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Maria Knadel n, Triven Koganti n

a Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, via di Lanciola 12/A, 50125 Florence, Italy
b CNR-IBE, Institute of BioEconomy, National Research Council of Italy, Area della Ricerca di Firenze, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
c Research Centre for Forest and Wood, Council for Agricultural Research and Economics, Strada Frassineto, 35, 15033 Casale Monferrato, Alessandria, Italy
d Agroscope, Field-Crop Systems and Plant Nutrition, Route de Duillier 60, 1260 Nyon, Switzerland
e National Research Council (CNR) of Italy, Institute for Agricultural and Forest Systems in the Mediterranean Via Cavour 4/6, 87036 Rende (CS), Italy
f Ministry of Agriculture and Forestry, Transitional Zone Agricultural Research Institute, Eskişehir, Turkey
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A B S T R A C T

This review provides an overview of the accuracy of soil property predictions using the most common proximal 
soil sensing (PSS) techniques in precision agriculture (PA), both standalone and in combination with one another 
or with environmental covariates. Based on 114 scientific papers, the accuracy of soil property estimates was 
evaluated by calculating the normalized root mean square error (NRMSE) using root mean square error (RMSE) 
values and the range of the predicted soil property. Soil properties, PSS techniques, covariate types, and the type 
of model employed for predictions were the factors around which accuracy results were sorted. Additionally, we 
estimated PSS service costs based on both the literature and on a market study with questionnaires for private 
companies operating in the PA sector. Our literature analysis indicates that diffuse reflectance spectroscopy 
(DRS) was able to estimate the greatest number of soil properties with a high accuracy compared to the other PSS 
techniques. The most popular applications of DRS are to determine soil organic matter, nutrients, and soil 
texture, although most of the applications are primarily lab-based. X-ray fluorescence (XRF) is the second most 
popular technique for soil property estimation; however, in contrast to DRS, most estimations are in-field ap
plications with portable XRF sensors. The use of XRF is widespread in determining elemental concentrations. On- 
the-go techniques such as electromagnetic induction (EMI) or gamma-ray spectroscopy (γ-ray) accounted for 
lower accuracy compared to point-based techniques (e.g., DRS, XRF, time-domain reflectometry). However, they 
are widely used by companies, as they have vast potential to delineate PA management zones in the field, and are 
suitable for on-the-go mapping of soil properties such as mineralogy, texture, salinity, water content, cation 
exchange capacity, and soil depth. The combined use of PSS techniques generally doesn’t outperform the singular 
application, although the number of samples collected for calibration, and specific combinations of sensors, 
covariates, and modeling techniques, combined correctly, may enhance the predictions of soil properties using 
PSS techniques applied singularly. However, these outcomes tend to depend on local site characteristics. Dif
ferences were found between the analysis of costs collected from the literature and from the companies’ survey. 
The estimated cost of surveying a hectare with PSS oscillates between 15.5€/ha and 130€/ha, according to 
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research data, whereas our company survey resulted in an interval between 142 and 362€/ha. Price variability 
was influenced by personnel costs, fieldwork, data and reporting, sample analysis, and equipment. Besides, in
creases in the final prices can be attributed to accessibility and difficulties related to field work, as well as 
traveling to the area of interest. This review aims to serve as a reference for encouraging the adoption of current 
and available sensing technologies by farmers, policymakers, and companies by providing helpful insights into 
the suitability of different PSS techniques for mapping various soil properties, their associated costs, and what is 
available in the market. We foresee that availing PSS services will become cheaper with technological advances. 
Thus, it will become a standard approach in the future, as it is the most feasible way for producing high- 
resolution maps and affordable soil property information.

1. Introduction

Accounting for spatial and temporal variability of soil properties is 
central in the context of precision agriculture (PA), particularly for 
improving the sustainability of production (Kerry and Escolà, 2021). 
Many sources of variation at the field scale influence soil-forming factors 
and derived soil properties (Oliver, 2010; Goovaerts, 2017). Therefore, 
the adoption of PA for site-specific management requires high spatial 
and temporal resolution of soil information (Gebbers and Adamchuk, 
2010). However, conventional analytical procedures involving invasive 
field sampling are cost-intensive and often do not meet the spatial res
olution required by PA. Reliable quantification of soil properties is 
necessary to gain confidence in the results. Thus, several international 
organizations (ISO, CEN, USEPA) have developed standardized mea
surement protocols for various soil health properties in specific contexts, 
such as agriculture (Nortcliff 2002; Perčin et al., 2025). However, the 
physical and chemical target soil properties are usually determined 
using classical wet chemistry analytical procedures. These procedures 
have a set of characteristics that, in general, make them slow and 
expensive due to the need for trained personnel, specialized equipment, 
laborious sample preparation, the use and disposal of waste of some
times toxic or hazardous chemicals, and the need for extensive labora
tory space.

The requirement of high temporal and spatial resolution data for PA 
can be effectively fulfilled through different proximal soil sensors and 
sensing modalities (Viscarra Rossel et al., 2010; Viscarra Rossel and 
McBratney, 1998). Indeed, the rapid technological advancements from 
the Second World War to the 21st century in fundamental physics have 
enabled the development and availability of tools for proximal soil 
sensing (PSS), which have also become feasible to use and affordable 
over time and leading (Fig. 1), for example, to a rise in their use in the 
scientific literature (Viscarra Rossel et al., 2010; Viscarra Rossel et al., 
2011; Adamchuk et al., 2021; Barra et al., 2021; Piccini et al., 2024). 
From the late 1990s and especially since the early 2000s, PSS technol
ogies have progressively shifted from laboratory-based instruments to
ward portable, in situ and on-the-go sensing platforms, enabling real- 
time, high-resolution mapping of soil properties directly in the field. 
The scientific literature clearly demonstrates how PSS applications can 
yield quantitative results more efficiently and cost-effectively than 
traditional laboratory analyses (Fig. 2). Although sensors are becoming 
increasingly smaller, faster, more accurate, and more energy-efficient 
(Aarif et al., 2025), costs associated with different PSS techniques 
should be carefully considered and weighed against the accuracy they 
provide for various soil properties. In fact, PSS methods enable the 
collection of information in the proximity of soil by measuring parts of 
the electromagnetic spectrum after radiation interacts with the soil 
volume (Piccini et al., 2024), but this occurs at the expense of the ac
curacy that can be achieved in traditional wet chemistry measurements 
of soil properties. Therefore, planning which PSS methods to apply and 
the number of conventional analyses to perform for calibration is crucial 
during PSS surveys.

Over the years, different sensing modalities have been proposed: 1) 
invasive or non-invasive, if the sensor is inside or outside the measure
ment volume; 2) active or passive if the system includes an external 

energy source or not; 3) mobile or stationary depending on whether the 
system is capable of measuring in motion or only in stationary mode 
(McBratney et al., 2011a; Piccini et al., 2024). As mentioned above, PSS 
techniques rely on proxies to determine the existing relationship be
tween specific parts or windows of the electromagnetic spectrum and 
soil properties of interest. This requires the use of calibration and vali
dation data sets and modelling procedures to accurately estimate the 
properties (Sudduth et al., 2001).

Modelling approaches in proximal soil sensing require mathematical 
or statistical treatments to extract useful information and relate the 
traditional measures of the soil constituents or properties to the proxi
mally sensed data. Such treatments, in the early period (1980s to 1990s) 
until about 2010, resulted in different multivariate approaches, which 
over the past three decades, have strongly evolved from linear as
sumptions of the relation between proximally sensed data and tradi
tional laboratory measured data to non-linear and more complex purely 
data-driven modelling. Using as an example diffuse reflectance spec
troscopy, the mathematical approaches, known as chemometrics, have 
evolved from using specific wavelengths selected by methods of step
wise regression to using full high-resolution spectra in multiple linear 
regression (MLR), principal components regression (PCR) and partial 
least-squares regression (PLSR) to handle collinearity in high- 
dimensional spectra (Stenberg et al., 2010; Næs et al., 2004; 2010). 
However, they all continued to assume mostly linear relationships. As 
sensor technologies advanced and datasets expanded, a rapid evolution 
of approaches are being made available thanks to the application of 
machine learning (ML) methods in soil science (Minasny and McBrat
ney, 2025) from about 2005 to the present. Among these approaches are 
non-linear algorithms such as random forest (RF), support vector ma
chine regression (SVMR), and artificial neural network (ANN), and 
many others (James et al., 2021; Minasny and McBratney, 2025).

Progress in soil mapping is documented in the review by Gomes et al. 
(2023), with experience from Denmark demonstrating practical appli
cations. The work explored mapping soil functions using soil informa
tion collected from multiple sources, including conventional data, PSS 
data on several platforms, and the use of covariates (e.g., high-resolution 
variables such as climate, relief, parent material, and soil properties and 
attributes, among others). Besides, it analyzed the impact of rapidly 
advancing modeling techniques, such as machine and deep learning, on 
the production of digital soil maps (DSM). The relevance of non-linear 
modelling when working with PSS data contributes to enhancing the 
level of reliability, precision, and resolution of spatial models of soil 
properties. This, in fact, can provide meaningful insights and facilitate 
effective decision-making, anticipate forthcoming alterations, and 
advise strategies for future challenges in agriculture. In addition, the EU 
Soil Monitoring and Resilience Law (Directive (EU) 2025/2360, 2025) 
indicates the need to use validated transfer functions when methods for 
determining properties other than the standardized reference methods 
in the Law are employed. As such, the Law points to the need to 
harmonize calibration and/or validation data and to the possibility to 
use alternatives to wet chemistry, if the quality, reliability and trans
formability of results to values as would have been provided by refer
ence methods are proven.

Simultaneously with the increase in publications about PSS, many 
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Fig. 1. Development and evolution of proximal soil sensing (PSS) in the context of precision agriculture (PA).
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companies are adopting these technologies, and startups offering PSS 
services to farming communities are emerging. To our knowledge, 
several important reviews on PSS have been published, including those 
by Viscarra Rossel et al. (2011) and Adamchuk et al. (2018). However, 
an updated, exhaustive review of all proximal techniques used in the 
context of PA to assess soil health-related indicators is missing. More
over, to our knowledge, none of the existing reviews explicitly combine 
a cross-technique synthesis of quantitative prediction accuracy (e.g., 
NRMSE) with a systematic comparison of cost ranges, which is essential 
for supporting practical sensor selection and deployment decisions. In 
particular, a focus on the reliability of quantitatively measured soil 
property predictions and on the costs associated with the use of specific 
techniques, platforms, and covariates classified by soil property would 
provide a more complete overview of the topic that can be used by 
practitioners and other users. Therefore, the general aim of this work is 
to provide an updated framework for selecting the most suitable and 
accurate PSS technique for predicting fundamental soil properties in the 
context of PA, based on a thorough literature review of accuracy and a 
company cost survey. Although this review is the product of the Pro
beField project, and for this reason it is intended to be focused on 
proximal soil sensing techniques implemented within the project, other 
emerging PSS approaches are qualitatively addressed, mainly as future 
perspectives. Specifically, the objectives were set as follows: 1) to pro
vide a technical framework and principles of the PSS techniques under 
review; 2) to provide a comprehensive overview of the accuracies ach
ieved in the literature depending on the PSS technique and sensor’s 
response, used alone or in combination with others, 3) to analyze and 
account for the effect of other factors involved in soil properties pre
diction, and 4) to evaluate the cost associated with the use of PSS in 

academia through the literature review, and in the market through the 
analysis of the answers to questionnaires from PSS companies operating 
in the private sector.

2. Proximal sensing techniques under review

The technical characteristics of electromagnetic sensors determine 
their sensitivity to specific parts or windows of the electromagnetic 
spectrum (Fig. 3). Depending on the frequency, electromagnetic sensors 
can provide indirect information about the soil itself and its forming 
components (McBratney et al., 2003; Viscarra Rossel et al., 2010, 2011).

2.1. Diffuse reflectance spectroscopy (DRS)

Visible near-infrared (vis-NIR) and mid-infrared (MIR) diffuse 
reflectance spectroscopy (DRS) are analytical techniques that operate in 
the wavelength ranges of 350–2500 nm and 2500–25,000 nm, respec
tively. These methods measure the energy reflected by a material, such 
as soil, when exposed to electromagnetic radiation (Duda et al., 2017). 
The apparent absorption is estimated from what is not reflected in 
relation to a known, typically white, reference reflection. While MIR 
absorption is associated with fundamental molecular vibrations, vis-NIR 
absorption corresponds primarily to overtones and combination bands 
(Williams & Norris, 2001). Spectral data are acquired using spectror
adiometers, which produce known spectra of reflectance or absorbance 
as a function of wavelength. Spectral absorption arises primarily from 
molecular bond vibrations, such as bending, stretching, and twisting, 
and the absorption band for a specific bond in one particular compound, 
related context, or matrix corresponds to the required energy quantum 

Fig. 2. Number of publications (n = 243) between 2008 and 2023 found on the Scopus database using the keywords “Proximal soil sensing” and the class of 
“proximal sensor” for different proximal sensing technologies (colors). The development of portable spectrometers operating in the vis-NIR-MIR contributed 
considerably to the total number of investigations carried out in proximal soil sensing (PSS). At the same time, the application of other electromagnetic techniques, 
such as γ-ray, EMI, and XRF, varied over the years. Investigations that apply TDR and GPR techniques to soil remained stable despite their potential in water 
management. DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time- 
domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling.
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causing a specific molecular vibration. Both organic matter and clay 
minerals (and other minerals ending up in the clay fraction) have several 
characteristic absorption features across this spectral region (Stenberg 
et al., 2010; Wetterlind et al., 2022).

DRS is highly sensitive to physical factors such as particle size, ag
gregation, and moisture, which can significantly affect reflectance 
(Cascante et al.,2025; Chang et al., 2011; Liu et al., 2003; Knadel et al., 
2023; Stenberg, 2010). Although MIR was initially deemed unsuitable 
for quantifying absolute concentrations due to its sensitivity to sample 
heterogeneity (Niemeyer et al., 1992), subsequent research has 
demonstrated successful estimations of elemental concentrations using 
both laboratory-based and handheld instruments (Bellon-Maurel and 
McBratney, 2011; Clairotte et al., 2016).

By analyzing spectral signatures, soil properties and types can be 
characterized and element concentrations can be estimated, using che
mometric approaches that link spectral data with reference measure
ments through multivariate regression, machine learning, or deep 
learning. However, several sources of uncertainty—such as sensor 
design, spectral calibration references, sample preparation, and spectral 
preprocessing—can impact model performance and require careful 
validation (McBride, 2022). To ensure comparability across studies, it is 
essential to quantify measurement uncertainty and adopt standardized 
evaluation procedures (Sudduth and Hummel, 1996; Brodsky et al., 
2013). Protocols such as the International Soil Standard (ISS) for labo
ratory spectral alignment (Ben-Dor et al., 2015) and field measurement 
guidelines (Stenberg et al., 2024) are recommended to address varia
tions related to instrument configuration and environmental acquisition 
conditions.

A valuable application of spectroscopy is soil spectral libraries 
(SSLs), which are collections of soil reflectance spectra (usually in either 
the vis-NIR-SWIR or the MIR ranges), along with reference soil property 
data (e.g., organic carbon, texture, nutrients). These libraries serve as 
calibration databases that enable rapid, non-destructive prediction of 

soil properties using spectral models. They can be local (specific to a 
region or study) or global, such as the USDA’s NRCS-KSSL library or the 
FAO–ISRIC Global Soil Spectral Library. See Brown et al. (2006), Vis
carra Rossel et al. (2016), Sanderman et al. (2019) and Ramírez-López 
et al. (2019) for further details.

2.2. Electromagnetic induction (EMI)

The EMI technique operates in the low-frequency (~ 1–100 kHz) 
radio wave region of the EM spectrum. In this technique, conduction 
currents are the dominant energy transport mechanism (Everett 2013a), 
and the method is primarily used to measure the bulk electrical con
ductivity (EC) of a soil volume. While many variants exist, the 
frequency-domain instruments called ground conductivity meters are 
most commonly used in agricultural applications.

Corwin and Lesch (2003) show the evolution, theory, applications, 
and guidelines of instruments measuring soil EC. For instance, authors 
noted that in the 1970s, four-electrode arrays were used to measure EC, 
which later evolved into a tractor-mountable fixed array in the 1990s. At 
present, instruments mounted behind an ATV are typically used (e.g., 
Veris, Geophilus). In parallel, the EMI instrument became popular with 
the advent of Geonics EM38 for soil mapping in the 1980s. At present, 
single-transmitter multireceiver (e.g., DUALEM, CMD) and multi- 
frequency (GEM2) instruments are commonly used.

A typical EMI instrument consists of a Transmitter (Tx) and one or 
multiple receiver (Rx) coils. An alternating current (AC) induces a 
transient primary magnetic field into the ground by powering the Tx coil 
(Fig. 4). This primary field generates eddy currents depending on the EC 
of the subsurface, which generates a secondary magnetic field. While the 
receiver coil measures both the primary and secondary fields, the sec
ondary field can be distinguished because the primary field can be 
estimated based on the Tx-Rx configuration. Generally, the secondary 
field is delayed and attenuated in comparison to the primary field, and 

Fig. 3. The electromagnetic spectrum showing the frequency ranges of different proximal and remote sensors (from McBratney et al., 2003).
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the phase lag depends on the bulk soil EC. The secondary field occurs 
completely out-of-phase, if the ground is perfectly conductive, and in- 
phase, if the ground is perfectly resistive. The total field can be 
decomposed into real (in-phase) and quadrature (out-of-phase) re
sponses, with the former indicating the apparent magnetic susceptibility 
and the latter representing the apparent EC (ECa) of the subsurface.

The sensitivity and depth of exploration (DOE) of ground conduc
tivity meters depend on the Tx-Rx coil orientations (Fig. 5) as well as the 
spacing between them (McNeill, 1980; Abdu et al., 2007; Saey et al., 
2009). For example, the commonly used EM38 (Geonics Ltd., Mis
sissauga, ON, Canada) variant with a one-meter Tx-Rx separation can be 
either employed in the horizontal coplanar (HCP) mode with a DOE of 
1.6 m or by rotating the instrument by 90 degrees, forming the vertical 
coplanar (VCP) mode with a DOE of 0.75 m. Increasingly, on-the-go 
measuring instruments with multiple Rx coils at different spacings 
from the Tx coil, such as DUALEM (DUALEM Inc., Milton, ON, Canada) 
with HCP and perpendicular (PRP) modes, are becoming more common. 
Alternatively, different depth sensitivities can also be achieved using 
instruments that operate on multiple frequencies, for example, GEM-2 
Ski (Geophex Ltd., Raleigh, NC, USA).

The EMI instruments are extensively used in the agricultural and 
land management sectors for mapping soil properties, particularly soil 
salinity, texture, and water content (Huang et al., 2017; Pedrera-Parrilla 
et al., 2016), as well as delineating management zones (Hedley et al., 
2004; Corwin and Lesch, 2003).

Additionally, EMI instruments can be configured to measure mag
netic susceptibility (MS) and be applied in several contexts, such as soil 
texture predictions, determination of heavy metal content, and evalua
tion of irrigation water quality (Yang et al., 2007). The methodological 
framework for how MS is measured in soil can be found in Shirzaditabar 
and Heck (2022), whereas Ramos et al. (2021) note that MS shows 
strong linear correlations with physical, chemical, and mineralogical 

soil attributes (e.g., sand and clay contents) and can help delineate soil 
boundaries due to lithological and pedological variation.

2.3. Gamma (γ) ray spectroscopy

Gamma-ray spectroscopy measures the intensity distribution of 
gamma radiation (γ) as a function of the energy of individual photons 
naturally emitted by low radioactive elements or radionuclides in matter 
such as soil, the geological substrate or buildings, through atomic decay 
processes. Gamma rays are a highly energetic form of electromagnetic 
radiation. Expressed in kiloelectron volts (keV), they are characterized 
by extremely high frequencies (<1020 Hz) and very short wavelengths 
(>10− 11 nm). These properties confer a strong ionizing capacity (>10⁶ 
eV), enabling gamma radiation to interact effectively with matter.

Traditional γ-ray radiometers employ scintillation crystals such as 
sodium iodide (NaI), which, when coupled with a photomultiplier tube, 
can detect and quantitatively measure gamma radiation that passes 
through the crystal. Although NaI crystals are widely used, they are not 
the most efficient in capturing γ radiation. Commercially available al
ternatives include bismuth germanate (Bi4Ge3O12, also known as BGO) 
and cesium iodide (CsI), both of which offer higher detection effi
ciencies, which means the size of the crystal can be smaller compared to 
NaI. Another difference between the crystals is their brittleness, e.g. 
BGO is more brittle than CsI and NaI. However, they typically exhibit 
lower energy resolution, potentially limiting their use in applications 
that require accurate radionuclide identification if peak identification is 
used as analysis method. Typical spectral analysis methods are the 
Windows method and the Full Spectrum Analysis method (Van der Graaf 
et al., 2007; Van Egmond et al., 2010). The first one uses the known 
location of energy peaks and estimates the concentration based on the 
height of the peak. The latter uses the full spectral fingerprint of the 
gamma radiation of a single radionuclide to estimate the concentration 

Fig. 4. Schematic diagram showing the working principle of an electromagnetic induction instrument: (a) processes that lead to the generation of the secondary 
magnetic field and (b) phase lag between the primary and secondary fields that facilitates the quantification of the apparent electrical conductivity.

Fig. 5. Schematic diagram showing the different possible transmitter (Tx) and receiver (Rx) coil arrangements with corresponding cumulative response functions 
and depths of exploration. ‘z’ and ‘s’ correspond to the depth and coil separation between the Tx and Rx coils, respectively. Please refer to Abdu et al. (2007) and Saey 
et al. (2009) for further details.
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of occurring radionuclides through a least squares analysis.
Gamma-ray (Van der Graaf et al., 2007) sensors can be classified into 

two categories: active and passive. Active γ sensors are increasingly used 
to estimate additional soil properties, such as bulk density, by measuring 
backscattered γ radiation from a low-activity source (Pepers et al., 
2024). They are typically employed on a stick that is lowered in the 
ground, generally to a depth between 10 and 60 cm, after preparing a 
small borehole or by extracting the soil core and measuring the core in 
the field or lab. This approach expands the utility of γ-ray sensing 
beyond radionuclide mapping to broader applications in soil physics. 
For mobile applications such as precision agriculture, passive sensors 
mounted on vehicles or carried manually are generally preferred 
(Viscarra Rossel et al., 2007). These systems facilitate the detection of 
radionuclide contributions from isotopes such as 40K, 238U, 232Th, and 
137Cs. While 40K, 238U, 232Th are naturally occurring radionuclides, 
137Cs is of anthropogenic origin, introduced into the environment by the 
Chernobyl disaster in 1986 and nuclear weapons testing worldwide 
since the 1950s. By quantifying gains or losses of 137Cs at the soil sur
face, researchers can estimate rates of soil erosion (Fulajtar et al., 2017; 
Porto et al., 2024). Furthermore, the spatial distribution of radionuclide 
counts has been correlated with various soil properties, including soil 
texture, moisture content, and mineralogical composition to an average 
depth between 30 and 50 cm.

Radionuclide concentrations are typically expressed in becquerels 
per kilogram (Bq/kg). At the surface, detectable γ radiation for passive 
sensors originates from the upper 30 cm of soil, as deeper signals are 
attenuated by overlying dry soil and moisture content (Cook et al., 1996; 
Viscarra Rossel et al., 2007). Strong correlations have been observed 
between 232Th levels and clay content in topsoil, particularly in studies 
conducted in the Netherlands (Van Egmond et al., 2010) and Sweden, 
where aerial gamma radiometry was one of the key features for a na
tional digital soil map (Piikki and Söderström, 2019). Other research has 
identified significant relationships between radionuclide distributions 
and both physical (e.g., texture, grain size) and chemical soil properties 
(e.g., heavy metal contamination, fertilizer application, nutrient levels) 
(van der Graaf et al., 2007; Viscarra Rossel et al., 2007). In Sweden, a 
combination of aerial and ground-based γ-ray spectrometry (238U, 
232Th, and 40K), combined with maps on bedrock geology and Quater
nary soil deposits, was used to identify agricultural land with risk for 
elevated levels of cadmium in crops (Söderström and Eriksson, 2013).

2.4. Dielectric methods

Soil dielectric constant ε (aka relative dielectric permittivity (RDP)) 
is a key property for predicting soil volumetric water content (Topp 
et al., 1980) and soil texture layering. The RDP is a measure of a ma
terial's polarizability, i.e., a material's ability to store and release elec
tromagnetic (EM) energy and control the EM wave velocity. Its value 
depends on both the induced polarizability and the angular frequency ω 
of the imposed electric field (White and Zegelin, 1995). In soils, the RDP 
values often reflect the amount of water content, as water is highly 
polarizable (RDP ~ 81), whereas air and mineral components have RDP 
values of around 1 and 3, respectively. For example, the wet sands have 
RDP between 15 and 30, whereas the dry sands have RDP between 4 and 
6 (Cassidy, 2009). Moreover, this significant difference in the dielectric 
constant of water and soil solid constituents makes the method relatively 
insensitive to soil composition and texture (Jones et al., 2002).

The bulk dielectric constant of soil infers the volumetric soil water 
content (θv) by using empirical relationships. The most widely used for 
agricultural soils is the empirical model developed by Topp et al. (1980): 

Θv =
(
5.3 × 10− 2)+

(
2.29 × 10− 2)εb −

(
5.5 × 10− 4)ε2

b +
(
4.3 × 10− 6)ε3

b

(1) 

It is a third-order polynomial, considered valid for relating soil volu
metric water content (θv) and bulk dielectric constant (εb) for most 

mineral soils, independently of soil composition and texture, up to θv <

0.5 cm3 cm 3 (Muñoz-Carpena et al., 2005; Topp et al., 1980). A specific 
calibration is required for higher water content and organic or volcanic 
soils.

The relationship between volumetric soil water content (Θv) and 
bulk dielectric constant (εb) depends on the electromagnetic wave fre
quency. It is more soil-specific at low frequencies (<100 MHz) (Muñoz- 
Carpena et al., 2005). Alternative relationships to the empirical equation 
(Eq. (1) are the three-phase mixing model (Roth et al., 1990) and the 
four-phase mixing model (Dobson et al., 1985), which requires dividing 
soil moisture into mobile and immobile regions (Dirksen and Dasberg, 
1993). Mainly, two different PSS techniques rely on the dielectric 
properties, i.e., time/frequency domain reflectometry and ground 
penetrating radar.

The dielectric constant is commonly measured by recording the 
propagation velocity or reflection of an electromagnetic pulse through 
the soil using probes or antennas in contact with, or placed above, the 
surface. Time Domain Reflectometry (TDR) and Frequency Domain 
Reflectometry (FDR) determine εb by measuring the travel time or 
resonant frequency of the signal along a waveguide inserted into the soil, 
while Ground Penetrating Radar (GPR) estimates εb from the two-way 
travel time of radar waves between the transmitter and receiver. 
These methods allow non-destructive and in situ measurement of the 
bulk dielectric constant, which can then be converted into volumetric 
water content using the empirical or physically based relationships 
described above.

2.4.1. Time domain reflectometry (TDR)
Time domain reflectometry (TDR) is a technique that was used 

originally for testing high-speed cables (Ferré and Topp, 2000). TDR was 
adapted to estimate at the same time both soil water content (Davis and 
Chudobiak, 1975; Topp et al., 1980) and soil bulk electrical conductivity 
(Dalton et al., 1984). The water content depends on the polarizability of 
the water molecules, and the bulk electrical conductivity depends on the 
attenuation encountered. A waveguide or probe of known length L is 
embedded in soil, and the travel time (t) for a TDR-generated electro
magnetic ramp to cross the probe length is determined. The end of the 
probe is a point of ‘discontinuity’ where the electromagnetic signal is 
reflected. The travel time t allows computing the bulk dielectric constant 
of soil surrounding the probe as a function of the propagation velocity 

v = 2L/t (2) 

According to the equation : εb =
(c

v

)2
=

( ct
2L

)2
(3) 

where c is the speed of light in vacuum (3 × 108 m s− 1), t is the travel 
time for the pulse to cross the length of the embedded waveguide (2 L: 
down the soil and back).

The widespread use of TDR has led to several efforts focused on 
finding alternatives to Eq. (1). A critical review of the models used to 
determine soil volumetric water content using the bulk dielectric con
stant measured by TDR is available in He et al. (2023).

A typical TDR instrument consists of a device capable of producing a 
series of precisely timed electrical pulses with a wide range of high 
frequencies (e.g., 0.2–3 GHz) traveling along a transmission line con
structed with a coaxial cable and a probe (Muñoz-Carpena et al., 2005). 
There are several different geometrical probe configurations, all of 
which have a single central conductor and one to six outer conducting 
rods, consisting of two, three, or six metallic wires and two parallel 
plates (Jones et al., 2002).

2.4.2. Frequency domain: capacitance and frequency domain reflectometry 
(FDR)

Frequency domain reflectometry (FRD) is based on the detection of 
changes in soil water content by changes in the circuit's operating 
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frequency using a capacitor and an oscillator (Muñoz-Carpena et al., 
2005). In the FDR, the oscillator frequency is swept under control within 
a specific frequency range to find the most significant amplitude. This is 
known as the resonance frequency and represents a measure of the water 
content in the soil. Probes consist of two or more electrodes that are 
inserted into the soil. Electrodes can be metallic plates, rods, or metal 
rings around a cylinder. In the case of a ring configuration, an access 
tube is installed in the field in which the probe is introduced. The access 
tube enables multiple sensors to take measurements at various depths 
(Muñoz-Carpena et al., 2005).

2.4.3. Ground penetrating radar (GPR)
Ground Penetrating Radar (GPR) operates between 10 MHz and 3 

GHz frequency range, within the radio wave region of the EM spectrum 
(Fig. 6). Like TDR and FDR, GPR primarily responds to subsurface var
iations in relative dielectric permittivity (RDP), with energy transport 
dominated by polarization and displacement currents (Everett, 2013b). 
Electrical conductivity (EC) has a significant influence on signal atten
uation during wave propagation (Davis and Annan, 1989). The most 
common survey configuration is the common-offset reflection mode, 
where fixed-geometry transmitter and receiver antennas are moved 
across the surface. Reflected signals from dielectric contrasts are 
recorded as waveforms (A-scans), which are then assembled into 2D 
profiles (B-scans) or 3D volumes (C-scans). Depth conversion is possible 
via velocity calibration using known subsurface targets (such as soil 
layer boundaries or objects) or hyperbola fitting on round shaped ob
jects in the subsoil.

Despite offering high spatial resolution among near-surface 
geophysical methods, GPR’s application in PSS is constrained by data 
analysis time, its difficulty in detecting gradual soil texture changes with 
depth, signal loss due to scattering, absorption, and geometrical 
spreading (Reynolds, 1997). The method resolution decays with pene
tration depth due to frequency-dependent attenuation (Bradford, 2007); 
higher-frequency systems provide finer resolution but have a shallower 
reach.

GPR is widely used in agricultural contexts for water management 
(Huisman et al., 2001; Liu et al., 2016), as well as mapping soil layer 
thickness, stratigraphy, and tree root systems or sometimes drainage 
pipes (Comas et al., 2015; Zhang et al., 2014). Outside of agricultural 
applications, GPR is used in archaeology, environmental assessments, 
road construction analysis, and more. Emerging drone-mounted GPR 
systems show promise for rapid mapping of root-zone moisture and EC 
(Wu and Lambot, 2022).

2.5. X-ray fluorescence

X-ray fluorescence (XRF) is a type of spectroscopy that involves the 
emission of X-ray photons following the excitation of electrons in a 
sample by primary X-ray photons. When the sample is exposed to X-rays, 
the atoms within it absorb the photons if their energy is higher than the 
binding energy of the core–shell electron. When photons are absorbed, 
they cause the ejection of core–shell or subshell electrons, which are also 
called photoelectrons. This process leaves behind a vacancy in the cor
e–shell or subshell, putting the atom in an excited state. After absorp
tion, XRF emissions occur when an electron transitions from an upper 
subshell to fill the electron vacancy, resulting in a de-excitation process 
that emits a corresponding photon. These emitted XRF photons have 
unique energies characterizing the electron transition in the given atom, 
and so the spectroscopic lines can be assigned to specific chemical ele
ments. The intensity of each characteristic energy level is directly pro
portional to the number of atoms in the respective elements involved in 
the process, allowing for the measurement of element concentration 
(Jenkins et al., 1995).

In the 1990 s, the extensive instrumentation used for the XRF process 
was downsized and made more portable. This led to the creation of 
modern portable fluorescence instruments, also known as pXRF or 
handheld XRF. Small, portable instruments with a gun design (Fig. 7) 
now use a vacuum-sealed tube, approximately the size of a coin, as the 
source of primary X-ray radiation. The tube has a metal anode (such as 
Ag, Rh, Ta, Au, W, and others) that is hit by electrons accelerated to 
20–60 kV. This collision produces X-rays that correspond to the char
acteristic K and L line fluorescence of the target atoms, as well as a less 
intense continuum. The source of emission is situated near the front 
aperture of the instrument, which comes into contact with the sample. 
Then, the detector captures the entire emitted spectrum and separates 
the signals using the energy-dispersive principle (EDXRF) (Beckhoff 
et al., 2007; Shackley, 2010).

The XRF technique is widely used for determining elemental con
centrations in various matrices, including soils. Advancements in pXRF 
technology and applications are well-documented in annual atomic 
spectrometry updates (e.g., Potts and Sargent, 2022; Vanhoof et al., 
2022). pXRF can function as a qualitative, semi-quantitative, or quan
titative analytical tool. The USEPA Method 6200 (2007) offers a 
comprehensive guide for pXRF use in soil and sediment analysis, high
lighting pre-calibration modes (e.g., Geochem, Soil, Mining) provided 
by manufacturers, and other laboratory-based standards such as EN 
15309:2007 that provide protocols XRF spectrometry. It is essential to 
note that pXRF measures total elemental concentrations, unlike tradi
tional wet methods (e.g., aqua regia extractions as per ISO 11466 or 
USEPA 3051a), which often yield lower, pseudo-total values, depending 

Fig. 6. Schematic diagram showing the working principle of a ground penetrating radar: (a) wave propagation and reflection at the boundaries of media with 
different relative dielectric permittivity (RDP) and (b) processes that lead to a reduction of signal strength (modified from Conyers (2004); Reynolds (1997)).
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on the element and soil type.
Unlike the other techniques covered in this article, XRF is used 

directly to determine elemental contents, not requiring proxies to 
convert spectral readings into elemental content. However, it must 
indeed use specific algorithms to compensate for the complex spectral 
interactions that X-rays produce at the atomic level. Beyond the direct 
determination of elemental concentrations in the soil, the technique has 
been used to predict from these i) the concentrations of available forms 
of plant nutrients (Antonangelo and Zhang, 2024; Tavares et al., 2023); 
ii) other soil properties that are indirectly related to the elemental 
composition (McBratney et al., 2011b, Tóth et al., 2019) or iii) the 
concentration of elements (such as C or N) that do not emit an RX signal 
under the measurement conditions of portable instruments (de Faria 
et al., 2022; Song et al., 2024).

2.6. Combined techniques

The fusion of measurements obtained from a range of sensors is 
becoming increasingly common, often improving the prediction of soil 
properties and chemical elements’ concentrations in soil samples 
(Schmidinger et al., 2024). Independent measurements from function
ally different techniques offer a broader insight, providing information 
on a wide range of soil properties and their spatiotemporal changes. 
Sensor fusion is a broad term, and as indicated by Ji et al. (2019), there is 
no consensus on a standard definition. In the case of soil sensors, fusion 
has been performed by combining data from two or more sensors, using 
a range of statistical methods, including linear and non-linear regression 
techniques, as well as more sophisticated approaches such as Granger 
and Ramanathan’s model averaging procedure (1984) and others (Ji 
et al., 2019). Several authors have suggested using auxiliary soil prop
erties or sensory data in conjunction with Vis-NIR for enhanced soil 
characterization (Morgan et al., 2009; Brown et al., 2006; Wang et al., 
2015). For example, Veum et al. (2015) found that augmenting vis-NIR 
spectral data with laboratory measurements of pH and bulk density led 
to improved estimations of soil health indicators related to physical and 
chemical components. In a subsequent study, vis-NIR was fused with EC 
and penetration resistance data, resulting in improved estimation of soil 
health indicators (Veum et al. 2017). In another example, it was noted 

that for optical sensors like NIR and MIR, the accuracy of indirect 
property estimations can be improved by incorporating other predictors, 
such as elemental XRF, which provides contrasting and complementary 
information (Greenberg et al., 2023). A combination of these two types 
of sensors was reported in multiple studies for the improvement of SOC, 
N, P, Mg, Ca, Na, pH, and texture estimations (Javadi et al. 2021; Wang 
et al. 2013; O’Rourke et al. 2016; Towett et al., 2015; Wang et al., 2015; 
Weindorf et al., 2016; Tavares et al., 2020; Greenberg et al. 2023). 
However, no generalizable conclusions can be drawn as the results of 
fusion were contradictory. As suggested by Greenberg et al. (2023), 
systematic testing to gain an in-depth understanding of the prediction 
mechanisms, depending on the property of interest, sensor type, the 
principle of parsimony, and the method of sensor fusion, is crucial.

In our study, we addressed this issue by analyzing the effect of 
combining data from two or more proximal sensors, which we refer to as 
the 'combined techniques.' Additionally, we separately examined the 
combination of proximal sensor data and traditional laboratory mea
surements, along with covariates from various sources, including remote 
sensing and morphometry. In the case of multiple soil sensors being 
integrated into a single unit, several advantages were listed, including 
more robust operational performance, increased confidence as different 
sensors measure the same soil, higher coverage of attributes, and 
increased dimensionality of the measurement space (Viscarra Rossel 
et al., 2011). The use of mobile platforms supporting different soil 
sensors has been reported by several authors, showing the potential for 
combined on-the-go measurements for improved estimation of physical 
and chemical soil properties such as pH, EC, bulk density, soil water, 
SOC, potassium, nitrogen, and other nutrient contents (Lund et al. 2005; 
Adamchuk and Christenson, 2005; Taylor et al. 2006; Kweon et al., 
2008; Yurui et al., 2008; Knadel et al., 2011; Knadel et al., 2015; 
Tabatabai et al., 2019). Their results demonstrate that multi-sensor 
systems can be beneficial and practical for conducting field surveys. 
Yet, customized configurations can be logistically cumbersome and 
technically challenging to implement synchronously.

3. Methods

In the context of the ProbeField project, bibliographic research was 
foreseen as the basis for tracking the cost and accuracy of PSS. Literature 
sources and databases were consulted between October 2022 and 
December 2023. The resulting set of documents collected from that 
literature search was used to perform the analyses shown in this work. 
The process was visually summarized in a schematic workflow (Fig. 8).

3.1. Literature search strategy

All collected papers related to 1) the accuracy of proximal soil sen
sors and 2) the costs involved in the different steps of soil surveying with 
PSS were retrieved from search engines such as Scopus and Web of 
Science.

The keywords used for the review of accuracy of proximal soil sen
sors were “precision farming,” “proximal sensing,” “soil sensing,” 
“proximal sensors,” “digital soil mapping,” “high-resolution mapping,” 
“quasi 3D mapping,” “diffuse reflectance spectroscopy,” “Vis-NIR,” “soil 
spectroscopy,” “gamma-ray spectroscopy,” “radiometric,” “radionu
clides,” “X-ray fluorescence,” “electromagnetic induction,” “georadar,” 
“GPR,” “ground penetrating radar,” “time-domain reflectometry,” 
“TDR,” “data fusion,” “combined sensors,” “combined techniques,” The 
terms “soil properties estimation,” “soil organic carbon,” “soil mois
ture,” “clay,” “sand,” “soil texture,” and “nutrients” were used in com
bination with the keywords listed above to further narrow the spectrum 
of aimed publications to the PSS context. The keywords for the research 
on the costs involved in the different steps of soil surveying with PSS 
were the same as for the accuracy of proximal sensing, with the addition 
of the keyword “cost” during the literature search strategy (e.g., “soil 
proximal sensing costs,” “diffuse reflectance spectroscopy costs,” etc.). 

Fig. 7. Schematic design of a portable X-ray fluorescence (pXRF) instrument 
(with permission of Thermo Fisher, Waltham, MA, USA).
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The complete list of keywords and strings is shown in Table A1 in the 
supplementary materials.

Due to the low number of papers resulting from the cost inquiry, a 
dedicated questionnaire was developed to conduct interviews with 
commercial companies offering PSS services. Additionally, due to the 
low number of articles, reports, and papers on cost analysis that align 
with the objectives of this review retrieved from the bibliography, no 
exclusion criteria were applied to the collected documents for full-text 
review.

3.2. Inclusion/exclusion criteria

Original research articles were manually selected, while non-eligible 
sources, such as non-English studies, extended abstracts, presentations, 
conference proceedings, reviews, meta-analyses, and entire books, were 
excluded. All articles retrieved for full-text reading were screened by the 
authors of the present work, each with their own set of designated ar
ticles, with the variables of interest collated in a data extraction sheet. 

Articles included in the analysis should refer to digital soil mapping 
attempts or to soil property estimation using modelling techniques based 
on proximal soil sensing covariates. Additionally, papers should report 
the performance indices of the models employed to estimate the soil 
properties, as well as the ranges of soil property analytical values 
determined by wet chemistry. Duplicated papers that did not contribute 
to the objectives of the review work were manually removed. Articles 
referring to the use of electromagnetic sensors for digital soil mapping 
and precision agriculture attempts addressed using UAV platforms or 
remote sensing alone, PSS techniques that didn’t meet the ProbeField’s 
project aims, and efforts on monitoring, reporting, and verification 
(MRV) systems were excluded from this analysis. Although numerous 
studies (Fedeli et al., 2024; Horta et al., 2021; Xia et al., 2019) have 
demonstrated the effectiveness of both laboratory-based and portable X- 
ray fluorescence (XRF) instruments, studies referring to XRF solely for 
elemental concentration and mapping were excluded, while focusing 
instead on those that derived additional properties from portable XRF 
(pXRF) measurements.

Fig. 8. Schematic workflow of the review process.
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The complete list of papers and associated DOIs used for this analysis 
is summarized in Table A2 in the supplementary materials, whereas the 
PRISMA (Page et al., 2021) flowchart with the number of retrieved and 
excluded documents is also included (Fig. A1). A simplified version of 
the Mixed Method Appraisal Tool (MMAT) was used to assess quality 
and the risk of bias in this systematic review. All selected documents met 
the MMAT criteria for quantitative descriptive studies.

3.3. Literature data extraction and harmonization

An association between the DOIs and the information collected from 
research papers in the data extraction sheet was performed considering 
the following qualitative aspects: utilized PSS techniques single or in 
combination, the sensor employed, the platform type used to perform 
the survey with the sensor, the soil property or properties investigated, 
the type of data produced (i.e., both bi-dimensional and tri-dimensional 
spatializations, and point estimations), any additional covariate used to 
generate the estimations, the modelling technique, the scale of the 
study, general characteristics of the study area, soil type, land use, 
experimental design, and sampling characteristics such as the number of 
sampling locations, the total number of samples collected per surface 
unit, and the analytical methods used to measure the soil properties 
under investigation. A total of 42 soil properties were identified across 
the entire set of documents, which were subsequently summarized into 
groups to improve representativeness during data analysis (Table 1).

The collected quantitative information [i.e., normalized RMSE 
(NRMSE) and analytical values] was entered into a separate sheet to 

facilitate data analysis, as described below.

3.4. Cost survey and questionnaire design

Several questions about the derived cost of applying PSS services in 
the private sector that aligned with the research topics of the ProbeField 
project were structured as a questionnaire and translated into four 
languages (English, German, Spanish, and Italian). The four versions of 
the questionnaire are available in the supplementary materials of this 
study. The questionnaire was distributed to PSS companies via the 
Google Docs platform, along with a letter of introduction to the Probe
Field project, or, sometimes, more informally via telephone interviews. 
It was submitted to numerous PSS companies worldwide, although 
higher representation was found across Europe, North America, and 
Midwestern Asia.

The questionnaire is structured as follows: 1) a set of general ques
tions about the activity of the company regarding used sensor types, 
types of products, and services they offer; 2) a set of specific questions 
about the use of proximal sensors on-the-go, about what are the critical 
points referred to the using of sensors, analysis of data, and reporting 
that have more influence on the final cost such as weighted costs based 
on personnel costs, working days, equipment costs, etc.; 3) which soil 
properties are estimated with which sensors, number of samples taken 
per hectare, the most used line spacing in survey and if equipment is 
available for rent; 4) specific questions about what are the critical points 
referred to the traveling to the area of interest, workability, and field 
characteristics; and 5) two last sets of questions about calibration and 
validation methods of the final product. In all sections, companies were 
asked to roughly assess the cost as a percentage range of the total for 
each step of the process. Finally, a section was proposed for companies 
to make further comments and suggestions for future research on PSS.

3.5. Data analysis

3.5.1. Accuracy synthesis (descriptive systematic review)
This study follows a systematic review methodology, in accordance 

with structured literature identification and screening, and provides a 
descriptive synthesis of reported results. Consequently, this methodol
ogy did not match the analytical procedure of a meta-analysis. The 
collected accuracy information was summarized into a single data 
frame. Each row contained the value of RMSE (Eq. (4) and the minimum 
and maximum analytical values of the predicted soil property as re
ported in the respective papers. That quantitative information was 
associated with the following columns based on the information 
collected from the retrieved papers (Table 2): A) to the PSS-derived 
covariate used to model the target property, henceforth, PSS tech
nique (i.e., DRS, EMI/ER, γ-ray, XRF, TDR/FDR, and combined tech
niques); B) to other variables eventually used besides the sensors’ signal 
response, that were grouped into macro categories such as morphom
etry, remote sensing, other soil properties, and their combinations. In 
this work, we refer to such a set of macro categories of variables syn
thetically as “other covariates” (Table 2); C) to the type of model used to 
get the estimated soil property, which was classified into the groups 
“linear” and “non-linear” modeling (Table 2); D) to the group of soil 
property associated with the accuracy estimation (Table 1); E) to the soil 
strata where the estimation is performed, that is, topsoil (i.e., 0–30 cm 
depth) or subsoil (i.e., >30 cm depth); and F) to the scale of the research 
(i.e., local, non-local). In order to compare the resulting distributions, 
the following descriptive statistics were calculated: the range from 
minimum to maximum, the average, the standard deviation, and the 1st 

and 3rd quartile values, which were reported as charts (i.e., boxplots) or 
table form. Table 2 provides details about the grouping factors associ
ated to each NRMSE value.

We recall that the following equation gives RMSE: 

Table 1 
Summary of soil properties collected from the literature and organized into 
groups of properties.

Soil property group SOIL PROPERTIES

Soil carbon (C) Total carbon (TC) 
Soil organic matter (SOM) 
Soil organic carbon (SOC)

Nitrogen (N) Total Nitrogen (N)
Nutrients, CEC, and exchangeable 

bases
Phosphorus (P) 
Potassium (K) 
Cation exchange capacity (CEC) 
Plant available potassium (paK) 
Exchangeable Magnesium (ex-Mg) 
Exchangeable Calcium (ex-Ca) 
Exchangeable Phosphorous (ex-P) 
Exchangeable Potassium (ex-K) 
Other secondary nutrients

Acidic-basic properties Soil inorganic carbon (SIC) 
Carbonates (CaCO3) 
Salinity (ECe) 
Exchangeable Aluminium (ex-Al) 
Base saturation percentage (BSP) 
Electrical conductivity (EC) 
Lime buffer capacity (LBC) 
pH 
H + Al

Mineralogy Other chemicals (e.g., potentially toxic 
elements) 
Clay type

Hydrological properties Moisture 
Volumetric water content (VWC) 
Field capacity 
Evapotranspiration 
Wilting point

Bulk density (BD) Bulk density
Soil depth Soil depth
Texture Coarse fragments 

Silt, sand, and clay contents
Profile features & other properties Horizons 

Compacted layer 
Soil structure 
Penetration resistance 
Total porosity 
Biological properties
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − ŷi)
2

N

√

(4) 

where N is the number of data points, yi is the ith measurement, and ŷi is 
its corresponding prediction. In addition, the normalized root-mean- 
squared error (NRMSE, Eq. (5) was calculated and used alongside the 
remaining grouping factors, and analytical values for each RMSE record, 
to make the accuracies comparable across soil properties with variable 
ranges. The NRMSE was calculated by dividing the RMSE by the range of 
the soil property, using the following formula: 

NRMSE =
RMSE

ymax − ymin
(5) 

where ymax and ymin are the maximum and minimum analytical values of 
the soil property object of study, RMSE is the metric of accuracy as re
ported in papers. We decided to normalize by the maximum and mini
mum values, as this was the most appropriate given the available data. 

The normalization based on quartiles (e.g., Q3–Q1) was also evaluated, 
as it can reduce the metric's sensitivity to skewed distributions and 
extreme values, which may otherwise artificially compress the range. 
However, quartile values are seldom reported in the studies reviewed, 
making min–max normalization the only consistently applicable 
approach across the dataset.

3.5.2. Analysis of cost

3.5.2.1. Analysis of costs from literature. After reviewing a selection of 
papers that included the keyword 'cost' alongside topics such as preci
sion farming and proximal sensing, we skimmed those that enabled us to 
assess and compare overall budgets. We then refined the list by focusing 
on studies involving on-the-go or point-based sensors that allow for 
comprehensive soil characterization. This selection also took into ac
count financial factors, labor hours, and the benefits compared to 
traditional approaches that do not use proximal sensors, as well as how 
costs can vary non-linearly depending on the size of the investigation 
area.

3.5.2.2. Analysis of questionnaire’s replies. A semi-quantitative analysis 
using basic descriptive statistics was conducted on responses to the 
questionnaires from companies. The non-quantitative replies were 
summarized based on several factors, including the sensors employed in 
surveys, the target soil properties, the implementation of fieldwork, and 
associated difficulties encountered during fieldwork. On the other hand, 
replies regarding costs were classified into three categories: i) personnel 
costs, including traveling to the area of interest, ii) equipment costs, and 
iii) cost of data analysis and reporting. Quantitative data such as costs, 
areas, and distances were standardized using the qualitative and semi- 
quantitative information provided by companies as follows: a) costs 
were reported and transformed to € when necessary; b) areas were 
converted into hectares (ha), and c) distances to meters (m) for com
parison purposes. When the availability of data permitted it, the quan
titative information was summarized using descriptive statistics (i.e., the 
range from minimum to maximum, the median, and the 1st and 3rd 

quartile values). Due to privacy agreements with companies, this dataset 
is not being made publicly available. The structure of the questionnaire 
is available as supplementary material.

4. Results on accuracy

4.1. Dataset description

A total of 1,544 NRMSE records from 114 papers are included in the 
dataset (Table 3). The resulting dataset is available at the repository 
ZENODO (https://doi.org/10.5281/zenodo.17121809). DRS is the most 
frequently used technique individually (32.6 %). Applications for XRF 
(14.2 %), EMI/ER (11.9 %), γ-ray (8.8 %), and TDR/FDR (2.3 %) are less 
common. Among applications that utilize combined techniques, which 
account for 30.1 % of the total, the most investigated combination was 
EMI/ER + γ-ray (41.4 %). Moderately investigated were the combina
tions of DRS with XRF and EMI/ER (23.8 % and 15.1 %, respectively). A 
lower number of applications were found for the following combina
tions: EMI/ER + γ-ray + DRS, DRS + TDR/FDR, EMI/ER + TDR/FDR, 
EMI/ER + GPR, γ-ray + XRF (6.8 %, 4.6 %, 1.5 %, 0.9 %, and 0.7 %, 
respectively).

Based on the number of papers, the most studied groups of soil 
properties (Table 4) were in order: C (58 %), texture (38.6 %), acidic- 
basic soil properties (30.7 %), and nutrients, CEC, and exchangeable 
bases (25.4 %). This last group accounted for the highest number of 
NRMSE records.

Table 2 
Summary of groups used in the data set for harmonizing the collected accuracy 
records of using proximal sensors from the literature (techniques, other cova
riates, and the scale of reference of the study.

Grouping 
factor

Categories within 
grouping factors

Description of categories

Techniques EMI/ER Electromagnetic induction and electrical 
resistivity

γ-ray Gamma-ray spectroscopy
GPR Ground penetrating radar
XRF X-ray fluorescence
DRS Diffuse reflectance spectroscopy (Vis-NIR- 

MIR)
TDR/FDR Time domain reflectometry and Frequency 

domain reflectometry
Covariates Remote sensing Drone, aerial image, satellite

Soil property Wet chemistry, soil class
Morphometry Digital elevation model (DEM) and 

derivatives of DEM (i.e., slope, orientation, 
hydrography, hydrological basin, etc.)

Scale Local Field(s) scale
Non-local Includes regional, national, continental 

scales, together with larger areas (e.g., 
several sparse fields within a single or more 
pedoclimatic or administrative zone) not 
defined by the previous “Local” (field) 
scale.

Model Linear (LM) Generalized linear model (GLM); Spatio- 
Temporal Generalized Linear Models 
(SGLM); Linear regression (LR), Stepwise 
Multiple Linear regression (SMLR); Partial 
least squares regression (PLSR); Latent 
variable partial least squares (L-PLS); 
Ordinary Least Squares regression (OLS); 
Granger-Ramanathan Combination; K- 
means(KM); Kriging; Regression kriging; 
Geographically weighted regression 
(GWR); Langmuir-Goodwin-Richards 
(LGR) model; Linear mixed-effects models 
(LMEm); odds ratio (OR); PCR; quasi-3D 
modeling

Non-Linear (NLM) Machine learning; Machine learning +
regression residuals (MLRR); Artificial 
neural network (ANN); Convolutional 
neural network (CNN); XGBoost (XGB); 
Cubist regression (CR); Regression tree 
(RT); Random Forest (RF); RF and 
regression residuals (RFRR); Support 
vector machine (SVM); SVM and regression 
residuals (SVMRR); PLS–support vector 
machine (PLS–SVM); Classification and 
Regression Tree (CART); Multivariate 
Adaptive Regression Splines (MARS); 
Penalized Spline Regression (PSR); 
Generalized additive model (GAM)
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4.2. Results for accuracies

Table 5 reports the accuracies filtered by the PSS technique and the 
group of soil properties. The average NRMSE equals 0.217 for the whole 
dataset (Table 5). However, when groups of soil properties are consid
ered individually, the overall NRMSE varies mainly depending on the 
measured soil property and the technique employed. Concerning the soil 
property groups, the top three overall average accuracies revealed are 
reached in the profile features and other properties group (NRMSE =
0.105, 10 observations), soil depth (NRMSE = 0.123, 46 observations), 
and mineralogy (NRMSE = 0.129, 58 observations). In contrast, others, 
such as the soil carbon group, had the lowest average accuracy, with the 
highest overall NRMSE of 0.390 (347 observations, Table 4). Notice that 
such a low average accuracy value attributed to the soil carbon group is 
due to the NRMSE data collected from Zhang et al. (2020), ranging from 
3 to 10 (i.e., outliers, see Table 5), who estimated SOC and other 
properties in three dimensions, as well as predicted values of soil carbon 
from non-local calibrations such as SSLs, where NRMSE values ranged 
from 0.6 to 2 (Guerrero et al., 2016; Guerrero and Lorenzetti, 2021). 
Excluding those values, the accuracy for the soil carbon group equals 
0.098 in 311 observations, which becomes the highest average accuracy 
for a group of properties. Other groups of properties showing low 
average accuracy estimations were bulk density (NRMSE = 0.201, 30 
observations), texture (NRMSE = 0.196, 324 observations), and hy
drological properties (NRMSE = 0.193, 146 observations). The N and 
nutrients, CEC, and exchangeable bases groups reached average NRMSE 
values of 0.158 and 0.150, with 55 and 374 observations, respectively. 
From the point of view of PSS techniques, the highest overall average 
accuracy was found in XRF (NRMSE = 0.131, 220 observations), 

followed by DRS (NRMSE = 0.135, 504 observations). The on-the-go 
PSS techniques, EMI/ER, and γ-ray spectroscopy, yielded average 
NRMSE values of 0.168 and 0.178, with 184 and 136 observations, 
respectively. The TDR/FDR technique achieved the lowest overall 
average accuracy values for single PSS techniques (NRMSE = 0.208, 36 
observations). In studies where techniques are used in combination in 
multi-sensor assets (combined techniques group), the NRMSE showed 
the highest overall average value; in other words, the lowest average 
accuracy (NRMSE = 0.378, 464 observations). Notice that such low 
accuracy values are attributed to the sorting of data. As we state later, 
specific combinations of sensors can be as accurate as single techniques 
or even higher. The spread of the NRMSE distributions (Fig. 9) varied 
considerably among techniques. XRF showed the lowest variability, 
with narrow distributions and few outliers, as indicated by its low 
standard deviations, whereas DRS and combined sensor approaches 
exhibited much wider spreads and several extreme values. This greater 
dispersion is reflected in their higher standard deviations (Table 5).

The DRS technique showed the highest average accuracy in esti
mating acidic-basic properties (NRMSE = 0.116, 56 observations), ni
trogen (NRMSE = 0.125, 27 observations), hydrological properties 
(NRMSE = 0.020, 2 observations), nutrients, CEC, and exchangeable 
bases (NRMSE = 0.087, 78 observations), as shown in Fig. 9. Moreover, 
it was the only PSS technique that provided estimations for the profile 
features and other properties group (see the paragraph above). XRF 
showed the highest average accuracy in estimating properties of the 
mineralogy group (NRMSE = 0.103, 18 observations) and the soil 
texture group (NRMSE = 0.107, 24 observations). Additionally, XRF 
demonstrated the highest accuracy in estimating BD (NRMSE = 0.141), 
although only one observation was found. Amongst the on-the-go PSS 
techniques, γ-ray spectroscopy achieved the highest average accuracy in 
estimating soil carbon group properties (NRMSE = 0.116, 5 observa
tions), closely followed by the combined techniques group (NRMSE =
0.169, 85 observations). The EMI/ER technique demonstrated higher 
average accuracy in producing maps of soil depth (NRMSE = 0.121, 44 
observations) compared to γ-ray spectroscopy (NRMSE = 0.174, 2 ob
servations). The combined techniques group never showed the highest 
average accuracy value among all the groups of properties (Table 5). 
Instead, it occupied second place in estimating bulk density (NRMSE =
0.174, based on 17 observations) and mineralogy (NRMSE = 0.113, 
based on 18 observations). Combinations of techniques were also com
mon in estimating other groups of properties, such as acidic-basic 
properties, nitrogen, hydrological properties, soil texture, and the 
nutrient, CEC, and exchangeable bases group. Still, they showed 
generally lower average accuracy compared to the application of single 
PSS techniques.

Table 6 presents the accuracy of estimations based on the average 
NRMSE for the group of combined techniques. The combination of DRS 
and XRF reached higher accuracy values to predict acidic and basic 

Table 3 
Composition of the dataset in terms of techniques. Both the number of papers (i.e., collected DOIs) and the number of observations (Obs.) were reported as raw 
numbers (n) and as percentages (%). On the left, observation and DOIs are reported for techniques applied individually, whereas on the right, the data zoomed in on the 
types of combinations that occurred.

Single techniques Combined techniques
Type Observations DOI Combination Observations DOI

n % n % n % n %

DRS 504 32.6 55 48.2 EMI/ER γ-ray 192 41.4 11 31.4
XRF 220 14.2 21 18.4 XRF DRS 139 23.8 10 28.6
EMI/ER 184 11.9 19 16.7 EMI/ER DRS 48 15.1 8 22.9
γ-ray 136 8.8 11 9.6 EMI/ER γ-ray + DRS 40 6.8 1 2.9
TDR/FDR 36 2.3 5 4.4 DRS TDR/FDR 27 4.6 2 5.7
Combined techniques 464 30.1 35 30.7 EMI/ER TDR/FDR 9 1.5 1 2.9
​ ​ ​ ​ ​ EMI/ER GPR 5 0.9 1 2.9
​ ​ ​ ​ ​ γ-ray XRF 4 0.7 1 2.9
Total 1544 100.0 114 100.0 Total 464 100.0 35 100.0 ​

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling.

Table 4 
Composition of the dataset in terms of groups of properties. Both the number of 
papers (i.e., collected DOIs) and the number of observations (Obs.) were re
ported as raw numbers (n) and as percentages (%).

Groups of properties Observations DOI
n. % n %

Nutrients, CEC, and exchangeable bases 374 24.2 29 25.4
C 347 22.5 67 58.8
Texture 324 21.0 44 38.6
Acidic-basic properties 154 10.0 35 30.7
Hydrological properties 146 9.5 18 15.8
Mineralogy 58 3.8 2 1.8
N 55 3.6 20 17.5
Soil depth 46 3.0 4 3.5
BD 30 1.9 8 7.0
Profile features and other properties 10 0.6 2 1.8
Total 1,544 100.0 114 100.0

CEC: cation exchange capacity, C: carbon, N: nitrogen, BD: bulk density.
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properties (NRMSE = 0.157, 13 observations), soil carbon (NRMSE =
0.044, 29 observations), mineralogy (NRMSE = 0.113, 18 observations), 
nitrogen (NRMSE = 0.142, 3 observations), and nutrients, CEC, and 
exchangeable bases (NRMSE = 0.084, 62 observations); whereas DRS 
and TDR/FDR was the combination reaching higher average accuracy to 
estimate bulk density (NRMSE = 0.098, 9 observations) and hydrolog
ical properties (NRMSE = 0.050, 18 observations). The combination of 
DRS and EMI/ER techniques yielded average NRMSE values of 0.184 in 
17 observations in estimating soil texture.

Fig. 10 compares the performance of the best combinations based on 
the average NRMSE with the average accuracy of predictions achieved 
using single techniques. This chart illustrates that a specific combination 
of techniques may yield more accurate predictions compared to the 
average NRMSE of a single PSS technique. This affects, for example, bulk 
density, soil carbon, hydrological properties, and the group of nutrients, 
CEC, and exchangeable bases. In fact, DRS + TDR/FDR for BD and hy
drological properties, as well as DRS + XRF for C, and the group of 
nutrients, CEC, and exchangeable bases, yielded more accurate estima
tions of those groups.

Table 7 presents the accuracy of spatializations (i.e., thematic maps 
of soil properties) realized with on-the-go techniques (i.e., EMI/ER, 
γ-ray spectroscopy, and combined techniques including on-the-go DRS, 
which was considered as a combination of techniques because it was 
always employed in multisensor assets in the set of the literature that 
was checked for this study) in the top and subsoil, respectively. The 
accuracy of the estimations was assessed by considering the groups of 
properties. The total number of observations by technique was 171 for 
EMI/ER (40 topsoil and 131 subsoil), 131 for γ-ray spectroscopy (87 
topsoil and 44 subsoil), and 361 for combined techniques (182 topsoil 
and 179 subsoil). The average NRMSE for EMI/ER in the topsoil was 
0.219, and 0.178 in the subsoil. For γ-ray spectroscopy, average NRMSE 
values of 0.158 were achieved in the topsoil and 0.235 in the subsoil. In 
the case of combined techniques, the topsoil attained a value of 0.156, 
while the subsoil achieved a value of 0.279. The ranking of spatializa
tions of groups of properties, from the most accurate to the less precise, 
was sorted as follows: hydrological properties using combined tech
niques in the topsoil (NRMSE = 0.086, 24 observations), soil texture 
fractions with the EMI/ER technique in the subsoil (NRMSE = 0.109, 15 
observations), acidic and basic properties using γ-ray spectroscopy in 
the subsoil (NRMSE = 0.123, 9 observations), nutrient, CEC, and 
exchangeable bases using γ-ray spectroscopy (NRMSE = 0.132, 2 ob
servations), BD using EMI/ER in the topsoil (NRMSE = 0.153, 2 obser
vations), and finally, hydrological properties in the subsoil with 
combined techniques (NRMSE = 0.204, 41 observations).

4.3. Effect of covariates on soil property estimations

Table 8 shows the NRMSE data organized into sets of studies 
applying covariates during the modeling process. When the overall 
average NRMSE of the covariates datasets was compared, higher overall 
average accuracies were reached when using remote sensing covariates 
(average NRMSE = 0.116, 24 observations), followed by the average 
NRMSE value of the dataset in which several covariates are used 
together (average NRMSE = 0.180, 100 observations), soil properties 
covariates (average NRMSE = 0.195, 188 observations), and morpho
metrical covariates (average NRMSE = 0.710, 177 observations). A 
higher number of observations was found in studies applying combined 
techniques and morphometrical covariates, where the lowest average 
accuracy of the whole dataset was observed when estimating the soil 
carbon group (NRMSE = 2.923, 32 observations). Instead, the most 
accurate NRMSE average value was obtained when applying γ-ray 
spectroscopy for estimating soil texture using morphometrical 

Table 5 
Descriptive statistics of NRMSE grouped by technique and group of soil 
properties.

Technique Group of soil 
properties

Obs. Min. Avg. SD Max.

DRS ​ 504 0.001 0.135 0.227 3.450
​ Acidic-basic 

properties
56 0.018 0.116 0.068 0.358

​ Bulk density (BD) 4 0.102 0.204 0.168 0.455
​ C 222 0.003 0.140 0.319 3.450
​ Hydrological 

properties
2 0.001 0.021 0.029 0.041

​ Mineralogy 22 0.082 0.165 0.033 0.254
​ N 27 0.002 0.125 0.093 0.375
​ Nutrients, CEC, 

exchangeable bases
78 0.035 0.087 0.035 0.178

​ Profile features and 
other properties

10 0.017 0.105 0.039 0.160

​ Texture 83 0.032 0.178 0.171 0.723
EMI/ER ​ 184 0.007 0.178 0.131 0.800
​ Acidic-basic 

properties
31 0.007 0.159 0.177 0.731

​ Bulk density (BD) 6 0.152 0.262 0.107 0.433
​ C 13 0.028 0.132 0.082 0.371
​ Hydrological 

properties
38 0.083 0.234 0.134 0.800

​ N 2 0.118 0.152 0.048 0.186
​ Nutrients, CEC, 

exchangeable bases
23 0.066 0.234 0.172 0.661

​ Soil depth 44 0.054 0.121 0.036 0.199
​ Texture 27 0.026 0.167 0.101 0.343
γ-ray ​ 136 0.010 0.169 0.127 0.726
​ Acidic-basic 

properties
9 0.010 0.123 0.083 0.228

​ Bulk density (BD) 2 0.150 0.275 0.177 0.400
​ C 5 0.063 0.116 0.057 0.187
​ Hydrological 

properties
3 0.165 0.282 0.177 0.485

​ N 2 0.200 0.220 0.028 0.240
​ Nutrients, CEC, 

exchangeable bases
21 0.055 0.225 0.199 0.726

​ Soil depth 2 0.159 0.174 0.020 0.188
​ Texture 92 0.017 0.156 0.106 0.667
TDR/FDR ​ 36 0.020 0.208 0.231 1.000
​ Hydrological 

properties
36 0.020 0.208 0.231 1.000

XRF ​ 220 0.001 0.131 0.068 0.522
​ Acidic-basic 

properties
24 0.106 0.146 0.027 0.195

​ Bulk density (BD) 1 0.142 − − 0.142
​ C 22 0.050 0.123 0.049 0.289
​ Hydrological 

properties
2 0.189 0.206 0.024 0.223

​ Mineralogy 18 0.090 0.104 0.012 0.136
​ N 18 0.062 0.154 0.064 0.258
​ Nutrients, CEC, 

exchangeable bases
111 0.000 0.134 0.085 0.522

​ Texture 24 0.060 0.107 0.028 0.163
Combined techniques 464 0.002 0.378 1.093 10.4
​ Acidic-basic 

properties
34 0.012 0.209 0.168 1.000

​ Bulk density (BD) 17 0.069 0.174 0.122 0.455
​ C 85 0.002 0.169 2.354 10.358
​ Hydrological 

properties
65 0.025 0.161 0.127 1.000

​ Mineralogy 18 0.085 0.113 0.015 0.137
​ N 6 0.043 0.303 0.364 1.000
​ Nutrients, CEC, 

exchangeable bases
141 0.038 0.172 0.165 1.000

​ Texture 98 0.026 0.280 0.392 2.520
Total ​ 1544 0.074 0.217 0.626 0.791

Where values in the “Total” row represent, respectively, the sum of observations, 
and the average of values in the successive columns (i.e., the average of mini
mums, the mean NRMSE of the dataset, the average SD, and the average of 
maximums).
DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: 
electromagnetic induction/electrical resistivity; TDR/FDR: time-domain 

reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: 
linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: 
carbon, N: nitrogen, BD: bulk density.
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covariates (NRMSE = 0.043). When soil properties are used as cova
riates, the most frequent technique is XRF (75 observations). Still, the 
most accurate estimation was found when using the EMI/ER technique 
for modeling soil depth (NRMSE = 0.100). High average accuracies were 
obtained when combining DRS with remote sensing covariates to esti
mate soil carbon (NRMSE = 0.075, 13 observations). It is worth 
mentioning that the use of several covariates together yielded accurate 
estimations in combination with XRF soil carbon, nitrogen, and soil 
texture (NRMSE = 0.083, 0.074, and 0.099, respectively). In addition, 
the use of more than one type of covariate and combined techniques also 
yielded accurate estimations (Table 8, see Section 4.5 for details).

4.4. Effect of the modeling technique on the accuracy of estimations

Fig. 11 presents the accuracy of the linear modeling (LM) and non- 
linear modeling (NLM) models filtered by the PSS technique and the 
group of soil properties. NLM achieved a lower accuracy (average 
NRMSE = 0.303) compared to LM (average NRMSE = 0.185). However, 
the accuracy of NLM was found to be superior to that of LM in specific 
cases. For point-based estimations, NLM outperforms LM: DRS achieved 
an average accuracy of 0.128, using 85 observations with NLM, 
compared to an NRMSE of 0.136, using 419 observations with LM. 

Similarly, XRF estimations with NLM yielded 0.125, 103 observations, 
and NRMSE = 0.136, 117 observations applying LM. In contrast, the 
average accuracy of using LM in the specific case of mapping soil 
properties with EMI/ER exceeds mapping studies using the same tech
nique and NLM (i.e., NRMSE = 0.162, 147 observations vs. NRMSE =
0.240, 37 observations, respectively). Similarly, the average accuracy of 
using LM to produce maps of soil properties using γ-ray spectroscopy 
also exceeds that of NLM (i.e., NRMSE = 0.161, 107 observations vs. 
NRMSE = 0.196, 29 observations, respectively). We did not find studies 
that utilized NLM for estimating hydrological properties with TDR/FDR 
in our dataset. Additionally, no NLM applications were found for the 
specific cases of EMI/ER and γ-ray spectroscopy when estimating acidic 
and basic properties, bulk density, and nitrogen. The combination of 
techniques seems to yield better estimations when using LM compared 
to NLM (NRMSE = 0.290, 292 observations vs. NRMSE = 0.527, 172 
observations, respectively). Notice the narrow difference in the com
parison between LM and NLM in the accuracy of predictions when point- 
based techniques are used, and in the case of the accuracy of soil maps, 
where that difference is significantly wider.

Fig. 9. Diagrams accounting for the normalized root-mean-square error (NRMSE) of each PSS technique estimating the groups of soil properties. NRMSE values over 
1.5 are excluded from this chart. DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; 
TDR/FDR: time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation ex
change capacity, C: carbon, N: nitrogen, BD: bulk density.
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4.5. Best combination of factors for soil property prediction

This section displays the mix of factors considered in this systematic 
review (i.e., PSS technique, covariate, and modeling method) that yields 
the most accurate estimations of soil properties. Table 9 reports on the 
top three combinations that achieved the highest accuracy (i.e., lowest 
NRMSE). The combination “DRS-NLM-no covariates” achieved the best 
solution for estimating soil properties, including acidic-basic properties, 
C, mineralogy, and the group of nutrients, CEC, and exchangeable bases. 
Similarly, the combination “EMI/ER-LM-no covariates” resulted in the 
best solution for estimating BD, soil depth, hydrological properties, and 
C. These two were the most common combinations among the whole set 
of best combinations. Optimal NRMSE scores were also obtained with 
the combinations: i) DRS-LM-covariates for estimating the acidic-basic 
group of properties; ii) DRS-LM-no covariates for estimating the group 
of nutrients, CEC, and exchangeable bases; iii) DRS-NLM-no covariates 
for estimating the soil carbon group, and nutrients, CEC, and 
exchangeable bases; iv) XRF-LM/NLM-no covariates to estimate soil 
texture; v) combined techniques (specifically, DRS + TDR/FDR)-LM- 
covariates to estimate BD.

5. Results on costs

5.1. Cost data from the literature review

Table 10 summarizes the costs derived from surveys with PSS. 
Chatterjee et al. (2021) estimated the cost of a PSS survey for predicting 

Table 6 
Best combinations of techniques for each soil property, according to the mean 
values of NRMSE. The combinations with an occurrence lower than five are 
excluded.

BEST 
technique

NRMSE

Groups of 
properties

combination Obs. Min. Avg. SD Max.

Acidic-basic 
properties

DRS + XRF 13 0.024 0.157 0.046 0.222

BD DRS + TDR/ 
FDR

9 0.069 0.098 0.026 0.141

C DRS + XRF 29 0.002 0.044 0.049 0.122
Hydrological 

properties
DRS + TDR/ 
FDR

18 0.025 0.050 0.021 0.108

Mineralogy DRS + XRF 18 0.085 0.113 0.015 0.137
N DRS + XRF 3 0.043 0.142 0.158 0.325
Nutrients, CEC, 

exchangeable 
bases

DRS + XRF 62 0.038 0.084 0.025 0.136

Texture DRS + EMI/ 
ER

17 0.026 0.184 0.133 0.468

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: 
electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflec
tometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear 
modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, 
N: nitrogen, BD: bulk density.

Fig. 10. Radar plot showing the accuracy (NRMSE) of the combined techniques compared with the single technique for each group. The average NRMSE based on a 
sample size of fewer than five is not included. DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical 
resistivity; TDR/FDR: time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: 
cation exchange capacity, C: carbon, N: nitrogen, BD: bulk density
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multiple soil properties for an 80-hectare field using combined tech
niques (XRF and EMI), acquisition of DEM by using LiDAR, acquisition 
of remote sensing imagery, the analysis of soil samples, and hiring 
personnel for predicting multiple soil properties at 12.000 $. Priori et al. 
(2019) estimated costs ranging from approximately 300 € per hectare for 

small areas (10–30 ha) to about 100 € per hectare for areas larger than 
500 ha. Malone et al. (2022) reported a unit cost of approximately 640 $ 
per hectare for PSS surveys, considering soil core scanning, soil sam
pling, and sample analysis. Van Egmond et al. (2018) reported that the 
cost calibration per hectare of soil texture using γ-ray spectroscopy, 

Table 7 
Average and standard deviation of NRMSE, and number of observations for spatializations of each group of properties (maps of soil properties) in the top and subsoil. 
Combined techniques include combinations of EMI/ER and γ-ray spectroscopy, as well as on-the-go Vis-NIR spectroscopy, which was considered in this category 
because it was always employed in multisensory assets to produce maps of soil properties.

Soil property group Layer Technique

EMI/ER γ-ray Combined techniques

Obs. Avg. SD Obs. Avg. SD Obs. Avg. SD

Acidic-basic properties Topsoil 2 0.244 0.149 − − − 21 0.196 0.073
​ Subsoil 29 0.153 0.098 9 0.123 0.070 13 0.231 0.171
BD Topsoil 2 0.153 0.040 1 0.150 0.039 10 0.103 0.044
​ Subsoil 4 0.316 0.124 1 0.400 0.104 7 0.275 0.133
Hydrological properties Topsoil 19 0.276 0.126 1 0.196 0.051 24 0.086 0.055
​ Subsoil 19 0.194 0.112 2 0.325 0.144 41 0.204 0.087
N Topsoil 1 0.185 0.048 ​ − − 3 0.230 0.095
​ Subsoil 1 0.118 0.030 2 0.220 0.064 3 0.375 0.329
Nutrient, CEC, and ex. Bases Topsoil 4 0.218 0.107 2 0.132 0.036 101 0.129 0.077
​ Subsoil 19 0.238 0.169 19 0.235 0.145 40 0.282 0.170
Soil depth Subsoil 44 0.121 0.049 2 0.174 0.050 − − −

Soil texture Topsoil 12 0.239 0.078 83 0.155 0.085 23 0.193 0.140
​ Subsoil 15 0.109 0.076 9 0.171 0.087 75 0.306 0.207
Mineralogy Topsoil − − − − − − 18 0.113 0.035

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni
trogen, BD: bulk density.

Table 8 
Number of observations, averages ± standard deviations of accuracies for groups of soil properties estimation using the other covariates such as morphometrical (i.e., 
DEM, and derivatives of DEM), soil properties (i.e., SOC, clay, etc.), remote sensing derivatives (i.e., spectral indices, single bands, etc.), and several covariates 
together.

Groups of Group of soil XRF γ-ray EMI/ER DRS Combined techniques

Covariates properties Obs. Avg. SD Obs. Avg. SD Obs. Avg. SD Obs. Avg. SD Obs. Avg. SD

Morphometry Acidic-basic properties 3 0.156 0.048 − − − 1 0.094 − 15 0.080 0.059 − − −

derivatives BD − − − − − − − − − 3 0.055 0.021 − − −

​ C − − − − − − 1 0.111 − − − − 32 2.923 3.457
​ Hydrological properties − − − − − − 1 0.369 − − − − 27 0.185 0.099
​ N 3 0.099 0.043 − − − 1 0.186 − − − − − − −

​ Nutrient, CEC, and ex. 
Bases

− − − − − − 1 0.148 − − − − 4 0.123 0.068

​ Soil depth − − − 1 0.159 − 24 0.106 0.046 − − − − − −

​ Soil texture 6 0.125 0.066 1 0.043 − 6 0.185 0.139 9 0.557 0.267 38 0.368 0.084
Soil Acidic-basic properties − − − − − − − − − 1 0.097 0.025 8 0.321 0.129
properties BD − − − − − − − − − − − − 7 0.141 0.055
​ C 13 0.133 0.055 − − − 2 0.274 0.155 19 0.194 0.097 6 0.271 0.192
​ Hydrological properties − − − − − − − − − − − − 11 0.134 0.019
​ N 12 0.189 0.130 − − − − − − 1 0.142 0.037 1 1.000 −

​ Nutrient, CEC, and ex. 
Bases

48 0.153 0.099 − − − − − − 2 0.127 0.041 4 0.544 0.930

​ Soil depth − − − − − − 1 0.100 − − − − − − −

​ Soil texture 2 0.137 0.048 − − − 6 0.234 0.147 10 0.113 0.076 12 0.393 0.488
Remote Acidic-basic properties − − − − − − − − − − − − 1 0.229 −

sensing C − − − − − − − − − 13 0.075 0.038 4 0.121 0.081
derivatives Hydrological properties − − − − − − − − − − − − 1 0.236 −

​ Nutrient, CEC, and ex. 
Bases

− − − − − − − − − − − − 2 0.255 0.199

​ Soil texture − − − − − − − − − 1 0.119 − 2 0.111 0.038
Several Acidic-basic properties 1 0.146 − − − − − − − − − − 5 0.259 0.131
covariates C 1 0.083 − − − − − − − − − − 20 0.059 0.023
together Hydrological properties − − − − − − 21 0.292 0.185 − − − 13 0.174 0.061
​ N 1 0.074 − − − − − − − − − − − − −

​ Nutrient, CEC, and ex. 
Bases

− − − − − − − − − − − − 30 0.203 0.163

​ Soil texture 3 0.099 0.047 1 0.045 − − − − − − − 4 0.126 0.077

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni
trogen, BD: bulk density.
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including soil analysis, ranges from 60 to 67 € when conducted with 
UAV or car-borne platforms, while the cost reaches 77 € when performed 
on foot.

5.2. Cost data from the companies’ survey

The analysis of questionnaires provided insights into the costs asso
ciated with PSS surveys carried out by private sector companies. Out of 
the 90 companies contacted, only 24 responded. Most of the replying 
companies operate mainly in the European Union, although companies 
from North America and Western Asia also provided information. Due to 
the sensitive nature of cost information, responses varied significantly. 
Nevertheless, we summarized descriptive statistics of quantitative data 
extracted from questions related to in-field and service costs (Table 11).

Companies reported covering a range of one to 300 ha per day using 
on-the-go sensors. The minimum daily coverage was four ha achieved on 
foot using γ-ray spectrometers and EMI sensors (individually or com
bined). The maximum coverage was 300 ha using a car platform for 
γ-ray spectroscopy surveys. The median daily coverage was about 30 ha. 
Generally, the results show that the wider the covered area is, the lower 
the cost per hectare. The median cost of a surveyed hectare varies 
around 142 €, with a minimum of 100 € when car or quad platforms are 
employed. Notwithstanding, surveys with more than one sensor or 
highly specialized robotic instruments with multiple sensors can reach 
very high costs both daily and per hectare (Table 11). The average cost 
for a PSS service per day oscillated from 2,575 € (Q1) to 7,025 € (Q3), 
while the daily average cost of renting sensors varied from 300 € to 600 
€. The main product provided by all companies was soil maps. Only a 

few companies offered soil sample scanning using spectroscopy, such as 
vis-NIR or MIR spectroscopy, to track chemical properties such as soil 
organic carbon (SOC), pH, and nutrients. None of the responding com
panies offered a characterization of soil samples using XRF. Most com
panies identified texture, water content, salinity, and nutrients as the 
most important properties to measure for PA purposes due to their 
impact on water and fertilization management. The most requested 
service was soil texture mapping with EMI and γ-ray spectrometers, 
followed by SOC using vis-NIR spectroscopy. Only three companies re
ported providing GPR surveys, and one of these applied this technique 
for geo-engineering services rather than PA. The number of soil samples 
for soil map calibration and validation varies widely among companies. 
Some companies reported no soil sampling and claimed to use covariates 
such as the digital elevation model (DEM) and its derivatives, geological 
maps, satellite imagery, coring, and information provided by farmers to 
validate the predictions of soil properties. Most companies collect at 
least one sample every 2–4 ha. In particular, five out of eight companies 
used less than 1 sample per hectare (0.2–0.5), two companies reported 
taking four samples per hectare, and one company claimed to take ten 
samples. Some companies declared that they base their sampling on the 
extension of geomorphological units. Additionally, according to the 
questionnaires, the cost of soil sample analysis varies significantly by 
region, ranging from 60 to 250 € per sample. In contrast, the GLOSOLAN 
Standard Operating Procedures (SOPs) established a cost range from 30 
to 80 € per sample for a complete standard soil analysis.

Looking at specifics, the cost of PSS is primarily driven by personnel 
costs (e.g., fieldwork, logistics, and travel to the area of interest), fol
lowed by data analysis (including communication), and equipment costs 

Fig. 11. Effect of applying linear modeling techniques (e.g., multiple regression, partial-least square regression) and non-linear modeling techniques (e.g., random 
forest, regression trees, support vector machine) on the accuracy (NRMSE) of PSS techniques estimating groups of soil properties. NRMSE values over 1.5 are 
excluded from this chart. DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: 
time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange ca
pacity, C: carbon, N: nitrogen, BD: bulk density.
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(e.g., sensors and materials) in last place. On average, companies attri
bute 39 % of the total cost to the personnel category, 35 % to the data 
analysis category, and 11 % to the equipment category (Fig. 12). Fig. 12
illustrates the occurrence of companies voting for each category of cost. 
First, a consensus was found among the majority of companies assessing 

the impact of the equipment on the final cost of PSS services, which 
ranges from 0 to 5 %. Second, 46 % of the companies reported that the 
cost of data analysis has an impact ranging from 25 to 50 % of the total 
cost of PSS services. Third, the impact of personnel costs on the final 
price of PSS services is the most variable, according to the replies of 
companies, which are homogeneously distributed within the range 
5–75 %, with a higher occurrence in the central range.

Around 50 % of companies report that field conditions, rugged 
morphology, and access difficulties can increase the final cost by 25–50 
% (Fig. 13), as these factors affect the number of hectares covered daily. 
However, it is noteworthy that companies typically notify customers of 
such cost increases during the quotation phase.

6. Discussion

PA relies on extensive data collection for real-time soil analysis and 
management. This simple statement is the driving force behind the 
recent rapid advancement of technology, which enables accurate 

Table 9 
Top-three combination of factors showing the most accurate estimations for each group of soil properties based on the NRMSE.

Groups of properties Best combination of factors Type of estimation Records NRMSE

PSS technique Model technique Use of covariates n. Min Mean SD Max

Acidic-basic properties DRS LM Yes Point 16 0.038 0.081 0.025 0.117
γ-ray LM No Map 9 0.01 0.123 0.083 0.228
DRS NLM No Point 9 0.043 0.128 0.051 0.216

BD Combined techniques LM Yes Point/Map 7 0.069 0.095 0.027 0.139
EMI/ER LM No Map 6 0.152 0.262 0.107 0.433

C DRS NLM No Point 26 0.014 0.092 0.1 0.553
EMI/ER LM No Map 10 0.028 0.105 0.04 0.147
Combined techniques LM No Point/Map 17 0.002 0.11 0.043 0.188

Hydrological properties Combined techniques NLM No Point/Map 8 0.025 0.052 0.031 0.108
TDR/FDR LM Yes Point 22 0.02 0.145 0.107 0.359
EMI/ER LM No Map 12 0.083 0.161 0.072 0.32

Mineralogy XRF NLM No Point 18 0.09 0.104 0.012 0.136
Combined techniques NLM No Point/Map 18 0.085 0.113 0.015 0.137
DRS NLM No Point 18 0.135 0.161 0.014 0.191

N XRF LM Yes Point 7 0.074 0.134 0.062 0.25
DRS LM No Point 23 0.026 0.136 0.093 0.375
XRF NLM Yes Point 9 0.141 0.189 0.048 0.258

Nutrient, CEC, and ex. bases DRS LM No Point 65 0.041 0.085 0.033 0.173
DRS NLM No Point 11 0.035 0.089 0.047 0.178
XRF LM No Point 42 0 0.116 0.09 0.44

Profile features and other properties DRS LM No Point 10 0.017 0.105 0.039 0.160
Soil depth EMI/ER LM No Map 12 0.099 0.121 0.023 0.168

EMI/ER LM Yes Map 31 0.089 0.123 0.039 0.199
Texture XRF LM No Point 5 0.074 0.093 0.018 0.113

XRF NLM No Point 8 0.06 0.098 0.03 0.134
XRF LM Yes Point 11 0.075 0.12 0.028 0.163

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni
trogen, BD: bulk density.

Table 10 
Cost breakdown and main parameters for defining budgets for precision mapping activities. Costs are converted into euros for comparison.

Scenario Fieldwork Processing Modeling Total 
(€)

Cost/ha 
(€)

Area 
(ha)

Sampling 
locations

N 
samples

Sample 
density

Invested 
time (h)

Reference

EMI + DRS +
XRF

470 18,170 270 19,950 250 80 50 288 1.6 16 Chatterjee et al., 
2021

γ-ray + EMI 
+ DRS

3,100 73,685 10,850 28,437 398 220 300 380 0.7 − Malone et al., 
2022

γ-ray 1,200 2,685 − 3,935 78 50 15 15 3.3 − Van Egmond et al., 
2018

EMI 1,250 − − − 130 195 36 72 5.4 60 Priori et al., 2019
GPR + EMI 714 − 4,463 − 1,035 5 − − − 128 Chiarantini et al., 

2011
ER − − 3,692 − 1,992 5 − − − 104 Chiarantini et al., 

2011

DRS: diffuse reflectance spectroscopy; γ-ray: gamma-ray spectroscopy; EMI: electromagnetic induction; ER: electrical resistivity; XRF: X-ray fluorescence; GPR: 
ground-penetrating radar.

Table 11 
Summary of quantitative data extracted from the companies’ questionnaire re
plies (n = 24). Data are independent of the PSS technique used. The daily cost of 
the service includes data analysis and reporting.

Report Min Q1 Median Q3 Max

Hectares (ha) per day 4 15 30 100 300
Space (m) between lines − 13 20 125 250
Cost (€) per hectare (ha) 100 120 142 362 1,300
Cost (€) of the service per day 400 2,575 4,510 7,025 10,070
Cost (€) of renting PSS sensors per 

day
60 300 300 600 800
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measurements at a reasonable cost. Fundamental research on electro
magnetism has brought the possibility of developing portable and 
affordable electromagnetic sensors that scan signal responses (i.e., PSS 

proxies), which can be related to physicochemical soil properties and 
element concentration and, in turn, to soil health and fertility. Estab
lishing relationships between specific properties and the response of 

Fig. 12. Assignment of the impact of each single cost category on the final price of a PSS service as provided by companies. Colors represent the impact (i.e., 
percentage ranges) of each class of cost (i.e., personnel, equipment, and data analysis) on the final cost of the PSS service. The width of each percentage range (colors) 
within each class of cost bars represents the consensus of companies (i.e., the sum of times that companies assessed specific percentage ranges to each class of cost). 
For example, in the case of personnel cost, the 28% of companies attributed an impact of personnel cost on the total cost of a PSS service that ranges from 5 to 25% 
(yellow); the 41% of companies assessed an impact of personnel cost on the total cost of a PSS service that ranges from 25 to 50% (orange); the 28% of companies 
found consensus in attributing an impact of personnel cost that ranges from 50 to 75% (red) on the total cost of a PSS service; and finally, the 3% of companies 
declared that the final cost of a PSS services depends up to the 75% on personnel cost (purple). The black squares and the value close to them represent the weighted 
average of each class of cost, calculated on the basis of the sum of replies by each percentage range, and divided by the total number of replies.

Fig. 13. Assignment of the impact of the different categories of difficulties found during the survey on the final price of a PSS service as reported by companies. 
Colors represent the weight (i.e., percentage ranges) of each category of impact (i.e., state of soil, rugged morphology, and difficulty of access) on the final cost of the 
PSS service. The width of each percentage range (colors) within each category of impact bars represents the consensus of companies (i.e., the sum of times that 
companies assessed specific percentage ranges to each class of cost). For example, in the case of the state of soil, 19% of companies weighted the state of soil’s impact 
on the final cost of PSS services between 0 and 5% (green); 29% of companies weighted the state of soil’s impact on the final cost of PSS services between 5 and 25%; 
43% of companies weighted the state of soil’s impact on the final cost of PSS services between 25 and 50%; and finally, 10% of companies weighted the state of soil’s 
impact on the final cost of PSS services between 50 and 75%. The black squares and the value close to them represent the weighted average of each category of 
impact, calculated on the basis of the sum of replies by each percentage range, and divided by the total number of replies.
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proximal sensors is possible due to calibration and validation analysis. 
Such relationships can be case-specific, as in the example of spatializing 
the clay content of agricultural fields using electromagnetic induction, 
or, instead, less-local calibrations, as it is the implementation of spectral 
libraries to determine the content of soil samples in SOC and minerals 
using DRS, for instance. The first case enables farmers to implement 
smarter crop management, while the second case implies a reduction in 
time and laboratory materials required for conventional soil analysis 
(wet chemistry). However, in both cases, the use of PSS proxies implies a 
significant decrease in the cost associated with enhancing knowledge 
concerning PA. It is essential to note that PSS does not eliminate the 
need for soil sampling and analysis but rather significantly reduces the 
need for multiple soil samples and, subsequently, the cost of laboratory 
analyses. This led us to the fundamental questions of this systematic 
review: 1) How much accuracy can we expect from relating PSS proxies 
to specific soil properties or element concentrations? And 2) how much 
does it cost to have that information?

6.1. Evaluation of accuracy

6.1.1. Point-based techniques
DRS is the PSS technique that yielded the most accurate average 

estimations in all the groups of soil properties. The majority of NRMSE 
records collected in studies using DRS are laboratory measurements; in 
other words, DRS applications in the field, using handheld portable 
sensors and spatializations, are underrepresented. However, a signifi
cant availability of devices and sensors based on DRS is available for 
measuring crop health variables, which can be employed for soil 
monitoring. Our analysis indicates that DRS was able to estimate the 
most significant number of soil properties compared to the other PSS 
techniques. The most popular applications of DRS are to determine soil 
organic matter (or carbon), nutrients, and soil texture. The possibility of 
creating calibrated models based on SSLs enables the rapid, low-cost, 
and accurate determination of multiple properties, including acidic- 
basic properties, soil texture, and nitrogen, using a relatively small 
number of soil samples (Guerrero et al., 2016; Barbetti et al., 2025). 
Recent studies have demonstrated the potential of devices like the 
SoilPRO (Ben-Dor et al., 2017) or NixPro (Cascante et al., 2025) for 
handheld DRS sensors to collect highly stable measurements of soil 
surface spectra in the field (see further details in Ben-Dor et al., 2023). 
Additionally, Castaldi et al. (2025) demonstrated that field spectra can 
be aligned with spectra in lab-based SSLs, which is a huge advantage for 
calibration efficiency, despite the influence of soil moisture and surface 
roughness. Drone-borne multi- and hyperspectral sensors are also pop
ular in soil mapping and soil fertility studies (Crucil et al., 2019). 
Although DSM with DRS has been tempted by scanning soil cores and 
profiles, this PSS technique fails to estimate soil properties in the subsoil 
because the scanning is limited to a few millimeters into the soil surface 
or the soil sample surface.

After DRS, XRF is the most accurate point-based PSS technique, 
showing the narrowest standard deviation of NRMSE values. This is 
presumably due to the sensor calibration performed by the manufac
turer. XRF showed the highest average accuracy in estimating properties 
of the mineralogy and soil texture groups. In a recent and comprehensive 
review article, Gozukara et al., (2025) also found good accuracy of XRF 
for sand and clay prediction, although they based their evaluation on R2 

rather than NRMSE. Additionally, XRF demonstrated the highest accu
racy in estimating BD, although only one observation was found 
(Vasques et al., 2020). Most of the collected soil properties estimations 
are in-field applications with hand-held pXRF sensors, in contrast to 
DRS. The use of XRF is widespread in determining element concentra
tions, including nutrients and exchangeable bases, and such properties 
as cation exchange capacity, acidic-basic properties, nitrogen, and 
mineralogy. The advantages of the pXRF technique include fast scan
ning, no sample preparation or destruction required for scanning, no 
generation of laboratory residues, and a moderate cost of equipment. 

However, it presents some disadvantages, such as the state of the sample 
(i.e., moisture, organic matter) causing signal attenuation, dependence 
of the results on the manufacturer's calibration algorithm, and the low 
penetration of the X-ray; therefore, as in the DRS, the result of the 
scanning pertains only to the sample surface (see Ravansari et al., 2020
for further details).

Although most PSS techniques serve multiple purposes, the TDR/ 
FDR technique stands out as the most specific. In fact, all the works 
considered in this review used TDR and FDR to estimate soil water 
content. Also, the modeling of TDR/FDR data was limited to linear 
models. However, this suggests that the TDR and FDR are well-known 
techniques, with predictions supported by the bibliography, as they 
require minimal calibration effort. In fact, reflectometry is a technique 
that accounts for high versatility and applicability in a wide range of 
environments.

6.1.2. On-the-go techniques
The on-the-go PSS techniques, such as electromagnetic induction and 

γ-ray spectroscopy, achieved lower accuracy compared to point-based 
technologies, which is expected due to the type of product generated. 
Instead, they are highly accurate PSS techniques for producing soil 
maps, a fact that is highly valuable in PA due to their capacity to define 
management zones with specific pedological characteristics (Møller 
et al., 2021) and in water management (Zare et al., 2020). Notably, the 
application of EMI/ER in crop management is particularly remarkable. 
Sensors measuring the electrical conductivity of soils and geoelectrical 
resistivity can be related to derived properties and ecosystem services. 
An advantage of the EMI sensors is their capacity for 3D mapping. For 
instance, Zare et al. (2015) successfully estimated soil salinity to a depth 
of 1 m, whereas Zhao et al. (2019) estimated the clay content up to a 
depth of 10 m using two EMI sensors.

Γ-ray spectroscopy contributes to PA due to the relationships be
tween radionuclides with water management, soil texture, mineralogy, 
nutrients, and acidic-basic properties. Similarly, soil carbon has been 
successfully estimated using γ-ray spectroscopy, yielding highly accu
rate measurements, despite its apparent independence from radionu
clides and organic matter. However, this is possible because of the 
absorption of organic matter by clay soils. Instead, γ-ray spectroscopy 
appears to encounter limitations in measurements of the topsoil due to 
signal attenuation from deeper soil layers. Successful estimations of soil 
depth and buried cemented layers have been determined with γ-ray 
sensors. Although γ-ray spectroscopy itself is limited in determining 
several soil properties, such as soil depth (Koganti et al., 2023), radio
nuclide concentration is highly correlated with other factors related to 
weathering, pedogenesis, soil transition, colluvial transport, and alluvial 
deposition (de Mello et al., 2021).

6.1.3. Imaging techniques (GPR)
Ground Penetrating Radar (GPR) boasts the best resolution among 

near-surface geophysical technologies. Yet its application in agricultural 
soils remains confined mainly to identifying soil depth, morphology, 
horizons, moisture, and underground infrastructure such as drainage or 
gas pipes (Davis and Annan, 1989; Klotzsche et al., 2018; Koganti et al., 
2020; Parry et al., 2014; Pathirana et al., 2023). Although widely used in 
civil engineering, industrial, and archaeological contexts, the primary 
reasons for GPR's limited adoption in precision agriculture are its com
plex data interpretation and the higher cost of surveys compared to EMI 
and γ-ray methods. Additionally, the GPR's penetration depth can be 
considerably hampered by the soil's electrical conductivity. The devel
opment of customized, drone-mounted GPR systems for topsoil EC or 
moisture mapping offers a solution, making surveys more affordable and 
less reliant on GPR specialists (Wu et al., 2019; 2022). However, current 
regulations significantly constrain these efforts, permitting drone GPR 
surveys only within 1 m of the terrain. The continued evolution of this 
technology is contingent on future regulatory changes. Another chal
lenge while working with a GPR is the careful choice of antenna 
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bandwidths depending on the application needs. There are GPR systems 
in the market, like stepped frequency continuous wave units (e.g., 
Koganti et al., 2020), to address this. However, these units are expensive 
and often can only be afforded by big engineering companies.

6.1.4. Soil spectral libraries (SSLs)
The case of spectral libraries must be considered independently. 

Since they represent non-local calibrations, the methodology involves 
distinct steps with specific sources of uncertainty. For example, vis-NIR- 
SWIR spectra acquired in the field are inherently affected by uncon
trolled conditions and, therefore, models trained on SSLs, typically 
composed of dry, sieved samples analyzed in the lab, often fail when 
applied directly to field spectra (Castaldi et al., 2025). Other factors that 
produce uncertainty are the prediction methods. For instance, Zhong 
et al. (2021) use non-linear convolutional neural networks (i.e., CNNs) 
for forecasting soil properties with the LUCAS spectral library. Liu et al. 
(2019) demonstrated that linear models (i.e., PLSR) were unable to 
predict SOC content in large-scale spectral libraries accurately. How
ever, the GEO-CRADLE spectral library (Tziolas et al., 2019) used local 
Gaussian regressions (LGR). In fact, investing in the improvement of 
modeling algorithms allows for better predictions. However, a recent 
study by Castaldi et al. (2025) has focused on harmonization and 
spectral pretreatment to align field spectra with lab-based SSLs, a 
considerable advantage for calibration efficiency. They demonstrated 
that the conditions in which spectra are collected (i.e., primarily 
roughness and moisture) have a significant effect on predictions made 
with SSL, and they propose a routine based on International Soil Stan
dard (ISS) harmonization and the application of External Parameter 
Orthogonalization (EPO) to mitigate the effects of these disturbing fac
tors. A fact that subsequently improved the prediction of such properties 
as SOC. Similarly, new efforts found it challenging to estimate soil 
properties with global SSLs due to the different characteristics of the 
observations in the SSL and the local data, which cause their conditional 
and marginal distributions to differ (Viscarra Rossel et al., 2024). 
Therefore, the authors propose a transfer learning method that uses a 
small number of SOC values and corresponding spectra collected in local 
areas to transfer relevant information from large and diverse global 
SSLs. They found that fewer than 30 local observations produce more 
accurate and stable estimates of SOC than modelling with only the local 
data.

Similarly, regional calibration efforts using γ-ray spectra have been 
employed to predict clay content, utilizing 232Th, in northern Europe 
(van Egmond et al., 2018) and Mediterranean areas (Coulouma et al., 
2016). Similar to vis-NIR SSLs, regional calibrations encounter calibra
tion difficulties related to local characteristics of samples and spatial 
pedogenetic factors. In γ-ray SSLs, mineralogy, particularly igneous 
pebbles such as chlorite, is a source of uncertainty (Coulouma et al., 
2016).

6.1.5. Combined techniques
The most variable overall accuracy was observed in studies that 

applied PSS techniques in combination with multi-sensor assets. Addi
tionally, the combination of techniques never showed the highest 
average accuracy value among all the groups of properties. Presumably, 
this is due to the additional uncertainty associated with data fusion of 
PSS proxies. Notwithstanding, specific combinations yielded highly ac
curate estimations. For example, the combination of TDR with EMI be
comes a powerful tool because such an application requires minimum 
soil sampling, as TDR sensor calibration yields immediate measurements 
of water content and electrical conductivity. The combination of point- 
based techniques yields highly accurate estimations of almost the entire 
spectrum of soil properties considered in this review; however, their 
estimations are limited to contact with the soil surface. For example, 
technological advancements introduced portable DRS and XRF sensors 
in the last few years, enabling operability in the field and facilitating 
calibration and validation of spectral libraries. Although the almost 

immediate determination of soil properties in the field (via previous 
spectral model calibration) is desirable, converting this information into 
a thematic map of soil properties requires further processing. Our 
analysis revealed that the most common combination was EMI and γ-ray 
sensors, primarily focused on determining soil texture, soil depth, 
identifying cemented layers, hydrological behavior of fields, salinity, 
nutrients, exchangeable bases, and clay content and mineralogy. The 
combination of DRS and TDR sensors yielded highly accurate estima
tions of hydrological properties; however, they are point-based. On the 
other hand, DRS spectra and modeling can be successfully applied to 
accurately obtain soil property information and provide sufficient input 
for DSM, as demonstrated by Zhang et al. (2020), as well as indicated by 
our analysis, which identified the combination of DRS and EMI to be a 
good strategy to estimate soil texture.

The integration of point-based and on-the-go PSS techniques offers a 
powerful strategy to improve soil property estimation and DSM, 
balancing the high accuracy of discrete measurements from sensors such 
as TDR, portable DRS, and XRF with the continuous spatial coverage 
provided by on-the-go instruments like EMI, γ-ray, and multi-sensor 
arrays (Wangeci et al., 2024; Loria et al., 2024; Schmidinger et al., 
2024; Grunwald et al., 2024). While data fusion can introduce addi
tional uncertainty, specific combinations, such as TDR with EMI or DRS 
with EMI, enable rapid, field-based estimation of water content, elec
trical conductivity, soil texture, clay mineralogy, and salinity with 
minimal soil sampling (Musa et al., 2024; Zhang et al., 2024). Local 
calibration approaches provide high-precision, site-specific predictions 
that account for micro-scale heterogeneity, whereas global calibration 
models leverage multi-region datasets for broader applicability but may 
introduce additional uncertainty due to soil-type and environmental 
variability (Hutengs et al., 2024; Batjes et al., 2024; Filippi et al., 2024). 
Advances in machine learning, including transfer learning and ensemble 
modeling, allow integration of local and global calibration schemes, 
improving predictive accuracy and facilitating the creation of high- 
resolution, spatially explicit soil property maps that support precision 
agriculture, carbon accounting, and ecosystem management (Grunwald 
et al., 2024; Rosso et al., 2025).

6.2. Factors influencing the outcomes of proximal soil sensing

The accuracy with which a specific soil property is estimated using 
any PSS technique not only depends on the sensor but rather is the result 
of a step-by-step process that combines the selection of sampling loca
tions, soil sampling and fieldwork, accuracy of wet chemistry analyses, 
and calibration and validation of statistical models. Any step is subject to 
inherent sources of error that influence the overall accuracy of the 
process.

It is essential to emphasize that the general predictive ability of 
mobile sensors is dependent on soil spatial variability, as well as the 
concentrations and ranges of soil properties (Knadel et al., 2015). The 
employed models have a substantial impact on the estimations, as 
demonstrated by our analysis. In modeling studies using DRS, specific 
data preprocessing steps, such as calculating spectral derivatives (Hong 
et al., 2019), spectral scatter correction, and continuum removal pre
processing, enhance the predictions of soil properties, particularly SOC 
(Carnieletto et al., 2018). From our analysis, it can be inferred that 
overall, there is no clear differentiation between estimations of soil 
properties obtained using non-linear modeling and DRS compared to 
those obtained with linear models. However, the differentiation is 
evident when examining the individual properties. Properties that are 
difficult to estimate, such as bulk density and acidic-basic properties, 
seem to respond better to non-linear modeling compared to properties 
that have known spectral signatures, which achieve better estimations 
with linear modeling. In general, LM outperformed NLM, but a strong 
effect on the accuracy of including covariates was identified in the group 
of NLM records.

In DSM studies that employ several on-the-go PSS techniques, such as 
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EMI and γ-ray, comparisons have been conducted between linear, non- 
linear, and hybrid modeling (i.e., linear or non-linear regressions to 
analyze trends and then kriging the residuals). Results showed that the 
accuracy of estimations varied, of course, depending on the modeling 
technique applied, the number of covariates used, and the number of 
samples used for calibration (Arshad et al., 2021). What is noteworthy is 
that the effect of these factors on the accuracy of the estimations appears 
to be case-specific; in other words, accuracy varied strongly depending 
on the property being estimated and the local characteristics of the field, 
a key difference from predicting properties using SSLs. For instance, 
studies have been conducted to predict soil properties in fields using 
models calibrated in adjacent fields, with negative results (Triantifilis 
et al., 2024). Besides, several studies have noted that a minimum of 30 
soil samples is required to obtain acceptable prediction models (Koganti 
et al., 2023). We found that the accuracy of soil property estimation 
using NLMs generally improves with an increase in the number of 
samples and with the moderate addition of covariates. In contrast, the 
addition of covariates appears to have a noisy effect on the estimation of 
soil properties using LMs.

In the PA context, the accuracy of soil property spatializations using 
PSS can be influenced by management practices and the time of year 
when surveys are conducted (i.e., the soil's condition), as demonstrated 
by Pedrera-Parrilla et al. (2016). It is expected that more accurate results 
will be achieved at the soil surface due to the uniform environment in 
the plow layer (Zhang et al., 2020). Additionally, various sensors have 
different limitations in different environments, and thus, PSS largely 
relies on site-specific calibrations after pre-processing or applying 
correction algorithms to the collected data.

6.3. Cost of proximal soil sensing from different perspectives

6.3.1. Research perspective
The literature review on cost highlights several efforts to analyze the 

cost structure of PSS applications. Chatterjee et al. (2021) examined 
various cost components, including hardware or rental expenses, data 
preprocessing and analysis, and modeling and mapping. Additionally, 
authors focused on combining proximal sensors with morphometric and 
remote sensing covariates, resulting in maps of land management zones 
with reasonable accuracy while maintaining moderate survey costs. For 
a complete and rapid digital soil mapping of 80 ha, the reported cost is 
1,250 € (15.50 €/ha). This amount, excluding traditional soil analysis 
costs, is divided as follows: rental cost (450 €), preprocessing cost (530 
€), and modeling cost (270 €), with a total working time of 16 h. Malone 
et al. (2022) reported the total cost per hectare of ~ 400 € for a rapid and 
granular farm landscape characterization with a sample density of 0.7/ 
ha. This detection includes on-the-go proximal soil surveys, soil core 
sampling and scanning, soil analysis (190 € per sample), and subsequent 
data analysis and modeling to create 3D-like digital soil attribute maps. 
These two authors agree on the significant advantage of using proximal 
sensors compared to traditional soil surveys, estimating a gain of ~ 80 
%. The technical report by van Egmond et al. (2018) describes an ad
vantageous process that utilizes moving gamma radiation to determine 
the texture of topsoil. The effectiveness of this method is due to utilizing 
existing libraries rather than collecting and analyzing new samples. This 
approach may reduce the cost per hectare by a factor of between 3 and 
10. Priori et al. (2019) observed, through a market survey, that the total 
costs of high-detail soil surveys using PSS are primarily dependent on 
the size of the investigation area. For instance, using a case study of 195 
ha with an EMI sensor, the authors reported a cost of approximately 130 
€/ha, with a sampling density of 5.4 samples per hectare. Although the 
work of Chiarantini and Diafas (2011) is no longer aligned with current 
market trends, it remains a milestone in estimating the cost-effectiveness 
of digital soil mapping.

For point-based measurements, Li et al. (2022) proposed an equation 
that calculates the cost-effectiveness of spectroscopy, based on the 
number of samples; the data acquisition capacity and the laboratory 

capacity to prepare samples for analysis or spectroscopy, the accuracy of 
measurements based on the mean squared error (MSE), and compares 
the whole process to the cost of the dry combustion method, considering 
several spectroradiometers. The authors analytically demonstrated that 
spectroscopy is a reliable alternative, reducing costs by more than 60 % 
compared to conventional laboratory methods. Similarly, England and 
Viscarra Rossel et al. (2018) reported a unit cost of 5 € for vis-NIR 
analysis of dried ground samples and 9 € for mid-IR analysis of dried, 
finely ground samples.

However, a common trait across these studies is the implementation 
of high spatial and temporal resolution soil assessments. While scien
tifically valuable, such approaches result in costs that are too high from 
the standpoint of most small-scale farmers and agricultural companies.

6.3.2. Company perspective
Accurate information on the costs of PA services is scarce in the 

literature, making it challenging to draw reasonable comparisons. 
However, we found that the average cost per hectare surveyed is around 
375 €, with a minimum of 100 € when using motorized platforms, ac
cording to private companies. The price per hectare can be even lower if 
flying platforms such as UAVs are used. This aligns with current market 
trends and the literature referenced earlier. Unfortunately, estimating 
the costs of soil surveys remains uncertain and variable, depending on 
the survey's aim, the number of data collected, the specifics of fieldwork, 
and difficulties. However, we identified two main factors that allow PSS 
surveys to be comparable: the scale of the study and sampling density.

Costs can be divided into three broad classes: 1) Fieldwork, including 
the acquisition with proximal sensors, soil sampling, rental costs and 
possibly the depreciation cost share of the instruments; 2) preparation 
and preprocessing including the selection of survey sites, the processing 
and treatment of the data collected in the field, and the costs of labo
ratory analysis; 3) the modeling and reporting including the production 
of outputs through modeling with model validation, calibration, and 
map generation.

Companies declare that the final price includes equipment, 
personnel, and data analysis costs, but excludes costs derived from ve
hicles, such as tractors, fuel, and driver expenses. That fact could in
crease the final price by up to 30 %. Costs can vary significantly due to 
difficulties that may arise during surveys, primarily concerning acces
sibility, the state of growth and crop cycle, the state of the soil due to 
harsh meteorological conditions, and rugged morphology, which often 
imply an extra charge in the final price. However, such modifications to 
the final cost were previously communicated by companies. The cost of 
mapping services is also affected by geographic areas. For example, the 
time of year when the survey is conducted is significant for how much 
can be mapped in a single field day, given the hours of daylight available 
in high-latitude countries. In fact, the daily surveyed area conducted 
during the summer can double the daily surveyed area if conducted 
during the winter season. In Denmark, some companies have declared a 
10 % price increase due to difficulties accessing the fields. Still, in other 
Scandinavian countries with mountains, the increase is much higher. 
Other companies declare that they do not charge extra for accessibility 
difficulties, but such replies were associated with companies that pri
marily used flying platforms for surveying in more temperate regions. 
Personnel and data analysis costs are often more significant than 
equipment costs because they are typically adequately covered during 
the useful life of the instruments.

Based on the replies to the questionnaires, we deduced that the 
reporting of results is rarely linked to accuracy or uncertainty values, 
probably because performing such an analysis requires a larger number 
of soil samples. This fact would have a direct impact on the final price of 
the service. Data policy is a sensitive matter among companies. For 
example, some companies have open data policies, providing customers 
with full access to raw data, whereas others are closed about the data, 
interpretations, and algorithms employed. This fact seems to create 
disagreement among companies. Finally, companies regret that the 
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majority of farmers lack interest in mapping services, a fact that impacts 
the sector's business efficiency.

6.3.3. Client perspective
A detailed economic evaluation approach was developed to probe 

and assess the willingness-to-pay (WTP) of potential users of digital soil 
maps, as part of the European DIGISOIL project (Diafas et al., 2013). 
WTP can be defined as the maximum amount someone is willing to pay 
for a product or service (Diafas et al., 2013). According to the results of 
Chiarantini and Diafas (2011) WTP depends on the resolution and stated 
accuracy of digital soil maps for key soil properties. For example, the 
average end user would be WTP 263 € per hectare for a low-accuracy 
measurement of carbon content. However, the same users would be 
WTP 789 € per hectare (three times the previous cost) for a highly ac
curate measurement. Instead, the low demand by farmers for soil 
mapping services may stem from harmful practices and the provision of 
poor-quality products, sometimes in exchange for an excessive amount 
of money. Word of mouth can negatively influence farmers' perception 
of digital soil mapping products.

6.4. Future perspectives and challenges

Future developments in PSS and DSM will depend on extending the 
applicability of sensing technologies across a broader spectrum of soil 
types, climatic regions, and management systems. This requires exten
sive, harmonized calibration datasets and coordinated validation 
frameworks to avoid inappropriate use and growing user skepticism 
(Najdenko et al., 2024; Batjes et al., 2024; Hengl et al., 2025). Some soil 
properties, such as bulk density and soil compaction, remain difficult to 
predict reliably, despite decades of work with passive γ-ray detection 
(van Egmond et al., 2024; Carrera et al., 2024). Emerging active γ-ray 
systems offer a promising alternative but face regulatory hurdles and a 
need for extensive cross-regional calibration (van Egmond et al., 2024). 
In parallel, new sensor families ranging from portable LIBS (laser 
induced breakdown spectroscopy), microwave, and spectrofluorometric 
devices to magnetic susceptibility meters and cosmic-ray neutron probes 
are rapidly maturing and will likely enter routine monitoring pipelines 
once robust comparative benchmarks are established (Wigneron et al., 
2017; Wangeci et al., 2024; Loria et al., 2024; Gianessi et al., 2024; 
Zhang et al., 2024). These advances coincide with the rise of integrated 
multi-sensor platforms and low-cost wireless networks, which may 
finally enable reliable, real-time transmission of high-resolution soil 
data from mobile platforms, something currently feasible only for sta
tionary systems (Musa et al., 2024; Tu et al., 2022; Schmidinger et al., 
2024). Emerging sensor models are expected to expand the PSS toolbox 
beyond established electromagnetic techniques, with adoption driven 
by comparative benchmarks, cross-site calibration robustness, and reg
ulatory acceptance rather than by technological novelty alone.

The fusion of PSS and remote sensing is expected to become a 
cornerstone of future soil monitoring and measurement, reporting, and 
verification (MRV) systems for soil carbon and other ecosystem services. 
Recent satellite missions (e.g., Sentinel-2, PRISMA, EnMAP, SAR con
stellations) have demonstrated strong potential for large-scale spatiali
zation of soil properties and land-management characterization (Zhou 
et al., 2025; Filippi et al., 2024). Yet, remote sensing alone still produces 
sub-optimal predictions; the most promising advances emerge when 
proximal, UAV-borne, tractor-mounted, or robotic sensors are inte
grated with multispectral, hyperspectral, and radar observations 
(Schmidinger et al., 2024). Multi-tier verification frameworks, such as 
those described for carbon MRV by Batjes et al. (2024) and operation
alized in MARVIC and MRV4SOC, illustrate how modular data fusion 
can enhance both accuracy and transparency. Examples from archae
ology and geoheritage, such as mapping extinct Nile branches using 
radar imagery calibrated with GPR and electromagnetic tomography 
(EMT) surveys, highlight the broader cross-disciplinary utility of such 
combined approaches (Ghoneim et al., 2024). Future soil monitoring 

frameworks are expected to increasingly rely on hierarchical fusion of 
PSS, UAV, and satellite data, leveraging the complementary strengths of 
local accuracy and large-scale spatial coverage.

Rapid progress in artificial intelligence (AI) will further shape the 
next generation of soil sensing applications. Machine learning, deep 
neural networks, and transfer-learning architectures are increasingly 
effective at modelling nonlinear relationships between heterogeneous 
sensor signals and soil properties, improving both prediction accuracy 
and uncertainty quantification (Hutengs et al., 2024; Grunwald et al., 
2024). These methods also enable more adaptive, real-time DSM 
workflows compatible with autonomous systems, including UAVs, 
ground robots, and smart tractors (Rosso et al., 2025). To ensure 
adoption, however, the field must address interoperability, user-centric 
tool design, and integration of PSS data into decision-support systems. 
Modular decision-tree frameworks (van Egmond et al., 2024) exemplify 
how complex methodological choices can be translated into intuitive 
guidance for practitioners. Ultimately, the future of PSS will depend on 
bridging technological innovation with regulatory clarity, transparent 
MRV requirements, and user-friendly tools that translate sensing outputs 
into operational decisions for precision agriculture, carbon accounting, 
and environmental monitoring. Henceforth, the long-term impact of PSS 
innovations will depend on their alignment with MRV requirements, 
regulatory frameworks such as the new Soil Monitoring Law in the Eu
ropean Union (Directive (EU) 2025/2360, 2025), and standardized 
reporting protocols that ensure traceability, comparability, and user 
trust.

7. Concluding remarks

Since one of the future PA needs relies on the use of in situ and on- 
the-go sensors without sample preparation, this review guides the se
lection among the wide range of possible sensor combinations, remote 
and terrain data for the accurate estimation of soil properties, and pre
cision soil mapping. The broad overview of this work has identified 
critical aspects influencing the accuracy involved in PSS surveys. We 
identified that point-based measurements are more accurate with 
respect to on-the-go techniques. However, the choice of technique to use 
depends primarily on the purpose of the survey. Notably, our analysis 
determined the best combination of factors yielding more accurate es
timations for each soil property and under which conditions. Addition
ally, we argue why some highly accurate techniques can give imprecise 
outcomes depending on the situation. In fact, it is essential to keep in 
mind that proximal sensor data measures bulk properties of soils rather 
than individual properties (Kerry and Escolà, 2021). Therefore, out
comes require expert interpretation.

Questionnaires highlighted the extent of uptake of some technologies 
among precision agriculture-focused companies, such as electromag
netic induction, when providing mapping services. Some companies are 
technologically well-equipped with new-generation sensor types, e.g., 
Cosmic Ray Neutron Sensor (CRNS) for detecting soil moisture. EMI is 
the most popular PSS technique in the industry. Despite the accuracy of 
point-based soil spectroscopy (i.e., DRS) and x-ray fluorescence (XRF), 
there are still few companies investing in such technologies. Similarly, 
investments of companies in γ-ray technology were not frequent despite 
the accuracy of soil mapping products. Instead, many companies relied 
on DRS-based on-the-go sensors supplied by Veris Technologies for 
determining soil and crop properties.

Regarding cost, we identified that it varies strongly. Based on the 
replies to our questionnaire, the price of a surveyed hectare is between 
120 and 362 €, whereas the customers’ willingness to pay for having 
precision information of their fields rounds, on average, 789 €/ha, based 
on the literature. The factors that affect variation in the cost of PSS 
services are the platform employed for sensing (i.e., the number of 
hectares covered per day), the required personnel, the number of sam
ples collected for validation, and factors related to accessibility, such as 
the state of the terrain and morphology, or the distance to the area of 
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interest.
Our study reveals that the efficiency of soil mapping services has 

significantly improved over the past decade, primarily due to the 
adoption of open-source software, including GIS tools for modeling, 
artificial intelligence, and advancements in sensors and data acquisition 
techniques. These developments have significantly reduced the time 
required for data processing, which is directly related to the growth 
trends in PA.

Looking ahead, several challenges and opportunities emerge from 
this work. This systematic review provided a structured and transparent 
synthesis of the available evidence, capturing the diversity of sensor 
types, measurement conditions, and outcomes reported across studies. 
By not requiring the strict data availability criteria needed for quanti
tative aggregation, it includes a broader spectrum of literature that other 
types of review approaches, such as the meta-analysis (Page et al., 2021), 
thereby offering a very comprehensive overview of the current land
scape. Future research could build on this foundation through a dedi
cated meta-analysis to quantitatively integrate performance metrics and 
explore the sources of variability across studies. Moreover, it will be 
important to extend the same level of assessment applied here (of 
particular relevance to the ProbeField Project) to sensor technologies 
not covered in the present review, and to update and expand the eco
nomic analysis for both established and emerging techniques. It could be 
supported by newly available literature or further questionnaire data, 
and would also help strengthen the evidence base, guide future tech
nological development, and adoption in precision soil sensing.

CRediT authorship contribution statement

Carlos Lozano-Fondón: Writing – review & editing, Writing – 
original draft, Methodology, Investigation, Formal analysis, Data cura
tion, Conceptualization. Romina Lorenzetti: Writing – review & edit
ing, Writing – original draft, Methodology, Investigation, Funding 
acquisition, Formal analysis, Data curation, Conceptualization. Roberto 
Barbetti: Writing – review & editing, Writing – original draft, Meth
odology, Investigation, Formal analysis, Data curation, Conceptualiza
tion. Konrad Metzger: Writing – review & editing, Writing – original 
draft, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Gabriele Buttafuoco: Writing – review & editing, 
Writing – original draft, Methodology, Investigation, Formal analysis, 
Data curation, Conceptualization. Melis Özge Pinar: Writing – review & 
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Writing – original draft, Methodology, Investigation, Formal analysis, 
Data curation, Conceptualization. Fenny van Egmond: Investigation. 
Frank Liebisch: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
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The authors would like to express their special thanks to all the PSS 
companies that collaborated by answering to the questionnaire and 
sharing their experience with this study (in alphabetical order: AGRI
COLUS, AgroDato, Agronica IBF, AgroScan 4.0, ARVAtec, Ekoton, 
Finapp, GPS Agro, Geoprospectors, LandScan, Medusa, METOS TR, 
NIRAS, Opticultures, Raimond, SARICON, Soil Masters, SOING, and 
Veris Technologies) and, of course, to those who preferred remaining 
anonymous. The authors also thank all their colleagues in the ProbeField 
Project and the EJPSOIL program in general for their contribution to this 
study. Finally, the authors thank the reviewers of this paper for 
providing constructive comments, which have contributed to the 
improvement of the published version.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compag.2025.111378.

Data availability

We have shared the used dataset, adding the link of repository in the 
manuscript (https://doi.org/10.5281/zenodo.17121809).

References

Aarif, K.O., Mohammed, A., Afroj, H., Yousuf, 2025. Smart sensor technologies shaping 
the future of precision agriculture: recent advances and future outlooks. J. Sens. 
2460098. https://doi.org/10.1155/js/2460098.

Abdu, H., Robinson, D.A., Jones, S.B., 2007. Comparing bulk soil electrical conductivity 
determination using the DUALEM-1S and EM38-DD electromagnetic induction 
instruments. Soil Sci. Soc. Am. J. 71 (1), 189–196.

Adamchuk V., Biswas A., Huang H.H., Holland J., Taylor James., Stenberg B., Wetterlind 
J., Singh K., Minasny B., Fidelis C., Yinil D., Sanderson T., Snoeck D., Field D., 2021. 
Soil Sensing. 10.1007/978-3-030-78431-7_4.

Adamchuk, Viacheslav, Ji, Wenjun, Viscarra Rossel, Raphael, Gebbers, Robin, Tremblay, 
Nicolas, Shannon, D.K., Clay, David, Kitchen, N.R., 2018. Proximal Soil and Plant 
Sensing. 10.2134/precisionagbasics.2016.0093.

Adamchuk, V.I., Christenson, P.T., 2005. In: Stafford, J. (Ed.), An integrated system for 
mapping soil physical properties on-the-go: the mechanical sensing component. The 
5th European Conference on Precision Agriculture proceedings. Wageningen 
Academic Publishers, Wageningen. The Netherlands, pp. 449–456. https://doi.org/ 
10.3920/9789086865499_056.

Antonangelo, J., Zhang, H., 2024. Assessment of portable X-ray fluorescence (pXRF) for 
plant-available nutrient prediction in biochar-amended soils. Sci. Rep. 14, 20377. 
https://doi.org/10.1038/s41598-024-71381-8.

Arshad, R.N., Abdul-Malek, Z., Roobab, U., Munir, M.A., Naderipour, A., Qureshi, M.I., 
Aadil, R.M., 2021. Pulsed electric field: a potential alternative towards a sustainable 
food processing. Trends Food Sci. Technol. 111, 43–54.

Barbetti, R., Palazzi, F., Chiarabaglio, P.M., Fondon, C.L., Rizza, D., Rocci, A., 
Grignani, C., Zavattaro, L., Moretti, B., Fantappiè, M., Monaco, S., 2025. Can Soil 
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