to be known. Paper I 
serves as a proof of concept, with the aim of showing that we can detect at 
the first of these stages from the 3D keypoint time series. Each phase has a 
distinct kinematic pattern, that can be seen on Figure 2 on 43. The stages are 
the following: 

Rising 
• Rising on breastbone: when the cow initiates the movement of 

tucking its front limbs under its body. 
• Lunge start position: when the cow has gathered its limbs under 

its body and performed possible readjustment movements 
• Head lunge: the point of furthest extent of the head along the 

body axis when the cow lunges its head forward to offload weight 
off the hind limbs. 

• Lifting of the rear: with the head extended, the cow steps 
repeatedly with the hind legs to lift its rear. 
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• Lifting of the front: the cow then extends its front limbs in 
succession. 

• Standing: the first moment the cow is standing with all 4 legs 
extended, before it stretches its back. 

Lying down 
• Initial leg bend: the cow bends one of its front limbs initiating the 

downwards movement. 
• Thoracic limbs touchdown: both carpal joints are in contact with 

the ground. 
• Sacrum descent: the cow starts to lower is rear, marked by an 

increase in the vertical velocity of the sacrum. 
• Recumbent position: the cow is fully lying down. 

To detect the stages, the I relied on the interpretability of pose estimation 
data: that position obtained directly relate to observable phases without 
needing to integrate or differentiate. The method chosen was change-point 
detections, which identifies changes in times series without pre-supposing 
constant properties throughout the series. This method had already proved 
useful in identifying changes in motion on human subjects (Bastian et al., 
2024). A notable advantage is that it does not necessitate a training dataset 
to relate a signal to a ground truth, thereby reducing the need for annotations. 
A ground truth is nevertheless needed for validation. Change-point detection 
was implemented in the python package Ruptures (Truong et al., 2020). The 
Pelt method requires a penalty parameter and detects several change-points. 
The annotated posture transition stages were used to refine the penalty and 
identify the kinematic pattern of the keypoints around the change-point 
corresponding to that event. A more in-depth description of the method and 
the parameter search can be found in the Methods sections of Paper I and II. 
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Table 2. Posture transition phases and methods for detection (modified from 
Paper II). 

Posture 
transition phase 

Penalty Variables for change-
point detection 

Criteria for selecting a change-
point 

Rising (LTS)    
Start of rising 
motion 

10 Withers Y, Withers Z First change point where the 
median Z withers in the 
following 1s window > median 
Z withers in the initial 1s of the 
sequence 

Lunge start Last point before lunge where withers forward velocity = 0 
Head lunge Return to head velocity = 0 after highest peak 
Standing 5 Withers velocity First change point after the last 

velocity peak of 0.18 
(normalized units) 

Lying down 
(STL) 

   

Initial leg bend 10 Withers vertical velocity Last change point before the first 
peak in withers velocity above 
0.2 (normalized units) 

Thoracic limbs 
touchdown 

3 Withers Z First change-point immediately 
after the first peak above 0.2 

Sacrum descent Random forest 
Recumbent 
position 

10 Withers Y, Withers Z Last change point where the 
median Z withers in the 
following 1s window < median 
Z withers in the final 1s of the 
sequence 

4.3.3 Creation of a ground truth and validation 
For Phase 1, the ground truth was annotations on the timing of the 

selected stages from video. For Paper I, 3 observers annotated the timestamp 
of the first stage of the rising motion in 60 rising events randomly sampled 
from the 471 complete sequences (sequences without interruptions in the 
objects ids). Thirty sequences were common to all observers, 10 were unique 
to each observer and 15 were randomly resampled within each observers own 
set to measure intra-observer consistency. The sequences were blinded and 
shuffled. Observers were given the videos for these sequences from all 6 or 
7 camera angles and provided with the following definition: The cow is lying 
down and rises on its breastbone and elbows, which causes the withers to 
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rise visibly above the rest of the back. Observers then calibrated together by 
agreeing on the time to annotate from 5 training sequences different from the 
validation set. 

For the remainder of the events, labelled for paper II, each observer 
annotated 100 sequences for both rising and lying down events, of which 55 
(per posture transition type) were common to all observers, 30 were unique, 
and 15 were randomly resampled. 10 different sequences were used for 
calibration of the observers. The exact definition of the phases provided to 
the observers can be found in Table 1 of Paper II. 

For Paper III, observers labelled the individual cow performing each bout 
in the selected sequences. Identification sheets were developed, with images 
of each individual cow from various angles. For each sequence, one of either 
two observers annotated which cow was performing the bout, and the cubicle 
number. The cubicles were counted 1 to 6 for each row separately, starting 
from the left when facing the front end. If an observer was unsure (for 
instance because of an even coat with few distinguishing patterns), they 
flagged the annotation as such. They left the annotation blank if they could 
not identify the individual. These sequences were excluded from the 
analysis. 

4.4 Scoring of posture transition indicators 
Both scientific literature, and industry guidelines recognize sets of 

measures that are used to assess the quality of cubicles when it comes to 
allowing for comfortable posture transitions. A measure commonly found is 
the “lunge space”, and by extension the “bob-room” (Cook, 2019). This is a 
measure of the space available in front of the cubicle, both forward and 
upward for the cow to extend its head forward during the lunge movement. 
We have seen in Section 0 that the head lunge is an innate and 
biomechanically important movement. It serves as a way of displacing the 
cow’s weight forward when getting up, with the effect of relieving some of 
the body’s load off of the rear limbs, reducing the effort needed to lift the 
rear (Lidfors, 1989) (see Figure 3). The lack of lunge space is an issue raised 
with wall-facing cubicle models, and the resulting lunge movements to the 
side are characterized as an abnormal motion (Brouwers et al., 2024). More 
recent barn designs allow for space in front of the cubicle, however, other 
elements, such as a head rail, represent a forward barrier and lead to 
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collisions during rising motions (Veissier et al., 2004). As a result, estimating 
usable lunge space is not as trivial as measuring the space in front of the 
cubicle. This brings us to the usefulness of pose estimation in 3D. 
Table 3. Selected indicators of posture transition quality 

 
Rising  
Duration of 
rising motion 

To avoid collisions with the metal bars, cows take slower more 
hesitant movements, which result in longer bouts. 

Backwards 
crawling on 
carpal joints 

The cows lie down under the neck and head rail. The fast-rising 
motion risks collisions with the bars (Veissier et al., 2004). The cows 
therefore crawl backwards to increase the upwards and forward 
space before rising. Contact with the straps may not be perceived as 
adversely as with the bars, reducing the need for backwards 
crawling. 

Delayed 
rising 

Readjustment motions that delay the rising motion are a way for the 
cow to cope with a restrictive environment by positioning its body 
before rising. Flexible straps with less adverse contact may shorten 
this phase. 

Head lunge 
distance 

The rigid head rail represents a physical limit to forward lunge, 
whereas the flexible strap can, to some extent, move forward with 
the cow’s body. 

Head “bob” During lunge, the cow should be able to “bob” its head up and down 
(Cook, 2009), flexible straps allow for greater amplitude by acting 
as a soft boundary. 

Side lunge Side lunge is seen as a compensatory mechanism when forward 
lunge space is perceived to be insufficient (Cook & Nordlund, 2005). 
Cows can push against the strap when lunging, reducing the need to 
lunge to the side. 

Lying down  
Duration of 
lying-down 
motion 

Comparably to rising, the cow lies down slowly to avoid hitting rigid 
structures. Flexible straps are expected to increase movement 
swiftness. 

Hind quarter 
shifting 

Lowered risk of collision decreases hesitation and readjustment 
movements. 

Head 
displacement 

Flexibility of the head rail reduced aversion to contact and favours 
further extension. 

Animal-based measures are preferred for welfare assessment and 
constitute the majority of indicators in WQ (Blokhuis et al., 2013). The 
assessment in WQ is visual, and accurately quantifying lunge distance is 
unfeasible. A visual indicator to estimate whether lunge space is perceived 
as insufficient is side lunge (Brouwers et al., 2024). However, a study aimed 
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at automating the classification of side versus straight lunge ran into many 
ambiguous “edge cases” of “slightly sideways lunge”, showcasing that a 
dichotomous indicator, practical for visual observations, might not reflect a 
continuous reality (Brouwers et al., 2023b). 

Using this knowledge, I attempted to compile existing measures and 
define them quantitatively rather than classifying abnormal versus normal. 
These measures are selected based on the following criteria: (i) animal-based 
measures (ii) used in previous studies evaluating cubicle comfort through 
cow movements, (iii) can be measured using pose estimation in 3D, and (iv) 
are expected to be affected by cubicle design. We will refer to these measures 
that relate to the quality of the posture transition as indicators of posture 
transition comfort. The indicators are listed in Table 3. The way they were 
calculated differed slightly between Phases I and II of data collection and the 
exact method can be found in the accompanying articles (Papers II and III) 
at the end of this thesis. 

4.5 Intervention study 
The intervention sought to compare movement patterns and indicators of 

comfortable posture transition between cubicles with rigid (metal) head and 
neck rails versus cubicles with flexible straps. A quasi-experiment was 
conducted where 12 of the cubicles were changes to the flexible design 
during two weeks and indicators compared between cubicle designs. 

4.5.1 Hypothesis development 
The aim of the experiment is to test whether cows are more comfortable 

transitioning between posture in cubicles with flexible head and neck rails 
that in cubicles with rigid metal bars. To test this, we would ideally posit the 
following hypothetico-deductive (HD) model, which is exemplified with 
lunge distance but works in the same way for the other indicators and their 
interactions: 

• Hypothesis (H): Cows are more comfortable getting up in 
cubicles with flexible head and neck straps. 

• Auxiliary assumption (A): when cows are comfortable, they lunge 
further and straighter. 

• Expected observation (O): cows in flexible cubicles use more 
lunge distance than in cubicles with rigid bars. 
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The issue with the model above is the limited available evidence for the 

auxiliary assumption, although it is highly plausible. The existing evidence-
base regarding lunge distance states that cows in more permissive 
environments (larger cubicles, open packs or pasture) lunge further and 
exhibit generally more fluid rising motions (Brouwers et al., 2024) but does 
not guarantee the immediate corollary: that cows showing more fluid and 
ample motions are in a less restrictive environment and automatically more 
comfortable. Most of the evidence for a causal relationship between cubicle 
design and lunge room concerns restricted environments leading to 
insufficient lunge room, and the link with comfort is not trivial. Regarding 
the other indicators, it also states that cows take longer time getting up, with 
more hesitation and abnormal movements. 

Thus, it is more appropriate, given the available evidence for the link 
between comfort and restrictive cubicles, to frame the HD model in terms of 
discomfort, then interpreting a reduction in discomfort-related behaviours as 
an increase in comfort: 

• Hypothesis (H): Cows rising in cubicles with flexible head and 
neck straps experience less discomfort compared to those in 
cubicles with rigid metal bars (all other cubicle features equal). 

• Auxiliary assumption (A1): Rigid metal bars limit spatial use and 
forward head movements. 

• Auxiliary assumption (A2): Limiting movement opportunities 
interferes with the cow's natural rising kinematics, causing 
collisions, hindering ability to balance weight, and altered rising 
patterns, notably shorter or sideways head lunge. 

• Auxiliary assumption (A3): Collisions and disruption of normal 
rising behaviour create discomfort, which may manifest as 
increased effort, hesitation, aversion, or stress. 

• Corollary assumption (C): the absence of restriction allows for 
more freedom of movement limiting the risk of the 
aforementioned externalities. 

• Expected observation (O): cows in flexible cubicles use more 
forward space than in cubicles with rigid bars. 

 
A1 and A2 are supported by biomechanical studies of cows rising 

(Brouwers et al., 2024; Ceballos et al., 2004) and state fairly logically that 
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physical barriers in the way of cows’ spontaneous, motion patterns will 
inevitably induce a change in the movement. When these barriers are in the 
way of normal movements, collisions happen (Zambelis et al., 2019). A3 
builds on the premise that disruptions in innate motion patterns are associated 
with negative affect (Lidfors, 1989), proposing that when rising becomes 
more difficult, or abnormal due to restriction, cows experience increased 
discomfort (Nielsen et al., 2023). Corollary assumption C follows from the 
preceding logic: that reducing physical barriers allows for more freedom of 
movement and thus a reduction in the adverse experiences associated with 
constrained movements. Together, the assumptions state that restrictive 
cubicles form a physical barrier to rising motions, that this barrier leads to 
collisions and reduced head lunge, and finally that the adverse experiences 
create discomfort. We deduce conversely that increased head lunge is a 
visible sign of a less restrictive environment and thus less discomfort. 

4.5.2 Experimental design 
The experiment follows an intervention quasi-experimental observation 

study design, with each animal serving as its own control. Pose estimation in 
3D, and location (from the ear tag) were collected in 12 of the cubicles (red 
area in Figure 5) out of 65 total in the pen. Cows had access to all cubicles 
throughout the experiment but only their bouts occurring in the 12 cubicles 
were recorded. This means in practice that cows could chose to lie down in 
control cubicles even during the intervention stage. 

The control cubicles and their dimensions can be seen on the upper panes 
of Figure 4. They consist of a bed, dividers and a head and neck rail. The 
experimental cubicles are the same with the head and neck rails replaced with 
flexible straps (CC1800 with flexible front and neck bands, DeLaval, 
Sweden). These can be seen on the lower pane of Figure 4. 

Based on the results of data collection Phase I, I estimated being able to 
collect at least 800 true positive sequences of each posture transition with 
sufficient data quality (uninterrupted tracks and low noise) in a period of 32 
days using 12 cubicles. There was a standard deviation in head lunge distance 
of 0.33 (arbitrary spatial units close to the meter but of unknown uncertainty). 
A power calculation adjusted for 6 intra-individual repetitions with an intra-
individual correlation of 0.46 revealed a necessary sample size of 41 animals 
to find a statistically significant difference in head lunge distance of 0.087m. 
This represented 249 events or 10 days. This duration was increased to two 
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weeks. More details on the power calculation can be found in the Methods 
section of Paper III. 

3D poses and location were collected continuously for 14 days in the 
control cubicles. The head and neck rails were replaced with the flexible 
straps. The holders for the flexible straps had been installed in anticipation 
to reduce intervention time strictly, which took two workers about a half 
workday. Cows were given a 7-day adaptation period before data was 
collected again for 14 days. Then, the rigid bars were re-installed, and after 
an adaptation period of 7 days, data was recorded for 14 more days.  

4.6 Statistical analyses 
The data in Phase I was strictly observational; we recorded bouts without 
intervention on the cows that could modify the bout. In this phase, I sought 
to test the association between indicators. After the intervention study in 
Phase II, the marginal effect of the intervention on the indicators was tested 
in a mixed effects model: 
𝑦𝑦𝑖𝑖,𝑛𝑛 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑛𝑛 + 𝛽𝛽2 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑛𝑛  Equation 1 

Where 𝑦𝑦 is the indicator value for cow i at observation n, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is a 
binary indicating the camera group to account for differences in location of 
the calibrated origin, and u is a random effect for cow. Type I risk was set at 
𝛼𝛼 = 0.05 with Benjamini–Hochberg correction to account for the testing of 
several potentially correlated indicators. This works by ranking p values 
from smallest to highest and assigning each p-value a threshold 𝑝𝑝𝑖𝑖 ≤

𝑖𝑖
𝑚𝑚
∗ 𝛼𝛼 

where 𝑖𝑖 is the rank (from smallest to largest p-value) and 𝑚𝑚 the number of 
tests. The correction was applied within each bout and analysis type so that 
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 7 and 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4. The following indicators were box-cox 
transformed before testing: lunge angle, rising delay, backwards crawling 
distance, shifting duration and head displacement when lying down. 

The change in indicator distributions between baseline and flexible 
cubicle configurations was analysed differently, depending on the indicator’s 
distribution found in Phase I. 

Backwards crawling and rising delay during LTS and shifting duration 
during STL had excessive zeros and were analysed in two steps with a hurdle 
model. For the zero component of the model, a logistic regression tested the 
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effect of the flexible configuration on the probability of the indicator being 
greater than 0 according to equation 14: 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃�𝑦𝑦𝑖𝑖,𝑛𝑛 > 0� =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑛𝑛 + 𝛽𝛽2 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑛𝑛  Equation 2 

For the continuous part, a subset of the samples was created excluding 
events with 𝑦𝑦𝑖𝑖,𝑛𝑛 = 0. A mixed effects model was fit according to the equation 
below, to test the effect of flexible configuration on the strictly positive part 
of the distribution: 
𝑦𝑦𝑖𝑖,𝑛𝑛 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑛𝑛𝑦𝑦>0 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑛𝑛𝑦𝑦>0  Equation 3 

The zero component provides information on the likelihood of observing 
a null result, while the continuous component provides information on the 
effect size on non-zero events. 

4.7 Force distribution modelling 
After a preliminary analysis of the distribution of indicators, without 

correcting for individual variation at this stage, we were surprised to notice 
that there were no overall differences in the duration and spatial use, 
especially at the head. This prompted a further investigation; either there was 
truly no overall difference, either the experimental design was flawed, or we 
were not looking in the right direction. The experimental design might have 
presented a limitation, but available literature on flexible neck rails, and our 
own observations of the video point towards differences between rigid and 
flexible head and neck rails. To determine the likelihood of there being no 
effect, we had to rule out the fact that we had looked at the wrong indicators. 

I went back to the theory behind rising motions. The lunge motion acts as 
a way of balancing the weight between the front and the rear (Lidfors, 1989). 
Observations of rising bouts in too small cubicles noted unsuccessful rising 
attempts (Tschanz & Kämmer, 1979), or attempts where abnormal strain 
placed on the limbs lead to skin and muscle lesions (Kohli, 1987). This 
produced the subsequent research question: “can we model the shift in 
weight distribution throughout the bout?”. If possible, we would effectively 
quantify the biomechanical driver behind the lunge motion, rather than an 
observable consequence. 

Insights from the field of biomechanics showed that modelling forces 
imposed on joints, and ground reaction forces using motion capture was an 
accepted method, at least in human biomechanics (for example Johnson et 
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al., 2018). Translating this method to pose estimation in 3D could allow to 
model forces during rising motions. 

I proposed a simplified model, representing the cow as a set of two rods 
between the sacrum and withers and the withers to the head. These rods are 
supported at the sacrum by the rear limbs and at the front by the forelimbs. 
The analysis was restricted to the lunge phase of rising between 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
and 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑚𝑚𝑚𝑚𝑚𝑚, during which the front limbs are folded under the body and 
the carpi act as the front support (see Figure 8). During this stage, the cow 
extends its rear limbs to lifts its rear. The centre of mass (COM) was set at 
55% along the sacrum to withers rod, based on previous work (with load 
cells) finding that on average, 55% of the body weight is supported by the 
front limbs (Chapinal et al., 2009; Neveux et al., 2006). The model was two-
dimensional; at each time-point, a plane was defined collinear to the 
horizontal and to the withers-sacrum axis. The plane is defined by the 
orthogonal vectors (0,0,1) and (𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,0) 
at the timepoint start of lunge motion. The rationale was that we rotate the y 
axis so that it becomes longitudinal to the cow’s body. The midpoint of the 
carpi projected onto this plane forms the front support point coordinates: 

  (𝑦𝑦′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+𝑦𝑦′𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2

,
 

𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2

) where x’ and y’ are the reprojected 
coordinates and subscripts 𝑟𝑟 and 𝑙𝑙 refer to right and left. Because of occlusion 
in the claw keypoints keypoint, the rear-support was estimated by projecting 
the tarsi onto the ground so that the rear support is defined by the coordinates: 
( 𝑦𝑦′𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+y′𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2
, 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2
). Note that the vertical coordinate of the 

carpus is intentionally used here because they are in contact with the ground 
at this stage and thus represent the best estimate of the ground location. 
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Figure 8. Simplified force loading model 

In the first stage of the analysis, I modelled the forward displacement of 
the COM projected onto the support-to-support axis (dashed blue vertical 
line on Figure 8). The rationale is that when the rear limbs are placed closer 
to the front limbs, they support more weight and lie closer to the centre of 
gravity. Because the cubicle limits the available longitudinal space, 
especially for larger cows, the rear limbs may not be able to extend as far 
forward as they would otherwise. Therefore, projecting the COM onto the 
support-to-support axis (rather than using its absolute forward displacement) 
provides an estimate of how far the cow can shift its centre of gravity away 
from the hind limbs, given their actual position. The maximum COM shift 
during the lunge phase was extracted and analysed with the mixed-effects 
model in Equation 1. To investigate whether the effect of flexible straps was 
proportionate to baseline displacement (i.e., whether cows with lower 
baseline displacement showed a greater predicted increase than those already 
showing a large displacement), the following model was used: 
𝑦𝑦𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽3 ∗ 𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 + 𝛽𝛽2 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑛𝑛 Equation 4 

Where 𝜇𝜇 is the mean COM forward shift at baseline for individual 𝑖𝑖. 
This first step provides an initial static estimate as to how weight can be 

displaced. Translational and rotational acceleration will also affect the forces 
on the supports. To that end, we (as in myself together with an expert in 
biomechanics) developed the simplified force loading model presented in 
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Figure 8. Forward velocity and acceleration of the withers are calculated by 
the change in successive observed positions of the smoothened keypoints as 
𝑣𝑣𝑤𝑤 = 𝑊𝑊𝑥𝑥´,𝑡𝑡−𝑊𝑊𝑥𝑥´,𝑡𝑡−1

∆𝑡𝑡
 and  𝑎𝑎𝑊𝑊 = (𝑣𝑣𝑊𝑊,𝑡𝑡−𝑣𝑣𝑊𝑊,𝑡𝑡−1)

∆𝑡𝑡
 where 𝑥𝑥´ is the x coordinate 

reprojected against the back axis, t is the timestamp of one specific frame 
and Δt is the time difference between two successive frames equal to 1 30� s. 
The dynamic equilibrium of the forces is posited in its horizontal and vertical 
dimensions respectively as: 
𝑅𝑅𝑆𝑆cos𝜃𝜃𝑟𝑟 + 𝑅𝑅𝑊𝑊cos𝜃𝜃𝑊𝑊 = 0.91𝑚𝑚𝑎𝑎𝑇𝑇,𝑥𝑥´ + 0.09𝑚𝑚𝑚𝑚𝐻𝐻,𝑥𝑥´  Equation 5 

𝑅𝑅𝑆𝑆sin𝜃𝜃𝑟𝑟 + 𝑅𝑅𝑊𝑊sin𝜃𝜃𝑊𝑊 = 0.91𝑚𝑚𝑎𝑎𝑇𝑇,𝑧𝑧 + 0.09𝑚𝑚𝑎𝑎𝐻𝐻,𝑧𝑧 + (0.91 + 0.09)𝑔𝑔 

 Equation 6 

where g is gravity, subscript H is the head keypoint and T is the midpoint of 
the back. Moments were calculated about the withers. The sacrum and head 
generate moment through their lever arms, the contribution of the head to the 
front reaction is expressed through translational acceleration and torque 
exerted at the withers pivot point. The moment about the withers is: 
−𝑅𝑅𝑆𝑆𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏sin𝜃𝜃𝑆𝑆  [reaction moments] 

+0.91𝑚𝑚𝑚𝑚𝐿𝐿𝑊𝑊→𝑇𝑇sin𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 0.09𝑚𝑚𝑚𝑚𝐿𝐿𝐻𝐻→𝑊𝑊sin𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   [gravity moments Mg] 

− 0.91𝑚𝑚𝐿𝐿𝑊𝑊→𝑇𝑇�sin𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑇𝑇,𝑧𝑧 + cos𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑇𝑇,𝑥𝑥´�  [back rotation τT] 

+ 0.09𝑚𝑚𝐿𝐿𝑊𝑊→𝐻𝐻�sin𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝐻𝐻,𝑧𝑧 − cos𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝐻𝐻,𝑥𝑥´�  [head rotation τH] 

= 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝛼𝛼𝑇𝑇 + 𝐼𝐼𝐻𝐻𝛼𝛼𝐻𝐻  [inertia] 

Equation 7 

where I is the inertia of a segment, L is its length, a is the acceleration and α 
the angular acceleration. All other subscripts can be found on Figure 8. Iback is 
assumed as 1

12
𝑚𝑚𝑚𝑚2 where 𝐿𝐿 is the length of the segment and IH ≈0 with the 

mass concentrated in the head. We split the ground reaction forces into their 
vertical and horizontal components and obtain: 

�
cos 𝜃𝜃𝑠𝑠 cos  𝜃𝜃𝑤𝑤
sin𝜃𝜃𝑠𝑠 sin𝜃𝜃𝑤𝑤

−𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏sin(𝜃𝜃𝑆𝑆) 0
� �
𝑅𝑅𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑
𝑅𝑅𝑤𝑤,𝑑𝑑𝑑𝑑𝑑𝑑

� = �
0.91𝑚𝑚𝑎𝑎𝑇𝑇,𝑥𝑥´ + 0.09𝑚𝑚𝑎𝑎𝐻𝐻,𝑥𝑥´

0.91𝑚𝑚𝑎𝑎𝑇𝑇,𝑧𝑧 + 0.09𝑚𝑚𝑎𝑎𝐻𝐻,𝑧𝑧 + 𝑚𝑚𝑚𝑚
𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝛼𝛼𝑇𝑇 − 𝑀𝑀𝑔𝑔 − 𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐻𝐻

� 

 Equation 8 

This is noted as 𝐀𝐀�𝑅𝑅𝑠𝑠𝑅𝑅𝑤𝑤
� = 𝐲𝐲. Since it is over-constrained (1 degree of 

freedom remaining from 3 equations to solve 2 reaction forces), we solve for 
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𝑅𝑅𝑆𝑆 using least squares �𝑅𝑅𝑠𝑠𝑅𝑅𝑤𝑤
� = �𝐀𝐀T𝐀𝐀�−1𝐀𝐀T𝐲𝐲. The effort placed on the rear 

limbs was quantified as the cumulative work throughout the lunge motion 
Total work of the rear limb throughout the bout was defined as the 
cumulative displacement times the instantaneous rear limb 
forces:∫𝑅𝑅𝑆𝑆,𝑑𝑑𝑑𝑑𝑑𝑑cos𝜃𝜃𝑟𝑟 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧 + ∫𝑅𝑅𝑆𝑆,𝑑𝑑𝑑𝑑𝑑𝑑sin𝜃𝜃𝑟𝑟 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 
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5. Results and discussion 
This section presents the main results that will answer the aims of the thesis. 
The immediate implication of the results is also discussed in this section. 
More objective and systematic reporting of the results can be found in the 
papers. 

5.1 Detection of posture transition events from 
continuous pose estimation data 

In Phase I, 979 rising bouts and 1015 lying down bouts were “manually” 
selected. Synchronized video snippets were extracted at ±15s around the 
posture transition event and 3D pose was estimated for these sequences. Each 
sequence resulted in several tracks including that of the cow rising or lying 
down. Applying the detector based on the change in relative positions of the 
sacrum and withers, 814 and 798 tracks were classified as rising and lying 
down respectively, equating to false negative rates of 16.9% and 21.4% 
respectively. 5 and 26 sequences respectively were wrongly classified. This 
equates to sensitivities of 83.1% and 78.7%. 

In Paper I, only 493 sequences where the posture transition was captured 
in a single uninterrupted track were analysed. In Paper II, sharing the same 
dataset, we sought to test the robustness to discontinuous tracks and to 
missing poses (track interrupted for a few scenes). This provided an 
additional 305 rising and 301 lying down sequences or 37.7% and 38.1% of 
the total events analysed.  

After detecting the posture transition, the detection of each of the stages 
shown in Figure 2 was necessary to set time bounds within which the 
indicators would be measured. In Paper I we only detected the first phase, to 
offer a proof of concept, and an indication that movements in the keypoints 
did properly capture kinematically meaningful information. Agreement was 
measured by intraclass correlation (ICC) of a model predicting event time 
based on observer. The ICC was 0.85 between human observers and 0.81 
when adding an effect for machine detection, which we interpreted as 
similarly acceptable. Disagreement between observers ranged from 0.9s to 
1.7s and between observers and machine from 1.0s to 1.3s. 

Appending discontinuous tracks (stitching) had a significant effect on the 
accuracy of the automated detection (compared with human annotations) for 
the stages rise on breastbone of rising (-1.4s difference between human and 
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machine) and thoracic limbs touchdown in lying down (-0.5s). Interestingly, 
the first stage, rise on breastbone was the most ambiguous to human 
observers (1 to 1.8s average difference between observers), which might 
reflect a variability in kinematic profiles making it difficult to both annotate 
and find a rule flagging the event. Interpolating poses did not have a 
significant effect on the agreement between human and machine. This was 
an important finding with implications for continuous monitoring, since we 
would rely on this data processing methods in the next phase. 

In phase II, the added challenge was to detect posture transition in 
continuous keypoint data. I did not perform an estimation of the false positive 
rate as this was not the scope of the study. However, the lower sample size 
at the return to baseline (190 versus 285) could be an indication that the 
system got less performant with time. During the experimental period, the 5-
95 IQR of acquisition rates was 6.5 to 30Hz and the median 30Hz, meaning 
that the pose estimator was in the vast majority of cases able to keep up with 
the arrival of frames in the processing buffer and generated mqtt messages 
providing a proof of concept for real-time implementation. 

Altogether, 850 rising sequences and 853 lying sequences were detected. 
Out of these, 733 rising sequences contained the entire bout, with true 
detections at the events of interest (not missing detection at key stages) and 
787 lying down sequences. For 733 valid rising sequences, 4 had tracks 
wrongfully stitched that belonged to different individuals on the same scene. 
This happened for 6 out of 787 valid lying down sequences. The initial power 
analysis used to determine the number of samples necessary for Paper III 
based on the true positive rate and variance found in paper I required a 
sample size of 249 bouts which we estimated to capture in 10 days (25 
bouts/day). We captured up to 289 bouts in 14 days (21 bouts/day) from 
which we can grossly infer a slightly higher false negative rate in detecting 
posture transitions from continuous data compared with the curated 
sequences. 

5.2 Measuring comfort in cubicles with automated 
indicators. 

In Paper II, we reported the number of bouts exceeding accepted 
thresholds for comfortable posture transitions. Thresholds for rising were 
found in the literature or derived from industry guidelines for rising delay 
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(10s), backwards crawling (0m) and a resource-based value for lunge space 
(0.6m to 0.9m). Thresholds for lying down were found for total duration 
(6.3s), shifting duration (3s) and an empirical measure of head displacement 
in unrestricted environments was also found (0.59m). Altogether, we found 
that 59.9% of rising and 29.1% of lying down movements were abnormal. 
Out of all rising bouts, 2.8% exceeded the threshold for rising delay (30.2% 
if we apply the more conservative threshold of 5s found in the industry 
framework Fråga Kon). Backwards crawling was higher than 0 in 58.2% of 
bouts. Regarding lying down, 28.9 % of bouts exceeded the threshold for 
total duration and 8.3 % for shifting duration. 

The PCA in Paper II suggested that posture-transition quality cannot be 
faithfully summarised into a single dimension. Indicators rising delay and 
total duration were highly correlated (r=0.88), which is expectable as they 
are nested durations. Backwards crawling and rising delay were moderately 
correlated (r=0.46), suggesting that duration of the preparation phase (as 
done in Fråga Kon) is a sound summarisation but not an “iceberg indicator”. 
The PCA showed different uncorrelated strategies, combining for instance 
short lunge distance with swift movements. Extended crawling does not 
necessarily predict increased effective lunge distance (contrary to initial 
hypotheses). The components were interpreted as duration, straight lunge, 
spatial use, and fast crawling. Together, the indicators represent distinct, 
combinable rising strategies, some of which are considered atypical, and 
some combinations of both desirable and atypical motions in the same bout. 
These correlation patterns suggest that multiple indicators are required to 
describe posture-transition comfort, as each captures a different 
biomechanical or behavioural adaptation. Strategies might be driven by cow 
size, which is associated with externalities (Zambelis et al., 2019). For rising, 
there were only three indicators, with 2 nested durations being correlated, 
limiting the conclusions available. 

The comparison between metal bars versus flexible straps revealed head 
lunge angle (+2.7° ± 1.0 and +2.7° ± 1.1) and head bobbing space (+0.10m 
± 0.03 and +0.14m ± 0.03) to be significantly higher in the flexible 
configuration compared to both baseline and return to baseline respectively. 
This supports previous results stating that metal bars limit forward space use 
and modified neck trajectories (Veissier et al., 2004). There was a significant 
decrease in duration upon return to baseline (-0.8s ±0.3). Results regarding 
spatio-temporal use are compiled in Table 4. 
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There was also a significant effect of the flexible straps on the forward 
displacement of the centre of mass along the support-to-support axis (2.8% 
± 1.0 to 4.7% ± 1.1, p < 0.05) and on the maximum offloading of the rear 
limbs (1.9% ± 0.9 to 3.1% ± 1.0 p < 0.05). Increased forward spatial use 
together with differences in the offloading of the rear limbs increases the 
available evidence supporting that cows are able to make use of the increased 
forward movement opportunities offered by flexible straps when getting up 
(Brouwers et al., 2025). 

When we model the changes from baseline to intervention only and add 
the mean baseline COM displacement in the model explaining changes in 
COM displacement, we find that the effect of mean baseline COM shift on 
the predicted COM shift at the intervention is negative and significant (p < 
0.001). The scale is 0.29 - (0.80±0.12) * (baseline COM shift). This means 
that cows with a larger initial shift will have a lower predicted increase under 
the intervention than cows with a low initial shift. For example, a cow that 
shifts by 30% under baseline will have a predicted increase under flexible 
straps by 5% while a cow with a baseline forward shift of 15% will have a 
predicted increase by 17%. 

Regarding lying down, the interpretation was less straightforward. There 
was a significant decrease in total duration between the baseline and the 
flexible straps that did not return when putting the metal bars back into place. 
This could be interpreted as less influence of metal head and neck rails on 
the lying down movement than on lying down, which is supported by earlier 
findings suggesting that elements in the front of the cubicle represent more 
of an impediment when rising than lying down (Schnitzer, 1971). The 
decrease in forward head displacement observed upon returning to metal bars 
(-0.07m ± 0.03 p = 0.003) is consistent with earlier findings (Ceballos et al., 
2004) but it is intriguing that it was not observed at the baseline. My current 
hypothesis as per the reason is that flexible straps allowed the cows to move 
in further into the cubicle before lying down. This would not have hindered 
their movements in the presence of flexible straps. However, having adjusted 
to this new positioning could have decreased their ability to move forward 
because of the rigid bars in the way. This will be investigated in an upcoming 
paper. 
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Table 4. Predicted marginal differences in indicator value between the 
intervention (2) as reference level and the two baseline stages (1 and 3), order 
by adjusted α limit necessary to accept the hypothesis that the difference is 
greater than null. Significant coefficients at adjusted alpha are bolded. 
Modified from Paper III. 
 

Indicator Adjusted 
α  limit 

Effect* 

stage 2→1 p2→1 Effect* 
stage 2→3 p2→3 Pow

** ICC 

Rising        

Head “bob” 
(m) 0.0083 -0.10±0.03 0.001 -0.14±0.03 <0.001 0.98 0.29 

Lunge angle (°) 0.016 -2.7±1.0 0.014 -2.7±1.1 0.010 0.72 0.11 

Duration (s) 0.025 -0.4±0.3 0.148 -0.8±0.3 0.010 0.77 0.49 

Backwards 
crawling (m) 0.033     0 0.23 

(Zeros)  0.19±0.24 0.440 0.01±0.27 0.962   

(Non-zero)  -0.01±0.02 0.578 -0.02±0.02 0.071   

Rising delay 0.042     <0.1 0.47 

(Zeros)  -0.4±0.3 0.191 -0.1±0.3 0.844   

(Non-zero)  -0.1±0.2 0.824 -0.5±0.3 0.096   

Lunge distance 
(m) 0.05 0.00±0.02 0.742 0.010±0.02 0.497 <0.1 0.22 

Lying down        

Total duration 
(s) 0.016 0.6±1.2 0.009 0.4±0.2 0.073 0.91 0.30 

Head 
displacement 
(m) 

0.033 -0.03±0.02 0.167 -0.07±0.03 0.011 0.70 0.12 

Shifting (s) 0.05     <0.1 0.29 

(Zeros)  -0.1±0.3 0.66 -0.5±0.4 0.187   

(Non-zero)  0.3±0.1 0.024 0.1±0.2 0.455   

*For coefficients on which a box-cox transformation was applied, we report the difference in mean 
prediction between both levels of experiment stage in lieu of coefficient. Zero part reported log odds. 

** Power estimated through Monte-Carlo simulation (with 1000 replications). The values represent 
the lower bound of the 95% confidence interval of the estimated power. 

The results from force modelling were inconclusive. There was no 
significant effect of flexible straps on the amount of work at the rear limbs 
in the lunge phase. The model was sensitive to changes on the choice of 
support points for example (projection onto the ground or claw keypoints) 
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and to rotation of the coordinates along the cow axis. There was also a 
considerable residual term in the residuals of the least-squares estimate of 
the reaction vertical forces. The median root mean square error of the least 
squares estimate of reaction forces averaged across events was 0.41m.s-2 and 
the 95th percentile was 1.0 m.s-2. This represents an upper range of the error 
amounting of approximately 11% of gravity. The means that force modelling 
can be a possible indicator of movement opportunities in stalls but that the 
work presented here offers a proof of concept rather than a definitive method. 
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6. General discussion and roadmap 
The original vision for the thesis had been to automate a range of animal 

welfare assessment indicators, which was perhaps overly ambitious. A 
review on the potential to automate WQ indicators had after all proposed 
combinations of different sensors depending on the indicator (Maroto Molina 
et al., 2020). What this project prompted however, was a discovery on the 
place of pose estimation in 3D for evaluating indicators of welfare for which 
the motion of anatomical features informs on ease of movement, beyond 
simply reproducing existing indicators. In this last section, I want to discuss 
the findings on the improvement of posture transition comfort with flexible 
cubicles, on what 3D pose estimation can deliver for welfare assessment, and 
how the notion of welfare assessment is approached when it is automated. 

6.1 Assessment of posture transition as a welfare 
parameter 

There will be an inevitable trade-off in cubicle design, notably between 
cleanliness and comfort (Gieseke et al., 2020). I proposed earlier in the 
ethical statement, that the goal of assessing welfare was not to evaluate how 
bad the trade-off was, but rather to find out in which conditions the animals 
fared the best. From the methods it seems that pose estimation in 3D was 
able to extract answers to this question. From the results it seems that they 
fare better in cubicles with flexible straps.  

Welfare can be evaluated as the animal’s capacity to cope and adapt 
(physically and mentally) to its environment (Arndt et al., 2022; Broom, 
1996). Linking this interpretation to cubicle design, we can evaluate how 
well the animal is able to adapt to such a system, despite the restrictions they 
impose. A cow that can rise and lie down fluidly, with sufficient space and 
without repeated contacts with hard surfaces, is able to meet a strong 
behavioural need (lying) without excessive physical and psychological cost. 
Conversely, a cow that anticipates pain or instability during transitions may 
develop avoidance strategies, such as lying down less frequently (Haley et 
al., 2000), displaying staggered motions (Brouwers et al., 2024), side lunge 
(Brouwers et al., 2023b) or delayed rising (Zambelis et al., 2019) and lying 
down (Gieseke et al., 2020). These may constitute coping but at the expense 
of comfort and physical health in the form of skin lesions (Zaffino Heyerhoff 
et al., 2014). Repeated negative experiences during posture transitions are 
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therefore likely to contribute to negative affective states such asa frustration 
or anticipatory discomfort, while limiting opportunities for positive 
experiences associated with comfortable rest (Nielsen et al., 2023). 

The latest update to the five domains of animal welfare presents mental 
states as an aggregate of positive and negative experiences arising from the 
first four domains (Nutrition, Physical Environment, Health, and 
Behavioural Interactions). This means that what matters for the animal is its 
own perception of its condition (Mellor et al., 2020). Yet in practice the 
results presented in Paper II and III are overall means and marginal effects 
of flexible elements. Welfare Quality prescribes observations on a third of 
the animals, which is empirically a good estimate of the state of the herd 
(Blokhuis et al., 2013). Aggregating welfare indicators such as posture 
transition comfort at herd level represents a practical utilitarian stance that 
accepts higher burdens on some individuals (Sandøe et al., 2019). At the 
same time, externalities with cubicle designs differ across individuals for 
example the prevalence of injuries is associated with cow size, the direction 
of the effect suggesting that larger cows have more difficulty coping with 
cubicles (Zambelis et al., 2019). When annotating video, we observed some 
specific cows to particularly struggle with their rising motions, with 
examples of slipping and falling. While aggregates provide practical insights, 
the question at hand is how group-level improvements in posture transition 
comfort translate to individual experiences. 

Work on both cow limb trajectories (Leclercq et al., 2024; 2025) and 
training of heifers (Paranhos Da Costa et al., 2021) has shown that inter-
individual variability can be high, possibly exceeding treatment effects in 
some cases (Paranhos Da Costa et al., 2021). We found the highest yet 
moderate ICC in rising duration (used as an “iceberg indicator” in Fråga 
Kon), reinforcing the importance of individual variability. This highlights the 
importance of understanding each animal’s own range of motions, and what 
might be considered “normal” for one individual (Tijssen et al., 2021) in 
order to tailor welfare assessment to their unique patterns. These baselines 
can be established quite fast; Zambelis et al. (2019) showed that after 4 
measurements of rising and lying down motions on one individual, the 
variability “flattened” and concluded that 4 measurements were a sufficient 
predictor of overall daily values. Sensors theoretically offer an opportunity 
to obtain these measurements on all individuals in a barn. 
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The different rates of changes in Figure 5 of Paper III, along with the 
significant baseline effect on the COM forward shift suggests not only that 
individuals have different patterns but that they respond differently, in this 
case to measures for improved welfare. By using sensors to look at the 
changes of the “worst-performers” we can see not only how measures 
improve overall welfare, but how it levels the field and brings the most at-
risk animals closer to the most comfortable. This is to some extent 
speculation, but it aligns with evidence that flexible neck rails 
accommodated well for the diversity in cow sizes and movement patterns 
(Brouwers et al., 2025). 

6.2 Implications 

6.2.1 Improving cubicles through objective measures on posture 
transitions and 3D pose 

One of the criteria for selecting indicators was notably how 
straightforward it would be to calculate them from 3D poses. These 
indicators do hold a degree of ambiguity. In Paper II we had found a modest 
correlation between rising duration and crawling (r=0.41) supporting its 
value in informing on abnormal motions (Blokhuis et al., 2013). Yet, 
evidence in earlier cubicle designs found no difference in the duration of the 
lying down motion when it was classified as abnormal or as normal (de Vries 
1987 reviewed by Lidfors 1989). We similarly found that total duration of 
rising did not differ between the rigid and flexible cubicles, and that lying 
down duration only differed relative to the first baseline stage. This might 
only hold in specific contexts but does show that duration is not an “iceberg 
indicator”. The results in the PCA suggest that other rising patterns exist, that 
combine fast movement with abnormal motions. One of the strengths of 3D 
pose, and of other sensors for this purpose, is that it is able to simultaneously 
score a variety of indicators, in the time and space dimension (and their 
derivative) to provide a broader picture, and possibly to identify different 
clusters of strategies that cows use to cope with a restrictive cubicle. 

Studies suggest about 0.9m of forward lunge space; that is unobstructed 
space in front of the cubicle to lunge the head forward (Cook, 2019). In the 
research farm where the data for this thesis was collected, such space was 
provided; 1.65m to be exact. Yet, backwards crawling – which was 
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interpreted as cows attempting to increase the space available in front of them 
– was still observed in 51.2% of cases (Kroese et al., 2025). In another study, 
cows were found to hit the bar work in 0 to 25% of rising bouts depending 
on the cow (Zambelis et al., 2019) and in 70% of lying bouts overall. In a 
study providing 0.65m of lunge space, cows lunged to the side rather than 
the front in 35.5% of cases (Brouwers et al., 2023b). From these results, it 
seems that offering forward space is not sufficient for ensuring that all cows 
can lunge forward unhindered. Head and neck rail will interfere with the 
motions (Veissier et al., 2004), and the provision of forward space may not 
be a sufficiently reliable resource-based indicator of movement 
opportunities. In-line with Welfare Quality, animal-based measures offer 
direct insight as to the effect of the environment on the animals (Blokhuis et 
al., 2013). 

Motion capture does accurately measure spatial use (Ceballos et al., 2004) 
but is impractical for implementation at scale. Pose estimation provides the 
same output as motion capture and measures the displacement of anatomical 
structures, albeit with different levels of accuracy (Lawin et al., 2023). The 
technology presented in this thesis holds the potential to be a practical 
method of asking the animals directly if they are able to use the space they 
need when getting up and lying down. 

We had suggested in Paper III that actual lunge distance should rather be 
employed to quantify movement opportunities. Interestingly, we found no 
change in lunge distance between the metal bars and flexible rails 
configurations. There was a considerable change in forward head 
displacement when lying down however, when the metal bars were put back 
in place. It is possible, and would be aligned with the current consensus, that 
forward lunge ability is driven more by the space available in front of the 
cubicle (Cook, 2009), rather than by the metal elements. It is also likely that 
the head bar was already positioned at a permissive level. Regardless of the 
reason, we have found a significant increase in the forward movement of the 
COM. This measure, which is made possible by pose estimation brings 
measured indicators one step closer to the biomechanical drivers behind the 
head lunge, of which the forward displacement is a component visible to the 
human eye. 

Limitations need to be acknowledged to clarify the scope of the results in 
providing evidence towards the aims of the thesis. First, in quasi-
experiments, the absence of randomisation introduces a risk of uncontrolled 
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confounders. This limitation is mitigated by the repeated measures design, 
where each individual serves as its own control. This is preferable for studies 
of biomechanics (Leclercq et al., 2024; Tijssen et al., 2021). The duration of 
the intervention was short (2 weeks) compared to the cows’ previous 
experience with regular cubicles (since they were heifers), which were 
sustained if the cows visited other cubicles outside of the experimental area. 
This means that motions in the flexible cubicles may may still have been 
influenced by past and daily experiences in rigid cubicles. The changes we 
observe do align with a longitudinal study supporting the long-term effects 
of flexible cubicles (Brouwers et al., 2025).  

Second, technical challenges in pose estimation, such as occasional 
missing poses, drift, and difficulties in labelling narrow or occluded 
anatomical regions add noise to the estimates. In the return to baseline, we 
obtained about half the sample size as in the other phases. This is most likely 
due to a shift in calibration that reduced the sensitivity of the 3D tracking. 
This in turn means that technical challenges remain for long-term 
monitoring. 

6.2.2 Continuous monitoring at scale 
The technology presented here represents an opportunity to increase the 

frequency of welfare assessment (at least the indicators it is capable of 
monitoring). If we are cautious about the accuracy of the measured indicators 
with 3D poses, we can still take a step to the bigger picture, which is the 
estimation of the cow's overall well-being, acknowledge the limitations of 
either method and ask: "is it better to measure something accurately 4 times 
a year, or to measure it less accurately every day?". Zambelis et al (2019) 
measured total daily values for comfort indicators (the average across all 
bouts in 24h), and how well different numbers of repetitions correlated with 
the mean 24h value. They showed that from 4 measures onwards, it flattened 
out (in other words, that 4 repetitions if a good enough approximation of 
daily average). This means that capturing all events in one day doesn’t 
provide much value. The value of these tools might instead lie in the medium 
to long term rather than capturing as many events as possible in the short 
term. Berckmans (2017) described the purpose of PLF with the following: 
“Farmers get a warning when something goes wrong in such a way that the 
PLF system brings them to the animal(s) that need their attention at that 
moment.” Although this quote is nearly 10 years old, it reveals a focus on 
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negative aspects of welfare that is predominant. We could also argue that the 
purpose of PLF, exemplified by cubicle design, can be to elevate the lives of 
animals by continuously gathering physiological and behavioural indicators 
and seeing in which designs they respond in a way that is favourable to the 
animal, before something goes wrong. 

Drifts in data generation can stem from changing environmental 
conditions, replacement in individual subjects (Moons et al., 2012), and 
drifts in the underlying process itself. Drifts can degrade model performance 
over time, making prediction of welfare indicators potentially less reliable 
over time (Vázquez-Diosdado et al., 2019). Models trained on data collected 
in one period often display reduced accuracy when applied to later data. 
Empirical studies show that it is harder to predict "the last 20%" of a time 
series using “the first 80%” than to predict a random 20%” (Sheridan, 2013). 
In my own developments, the methods to detect specific phases of the 
posture transition proposed in Paper II did not perform as well in Paper III, 
prompting me to annotate the events instead.  This demonstrates that even 
when the same setups, facilities, and general conditions are maintained, 
repeatability can remain unexpectedly low. This is a common issue and a 
threat to the credibility of PLF (Tuyttens et al., 2022). 

6.2.3 Monitoring welfare with sensors vs visual observations 
What I noticed when conducting this work, and when talking to fellows 

researching similar topics, is that as we automate welfare assessment, the 
approach to welfare slightly changes. 

One example is the type of cues. For example, in the Framework Fråga 
Kon, assessors are given a degree of discretion if qualifying the rising bout 
as abnormal. Sensors do not have access to these cues (or at least models are 
not trained to recognize them, notably because of the difficulty in 
establishing a ground truth for subjective assessments). What sensors do 
have is the capacity to merge different sources of behavioural and 
physiological data which together increase the robustness of welfare-based 
alerts (Do et al., 2020). 

Most of the existing work on automated behaviour monitoring focuses 
narrowly on technical development, attempting to classify a few common 
postures or behaviours, without specific applications (Antognoli et al., 2025). 
Many of these developments are done on clean datasets, with homogenous 
data quality across examples and no occlusion, limiting real-world 
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applicability (Menezes et al., 2024). The promise of sensors for welfare 
assessment might lie in their ability to continuous, and high-resolution 
monitoring integrated into the animal's environment without fatigue. To that 
end, much of the further work needed is the interpretation of long-term 
patterns. 

Brouwers et al. (2023b) sought to detect abnormal rising and lying down 
movements using accelerometers and supervised learning. Their work lead 
to the creation of an R package for analysing rising and lying down 
movements (Simmler & Brouwers, 2024). When they attempted to automate 
the detection of sideways lunge using accelerometers, they only reached 
moderate accuracy (65%) (Brouwers et al.; 2023b). The authors impute this 
to a discrepancy between the way data was labelled (straight vs angled lunge) 
and the continuous nature of sensor data. There were many misclassifications 
on ambiguous edge cases. In my own results, I have found lunge angle to be 
continuous. It had a mean of 166.1° ± 0.5, a median of 168.9° and a skewness 
to the left by -1.3. Importantly with regards to labelling sideways lunge, there 
was no clear cut-off in the distribution which would have indicated straight 
versus angled lunge (Kroese et al., 2024). This distribution can be seen on 
Figure 9. While an observer might be able to define side lunge based on the 
observed angle combined with subtle behavioural cues, it remains impossible 
for a model to learn meaningful binary distinctions in a monomodal 
distribution. 

 
Figure 9. Distribution of lunge angles in rising events with kernel density estimation. 
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The main author of the aforementioned study on automating the detection 
of abnormal lunge, later made the statement “ethograms should be machine-
learnable” (Brouwers et al., 2023). The system presented in this thesis 
applies this rationale, in the sense that we attempted to extract insights from 
the continuous data, without forcing labels. In that regard, we benefit from 
the high biomechanical interpretability of 3D pose estimation; if the cow 
lunges at an angle of, say, 153°, this is directly computable from the relative 
position of anatomical structures. 

We mentioned earlier that the way the results were presented, reflected a 
certain normative stance, where improvements in welfare were sought “on 
average”. Benchmarking and practical assessment methods are necessary for 
binding welfare regulations (Broom, 2017). Focusing on averages is a more 
robust method than taking, for example, the “worst-off” individuals, which 
might be subject to temporary ailments. These assessments are conducted by 
occasional inspections. With interest to sensor-based monitoring, we gain an 
opportunity for continuous monitoring of specific indicators. Thereby, we 
could get a more comprehensive timeline as to how each individual is faring, 
and if there are consistent clusters with impaired welfare. 

6.3 Roadmap 

6.3.1 More complex biomechanical modelling 
The model used in this study was a simplified 2D, 2-rods 2-beams model. 

In our observations, we see that, since the cow is lying on the side, there is a 
lateral movement in the lift of the hind legs, suggesting that the model would 
benefit from incorporating the 3rd dimension. Introducing 3D joint rotations 
and capturing the full range of limb angles is expected to reduce errors 
generated by orthogonalization (Karashchuk et al., 2025). Differences 
between net static vertical forces and gravity show that the assumptions were 
imperfect. 

In future developments, I hope to implement both 3 dimensions, and the 
reaction forces at the joints along the limbs. The existing set of keypoints 
were selected through consultation with experts in biomechanics, and 
correspond to true landmarks solicitated in posture transitions, providing a 
strong foundation for more complex modelling. This model would allow to 
understand how reaction forces propagate through the limb depending on 
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joint angles. The introduction of supplementary articulations in the model (at 
the stifle and tarsi for example) would also increase the unknowns and 
address the current over-constraint. 

By measuring the ground reaction forces (using loading cells placed 
under the hooves for example), we could produce a ground truth regarding 
weight distribution. We could “reverse engineer” the torque in each joint 
producing the observed trajectories (Özdil et al., 2025) and forces. 
Ultimately, this would allow a robust assessment of force propagation, and 
understanding of the constraints that the that the animal is able to sustain 
(Karashchuk et al., 2025). This would in turn be used to assess cubicles using 
pose estimation in 3D and force modelling, looking not only at the 
displacement of the centre of mass, but also the constraints placed on the 
joints, which could have a link with skin lesions. 

6.3.2 Continuous monitoring with sensor fusion 
Pose estimation in 3D applied to animals is a nascent field. The majority of 
the work focuses on technological development with testing on 
straightforward classification tasks like lying down versus standing 
(Antognoli et al., 2025). With this thesis, we contribute to developing the 
field one step further towards practical outcomes to improve the conditions 
of animals. Firstly, by proposing a data management and event detection 
framework that extracts information on data generated in near-real-time, 
getting closer to practical implementations. This framework is adapted to 
variations in the quality of the detections, although it does suffer from some 
false negative detections and limited sensitivity to missing detections. 
Secondly, by using the technology to generate meaningful information on 
the animal’s comfort for behaviours where visual observations suffered with 
limitations in terms of scalability and quantifiability. 

6.3.3 Expansion to other behaviours 
The project set out to explore the place of multi-view pose estimation for 

welfare monitoring. Rising and lying down behaviours were one possible use 
case. Welfare assessment tools have tended to draw on a tradition inspired 
by the five freedoms in which the emphasis is on avoiding suffering (Broom, 
2011). Increased attention has been brought to positive welfare (Rault et al., 
2025), and on the need to develop technology in line with a multi-
dimensional understanding of welfare (Foris et al., 2025). Behaviours 
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indicative of positive welfare state such as social interactions or play are 
seldom used, and the difficulty in catching their occurrence might be one of 
the reasons. If we conceive sufficiently specific algorithms built on top of 
computer vision, or even of several sensor streams, we could catch these 
behaviours as they occur. In turn, the creation of longitudinal datasets from 
continuous monitoring can uncover patterns of occurrence, understanding 
the conditions under which these behaviours are displayed, and increase our 
knowledge of how they map to welfare. 

One candidate behaviour in cattle is position of the ears. An observation 
study has linked different ear positions to feeding, brushing or queuing (D. 
De Oliveira & Keeling, 2018). Experimental results link ear position to 
alertness, stressors, and to positive experiences (Battini et al., 2019). Ear 
positioning remains contextual and ambiguous (Keeling et al., 2021), but 
continuous monitoring could support the validation of reliable indicators 
(Foris et al., 2025). 

A different behaviour, likely inducive of positive states is brushing. Using 
the 2D poses from separate cameras from the multi-camera system, we were 
able to detect brushing bouts and identify which body segment a cow was 
brushing (Högberg et al., 2025). In turn, the objective is to develop a 
continuous ground truth, where we can link together the expression of 
specific behaviours (like brushing at the withers) and other experiences. 
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7. General conclusion 
 Over half of all rising bouts, and over a quarter of lying down bouts 

in rigid cubicles were found to be indicative of compromised 
comfort, according to the thresholds found in existing literature. This 
highlights both the risks associated with cubicles, and specifically 
for this thesis, the ability for pose estimation in 3D to detect posture 
transitions and evaluate adverse welfare outcomes, at individual and 
at group levels. 

 Flexible straps provide cows with a greater movement amplitude at 
the head lunge to get up, and potentially when lying down. The 
magnitude difference in lying down head displacement was 
comparable to that found in open packs.  

 By monitoring each individual, we can tailor the assessment of 
specific welfare parameters to the variability and motion patterns of 
the individual rather than the herd average. Individuals with lower 
motion amplitudes disproportionately increased their rising motion 
highlighting how 3D pose could capture how the intervention can 
adapt to variability in the herd to “level the playing field”. 

 Features extracted from 3D poses estimation measure both the time 
and space dimension of rising bouts from which we can derive 
kinematic indicators, at high frequency. Using this technology 
provided novel quantitative information on the “bob room” and 
lunge angle, which we could not obtain with visual assessment yet 
is crucial to designing more comfortable cubicles. 
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Popular science summary 

How comfortable are cow when they go and lie down in modern dairy barns? 
The answer varies between farms but usually not as comfortable as they 
could be. Unlike pigs, cows do not defecate in specific “toilet areas” but 
rather wherever they are when they need to. Cows are also sensitive to udder 
infections that can be caused by contact with faeces. Do you see where this 
is going? If cows defecate on their bedding, there is a risk that they lie down 
in it and get infected. To prevent that, cows’ beds are delimited by cubicles; 
a rectangle made of metal bars on three sides that positions the cow with its 
rear over an alley, where an automatic scraper will remove the faeces. The 
problem with these metal bars, is that they restrict cows’ movements when 
getting up and lying down. You see, cows are heavy, so getting up requires 
a lot of effort. To help, they thrust their head forward, which puts less weight 
on the hind limbs, facilitating the lift. If there is a metal bar in the way of the 
head… bonk! This isn’t a nice feeling. Instead of metal bars, some farms 
have been experimenting with ratchet straps that offer a cushioning if the 
cow pushes against them. The results are promising, but how do we offer 
systematic scientific evidence that they indeed improve cows’ ability to get 
up and lie down. To answer this, we teamed up with Sony (yes, the ones 
behind the PlayStation). With their cutting-edge technology, we could 
automatically detect the position of cows in cubicles, and track the motion 
of their heads, limbs, and back with centimetre accuracy. Cows, and specific 
parts of their body were detected automatically on the frames of 
synchronized cameras. Then, the location of these body parts was 
triangulated to produce a position in 3D. Using this, we could accurately 
track how much cows moved in regular cubicles and cubicles with flexible 
straps. We found that cows had greater movement amplitudes in flexible 
cubicles, and even estimated the force borne on the rear limbs. The results 
were not straightforward but generally point towards the fact that cubicles 
with flexible elements are indeed more comfortable for getting up and lying 
down, and accommodate for a greater diversity of cows. 
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Populärvetenskaplig sammanfattning 

Hur bekväma är kor när de lägger sig i moderna mjölkstallar? Svaret varierar 
mellan gårdar, men vanligtvis är det inte så bekvämt som det kunde vara. Till 
skillnad från grisar gör kor inte sina behov på specifika ”toalettplatser”, utan 
där de befinner sig när behovet uppstår. Kor är också känsliga för 
juverinfektioner, som kan orsakas av kontakt med avföring. Förstår du vart 
detta leder? Om korna gör sina behov på sin ströbädd finns det en risk att de 
lägger sig i det och blir infekterade. För att förhindra detta avgränsas kornas 
bäddar av bås, en rektangel gjord av metallstänger på tre sidor som placerar 
kon med bakdelen över en gång där en automatisk skrapa tar bort avföringen. 
Problemet med dessa metallstänger är att de begränsar kornas rörelser när de 
reser sig och lägger sig. Kor är tunga, så det kräver mycket kraft att resa sig. 
För att underlätta detta skjuter de huvudet framåt, vilket minskar 
belastningen på bakbenen och underlättar lyftet. Om det finns en metallstång 
i vägen för huvudet... bonk! Det är ingen trevlig känsla. Istället för 
metallstänger har vissa gårdar experimenterat med spännband, som ger lite 
mer flexibilitet om kon trycker mot dem. Resultaten är lovande, men hur kan 
vi systematiskt bevisa att de verkligen förbättrar kornas förmåga att resa sig 
och lägga sig? För att göra detta samarbetade vi med Sony (ja, de som ligger 
bakom PlayStation). Med deras banbrytande teknik kunde vi automatiskt 
detektera kornas position i bås och spåra rörelserna i deras huvuden, ben och 
rygg med centimeterprecision. Korna och specifika delar av deras kroppar 
detekterades automatiskt på synkroniserade kameror. Därefter triangulerades 
dessa kroppsdelars position för att skapa en position i 3D. Med hjälp av detta 
kunde vi noggrant spåra hur mycket korna rörde sig i vanliga bås och bås 
med flexibla spännband. Vi fann att korna hade större rörelseamplituder i 
flexibla bås och kunde till och med uppskatta kraften som belastade 
bakbenen. Resultaten var inte entydiga, men pekar generellt på att bås med 
flexibla element är bekvämare för att resa sig och lägga sig och passar en 
större mångfald av kor. 
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ABSTRACT

Freestall comfort is reflected in various indicators, 
including the ability for dairy cattle to display unhin-
dered posture transition movements in the cubicles. To 
ensure farm animal welfare, it is instrumental for the 
farm management to be able to continuously monitor oc-
currences of abnormal motions. Advances in computer 
vision have enabled accurate kinematic measurements 
in several fields, such as human, equine, and bovine 
biomechanics. An important step upstream to measuring 
displacement during posture transitions is determining 
that the behavior is accurately detected. In this study, 
we propose a framework for detecting lying-to-standing 
posture transitions from 3-dimensional (3D) pose estima-
tion data. A multiview computer vision system recorded 
posture transitions between December 2021 and April 
2022 in a Swedish stall housing 183 individual cows. The 
output data consisted of the 3D coordinates of specific 
anatomical landmarks. The sensitivity of posture transi-
tion detection was 88.2%, and precision reached 99.5%. 
In analyzing those transition movements, breakpoints de-
tected the timestamp of onset of the rising motion, which 
was compared with that annotated by observers. Agree-
ment between observers, measured by intraclass correla-
tion, was 0.85 between 3 human observers and 0.81 when 
adding the automated detection. The intra-observer mean 
absolute difference in annotated timestamps ranged from 
0.4 s to 0.7 s. The mean absolute difference between each 
observer and the automated detection ranged from 1.0 s 
to 1.3 s. We found a significant difference in annotated 
timestamps between all observer pairs, but not between 
the observers and the automated detection, leading to the 

conclusion that the automated detection does not intro-
duce a distinct bias. We conclude that the model is able 
to accurately detect the phenomenon of interest and that 
it is equitable to an observer.
Key words: computer vision, animal welfare assessment, 
freestall cubicle, pose estimation

INTRODUCTION

All cubicles in a dairy barn are usually identical, but 
a natural variability exists both in animal size relative to 
the cubicle (Dirksen et al., 2020) and in individual motion 
patterns and locomotor activity (Shepley et al., 2020). A 
factor of stall comfort, which affects lesion prevalence 
and lying time, is the ease with which a cow is able to get 
up and down in the cubicle (Zambelis et al., 2019). Ease 
of movement during posture transition was highlighted 
as an evaluation criteria for stall quality in relation to 
cow comfort by Lidfors (1989), who noted that cows in 
cubicles were more regularly seen performing abnormal 
motions (such as sideways lunging or horse-like rising) 
than those on pasture. Ceballos et al. (2004) analyzed 
the kinematics of posture transitions and found that cows 
used less longitudinal space when rising in a cubicle than 
on an open pack. Given the evidence for the link between 
restrictive movements and signs of reduced welfare 
(Beaver et al., 2021), the quality of posture transitions is 
included as an indicator in welfare assessment schemes 
such as Welfare Quality (Blokhuis et al., 2013).

Assessing ease of posture transition per se, rather 
than through indirect signs of reduced comfort such as 
hock lesions (Dirksen et al., 2020) or reduced lying time 
(Shewbridge Carter et al., 2021), is more challenging, 
and practical objective methods are needed (Brouwers et 
al., 2023). Visual observations noting the occurrence of 
abnormal behaviors are commonplace in farm manage-
ment and welfare assessment schemes. Alternatively, 
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ease of movement can be assessed quantitatively by 
measuring the displacement of anatomical landmarks 
throughout bouts of posture transition (Ceballos et al., 
2004). Drawbacks exist for both approaches. The visual 
method relies on time-consuming, sporadic human obser-
vations. Although Zambelis et al. (2019) found excellent 
agreement between observers (kappa of 0.93 for getting-
up movement ease), a degree of subjectivity always 
exists in visual scoring of animal movements (Chaplin 
and Munksgaard, 2001; Vasseur, 2017). The acquisition 
of 3-dimensional (3D) kinematics data by Ceballos et 
al. (2004) relied on fitting motion-capture reflectors on 
cows, requiring lengthy preparation and exposure of the 
equipment to damage. These limitations might be a rea-
son behind the low sample size (n = 5 cows with at least 
2 bouts per cow) in the latter study.

Considering the variability in cow sizes and kinematic 
profiles and the need for objective methods to assess ease 
of movement, we propose a framework to detect lying-
to-standing (LTS) posture transitions from 3D pose 
estimation data. As a step in validating the potential of 
this method, the aim of this study was to measure the 
performance of a feature extractor in detecting the onset 
of LTS posture transitions compared with the human eye.

MATERIALS AND METHODS

The study presented here was approved by the ethical 
committee Uppsala djurförsöksetiska nämnd under ap-
proval 5.8.18-13069/2021. The 3 Rs in animal research 
were considered when using existing video material, 
previously and noninvasively collected. 

Location and Animals

Recordings were obtained at the Swedish Livestock 
Research Centre’s dairy barn (Uppsala, Sweden). The 
herd comprises Swedish Holstein and Swedish Red 
cattle housed indoors with access to pasture 120 d a 
year, between May and September. Video was recorded 
on 30 separate days (midnight to midnight), sampled for 
convenience, between December 8, 2021, and April 28, 
2022. Because the barn is lit at all times, recordings were 
obtained at all times of day. An average of 51 cows were 
present simultaneously in the pen, with individuals being 
added and removed throughout, for a total of 183 differ-
ent individuals having visited the pen during the study 
period. A total of 7 RGB cameras (G3 Bullet, Ubiquiti) 
were placed around an area approximately one-quarter of 
the pen, located closest to the sorting gate to the milking 
robot, and oriented toward the rows of cubicles so that all 
cubicles in the study ward, including forward lunge room 
defined as the 60 cm beyond the head rail, were visible 

by at least 2 cameras. The study ward comprised the 12 
cubicles (CC1800 cubicle divider with rigid head bar, 
Delaval) for which video coverage was optimal, out of 
66 total in the pen. The cameras were installed on fixed 
metal rails, part of the barn’s infrastructure, between 2.8 
and 3.6 m high. The locations of each camera, as well as 
the stall layout, are shown in Figure 1.

Cows had access to feeding troughs with ad-libitum 
mixed feed as well as 2 rotary brushes, and concentrate 
dispensed both at the milking robot and at concentrate 
dispensers. Passage through the milking robot’s sorting 
gate was compulsory for access to the feed. Milking was 
done by one milking robot (VMS V300, Delaval), which 
cows had access to on a voluntary basis. Cows were 
brought to the robot by farm staff if they had not been 
milked in over 12 h.

Key Point Acquisition in 3 Dimensions

This study used 3D pose estimation software (Sony 
multi-camera system, Sony Nordic). The software es-
timates the 3D pose by finding cross-view correspon-
dences across inferred 2-dimensional (2D) poses of the 
same object on synchronized views. It then creates a 
track for each object based on spatial continuity in the 
3D location. The initial synchronization is achieved by 
reading the timestamp of each frame and relating the first 
full-second transition for a common timestamp across all 
video recordings as the initial synchronized frame. The 
initial frame synchronization is provided as an input to 
the multicamera system. Synchronization is maintained 
using the estimated time of arrival of each frame in the 
processing buffer.

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 1. Schematic of the portion of the stall where recordings were 
obtained. The gray shaded areas are passageways unavailable to cows. 
Thick borders mark the stall boundaries, and dashed lines indicate a 
continuing area that is accessible to the cows beyond that shown here. 
Cameras are represented by red circles, placed between 2.8 and 3.6 m 
high. The parallel rectangles are cubicles; data were collected in cubicles 
marked with asterisks. The arrows indicate movement directions the 
cows are able to follow in the passageways.
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The 2D object detector and pose estimator use con-
volutional neural networks to detect cows and specific 
anatomical landmarks on RGB images, in the form of 
a bounding box and key points, respectively. The land-
marks used in this study were limited to the center-top of 
the poll, the highest point at the withers, the spine at the 
13th thoracic vertebra, and the top of the sacrum taken 
immediately behind the uppermost part of the ilium (re-
ferred to respectively as head, withers, t13, and sacrum).

The output data consists of one key point for each ana-
tomical landmark with X, Y, and Z coordinates for each 
object and given frame. Figure 2 shows the estimated 
3D position of the key points, linked to create a visual 
structure, for 2 objects during an LTS transition, as well 
as the video frames used to generate them.

Detection of Posture Transitions

The recordings were sampled visually by one observer 
with the aim of finding 1,000 sequences containing LTS 
transitions. When a cow was observed fully getting up 
from a lying positions, the timestamp was annotated, and 
a video sequence corresponding to a window of ± 15 s 
around the annotated timestamp was extracted. In the fi-
nal data set, an arbitrary 979 sequences were eventually 
identified. These sequences were then processed with the 
3D pose estimation software.

When the cow rises, the line formed by linking the 
sacrum and t13 key points increases its angle compared 
with the horizontal plane, as the cow’s back is at an 
angle with the ground. By calculating the difference 
between the sacrum height and withers height, and fol-
lowing this difference through time, we identified peaks 
corresponding to LTS motions. When a peak above 0.4 
(in the coordinates’ arbitrary spatial reference system) 
was detected, the frame was considered to be within a 
potential rising motion. The mean withers Z position in 
the 120 frames located 330 frames after the peak was 
then compared with the mean withers Z position in the 
last 120 frames of the sequence. If the ratio of the height 
difference after and before the peak was higher than 
140%, the track was classified as an LTS motion. Figure 
3 illustrates this by showing the vertical position of the 
key points. At 16 s, there is an important difference in 
the heights of the withers (orange) and sacrum (green). 
This difference points toward a potential rising bout. 
Calculating the difference in withers position between 
the 5-s and 27-s marks, we determine that the animal has 
transitioned from a low, lying posture to a high, standing 
posture.

In these 979 sequences, this method initially detected 
493 LTS motions for which the cow was tracked at each 
consecutive frame. For the remainder (486 sequences), 
the tracks were interrupted for several frames and the mo-

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 2. The 2D pose estimation and 3D fusion of 2 cows. The 2D results are displayed at the top, showing the synchronized frames from 
cameras 0 to 6, onto which predicted bounding boxes and key points are overlaid. The rest of the scene shows the projection of 2 cows from key 
points in 3D. Cameras 4 and 6 are represented as magenta and gray cuboids, respectively, in the 3D representation, in their spatial position relative 
to each other and to the cows. A projection of the frames from cameras 4 and 6 (identical to those in the 2D images above) is shown in front of the 
camera’s 3D representation. The 5 other camera representations are not displayed from this angle, and camera 4 occludes the view from camera 0 
because of the choice of angle. Only 4 of the key points shown in this figure were used in the study.
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tion was captured in several separate tracks. Detections 
were stitched together if they fit the following criteria:

●● The tracks are found in the same 30-s sequence.
●● The second track starts after the first track vanishes, 

and within an interval of 30 frames.
●● The Euclidian distance in the 3D pose estimator’s 

coordinate system between the last point in the van-
ishing track and the first point of the starting one is 
lower than 0.2.

No limit was imposed on the number of tracks appended 
together to form one single track, as long as the above 
conditions were fulfilled. The resulting stitched track 
was kept if it contained more than 700 frames, and dis-
carded otherwise.

Using this method, an additional 370 rising sequences 
were detected by applying the height difference rule to the 
stitched tracks, giving a total of 863 predicted positives. 
For the remaining 116 sequences, either the animal was 
not detected by the pose estimation software, the posture 
transition detector failed to identify the occurrence, or 
the motion was split between different tracks that were 
not relatable due to noise or an interruption across more 
than 30 frames. Visual inspection of the predicted LTS 

motions revealed 4 false positives. In addition, 22 true 
positives were discarded from the data set because the 
posture transition was initiated before the start of the 
video snippet and thus not captured in its entirety.

Signal Processing

Each series of raw coordinates was processed to at-
tenuate noise. A low pass filter with a cutoff frequency 
of 10 Hz was applied to remove high-frequency noise 
resulting from key point jittering. This cutoff was cho-
sen based on the recommendations by Hamäläinen et al. 
(2011) and Riaboff et al. (2020) for noise removal on 
animal activity data. The filter was applied separately to 
each key point and the respective time series of its X, Y, 
and Z coordinates. The filter was implemented in Python 
3.9 (Python Software Foundation) using the function 
“butter” from the SciPy package (Virtanen et al., 2020). 
Figure 3 illustrates the filtered Z coordinates time series 
during a rising sequence.

From the processed signal, consisting of the coordi-
nates of each key point in 3 dimensions, we detected the 
timestamp at which the cow starts rising. Considering 
solely the kinematic features available through the 4 key 
points, this is most clearly reflected by the change in the 
position of the withers, as rising on the elbows will cause 
the withers to rise upward slightly, which is visible by 
an increase in the withers’ Z (vertical) coordinate. When 
doing so, the cow aligns its back along the length of the 
cubicle, which is reflected in a change of the withers’ Y 
coordinate (axis perpendicular to the cubicle’s length). 
Although, from a behavior perspective, there is more to 
the LTS transition than solely the withers’ movement, the 
system was blind to all but the position of 4 anatomical 
landmarks. The withers were chosen for the stability of 
the key-point (low jittering) and for their consistent mo-
tion pattern in the LTS transition across sequences. To 
detect the exact onset of rising motions, we used linearly 
penalized segmentation (Pelt), implemented the Python 
library “Ruptures” (Truong et al., 2020). Pelt was applied 
to the bivariate series of the Y (lateral, perpendicular to 
the cubicles) and Z (height) positions of the withers to 
identify breakpoints in the time series. No restrictions 
were set on the number of breakpoints to be detected. A 
baseline height (Z coordinate) was calculated for each 
sequence as the median withers height in the first 30 
frames of the sequence. The break points detected by Pelt 
were iterated through. If the median withers height in the 
30 frames following the breakpoint was higher than the 
baseline, the breakpoint was then considered to be the 
start of the rising motion. If not, we iterated to the next 
breakpoint and applied the same logic.

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 3. The coordinates of the anatomical landmarks of dairy 
cows were tracked with 3D pose estimation. This figure shows the Z 
coordinate (height) of a cow’s head, withers, and sacrum throughout a 
lying-to-standing motion. Initially, the low variability on the vertical 
axis indicates that the cow is lying still. At about 11 s, the withers (or-
ange) rise gently as the cow sits on its carps, followed by lunging with 
vertical bobbing of the head (blue) from 12 to 17 s. The sacrum (green) 
rises rapidly soon after, describing a sigmoid. There is a pause on the 
carps, with the sacrum already up, from 16 to 20 s. The cow has risen 
by the 22-s mark. The vertical dotted line shows the onset of the posture 
transition detected using linearly penalized segmentation. This example 
was selected for clarity.
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Data processing, feature extraction, and analyses were 
carried out in Python 3.9.3 using the packages NumPy 
1.21.5 (Harris et al., 2020) and SciPy 1.9.1 (Virtanen et 
al., 2020).

Validation Experiment

To evaluate the performance of the tool in detecting the 
occurrence of LTS bouts, we compared the timestamps 
automatically detected to those annotated by 3 human 
observers, considered as the gold standard for behavioral 
observations. Observers were provided with the follow-
ing definition: “The cow is lying down and rises on its 
breastbone and elbows, which causes the withers to rise 
visibly above the rest of the back.” This definition is based 
on that of Lidfors (1989), but it adds the position of the 
withers as an indicator. The animals were seen to initiate 
the movement by centering their elbows under the body, 
this in turn causes the withers to rise slightly. This mo-
tion of the withers was used to determine the exact onset 
of the rising motion. The description was accompanied 
by illustrations taken from Schnitzer (1971) and Cermak 
(1988), as well as an ethogram describing the sequence 
of movements in the LTS transition, in which the move-
ment to label was explicitly identified. This ethogram 
described the stages of the posture transition based on 
Lidfors (1989) and on Schnitzer (1971). Observers all 
received the same training, in which the ethogram was 
explained and examples were showcased; they reviewed 
5 videos of different cows rising and agreed on the exact 
frame to label as the onset of the rising motion. These 
5 videos were taken from the original data set and used 
solely for training the observers.

The validation data set was sampled randomly from the 
471 complete LTS sequences captured in a single track. 
In total, 60 unique LTS sequences were annotated by at 
least 1 observer. This number was determined a priori, 
as no prior data were available on observer variability 
in posture transition detection. These sequences were 
the original 30 s synchronized video snips from which 
the key points were detected. The video was available 
to the observers from all 7 cameras used for key point 
detection, plus one additional ceiling mounted camera. 
Observers were free to choose the camera offering the 
best view of the animal performing the bout. Every ob-
server was provided with a total of 55 randomly selected 
video clips. Of these 55 sequences, 30 were common to 
all observers and 10 were unique to each observer (40 
different sequences per observer). The remaining 15 
sequences were randomly resampled from the prior 40 
and re-annotated by the same observer, to measure intra-
observer reliability. All sequences were blinded, with a 
different label each time the sequence appeared.

Statistical Analysis

The mean absolute difference (MAD) in annotate time-
stamp was calculated between each observer to quantify 

intra-observer reliability as MAD i
s

s
i

i
( ) =

=
∑

1
15 1

15

∆ , where 

i = 1, 2, or 3 (observers) and ∆s s si i i
t t= −, , ,1 2  with tsi ,1 and 

tsi ,2 being the time stamp of the sth sequence provided at 
first and second assessment occasion, respectively, by 
observer i. In addition, the inter-rater MAD was calcu-
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were calculated, and the normality of ∆si  and ∆s i j, ,( ) was 
assessed visually on a q-q plot. Subscripts i and j refer to 
2 distinct observers: i = 1, 2, or 3; j = 2 or 3. The MD and 
MAD indicate interobserver systematic bias and disper-
sion, respectively.

The following mixed effects models were fitted using 
statsmodels.formula.api.mixedlm (Seabold and Perktold, 
2010) in Python 3.9 to evaluate the observer effect and 
intraclass correlation (ICC) with or without the auto-
mated detection:

	 t I i I i us i r s i rs, ,  , ,  ,= + =( )+ =( )+ +β β β ε0 1 22 3 	 [1]

t I i I i M us i r s i rs, , , ,  ,= + =( )+ =( )+ + +β β β β ε0 1 2 32 3
� [2]

where β0 is the (fixed) intercept, u Ns u~ , 0 2σ( ) is a ran-
dom sequence effect, s = 1 to 40 is the sequence indica-
tor, β1 and β2 are fixed observer effects, β3 is a fixed ef-
fect corresponding to the automated detection taken as an 
additional observer (referred to as the “model” or M), 
and ε σs i r eN, , ~ ,0 2( ) is a (random) error term. The se-
quence number is indicated by the subscript s, Ii are the 
observers, and r = 1, 2 is the index for repeated sequenc-
es annotated 1 to 2 times by the same observer. The ob-
server effects were tested using ANOVA. The ICC as a 
measure of interobserver agreement were calculated as 

ICC u

u e

=
+

σ

σ σ

2

2 2
. A post hoc pairwise t-test with Bonfer-

roni correction for 6 tests was then computed to test the 
pairwise differences between observers. The annotated 
timestamps were not normalized because a 1 s difference 
between observers, for example, has the same practical 
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meaning in this context regardless of whether the annota-
tion is done at the 4-s mark or the 12-s mark.

The performance of the algorithm was assessed in the 
same way, by treating the algorithm as an additional ob-
server and seeing if it differed from the human observers. 
The differences were calculated between the algorithms’ 
detection (denoted TM) and the observer annotation, TH. 
Bland-Altman plots were prepared for each observer pair 
T T t ti j s i s j, , ,, ,( ) = { } { }( )  and also comparing TH with TM, 
with a view to checking for the absence of a pattern and 
points beyond 1.96 standard deviations. Lastly, MAD(H, 
M), and MD(H, M) were calculated.

RESULTS

A total of 836 rising bouts were detected out of 979 
visually selected sequences equating to a sensitivity of 
88.5% or a false negative rate of 11.5%. Four sequences 
were wrongly classified as rising motions giving a preci-
sion of 99.5% or false positive rate of 0.5%.

Model 1, comparing only human observers, gave ICC 
= 0.85. We found a significant observer effect in predict-
ing the annotated timestamps of LTS onset (P < 0.001) 
according to the ANOVA. When the model 2 was fitted to 
assess performance of the prediction, the ICC decreased 
to 0.81, remaining at a similarly satisfactory level of 
agreement. However, we found no significant difference 
between the predicted timestamp (“model”) and each ob-
server’s annotations according to the post hoc pairwise 
t-test with Bonferroni correction of the type-1 error at α 
= 0.0083. We identified a significant difference between 
all observer pairs: P (T1,T2) = 0.0016; P (T1,T3) < 0.001; 
P (T1,T3) = 0.0018. 

Mean absolute differences Ts
M H,  are summarized in 

Table 1. These values indicate good interobserver agree-
ment and good agreement between humans and machine. 
The magnitude of Ts

M H,  is identical to that of Ts
M M, , 

meaning that TM could be used in further research, as the 
model does not deviate from the observers more than 
they do from one another. Figure 5 shows the timestamp 
annotated by each observer (including the model and re-
peat sequences) for each sequence.

Intra-observer reliability was assessed using the mean 
absolute difference in seconds, and consistency using the 

standard deviation (σ). Observer 1 had an MAD of 0.55 ± 
0.88 s (µ ± σ). Observer 2 had an MAD of 0.68 ± 1.47 s, 
and observer 3 had an MAD of 0.36 ± 0.48 s. The pooled 
standard error was 0.27 s. The standard deviation is 
preferred here to the standard error to quantify the vari-
ability in the differences between and within observers 
in annotated timestamps, independently of the number of 
samples. These results indicate very good intra-observer 
reliability (under 1 s on average).

Finally, we compared the annotations to the automated 
detections visually using the Bland-Altman plot in Figure 
4. The upper left plot shows most points to be centered 
around 0, without signs of consistent bias from the model. 
More importantly, the spread was similar when compar-
ing observers to the algorithm and observers together.

DISCUSSION

The ICC values show a good agreement between auto-
mated model detection and human observers in detecting 
the onset of cows’ rising motions, according to previous 
research on the use of ICC as a reliability metric in animal 
motion scoring (Kaler et al., 2009). The ANOVA dem-
onstrated a significant observer effect, strengthening the 
claim that observations of cows’ movements are prone to 
individual variations. The post hoc test showed a signifi-
cant difference in annotated timestamps between all pairs 
of observers, but the difference between the model and 
the observers was not significant. We conclude from this 
that the model’s detection lies somewhere in between the 
observers’ annotations. The MD of −0.06 s between ob-
servers and the model (Figure 4) and the proximity of the 
points to 0 show that no systematic bias was introduced 
by the automated detection. This latter finding is also 
supported by Figure 5, showing the timestamp annotated 
by each observer at each sequence, in which there is no 
evidence of the detection being consistently divergent 
from human annotations, as the triangular points (model) 
are not systematically above or below the circular ones 
(observers). We also see that the predictions do not tend 
to be further from the annotations than the annotations 
are from each other.

This agreement is a crucial step in validating the capa-
bility of 3D computer vision to accurately identify this 
specific kinematic feature in bovine behavior. Notably, 
the findings suggest that the model’s performance does 
not considerably differ from human observers when 
compared with the variability among human observers. 
This suggests that the model does not introduce a dis-
tinct source of error in the detection process. Although 
discrepancies exist between the model and human ob-
servations, the magnitude of these divergences is not 
meaningful in comparison to the overall duration of the 
LTS transition.

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Table 1. Interobserver agreement (MAD ± σ) between the annotations 
of all pairs of observers, including the model; pairs between observers 
calculate the MAD on 30 sequences, whereas pairs with the model 
include an additional 10 annotations, unique to each observer

Item Observer 1 Observer 2 Observer 3

Model 1.02 ± 1.41 1.00 ± 1.70 1.30 ± 1.45
Observer 1   1.10 ± 1.26 1.67 ± 1.72
Observer 2     0.89 ± 1.01



Journal of Dairy Science Vol. 107 No. No. 9, 2024

6884

However, some limitations are important to mention. 
One such limitation is the likely over-representation of 
specific individuals. The animals were filmed in a lim-
ited area of the barn, and we can expect a degree of site 
fidelity from the animal (Vázquez Diosdado et al., 2018), 
leading to some individuals being over-represented. Be-
cause there was no individual detection, correcting for 
individuals was not possible. It is also unlikely that all 
recorded bouts were spontaneous; some may have been 
triggered by human intervention or by the presence of 
agonistic individuals. Bout motivation could introduce 
changes in kinematic patterns and velocity and poten-
tially affect the accuracy of the automated detection.

Limitations also exist regarding external validity, as 
the study was conducted in a single cubicle design, under 
a limited period of time, and using manually selected 
video sequences. This manual selection work upstream 
of the automated processing is an important limitation 

that drove the high sensitivity and specificity. The same 
system should be tested on continuous recordings. To 
counterbalance this limitation, however, the posture tran-
sition is an evident behavior, with a large difference in 
key point height before and after, which would easily be 
captured even with noisy key points by simply following 
the height of the cow’s back.

The scope of this study was determined retrospec-
tively; the decision to compare the automated detection 
to manual annotations was made after collecting the 
data and visually identifying LTS motions. The inclu-
sion criteria were based on data quality and not experi-
mental considerations. The exclusion of 22 longer bouts 
discarded important information with implications for 
the most vulnerable individuals when it comes to stall 
comfort, as a long pause during the posture transition is 
associated with adverse welfare outcomes (Zambelis et 
al., 2019)

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 4. Bland-Altman plots comparing the timestamp of onset of cows’ rising motions annotated by human observers to that predicted by the 
model. The 3D pose estimation provided the coordinates of cows’ anatomical landmarks. Detecting breakpoints in the key point motion enabled 
detection of the onset of rising. Diff = difference. All units in seconds.
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The study’s gold standard was human observation, 
which is known to be variable across observers due to 
individual subjectivity. Although a bias is incorporated 
in the model, this bias is consistent across observations. 
The accuracy of the model could be improved by both 
altering the ethograms to make them more “machine-
learnable” (Brouwers et al., 2023) and by diversifying 
the data. Importantly, although human observations are 
biased, humans are rarely completely incorrect, espe-
cially when the phenomenon at hand, such as posture 
transition, is evident. Algorithms on the other hand 
sometimes produce unexpected results, and monitor-
ing and understanding their occurrence is essential for 
practical application. For instance, a difference of 6 s 
is found between the model and observer 2 in sequence 
31 (Figure 5). Upon visual inspection of this sequence, 
the algorithm picked up on the onset of the adjustment 
movements, which were particularly lengthy in this se-
quence, making up the initial part of the posture transi-
tion. The second observer, on the other hand, noted the 
moment the fast rising motion occurred. This is not an 
error of either method, but a misalignment in the inter-
pretation of the behavior. Referring to the description 
of the behavior provided to the observers, and quoted 
in the Materials and Methods section, the timestamp 

automatically detected is closer to the phenomenon of 
interest.

Most significant for this research is that automated 
detection via computer vision offers an objective meth-
od for detecting specific motions, which is desirable 
for studies of behavior and motion patterns. Judging by 
the advances in equine kinematic research, markerless 
computer vision constitutes both a robust and practi-
cal data acquisition tool to measure the displacement 
of anatomical landmarks, offering similar accuracy to 
motion capture, albeit for specific motions (Lawin et 
al., 2023). Reliably identifying the motion of interest is 
only a step in the study of posture transition kinemat-
ics, which contain welfare indicators (Zambelis et al., 
2019), the measure of which can be automated (Brou-
wers et al., 2023). Future studies using this technol-
ogy aim at implementing individual recognition, which 
could contribute to a pool of sensor data at individual 
level. However, in the absence of individual identifica-
tion, this technology is still able to deliver meaningful 
information either at herd or at cubicle level. The au-
tomated detection through 3D computer vision could, 
after further validation, serve as a new gold standard 
for the task of detecting LTS transitions (and other 
movements), similar to how interpreting accelerometer 

Kroese et al.: 3D POSE ESTIMATION OF COW POSTURE TRANSITIONS

Figure 5. Annotated timestamp by each observer and by the model. The discrete x-axis shows each lying-to-standing sequences. On the y-axis 
is the timestamp of the onset of the posture transition annotated by each observer or predicted. From each annotation is subtracted the earliest 
timestamp in that sequence.
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data has become standard in behavior classification of 
ruminants (Riaboff et al., 2022).

CONCLUSIONS

In summary, our results demonstrate good agreement 
between human observations and automated detection 
of cows’ rising motions. Notably, they indicate that the 
model introduces no more bias than human observers. 
This finding validates the use of multiview 3D pose 
estimation for detecting the onset of rising motions in 
bovine behavior, albeit in the conditions of a single farm. 
Automating the task with computer vision presents an 
opportunity to scale up bovine kinematic measurements 
and behavior monitoring and apply objective methods to 
further study.
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A B S T R A C T

The structure of cubicles can hinder cows’ movements when transitioning between postures, leading to atypical 
motion patterns. Assessing posture transitions relies on visual observations. This study presents a framework for 
complementing these assessments with kinematic measurements using 3D pose estimation. A total 809 rising and 
791 lying down posture transitions were recorded over 12 cubicles by 7 synchronized cameras and processed 
with 3D pose estimation locating the position of the poll, withers, T13 and sacrum. First, the displacement of the 
keypoints was used to detect phases of the posture transitions. This detection was compared with visual ob
servations of 200 recordings. The average mean absolute difference in detected timestamps between human and 
machine across all phases was 0.5 s (average σ = 0.7) and was under 0.9 s for all phases. Second, indicators were 
scored based on spatial use and duration, and their distribution compared to existing thresholds. We observed 
that 59.9 % of rising bouts and 29.1 % of lying down bouts exceeded at least one threshold. Rising delay occurred 
in 2.8 % of rising bouts and backwards crawling in 59.2 %. Lying down duration exceeded the threshold in 28.9 
% of bouts, and rear limbs shifting duration in 8.3 %. Side lunge had a binary threshold which was not adapted to 
continuous sensor data. Finally, we investigated the association between indicators and found distinct di
mensions for head lunge and crawling. We conclude that 3D pose is useful to score posture transition indicators, 
and that several indicators should be used together to capture distinct dimensions.

1. Introduction

Free stall cubicles are designed to encourage cows to lie down rather 
than stand, and to defecate outside of the bed. Balancing design ele
ments involves a trade-off at the expense of movement opportunities. 
For instance, neck rails improve hygiene but increase the incidence of 
abnormal movements [1]. The ability for cows to comfortably transition 
between postures is an important parameter of cow comfort in stalls [2,
3].

The ability to perform unhindered posture transitions, such as get
ting up and lying down, is recognized as a critical component of cow 
welfare and resting [4,5]. Sufficient space and stable footing are needed 
to perform these transitions smoothly [6]. It has been hypothesised that 
the ability to comfortably transition between postures promotes the 
occurrence of lying behaviour [7]. Adequate rest – in terms of duration, 

frequency and comfort – is important to dairy cows, studies having 
shown that cows will work to access resting spots [8]. Brouwers et al. [4] 
found that in cubicles with flexible dividers, which allow for a more 
ample movements, cows lied down more frequently and that daily lying 
duration was higher, suggesting that the ability to lie down without 
obstruction promotes resting behaviour.

Comfortably transitioning between postures extends beyond phys
ical health, these movements are linked with behavioural expressions of 
comfort and well-being [5]. Cows that struggle with these transitions 
may experience increased stress and discomfort, which can affect their 
overall behaviour and productivity. Providing an environment that fa
cilitates posture transitions can lead to increased resting, and to 
improved welfare outcomes [9,10]. The quality of posture transition 
movements is used as a welfare assessment indicator, reflecting the 
comfort offered by the stall [6,11,12].
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In practice, the assessment of posture transition comfort is typically 
performed visually by a trained assessor, scoring indicators associated 
with adverse welfare outcomes, such as bumping the head on the cubicle 
bars [12]. The Welfare Quality assessment framework contains 2 criteria 
which are the duration of standing-to-lying (STL) posture transitions and 
collisions with equipment [11]. The Swedish framework Fråga Kon 
(Växa, Stockholm, Sweden), which is meant as a practical on-farm 
assessment of welfare through animal-based measures, assesses the 
quality of lying-to-standing (LTS). Visual evaluation has limitations, 
mainly low observation frequency, the inability to re-evaluate when 
scoring live, and the need for the observer to note various behaviours 
which may occur simultaneously. Observer disagreement does not seem 
to be a major risk however; for instance Zambelis et al. [12] reported a 
Kappa of 0.93 at its lowest when assessing abnormal posture transition 
indicators. The assessment frameworks presented earlier rely on few or 
single quantitative indicators for each posture transition.

Precision livestock farming (PLF) technology offers an opportunity to 
monitor posture transition movements continuously, simultaneously 
and objectively, and to automatically detect abnormalities in posture 
transitions.

Sensors have already been used to assess posture transitions. Motion 
capture has been applied to measuring head lunge (the forward 
displacement of the head) and showed that cows in open packs lunged 
further when lying down by a mean of 6 cm while using the same total 
longitudinal space [13]. Motion capture is a gold standard for kinematic 
measurements of animals [14] but remains impractical in production 
settings, which may explain the low sample size (n = 5) in the former 
study [13]. Brouwers et al. [15] developed a machine learning model to 
detect abnormal lunge movements from accelerometer data. They used 
annotations by trained observers of the occurrence of abnormal lunges 
as labels and tri-dimensional acceleration features as input. The accu
racy of their model reached up to 74 %, with the class having the highest 
accuracy being backwards crawling. This metric is encouraging but 
needs refining for practical implementation. It is important to note that 
this result is unlikely due to limitations in the model. Rather, the training 
labels were annotated using ethograms developed for visual observa
tions, in which the same behaviour class can be reflected by vastly 
different motion patterns [15].

A possible technology to assess kinematic features during posture 
transitions is pose estimation [16]. A widespread example of applica
tions of pose estimation in detecting bovine kinematic abnormalities is 
lameness assessment [17,18]. Pose estimation will track the displace
ment of key anatomical features to quantify indicators of abnormal 
locomotion [19]. Kinematic assessment with 2D pose estimation, as is 
commonly done to assess lameness [19–21] relies on straight walks 
along an assigned path, perpendicular to the camera’s line of sight [17]. 
Such setup with a fixed orientation of the camera is not feasible for 
assessing posture transitions of several animals in a production setting. 
The challenge is that the angle between a single camera’s field of view 
and each stall varies with the stall location, distorting joint angles and 
perspectives. Pose estimation fusion in 3D from multi-view computer 
vision however is invariant to camera placement [22] and thus offers 
more flexibility, when sensor placement is constrained by the existing 
barn design. Importantly for practical application, pose estimation does 
not rely on markers (unlike motion capture) and applies to all subjects in 
the scene (all cows in the cubicles being filmed).

From the state-of-the art in visual assessment there are two chal
lenges that sensor-based posture transition assessment could overcome; 
the difficulty in scoring multiple indicators in a single event and the time 
needed to assess regularly. We thus propose a method to identify the 
phases of posture transitions using multi-view fusion of pose estimation 
in 3D, and detect the occurrences of abnormalities.

The aim of the study was (i) to develop a method to detect successive 
phases of cows’ posture transitions from 3D poses and score comfort 
indicators during these phases, (ii) to validate the detection against the 
human eye and assess its robustness to noisy data and (iii) to study the 

distribution and possible association of posture transition indicators. To 
do so, we used a Sony multi-camera system (Sony Sweden, Lund, Swe
den) to generate 3D poses of dairy cows in a free stall barn during both 
posture transitions. Using the 3D pose, we detected the different phases 
of the posture transitions using change-point detection and supervised 
learning to then compare the detected timestamps to those annotated by 
human observers. Then, we measured the duration of each phase as well 
as kinematic features to identify bouts with indicators exceeding 
thresholds for comfortable movements. Finally, we investigated whether 
there existed an association between indicators.

2. Materials and methods

In this study, we use 3D pose to measure indicators of posture 
transition quality. Here is a general overview: video sequences showing 
posture transition bouts were recorded with synchronized cameras with 
overlapping fields of view. The multi-camera system was calibrated to 
determine intersecting lines of sight. The 3D pose of cows was inferred 
from 2D poses estimated on synchronized frames across several cameras. 
The displacement of anatomical features of cows was tracked 
throughout bouts and the timestamp of specific phases was detected and 
compared with manual annotations. Finally, kinematic indicators of 
posture transition were measured and compared to existing thresholds.

2.1. Location and animals

2.1.1. Study area
Video recordings from 7 cameras (G3 Bullet, Ubiquiti) were collected 

on 30 separate days between 2021 and 12–08 and 2022–04–28 at all 
times of day and night. The cameras were placed around an area of a 
free-stall barn covering 12 stalls (Cubicle divider cc1800 with rigid head 
bar, Delaval International, Tumba, Sweden) located next the sorting 
gate of the automatic milking system (VMS 300, DeLaval International, 
Tumba, Sweden). The cameras were installed around the rows of stalls, 
between 2.8 and 3.6 m high, and oriented towards the rows of cubicles 
so that all cubicles in the study ward, including forward lunge room 
defined as the 60 cm beyond the head rail, were visible by at least 2 
cameras. All recordings were obtained at the Swedish Livestock 
Research Centre’s dairy barn (Uppsala, Sweden).

2.1.2. Animals
The herd comprises Swedish Holstein and Swedish Red cattle housed 

indoors during the study period but with pasture access between May 
and September. On average, 51 lactating cows were present simulta
neously in the pen, with individuals being added and removed 
throughout, for a total of 183 different individuals having visited the pen 
during the study period. The average parity of the animals at the start of 
data collection was 2 with a mode of 1. Days since calving ranged from 6 
to 447 with an average of 149. 7 animals were diagnosed with non- 
reproductive health disorders during the study. Specifically, 3 cows 
were treated for mastitis, 1 cow was identified with severe lameness, 1 
cow with a hoof inflammation, and 2 cows were diagnosed with paresis. 
Average individual body condition score as measured by the BCS camera 
(BCS, DeLaval International, Tumba, Sweden) during the trial was 3.4 ±
0.33 (µ±σ).

Cows are milked robotically with voluntary access up to 12 h until 
which they are brought to milking if they have not gone voluntarily. 
Passage through the milking robot’s sorting gate is necessary to access 
feed. Cows underwent claw health inspection and trimming every 6 
months

2.2. 3D pose estimation

This study employs a synchronized multi-camera system (Sony 
Sweden) with known intersecting lines of sight to reconstruct 3D poses 
from 2D key-point estimates. Each pose comprises the coordinates of 
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anatomical landmarks (head at the poll, highest point of the withers, 
T13, and sacrum at the uppermost point of the ilium) in an arbitrary 
coordinate system at a given timestamp. HRNET [23] is used to estimate 
key-points in 2D for each frame. These poses are then fused to obtain 3D 
key-points.

Frames are synchronized by reading the frame timestamp in the 
metadata and using the first frame with a common full second transition 
as frame 0. Synchronization is maintained throughout the recording of 
up to 35 s by reading the frame order of arrival in the processing buffer 
for each camera, recording at the same framerate. The 3D fusion of poses 
is robust to misalignments of up to 0.5 s for movements corresponding to 
the velocity of a human walking.

Intrinsic calibration parameters are determined using structure- 
from-motion algorithm [24]. This step determines the cameras’ distor
tion parameters and ensures alignment of all cameras’ origin and axes 
with world coordinates [25]. Then, the system was extrinsically cali
brated to determine intersecting lines of sight between cameras using 
the technique described by Moliner et al. [26]. A single human is tracked 
by the pose estimator through the area of interest (twelve cubicles and 
they alley between them or a surface area of 7.5 × 6.4 m). A preliminary 
3D pose of the human is determined by triangulating each unique 
key-point across 2D poses. The system refines the calibration data 
through an optimization process that minimizes a reprojection errors 
function [26]. Reprojection error measures the difference between the 
observed 2D key-points in the images and the projected 2D locations of 
the 3D points calculated using the current calibration data. Pose quality 
assesses the plausibility of the calculated poses based on expected ori
entations and distances between key-points which have a defined range 
based on biological constraints (relative position of anatomical 
key-points to each other). The calibration parameters are then refined 
iteratively to reduce the reprojection error [26]. The system is robust to 
temporary occlusions and outliers by using temporal consistency checks.

The system outputs coordinates of the key-points in a 3D space for all 
objects present in the scene, and associates each keypoint to an object, 
differentiable by their track number consistent over frames, and a con
fidence metric (average 2D confidence from HRNET estimation over all 
2D poses used to generate the 3D pose). The number of objects is 
determined by the number of unique key-points. To maintain tracking 
consistency in assigning key-points to the correct object across time
stamps, the system employs a combination of spatial-temporal conti
nuity and trajectory analysis. Once key-points are identified in each 
frame, the system tracks these points over time by assuming smooth and 
continuous motion, thereby associating key-points in one frame with 
their corresponding points in subsequent frames. This process creates 
trajectories for each keypoint, which are then used to distinguish be
tween different objects based on their unique movement patterns. 
Additionally, the system incorporates a smooth motion error function 

during optimization, which penalizes non-uniform acceleration of key- 
points between frames, further ensuring spatio-temporal consistency. 
Fig. 1 exemplifies the 3D pose in two separate events by showing the 
vertical coordinate of key-points during STL for each track.

The pose estimator expresses coordinates in an approximation of the 
meter. It is important to note that while the scale of units expressed by 
the 3D key-points is consistent across locations, its exact resolution is 
unknown. This means that all values given in meters should be consid
ered as m ± ∁ where ∁ is an unknown constant. The implications of this 
limitation is that great caution should be exercised when comparing 
absolute values to other studies but that analysis of association and 
change rates are unaffected.

2.3. Video sequence selection

Initially, 979 videos showing a lying-to-standing bout and 1015 
showing standing-to-lying were visually identified for development 
purposes [27] and reused for this study. We applied a simple event de
tector calculating the difference in average withers Z position (height) 
across 10 frames (0.3 s) between the start and end of the sequence. An 
absolute difference above 0.4 m was considered to be a posture transi
tion, and the direction of change (downwards for STL and inversely) 
informed on the type. This is visible in Fig. 1 where the withers go from a 
height of about 1.7 m to 1 m.

After detecting events, 814 and 798 sequences were classified as 
lying to standing and standing to lying respectively. This corresponds to 
respective false negative rates of 16.9 % and 21.4 %. After visually 
inspecting the key-point series for each sequence, 5 and 26 sequences 
were noticed to have been misclassified as LTS and STL and subse
quently removed, giving false positive rates of under 1 % and 3.2 %. The 
sequences contained the 30 to 35 s video recorded by 7 synchronized 
cameras and show cows transitioning between postures in a cubicle. 
Removal of false positives left 809 and 791 LTS and STL sequences 
respectively.

2.4. Signal processing of 3D pose time series

2.4.1. Filtering
A low-pass filter with a cut-off frequency of 10 Hz was applied to 

each key-point and its corresponding X, Y and Z coordinates’ time series 
individually. This approach is based on recommendation by Hamäläinen 
et al. [28] and by Riaboff et al. [29] for noise removal on animal motion 
data (originally intended for accelerometer data). The filter was 
implemented in Python 3.9 using the function “butter” from the SciPy 
package [30].

Fig. 1. Vertical coordinate of 3 key-points during two lying down motions, comparing slow with swift posture transitions. Dashed lines correspond to the detection of 
the initial leg bend, thoracic limbs on ground, sacrum descent and completion. On the right pane, the rapid sacrum descent initiates just before the front limbs touch 
the ground. These examples were cherry-picked for clarity.
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2.4.2. Stitching discontinuous tracks
Object tracking could be interrupted by factors such as noise peaks or 

temporary occlusions, leading to instances where successive detections 
of the same animal were split between multiple tracks. To address this 
issue, we implemented a post-processing track-stitching algorithm that 
merges fragmented tracks corresponding to the same animal into a 
single continuous track, based on spatial continuity of the smoothened 
key-point coordinates. The track-stitching algorithm operates by first 
identifying all tracks within a given sequence and calculating the time 
and position at which each track ends. The algorithm then searches for 
subsequent tracks that begin within a temporal window of 1 s and spatial 
proximity of 0.3 (in the pose estimator’s coordinate system, corre
sponding approximately to 30 cm). Candidate tracks that start shortly 
after the end of the previous track are evaluated based on their 
Euclidean distance in the 3D space, using the wither key-point’s coor
dinate. The algorithm prioritizes merging tracks that are closest in space. 
Tracks are iteratively processed until no further stitching opportunities 
are detected. This method resulted in the inclusion of 305 LTS and 301 
STL posture transitions sequences, representing 37.7 % and 38.1 % 
respectively of the total sequences used.

2.4.3. Interpolating missing poses
The tracking algorithm has a tolerance to punctual missing de

tections and stitched tracks had a gap up to 1 s. This resulted in instances 
where consecutive 3D poses were separated by more than the expected 
interval of 0.033 s. To ensure consistency, poses were interpolated for 
missing frames, thereby standardizing the time intervals between 
consecutive poses. First, gaps were identified based on the timestamp 
difference between consecutive poses, and the number of missing frames 
was calculated. We estimated missing poses using 3D cubic spline 
interpolation — a method Ren et al. [31] found to be highly faithful for 
interpolating missing positions in cow movement data—thereby 
achieving uniform temporal resolution across sequences and facilitating 
further calculations.

2.5. Indicators of posture transition quality

Indicators relevant to assessing the quality of the posture transition 
were retrieved from the literature and are listed in Table 1. This study 
focuses on the movement opportunities offered by the cubicles, and the 
occurrence of atypical motions. For this reason, inclusion criteria for 
indicators were (i) measurable during the posture transition movement 
and (ii) measurable through kinematic features at a specific phase of the 
posture transition. The start and end of the posture transition move
ments are described in Table 1. Atypical motions such as dog sitting and 
horse-like rising were initially selected but did not occur. The selected 
indicators, their definition and corresponding phase, as well as existing 
thresholds beyond which the motion is considered abnormal are gath
ered in Table 1.

Out of the selected indicators, lying down duration, hind quarters 
shifting, delayed rising, backwards crawling and head lunge space had 
quantified thresholds found in the literature. Side lunge was described as 
yes or no in the ethograms found in Brouwers et al. [15] and in Dirksen 
et al. [32].

2.6. Event detection during posture transition and indicator calculations

To measure the indicators of comfortable posture transition it was 
necessary to accurately detect the occurrence of specific phases during 
the motion using the key-points’ displacement. These phases are listed in 
the third column of Table 1.

The main method here is change-point detection in the key-point 
coordinates, specifically the Y (perpendicular to the stall) and Z (verti
cal) coordinates of the withers. Change-point detection involves iden
tifying indices in a time series where there is a shift in the series’ 
statistical properties, such as mean or variance. In the case of the key- 

points 3D coordinates time series, change-points represent movements 
from one posture to another. The detection process involves segmenting 
the time series into distinct windows where the statistical properties are 
consistent within each segment but differ between segments. The 
change-points are the boundaries of these segments. Linearly penalized 
segmentation (Pelt) used here [33] optimizes the segmentation by 
balancing the number of change points against the fit to the data, using a 
penalty parameter to control the trade-off. The Pelt algorithm is 
implemented in the Python library Ruptures [34]. Parameters for 
change-point detection were optimized through a grid search testing the 
penalties of 3, 5 and 10 with any combination of the x and y coordinates 
of the withers or sacrum, and their movement velocity. For each com
bination, the mean absolute difference (MAD) was calculated between 
the annotated timestamp for that phase and the timestamp 

Table 1 
Selected indicators of posture transition comfort.

Indicator Definition Corresponding 
phases

Threshold for 
acceptable 
comfort

Rising ​ ​ ​
Duration of 

rising motion
Start of the motion: 
the cow gathers its 
front limbs under the 
body causing a visible 
rise in the withers’ 
position [27] 
End of the motion: the 
cow is fully up with all 
limbs extended [6]

Rising on 
breastbone, 
Standing

​

Backwards 
crawling on 
carpal joints

When resting on 
carpal joints, the cow 
moves its front leg 
backwards before the 
lunge motion [12]

Rising on 
breastbone, lunge

None/0 m [12]

Delayed rising The cow rests on its 
carpal joints before 
lunging.

Rising on 
breastbone, lunge

< 10 s [12]

Head lunge 
distance

Euclidian distance 
projected in 2D above 
the bed, measured 
between the point of 
furthest extension of 
the head and the 
position of the withers 
just before the lunge 
(after possible 
backwards 
movements)

Lunge, head 
baseline location

> 0.6 m 
beyond the end 
of the cubicle 
[22]

Side lunge Maximum angle 
formed between the 
lines joining the poll to 
the neck and the neck 
to the t13 during the 
lunge [27].

Lunge No side lunge 
[15,32]

Lying down ​ ​ ​
Duration of 

lying-down 
motion

Start of the motion: 
one carpal joint is bent 
and lowered [11]. 
End of motion: the 
cow is fully lying 
down and the body is 
stable [12]

Initial leg bend, 
recumbent 
position

< 6.3 s [11]

Hind quarter 
shifting

Duration between the 
moment both carpal 
joints touch the 
ground and the rapid 
descent of the sacrum.

Thoracic limbs 
touchdown, 
sacrum descent

< 3 s [12]

Head 
displacement

Length of the 
horizontal vector 
between the head at 
start of the movement 
and its point of 
furthest forward 
displacement

Head maximum 
extension

0.59 m (mean 
maximum in 
open pen) [13]
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corresponding to the nearest change-point. The variables and penalty 
creating a change point closest to the annotation are reported in the 
respective sub-section for each phase.

This method outputs several change-points in each sequence, cor
responding to the different phases, as well as other events and also 
possibly noise. Thus it was necessary to select the right change point 
corresponding to the phase of interest amongst the various change- 
points detected.

The velocity of the withers and sacrum display specific patterns in 
between each phase as the cow moves parts of its body in succession. 
Thresholds in velocity peaks were used to constrain time windows for 
each phase and thus select the correct change-point. Rules and thresh
olds for change-point selection are described in Table 2 and in the 
subsections dealing with the detection of specific phase. It was not 
possible to detect all events in all sequences, and the final sample sizes 
used to calculate each indicator are found as labels on 3 and Fig. 5
respectively in the results section.

Fig. 1 Illustrates two STL sequences on which the timestamps 
detected for the phases have been marked by dashed vertical lines. On 
the left panel, the initial drop of the withers (orange curve), corre
sponding to the leg bend, was detected to have occurred at 9.6 s (first 
vertical dashed line). This is followed by readjustment movements of the 
hind quarters while the cow is standing on its thoracic limbs between the 
11.8 s and 14.1 s timestamps. This characterised by a plateau of the 
withers height, as the cow rests on its anterior limbs during the posterior 
readjustment movements. On the example on the right, the motion is a 
lot swifter, with only a brief deceleration of the withers’ descents, as 
both anterior limbs reach the ground at 15.2 s.

The methods to detect most phases are listed in Table 2. Other phases 
as well as kinematic indicators have a dedicated sub-section.

2.6.1. Backwards crawling
Before lunging, when forward space is perceived as insufficient the 

cow moves its front limbs backwards [12]. Identifying this movement 
enables to quantify the crawling distance but also enables the estab
lishment of a consistent baseline position of the withers immediately 
prior to the head lunge, which is crucial for calculating the displacement 
of the head during the lunge. Backwards crawling was defined as the 
total backwards displacement of the withers key-point’s coordinate 
along the x axis, between the start of the rising motion and the head 

lunge.

2.6.2. Head displacement and angle
For the analysis of head lunge, sequences were only used if the head 

key-point maintained a confidence level above 0.77 during lunge. The 
confidence threshold was decided by plotting the distribution of confi
dence values of the head around the predicted lunge timestamp, and 
visually identifying an elbow in the plot.

The withers baseline position was defined as the X coordinate of the 
withers after backwards crawling, also corresponding to the minimum X 
coordinate between start of the rising motion and lunge when crawling 
was not detected to have occurred. Lunge distance was defined as the 
distance on the x axis between the head at lunge and the withers baseline 
location, to which was subtracted the distance between the head and the 
withers at lunge. The rationale behind this calculation was to determine 
how far forward the head was able to lunge, not compared to the cubicle, 
but to the initial placement of the cow before lunging.

Head lunge angle was calculated as the 2D projected angle over the 
horizontal plane, formed by the line of the back (joining the withers to 
the sacrum) and the neck (joining the withers to head keypoint) at the 
moment of furthest extension. An angle of 180◦ represents straight 
lunge, where the head is exactly aligned with the back. A lower angle 
represents a sideways neck, independent of lunge side. (Fig. 2)

For the head displacement when lying down, the maximum filtered 
coordinate of the head on the X axis (parallel to the stalls) was sub
tracted to the head’s position on the X axis at the time of initial leg bend.

2.6.3. Thoracic limb touchdown
This refers to the earliest point at which both anterior limbs are 

folded and the cow touches the bed with both carpal joints. The withers’ 
coordinate was normalized and their vertical velocity was computed. 
Change-point detection with a penalty of 3 was applied to the withers Z 
coordinate series. Peaks in the wither’s vertical displacement above 0.2 
normalized distance units per second were detected, with a minimum 
distance between peaks of 40 points or 1.33 s. We selected the first 
change-point following the peak first.

2.6.7. Sacrum descent
The change-point method failed to produce detections corresponding 

to the sacrum descent timestamp. Instead, the following methods were 
tried: recurrent neural network with dropout and one of each 1 
dimension convolutional, bi-directional long-short-term-memory and 
dense layers, against a random forest with 50 estimators predicting the 
index of the event. The RNN produced a MAE on unseen data between 
detections and annotations of 0.81 s at the stabilisation of the loss term 
after 12 epochs while the random forest produced a MAE of 0.41 s and 
was thus chosen. Since the sequences were of varying length and usually 
centred on the posture transition, and to avoid overfitting the model to a 
specific location in the sequence, the key-point series were randomly 
padded before training the models. Padding was added at the beginning 
and end of each series, for a total length of 1147 (arbitrary value above 
the length of the longest series) according to the following equations:

Lpads is the total padding length for sequence s: Lpads = 1100 − Ls 

with Ls being the length of sequence S.
Lstarts is the padding length at the start of sequence s: Lstarts ∼

Uniform
(
0, Lpads

)

Lends is the padding length at the end: Lends = Lpads − Lstarts . The 
padding values are calculated as follows: 

Ppos, k, x = coordpos,k,x ⊗ ILpos∗1 + N (1) 

where P is the matrix of padding values of size 6 ∗ Lpos with pos taking 
values start or end, coord being the first or last value in the series for 
coordinate x = X or Z and key-point k = withers or sacrum. N ∼

Uniform(0, 0.05) is a vector of random noise. Considering S, the original 
sequence of key-point positions, the padded sequence used as input in 

Table 2 
Posture transition phases and methods for detection.

Posture 
transition 
phase

Penalty Variables for 
change-point 
detection

Threshold for selecting a cv- 
hange-point

Rising (LTS) ​ ​ ​
Start of rising 

motion
10 Withers Y, 

Withers Z
First change point where the 
median Z withers in the 
following 1 s window > median 
Z withers in the initial 1 s of the 
sequence

Head lunge Maximum Head X coordinate
Standing 5 Withers velocity First change point after the last 

velocity peak of 0.18 
(normalized units)

Lying down 
(STL)

​ ​ ​

Initial leg bend 10 Withers vertical 
velocity

Last change point before the first 
peak in withers velocity above 
0.2 (normalized units)

Thoracic limbs 
touchdown

3 Withers Z First change-point immediately 
after the first peak above 0.2

Sacrum descent Random forest
Recumbent 

position
10 Withers Y, 

Withers Z
Last change point where the 
median Z withers in the 
following 1 s window < median 
Z withers in the final 1 s of the 
sequence

A. Kroese et al.                                                                                                                                                                                                                                  Smart Agricultural Technology 12 (2025) 101205 

5 



the random forest is: 
⎡

⎣
Pstart

S
Pend

⎤

⎦

2.7. Validation

2.7.1. Agreement between observers and with event detection
To validate the accuracy of the detection of the various phases, video 

sequences showing posture transitions by a single cow were annotated 
by 3 observers. The observers annotated the timestamps for each event 
listed in column 3 of Table 1. Observers first trained on 10 sequences for 
each posture transition and agreed on the timestamps to annotate. Then, 
each observer was provided with a total of 100 video sequences for each 
posture transition, which were randomly assigned, shuffled and blinded. 
The 100 sequences contained 55 videos which were common to all ob
servers. This overlap was to score inter-observer agreement. The 100 
videos also contained 30 sequences which were unique to each observer. 
Among the resulting 85, 15 were randomly resampled to assess intra- 
observer agreement. For each sequence to be annotated, the material 
provided to the observers contained the synchronized video from all 7 
cameras. Observers were free to choose the camera offering the best 
view of the cow performing the posture transition.

Agreement was measured as MAD between annotated and detected 
timestamps. MAD(i,m) = 1

300
∑300

s=1
⃒
⃒Δs,(o,m)

⃒
⃒ where Δs,(o,m) =

⃒
⃒ts,i − ts,m

⃒
⃒

with m being the automated detection and ts,i the time stamp of the s:th 
sequence by o:th observer.

2.7.2. Agreement depending on interruptions in the poses
Sequences contained 637 to 1013 consecutive poses, including se

quences stitched from spatio-temporally continuous tracks. We ran a 
regression to analyse the effect of the presence of a stitch in a ± 1.7 s 
window around the annotation, as well as the duration of interpolated 
poses on the agreement between annotations and detections. The model 
is described as follows: 

Toe = β1 + β2M + β3S + β4I+1|sequence+ ε (2) 

where T is the observed timestamp, either annotated or detected. e is the 
event (taking values of all 7 events in both posture transitions). M is the 
observer type indicating whether the timestamp was annotated by a 

human or detected by the model. S is a dichotomous variable repre
senting the presence of a track-stitch in the 3D pose sequence. It always 
takes the value of 0 in the case of human annotation (because stitches in 
the 3D pose have no meaningful effect on human annotations performed 
on the video), and 1 or 0 in the case of model detections, depending on 
the presence of a stitch in the ±1.7 s window around the mean human 
annotation. The value of 1.7 s corresponds to the 95th percentile of 
differences between human and machine. Similarly, I is the interpolated 
duration in case of detections and 0 in the case of annotations. Finally, 
1|sequence represents a random intercept for the sequence number, as 
the predicted timestamp in each sequence has no tangible meaning and 
is relative to the start of the video but should theoretically be equal for 
all annotations in the same sequence. We report the value and the sig
nificance of β2, β3 and β4. β2 represents the difference in predicted event 
timestamp if the observation was done by the model compared to a 
human, β3 the change in predicted timestamp if the observation was 
done by the model and a stitch was present in the ±1.7 s window and β4 
the change in predicted timestamp for 1 s of interpolated poses in the 
window. Significance is accepted at a risk of α = 0.05.

2.8. Exclusion criteria

Sequences were first included if a posture transition was detected 
from the key-point data. This produced 809 sequences in which the 
occurrence of a LTS posture transition was visually identified, and 791 
STL. Regarding annotations, 145 sequences of each posture transition 
were originally annotated. 4 annotated STL sequences were discarded as 
well as 4 LTS sequences because of data quality issues.

After the events of interest were detected using the methods 
described above for the entirety of the sequences, including all se
quences which had not been annotated, the validity of the detection was 
visually assessed using the vertical displacement graphs, of which Fig. 1
shows an example for two different sequences. The time-series of the key 
points’ vertical coordinate were plotted for all sequences, and the 
detected timestamps were added to the plots. Sequences were excluded 
based on visual assessment if any of the detected timestamps did not 
match the kinematic pattern corresponding to the event. 84 LTS and 87 
STL sequences were excluded, the number of events that were inaccu
rately detected is listed in Table 3.

Fig. 2. 3D pose of cows with one cow rising (blue pose) taken at furthest head extension (lunge). Head lunge angle is defined as the angle between the segments in 
yellow on pane A, joining the head, withers and sacrum (highlighted). A: top down view of all 3D poses in the row of cubicles. B: side view 3D pose of the cow rising. 
C: corresponding frame.
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2.9. Statistical analysis of indicator scores

To explore the association between indicators, Spearman’s correla
tion was calculated between indicators in the same posture transition 
sequence. A principal component analysis (PCA) was conducted to 
identify more complex correlations between indicators in LTS transi
tions using PCA function from SciKit-Learn [35].

3. Results

The purpose of this study was to evaluate the accuracy in the 
detection of the successive stages in the posture transitions, to detect the 
occurrence of indicators exceeding thresholds for comfortable posture 
transition and to explore possible indicator association.

3.1. Comfort indicators exceeding thresholds

In the stalls used for this study, and regarding duration, we found 
that 2.8 % of LTS posture transitions exceeded the threshold for indi
cator ‘Rising delay’. If we use the 5 s threshold used in Fråga Kon, 
instead of 10 s found by Zambelis et al. [12], 30.2 % of LTS bouts would 
exceed the threshold. Crawling backwards occurred in 59.2 % of LTS 
transitions. 28.9 % of STL exceeded the threshold for total duration and 
8.3 % for shifting duration. Altogether, 59.9 % of LTS and 29.1 % of STL 
exceeded thresholds for at least one indicator.

3.2. Agreement on phase detection and robustness to interrupted poses

The results in Table 4 show agreement under half a second for most 
events. The first phase of the rising movement showed the most 
disagreement between observers. (Table 5)

When missing positions were interpolated, the average interpolated 
duration was 0.5 s ± 0.5 (µ±σ) or 31 % of frames in the window around 
the event for LTS and 0.7 ± 0.7 or 43 % of frames for STL. For both rising 
and lying down transitions, interpolating poses on missing frames did 
not have a significant effect on the timestamp prediction by the model. 
Only for the rising on breastbone and the thoracic limbs touchdown 
phases did the presence of a stitch have a significant effect on the dif
ference between annotated and detected timestamps (at α = 0.05). The 
observed timestamp being detected by the model rather than a human 
observer was only significant for the thoracic limbs touchdown.

3.3. Distribution and association of posture transition comfort indicators

The analysis of association between indicators was aimed at under
standing whether there existed a combination of indicators which by 
themselves offer a summary of the posture transition quality, or rather if 
indicators showed no association and that there was thus no relation 
between the qualities of the different phases. Both posture transitions 
were analysed separately.

3.3.1. Lying to standing
Rising duration had a median of 8.3s±2.8 (median ± Standard de

viation) and a skewness of 1.4. Total duration does not have a threshold 
on Fig. 3 since no recommendations were found. For rising delay, it was 
4.0s±2.4 with a skewness of 1.4. Crawling distance had a median of 0.1 
± 0.1 and a skewness of 1.1. Lunge distance showed an important range 
from 0.3 to 1.5. Its median was 0.66±0.33 and its skewness 0.44. Lunge 
angle had a median of 159.7◦± 11 and its distribution was skewed to the 
left (skewness − 0.6).

Spearman’s pairwise correlations, shown as labels on Fig. 3 revealed 
a set of moderately to strongly correlated variables (p < 0.001): dura
tion, crawling distance and rising delay. Lunge angle and distance had a 
negligible yet significant correlation (p = 0.005), the significance driven 
by the high sample size (n = 548). (Fig. 4, Fig. 5)

The principal component analysis aimed at exploring whether the 
indicators could be combined into subsets that better explain the 
movement patterns. The first 4 components were retained, explaining 98 
% of the variance in the dataset.

The first component (PC1) explains 45 % of variance. Variables with 
the highest loading on PC1 were delay, crawling and duration. The 
second component (PC2) explains 23 % of the variance and is loaded by 
head lunge distance and angle.

Table 3 
Count and frequency of detection errors per event. Note that the total errors 
amount to more than the total, as several events could be off in the same 
sequence.

Event Errors Frequency

Rising (LTS) ​ ​
Rise on breastbone 22 2.7 %
Lunge 34 4.2 %
Standing 37 4.6 %
Any 84 10.4 %
Lying down (STL) ​ ​
Initial leg bend 17 2.2 %
Thoracic limbs touchdown 29 3.7 %
Sacrum descent 36 4.6 %
Recumbent position 13 1.6 %
Any 87 11.0 %

Table 4 
Mean absolute difference (in seconds, ± standard deviation) in annotated or 
detected timestamps for each pair of observers and with the automated 
detection.

Observer pair

Feature Obs 1 - 2 Obs 1 - 3 Obs 2 - 3 Observers – 
machine

Rising (LTS) ​ ​ ​ ​
Rise on breastbone 1.1 ±

1.4
1.8 ±
1.6

1.0 ±
1.3

0.9 ± 1.1

Head lunge 0.2 ±
0.3

0.2 ±
0.4

0.2 ±
0.4

0.3 ± 0.6

Standing 0.5 ±
1.1

0.6 ±
1.1

0.4 ±
0.4

0.7 ± 0.9

Lying down (STL) ​ ​ ​ ​
Leg bend descent 0.3 ±

0.2
0.2 ±
0.2

0.2 ±
0.2

0.4 ± 0.7

thoracic limbs 
touchdown

0.2 ±
0.1

0.2 ±
0.1

0.2 ±
0.1

0.4 ± 0.6

Sacrum descent 0.4 ±
0.4

0.4 ±
0.4

0.3 ±
0.4

0.4 ± 0.5

Recumbent position 0.8 ±
0.4

0.5 ±
0.5

0.5 ±
0.6

0.4 ± 0.7

Table 5 
Coefficients for the effect of the processing method and event detection on the 
predicted timestamp based on Eq. (2). Significant coefficients are bolded.

Coefficient for the effect on predicted timestamp 
(seconds) 
(n sequences with processing method)

Feature Presence of 
stitch

Duration of 
interpolation

Model 
detection

ICC

Rising (LTS) ​ ​ ​ ​
Rise on breastbone ¡1.4 (7) 0.0 (27) − 0.1 0.83
Head lunge − 0.4 (10) 0.1 (72) − 0.0 0.87
Standing 0.3 (14) 0.4 (32) − 0.1 0.78
Lying down (STL) ​ ​ ​ ​
Leg bend descent − 0.0 (9) − 0.3 (38) − 0.1 0.91
thoracic limbs 

touchdown
¡0.5 (18) 0.1 (91) ¡0.4 0.95

Sacrum descent − 0.1 (29) 0.0 (14) − 0.0 0.94
Recumbent 

position
0.2 (7) 0.3 (30) − 0.0 0.83
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Components 3 and 4 explained 17 and 13 % of variance respectively. 
Component 3 had lunge angle and distance load with opposing signs. 
Component 4 showed opposed loading signs between duration and 
crawling distance.

3.3.2. Standing to lying
The Spearman correlation between shifting duration and lying down 

duration is 0.66 (p < 0.001). Lying down duration had a median of 5.6 ±
1.7 and a skewness of 2.2 while shifting duration had a median of 1.4 ±
1.2 and skewness of 2.4. The distribution of shifting duration is unbal
anced, with a high frequency at 0 because of bouts not displaying a 
window for hind quarter shifting.

4. Discussion

The study comprises several final and intermediate results, which all 
have implications for dairy cow comfort monitoring in free stalls using 

pose estimation in 3D This discussion will first offer a summary of key 
findings regarding both validation of the method and indicator scores, it 
will then compare them with earlier research and discuss limitations and 
implications for future cattle welfare monitoring.

4.1. Validation and agreement with human observation

The results confirmed a high agreement between human and algo
rithmic detection of posture transition phases. The agreement between 
human and machine in detecting the timestamp of specific events has 
two implications. The first one is that we can use the system to measure 
the duration of the successive phases of the posture transition, which is a 
comfort indicator. The second implication is that the 3D capture system 
properly captures the kinematics of events of interest since what is seen 
on the video matches change points in the 3D coordinates. We note that 
the development was done with a single cubicle design and that the 
algorithm may not perform equally well in other systems. Supervised 

Fig. 3. Distribution with kernel density estimation and pairwise scatterplots of lying to standing posture transition indicators. Cut-offs for comfort assessment are 
indicated by a dashed red line on the histograms when found in the literature. The sample size for each indicator is reported with the histograms and the correlation 
(p-value) on the scatterplots.
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learning methods for event detection using diverse sequences can likely 
address this limitation. The failure rate of up to 11 % does mean that 
human supervision is required before making meaningful conclusions.

4.2. Comparison of the results with previous studies

Most STL sequences (71 %) were within the accepted duration, 
however backwards crawling during LTS was highly prevalent. This 
prevalence comes in stark contrast to results by Brouwers et al. [36] who 
found a probability of backwards crawling no higher than 5 % in 
different cubicles. These differences are likely imputable to different 
stall designs. Zambelis et al. [12] did not find backwards crawling to be 
associated with characteristics of the cow, nor with adverse welfare 
outcomes. We still found the indicator be included in the Fråga Kon 
manual. Combined with the fact that it is rarely observed in unrestricted 
environments [6], lead us to advocate for its inclusion when evaluating 
cubicle designs.

Delayed rising; or a pause before the swift head lunge movement, 
above the suggested threshold had a low prevalence in our study (2.8 
%), compared with the 19.5 % reported by Zambelis et al. [12], hinting 
again at the fact that indicator distributions vary greatly with stall 
design and thus that the results presented here should not be extrapo
lated to other farm settings.

The range of forward head displacement shows that even if forward 
lunge space is offered, cows use this space very differently. We observed 
on the video that some cows had slow and hesitant movements, with the 
head not extending beyond the head rail, while others would lunge far 
forward, potentially explaining the measured variability. Thresholds 
exist for lunge room, for example 0.9m according to Cook [3]. The 3D 
coordinates in the system used here however were not precisely 

expressed in meters. Although the system approximates the meter by 
design in the calibration phase, caution is warranted when comparing 
displacement measurements to previous results.

Rising duration is dependent on the identification of the start of the 
rising motion, which is the phase with the highest ambiguity to ob
servers (over 1 s average difference). Rising duration was positively 
associated with cow width in the study by Zambelis et al. [12], while 
delayed rising was not. Delayed rising was a binary indicator in the latter 
study [12]. Larger cows were predicted to lunge further in an earlier 
study [37]. A possible explanation for both these results is that larger 
cows are more hesitant throughout the bout but not specifically before 
lunge. In the Fråga Kon framework, the threshold for delayed rising was 
5 s instead of 10, which would lead to a different observed prevalence.

4.3. Assessing comfort with a combination of indicators and 3D pose

In the Welfare Quality framework, posture transitions are assessed 
using two indicators; duration and collisions [11]. In their “Flowchart 
for Evaluating Free Stalls”, Nordlund [38] assesses posture transitions 
through lunge and “bob” spaces, and rising room (measured as the 
absence of collisions). The manual for Fråga Kon uses the duration of the 
pause on the front limbs as main indicator. It exemplifies abnormal 
rising with backwards crawling, dog sitting and difficulty to rise (as
sessors have also stated looking at side lunge), and gives the expert 
assessor the discretion to judge, looking at a more complete picture of 
the cow. Taken separately, indicators provide a simplified view, which is 
practical for on-farm applications but may not capture the full 
complexity of the posture transition process.

According to the PCA, there are several uncorrelated patterns of 
rising motions. PC1 is interpreted as corresponding to hesitation, 

Fig. 4. PCA biplot for lying to standing indicators showing variable loadings and individual scores on 4 components.

A. Kroese et al.                                                                                                                                                                                                                                  Smart Agricultural Technology 12 (2025) 101205 

9 



creating pauses in the rising motion. This is because the variables 
loading the highest on PC1 are delay, crawling distance and total 
duration. These variables are correlated, which is sensible since the 
further a cow will crawl, the more time it needs to do so, which increases 
delay and total duration directly. PC2 represents straight lunge, which is 
a desirable pattern. Lunge distance and angle had a low correlation, but 
they loaded similarly on PC2, suggesting that they measure distinct but 
complementary aspects of lunge behaviour. There is seemingly an upper 
diagonal bound on the scatterplot for these two variables (Fig. 3) which 
would indicate that angled lunges rarely are associated with longer 
distance. Components 3 and 4 seem to show exceptions from the most 
common motion patterns; component 3 had lunge angle and distance 
load with opposing signs, representing both lateral and longitudinal 
spatial use while bouts scoring high on PC 4 would represent cows 
crawling an important distance but quickly.

Principal components being uncorrelated implies that crawling 
(PC1) is not associated with straight lunge (PC2), contrary to what we 
had previously hypothesized (the rationale being that crawling back
wards offered more forward space to then lunge straight). We know that 
the stall design in the study farm promotes backwards crawling, which 
tends to increase delayed rising through readjustments as is reflected in 
PC1. Loadings on PC4 however show an opposite pattern where cows do 

crawl but swiftly. Taken together, PC1 and PC4 imply that duration is 
not systematically an indication of crawling. The first component sug
gests that the proxy indicator found in Welfare Quality or Fråga Kon are 
sound summarisation of the parameters explaining the most variability, 
but the other components suggest that there are additional dimensions 
to the quality of posture transitions which we should not summarise into 
a single indicator.

4.4. Defining thresholds based on existing variability and quantitative 
measurements

The distribution of indicator values presented in the results high
lights that the range of posture transition movements, and the duration 
of the different phases exist on a continuum. This comes in stark contrast 
with the rigid thresholds found in the literature which may not be 
adapted to assessment using sensor data, of which lunge angle is a clear 
example. In a similar development, Brouwers et al. [15] found moderate 
accuracy (60 %) in detecting the occurrence of side lunge using accel
erometer data. While the class for side lunge was yes or no, there seems 
to exist a continuum of lunge angles as shown on the first density plot of 
Fig. 3. It is worth exploring if misclassifications happen more consis
tently when the head lunge is at a slight angle. This would mean that the 
challenge in classifying side lunge in the latter study is not a short
coming in the algorithm but rather a limitation in the ethogram used in 
annotations which is not adapted to continuous data [15]. This might 
lead to misalignments between the sensor output and the annotation, 
especially in the range of neck angles that represent the borderline be
tween normal and abnormal lunge angle. Bewley et al. [39] describe 
side lunge as that performed in cubicles designed specifically to allow 
for cows to lunge their head side, instead of forward (because the cow 
could be impeded by a wall or another cow). We saw accordingly, in 
studies assessing posture transitions, that side lunge was a yes/no in
dicator [12,15]. In the study presented here, the cubicles were designed 
for forward lunge. However, we did both observe and record bouts in 
which the neck was at an angle compared to the head. It is important to 
define whether this form of angled forward lunge classifies as side lunge, 
if it is another form of abnormal lunge, or if rather it should not be 
considered abnormal but an individual preference. Anecdotally expert 
assessors judged some of the lunges in our study as being sideways, yet 
we found no apparent cut-off in the distribution of lunge angles. This 
hints to the fact that side lunge is more complex than forward versus 
sideways, but that there also may not be a universal threshold for what 
angle constitutes side lunge. This trend towards not observing clear 
cut-offs from the distribution is visible in all the indicators measured 
here. We propose that assessment of posture transitions using sensor 
data should not be done against a rigid threshold. This technology paired 
with individual recognition could quantify the variability within the 
herd and individuals, help understand individual motion patterns and 
tailor the benchmarks to each cow.

4.5. Limitations and necessary improvements for practical 
implementation

In our previous study, validating a data processing method to detect 
the start of the rising motion, using the same key-points, we had 
excluded sequences for which the rising motion was split into several 
tracks [27]. In real world settings, data generation mechanisms will 
inevitably produce gaps. In order to move towards implementing such 
tools in practice, it was important to test whether interrupted sequences 
could still provide an accurate detection of the posture transition phases. 
The results were encouraging and showed that stitching tracks and 
interpolating poses had little effect on the accuracy of the event 
detection.

Improvements should be made in the system to obtain coordinates in 
meters, which would allow comparing lunge room with earlier studies 
[6,13,40]. This would also help provide recommendations regarding 

Fig. 5. Distribution with kernel density estimation and scatterplot of standing 
to lying posture transition indicators. Cut-off for shifting duration is indicated 
by a dashed red line on the lower histogram. The sample sizes for both in
dicators are reported with the histograms and the correlation (p-value) on the 
scatterplot.
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cubicle dimensions based on spatial use [2].
Challenges remain for practical application, namely dealing with 

inaccuracies in event detection and the high false negative rate. The 
current detection method was a rule-based approach, which relies on the 
high interpretability of 3D pose estimation, reflecting the actual move
ment amplitude and location of the anatomical features. This high 
interpretability can reduces the amount of annotated data needed for 
event detection and can be relied upon to verify the validity of the de
tections by setting numerical constraints based on the assumed relative 
location of the key-points, to each other and to their previous location. 
Once we identify the kinematic pattern of a phase, we can split longer 
key-point time series into windows and find matching patterns.

For the head lunge space threshold, we used an average forward 
displacement of 0.6 m reported by [6]. It is consistent with the findings 
of [13] who reported a mean maximum displacement of 0.59 m when 
lying down. This however remains an average and quantifying the 
variability within the herd is instrumental in designing stall elements 
which can accommodate all cows.

More posture transition indicators exist than were used in this study. 
A detailed list can be found in Zambelis et al., [12]. This study was, 
limited to kinematic indicators.

5. Conclusion

This study showed that 3D fusion of pose estimation is a possible 
sensor technology to complement posture transition assessment with 
kinematic measurements. It shows good accuracy on detecting events, 
with disagreements with human-made visual observations being under 
0.5 s for most phases and 0.9 s at most. Human oversight is needed for 
final evaluation since up to 11 % of sequences had at least one incorrect 
detection.

Measuring posture transition indicators showed that over half of 
rising events and under a third of lying down events were considered 
abnormal. Backwards crawling before rising was particularly prevalent 
in the farm and cubicles studied.

Analysing the association of indicators with a PCA showed that the 
dimensions of lunge, hesitation and spatial use were uncorrelated. 
Backwards crawling, delay, and head lunge should be assessed through 
specific indicators to cover these distinct dimensions separately. In 
practice, this is challenging to perform visually, and pose estimation 
offers a method to increase the information available to assessors.
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