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ARTICLE INFO ABSTRACT

Keywords: This review provides an overview of the accuracy of soil property predictions using the most common proximal
Electromagnetic sensors soil sensing (PSS) techniques in precision agriculture (PA), both standalone and in combination with one another
Covariates

or with environmental covariates. Based on 114 scientific papers, the accuracy of soil property estimates was
evaluated by calculating the normalized root mean square error (NRMSE) using root mean square error (RMSE)
values and the range of the predicted soil property. Soil properties, PSS techniques, covariate types, and the type

Data fusion
Precision agriculture mapping
Cost analysis

Soil of model employed for predictions were the factors around which accuracy results were sorted. Additionally, we
Sensing estimated PSS service costs based on both the literature and on a market study with questionnaires for private
Proximal companies operating in the PA sector. Our literature analysis indicates that diffuse reflectance spectroscopy

(DRS) was able to estimate the greatest number of soil properties with a high accuracy compared to the other PSS
techniques. The most popular applications of DRS are to determine soil organic matter, nutrients, and soil
texture, although most of the applications are primarily lab-based. X-ray fluorescence (XRF) is the second most
popular technique for soil property estimation; however, in contrast to DRS, most estimations are in-field ap-
plications with portable XRF sensors. The use of XRF is widespread in determining elemental concentrations. On-
the-go techniques such as electromagnetic induction (EMI) or gamma-ray spectroscopy (y-ray) accounted for
lower accuracy compared to point-based techniques (e.g., DRS, XRF, time-domain reflectometry). However, they
are widely used by companies, as they have vast potential to delineate PA management zones in the field, and are
suitable for on-the-go mapping of soil properties such as mineralogy, texture, salinity, water content, cation
exchange capacity, and soil depth. The combined use of PSS techniques generally doesn’t outperform the singular
application, although the number of samples collected for calibration, and specific combinations of sensors,
covariates, and modeling techniques, combined correctly, may enhance the predictions of soil properties using
PSS techniques applied singularly. However, these outcomes tend to depend on local site characteristics. Dif-
ferences were found between the analysis of costs collected from the literature and from the companies’ survey.
The estimated cost of surveying a hectare with PSS oscillates between 15.5€/ha and 130€/ha, according to
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research data, whereas our company survey resulted in an interval between 142 and 362€/ha. Price variability
was influenced by personnel costs, fieldwork, data and reporting, sample analysis, and equipment. Besides, in-
creases in the final prices can be attributed to accessibility and difficulties related to field work, as well as
traveling to the area of interest. This review aims to serve as a reference for encouraging the adoption of current
and available sensing technologies by farmers, policymakers, and companies by providing helpful insights into
the suitability of different PSS techniques for mapping various soil properties, their associated costs, and what is
available in the market. We foresee that availing PSS services will become cheaper with technological advances.
Thus, it will become a standard approach in the future, as it is the most feasible way for producing high-
resolution maps and affordable soil property information.

1. Introduction

Accounting for spatial and temporal variability of soil properties is
central in the context of precision agriculture (PA), particularly for
improving the sustainability of production (Kerry and Escola, 2021).
Many sources of variation at the field scale influence soil-forming factors
and derived soil properties (Oliver, 2010; Goovaerts, 2017). Therefore,
the adoption of PA for site-specific management requires high spatial
and temporal resolution of soil information (Gebbers and Adamchuk,
2010). However, conventional analytical procedures involving invasive
field sampling are cost-intensive and often do not meet the spatial res-
olution required by PA. Reliable quantification of soil properties is
necessary to gain confidence in the results. Thus, several international
organizations (ISO, CEN, USEPA) have developed standardized mea-
surement protocols for various soil health properties in specific contexts,
such as agriculture (Nortcliff 2002; Percin et al., 2025). However, the
physical and chemical target soil properties are usually determined
using classical wet chemistry analytical procedures. These procedures
have a set of characteristics that, in general, make them slow and
expensive due to the need for trained personnel, specialized equipment,
laborious sample preparation, the use and disposal of waste of some-
times toxic or hazardous chemicals, and the need for extensive labora-
tory space.

The requirement of high temporal and spatial resolution data for PA
can be effectively fulfilled through different proximal soil sensors and
sensing modalities (Viscarra Rossel et al., 2010; Viscarra Rossel and
McBratney, 1998). Indeed, the rapid technological advancements from
the Second World War to the 21st century in fundamental physics have
enabled the development and availability of tools for proximal soil
sensing (PSS), which have also become feasible to use and affordable
over time and leading (Fig. 1), for example, to a rise in their use in the
scientific literature (Viscarra Rossel et al., 2010; Viscarra Rossel et al.,
2011; Adamchuk et al., 2021; Barra et al., 2021; Piccini et al., 2024).
From the late 1990s and especially since the early 2000s, PSS technol-
ogies have progressively shifted from laboratory-based instruments to-
ward portable, in situ and on-the-go sensing platforms, enabling real-
time, high-resolution mapping of soil properties directly in the field.
The scientific literature clearly demonstrates how PSS applications can
yield quantitative results more efficiently and cost-effectively than
traditional laboratory analyses (Fig. 2). Although sensors are becoming
increasingly smaller, faster, more accurate, and more energy-efficient
(Aarif et al., 2025), costs associated with different PSS techniques
should be carefully considered and weighed against the accuracy they
provide for various soil properties. In fact, PSS methods enable the
collection of information in the proximity of soil by measuring parts of
the electromagnetic spectrum after radiation interacts with the soil
volume (Piccini et al., 2024), but this occurs at the expense of the ac-
curacy that can be achieved in traditional wet chemistry measurements
of soil properties. Therefore, planning which PSS methods to apply and
the number of conventional analyses to perform for calibration is crucial
during PSS surveys.

Over the years, different sensing modalities have been proposed: 1)
invasive or non-invasive, if the sensor is inside or outside the measure-
ment volume; 2) active or passive if the system includes an external

energy source or not; 3) mobile or stationary depending on whether the
system is capable of measuring in motion or only in stationary mode
(McBratney et al., 2011a; Piccini et al., 2024). As mentioned above, PSS
techniques rely on proxies to determine the existing relationship be-
tween specific parts or windows of the electromagnetic spectrum and
soil properties of interest. This requires the use of calibration and vali-
dation data sets and modelling procedures to accurately estimate the
properties (Sudduth et al., 2001).

Modelling approaches in proximal soil sensing require mathematical
or statistical treatments to extract useful information and relate the
traditional measures of the soil constituents or properties to the proxi-
mally sensed data. Such treatments, in the early period (1980s to 1990s)
until about 2010, resulted in different multivariate approaches, which
over the past three decades, have strongly evolved from linear as-
sumptions of the relation between proximally sensed data and tradi-
tional laboratory measured data to non-linear and more complex purely
data-driven modelling. Using as an example diffuse reflectance spec-
troscopy, the mathematical approaches, known as chemometrics, have
evolved from using specific wavelengths selected by methods of step-
wise regression to using full high-resolution spectra in multiple linear
regression (MLR), principal components regression (PCR) and partial
least-squares regression (PLSR) to handle collinearity in high-
dimensional spectra (Stenberg et al., 2010; Nas et al., 2004; 2010).
However, they all continued to assume mostly linear relationships. As
sensor technologies advanced and datasets expanded, a rapid evolution
of approaches are being made available thanks to the application of
machine learning (ML) methods in soil science (Minasny and McBrat-
ney, 2025) from about 2005 to the present. Among these approaches are
non-linear algorithms such as random forest (RF), support vector ma-
chine regression (SVMR), and artificial neural network (ANN), and
many others (James et al., 2021; Minasny and McBratney, 2025).

Progress in soil mapping is documented in the review by Gomes et al.
(2023), with experience from Denmark demonstrating practical appli-
cations. The work explored mapping soil functions using soil informa-
tion collected from multiple sources, including conventional data, PSS
data on several platforms, and the use of covariates (e.g., high-resolution
variables such as climate, relief, parent material, and soil properties and
attributes, among others). Besides, it analyzed the impact of rapidly
advancing modeling techniques, such as machine and deep learning, on
the production of digital soil maps (DSM). The relevance of non-linear
modelling when working with PSS data contributes to enhancing the
level of reliability, precision, and resolution of spatial models of soil
properties. This, in fact, can provide meaningful insights and facilitate
effective decision-making, anticipate forthcoming alterations, and
advise strategies for future challenges in agriculture. In addition, the EU
Soil Monitoring and Resilience Law (Directive (EU) 2025/2360, 2025)
indicates the need to use validated transfer functions when methods for
determining properties other than the standardized reference methods
in the Law are employed. As such, the Law points to the need to
harmonize calibration and/or validation data and to the possibility to
use alternatives to wet chemistry, if the quality, reliability and trans-
formability of results to values as would have been provided by refer-
ence methods are proven.

Simultaneously with the increase in publications about PSS, many
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Fig. 1. Development and evolution of proximal soil sensing (PSS) in the context of precision agriculture (PA).
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companies are adopting these technologies, and startups offering PSS
services to farming communities are emerging. To our knowledge,
several important reviews on PSS have been published, including those
by Viscarra Rossel et al. (2011) and Adamchuk et al. (2018). However,
an updated, exhaustive review of all proximal techniques used in the
context of PA to assess soil health-related indicators is missing. More-
over, to our knowledge, none of the existing reviews explicitly combine
a cross-technique synthesis of quantitative prediction accuracy (e.g.,
NRMSE) with a systematic comparison of cost ranges, which is essential
for supporting practical sensor selection and deployment decisions. In
particular, a focus on the reliability of quantitatively measured soil
property predictions and on the costs associated with the use of specific
techniques, platforms, and covariates classified by soil property would
provide a more complete overview of the topic that can be used by
practitioners and other users. Therefore, the general aim of this work is
to provide an updated framework for selecting the most suitable and
accurate PSS technique for predicting fundamental soil properties in the
context of PA, based on a thorough literature review of accuracy and a
company cost survey. Although this review is the product of the Pro-
beField project, and for this reason it is intended to be focused on
proximal soil sensing techniques implemented within the project, other
emerging PSS approaches are qualitatively addressed, mainly as future
perspectives. Specifically, the objectives were set as follows: 1) to pro-
vide a technical framework and principles of the PSS techniques under
review; 2) to provide a comprehensive overview of the accuracies ach-
ieved in the literature depending on the PSS technique and sensor’s
response, used alone or in combination with others, 3) to analyze and
account for the effect of other factors involved in soil properties pre-
diction, and 4) to evaluate the cost associated with the use of PSS in

Computers and Electronics in Agriculture 243 (2026) 111378

academia through the literature review, and in the market through the
analysis of the answers to questionnaires from PSS companies operating
in the private sector.

2. Proximal sensing techniques under review

The technical characteristics of electromagnetic sensors determine
their sensitivity to specific parts or windows of the electromagnetic
spectrum (Fig. 3). Depending on the frequency, electromagnetic sensors
can provide indirect information about the soil itself and its forming
components (McBratney et al., 2003; Viscarra Rossel et al., 2010, 2011).

2.1. Diffuse reflectance spectroscopy (DRS)

Visible near-infrared (vis-NIR) and mid-infrared (MIR) diffuse
reflectance spectroscopy (DRS) are analytical techniques that operate in
the wavelength ranges of 350-2500 nm and 2500-25,000 nm, respec-
tively. These methods measure the energy reflected by a material, such
as soil, when exposed to electromagnetic radiation (Duda et al., 2017).
The apparent absorption is estimated from what is not reflected in
relation to a known, typically white, reference reflection. While MIR
absorption is associated with fundamental molecular vibrations, vis-NIR
absorption corresponds primarily to overtones and combination bands
(Williams & Norris, 2001). Spectral data are acquired using spectror-
adiometers, which produce known spectra of reflectance or absorbance
as a function of wavelength. Spectral absorption arises primarily from
molecular bond vibrations, such as bending, stretching, and twisting,
and the absorption band for a specific bond in one particular compound,
related context, or matrix corresponds to the required energy quantum

40—
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Fig. 2. Number of publications (n = 243) between 2008 and 2023 found on the Scopus database using the keywords “Proximal soil sensing” and the class of
“proximal sensor” for different proximal sensing technologies (colors). The development of portable spectrometers operating in the vis-NIR-MIR contributed
considerably to the total number of investigations carried out in proximal soil sensing (PSS). At the same time, the application of other electromagnetic techniques,
such as y-ray, EMI, and XRF, varied over the years. Investigations that apply TDR and GPR techniques to soil remained stable despite their potential in water
management. DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-
domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling.
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Fig. 3. The electromagnetic spectrum showing the frequency ranges of

causing a specific molecular vibration. Both organic matter and clay
minerals (and other minerals ending up in the clay fraction) have several
characteristic absorption features across this spectral region (Stenberg
et al., 2010; Wetterlind et al., 2022).

DRS is highly sensitive to physical factors such as particle size, ag-
gregation, and moisture, which can significantly affect reflectance
(Cascante et al.,2025; Chang et al., 2011; Liu et al., 2003; Knadel et al.,
2023; Stenberg, 2010). Although MIR was initially deemed unsuitable
for quantifying absolute concentrations due to its sensitivity to sample
heterogeneity (Niemeyer et al, 1992), subsequent research has
demonstrated successful estimations of elemental concentrations using
both laboratory-based and handheld instruments (Bellon-Maurel and
McBratney, 2011; Clairotte et al., 2016).

By analyzing spectral signatures, soil properties and types can be
characterized and element concentrations can be estimated, using che-
mometric approaches that link spectral data with reference measure-
ments through multivariate regression, machine learning, or deep
learning. However, several sources of uncertainty—such as sensor
design, spectral calibration references, sample preparation, and spectral
preprocessing—can impact model performance and require careful
validation (McBride, 2022). To ensure comparability across studies, it is
essential to quantify measurement uncertainty and adopt standardized
evaluation procedures (Sudduth and Hummel, 1996; Brodsky et al.,
2013). Protocols such as the International Soil Standard (ISS) for labo-
ratory spectral alignment (Ben-Dor et al., 2015) and field measurement
guidelines (Stenberg et al., 2024) are recommended to address varia-
tions related to instrument configuration and environmental acquisition
conditions.

A valuable application of spectroscopy is soil spectral libraries
(SSLs), which are collections of soil reflectance spectra (usually in either
the vis-NIR-SWIR or the MIR ranges), along with reference soil property
data (e.g., organic carbon, texture, nutrients). These libraries serve as
calibration databases that enable rapid, non-destructive prediction of

Gamma Ray Energy (MeV)

different proximal and remote sensors (from McBratney et al., 2003).

soil properties using spectral models. They can be local (specific to a
region or study) or global, such as the USDA’s NRCS-KSSL library or the
FAO-ISRIC Global Soil Spectral Library. See Brown et al. (2006), Vis-
carra Rossel et al. (2016), Sanderman et al. (2019) and Ramirez-Lopez
et al. (2019) for further details.

2.2. Electromagnetic induction (EMI)

The EMI technique operates in the low-frequency (~ 1-100 kHz)
radio wave region of the EM spectrum. In this technique, conduction
currents are the dominant energy transport mechanism (Everett 2013a),
and the method is primarily used to measure the bulk electrical con-
ductivity (EC) of a soil volume. While many variants exist, the
frequency-domain instruments called ground conductivity meters are
most commonly used in agricultural applications.

Corwin and Lesch (2003) show the evolution, theory, applications,
and guidelines of instruments measuring soil EC. For instance, authors
noted that in the 1970s, four-electrode arrays were used to measure EC,
which later evolved into a tractor-mountable fixed array in the 1990s. At
present, instruments mounted behind an ATV are typically used (e.g.,
Veris, Geophilus). In parallel, the EMI instrument became popular with
the advent of Geonics EM38 for soil mapping in the 1980s. At present,
single-transmitter multireceiver (e.g., DUALEM, CMD) and multi-
frequency (GEM2) instruments are commonly used.

A typical EMI instrument consists of a Transmitter (Tx) and one or
multiple receiver (Rx) coils. An alternating current (AC) induces a
transient primary magnetic field into the ground by powering the Tx coil
(Fig. 4). This primary field generates eddy currents depending on the EC
of the subsurface, which generates a secondary magnetic field. While the
receiver coil measures both the primary and secondary fields, the sec-
ondary field can be distinguished because the primary field can be
estimated based on the Tx-Rx configuration. Generally, the secondary
field is delayed and attenuated in comparison to the primary field, and
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Fig. 4. Schematic diagram showing the working principle of an electromagnetic induction instrument: (a) processes that lead to the generation of the secondary
magnetic field and (b) phase lag between the primary and secondary fields that facilitates the quantification of the apparent electrical conductivity.

the phase lag depends on the bulk soil EC. The secondary field occurs
completely out-of-phase, if the ground is perfectly conductive, and in-
phase, if the ground is perfectly resistive. The total field can be
decomposed into real (in-phase) and quadrature (out-of-phase) re-
sponses, with the former indicating the apparent magnetic susceptibility
and the latter representing the apparent EC (EC,) of the subsurface.

The sensitivity and depth of exploration (DOE) of ground conduc-
tivity meters depend on the Tx-Rx coil orientations (Fig. 5) as well as the
spacing between them (McNeill, 1980; Abdu et al., 2007; Saey et al.,
2009). For example, the commonly used EM38 (Geonics Ltd., Mis-
sissauga, ON, Canada) variant with a one-meter Tx-Rx separation can be
either employed in the horizontal coplanar (HCP) mode with a DOE of
1.6 m or by rotating the instrument by 90 degrees, forming the vertical
coplanar (VCP) mode with a DOE of 0.75 m. Increasingly, on-the-go
measuring instruments with multiple Rx coils at different spacings
from the Tx coil, such as DUALEM (DUALEM Inc., Milton, ON, Canada)
with HCP and perpendicular (PRP) modes, are becoming more common.
Alternatively, different depth sensitivities can also be achieved using
instruments that operate on multiple frequencies, for example, GEM-2
Ski (Geophex Ltd., Raleigh, NC, USA).

The EMI instruments are extensively used in the agricultural and
land management sectors for mapping soil properties, particularly soil
salinity, texture, and water content (Huang et al., 2017; Pedrera-Parrilla
et al., 2016), as well as delineating management zones (Hedley et al.,
2004; Corwin and Lesch, 2003).

Additionally, EMI instruments can be configured to measure mag-
netic susceptibility (MS) and be applied in several contexts, such as soil
texture predictions, determination of heavy metal content, and evalua-
tion of irrigation water quality (Yang et al., 2007). The methodological
framework for how MS is measured in soil can be found in Shirzaditabar
and Heck (2022), whereas Ramos et al. (2021) note that MS shows
strong linear correlations with physical, chemical, and mineralogical

Tx

Rx

Horizontal coplanar (HCP)

Perpendicular (PRP)

Ruycp(2) =1 - ——

soil attributes (e.g., sand and clay contents) and can help delineate soil
boundaries due to lithological and pedological variation.

2.3. Gamma (y) ray spectroscopy

Gamma-ray spectroscopy measures the intensity distribution of
gamma radiation (y) as a function of the energy of individual photons
naturally emitted by low radioactive elements or radionuclides in matter
such as soil, the geological substrate or buildings, through atomic decay
processes. Gamma rays are a highly energetic form of electromagnetic
radiation. Expressed in kiloelectron volts (keV), they are characterized
by extremely high frequencies (<10?° Hz) and very short wavelengths
(>10"!! nm). These properties confer a strong ionizing capacity (>10°
eV), enabling gamma radiation to interact effectively with matter.

Traditional y-ray radiometers employ scintillation crystals such as
sodium iodide (Nal), which, when coupled with a photomultiplier tube,
can detect and quantitatively measure gamma radiation that passes
through the crystal. Although Nal crystals are widely used, they are not
the most efficient in capturing y radiation. Commercially available al-
ternatives include bismuth germanate (Bi4Ge3012, also known as BGO)
and cesium iodide (CsI), both of which offer higher detection effi-
ciencies, which means the size of the crystal can be smaller compared to
Nal. Another difference between the crystals is their brittleness, e.g.
BGO is more brittle than CsI and Nal. However, they typically exhibit
lower energy resolution, potentially limiting their use in applications
that require accurate radionuclide identification if peak identification is
used as analysis method. Typical spectral analysis methods are the
Windows method and the Full Spectrum Analysis method (Van der Graaf
et al., 2007; Van Egmond et al., 2010). The first one uses the known
location of energy peaks and estimates the concentration based on the
height of the peak. The latter uses the full spectral fingerprint of the
gamma radiation of a single radionuclide to estimate the concentration

Cumulative Response Depth of Exploration (DOE)

1
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2
Vertical coplanar (VCP) Ryep(@) =1— |4 (g) +142 (;) 0.75s

2(3)

Rprp(2) = —
4(%) +1

0.5s

Fig. 5. Schematic diagram showing the different possible transmitter (Tx) and receiver (Rx) coil arrangements with corresponding cumulative response functions
and depths of exploration. ‘z” and ‘s’ correspond to the depth and coil separation between the Tx and Rx coils, respectively. Please refer to Abdu et al. (2007) and Saey

et al. (2009) for further details.
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of occurring radionuclides through a least squares analysis.

Gamma-ray (Van der Graaf et al., 2007) sensors can be classified into
two categories: active and passive. Active y sensors are increasingly used
to estimate additional soil properties, such as bulk density, by measuring
backscattered y radiation from a low-activity source (Pepers et al.,
2024). They are typically employed on a stick that is lowered in the
ground, generally to a depth between 10 and 60 cm, after preparing a
small borehole or by extracting the soil core and measuring the core in
the field or lab. This approach expands the utility of y-ray sensing
beyond radionuclide mapping to broader applications in soil physics.
For mobile applications such as precision agriculture, passive sensors
mounted on vehicles or carried manually are generally preferred
(Viscarra Rossel et al., 2007). These systems facilitate the detection of
radionuclide contributions from isotopes such as 4OK, 238U, 232Th, and
137cs. While 4%k, 238y, 2%2Th are naturally occurring radionuclides,
137Cs is of anthropogenic origin, introduced into the environment by the
Chernobyl disaster in 1986 and nuclear weapons testing worldwide
since the 1950s. By quantifying gains or losses of '*’Cs at the soil sur-
face, researchers can estimate rates of soil erosion (Fulajtar et al., 2017;
Porto et al., 2024). Furthermore, the spatial distribution of radionuclide
counts has been correlated with various soil properties, including soil
texture, moisture content, and mineralogical composition to an average
depth between 30 and 50 cm.

Radionuclide concentrations are typically expressed in becquerels
per kilogram (Bq/kg). At the surface, detectable y radiation for passive
sensors originates from the upper 30 cm of soil, as deeper signals are
attenuated by overlying dry soil and moisture content (Cook et al., 1996;
Viscarra Rossel et al., 2007). Strong correlations have been observed
between 2*2Th levels and clay content in topsoil, particularly in studies
conducted in the Netherlands (Van Egmond et al., 2010) and Sweden,
where aerial gamma radiometry was one of the key features for a na-
tional digital soil map (Piikki and Soderstrom, 2019). Other research has
identified significant relationships between radionuclide distributions
and both physical (e.g., texture, grain size) and chemical soil properties
(e.g., heavy metal contamination, fertilizer application, nutrient levels)
(van der Graaf et al., 2007; Viscarra Rossel et al., 2007). In Sweden, a
combination of aerial and ground-based y-ray spectrometry (**°U,
232Th, and “°K), combined with maps on bedrock geology and Quater-
nary soil deposits, was used to identify agricultural land with risk for
elevated levels of cadmium in crops (Soderstrom and Eriksson, 2013).

2.4. Dielectric methods

Soil dielectric constant ¢ (aka relative dielectric permittivity (RDP))
is a key property for predicting soil volumetric water content (Topp
et al., 1980) and soil texture layering. The RDP is a measure of a ma-
terial's polarizability, i.e., a material's ability to store and release elec-
tromagnetic (EM) energy and control the EM wave velocity. Its value
depends on both the induced polarizability and the angular frequency o
of the imposed electric field (White and Zegelin, 1995). In soils, the RDP
values often reflect the amount of water content, as water is highly
polarizable (RDP ~ 81), whereas air and mineral components have RDP
values of around 1 and 3, respectively. For example, the wet sands have
RDP between 15 and 30, whereas the dry sands have RDP between 4 and
6 (Cassidy, 2009). Moreover, this significant difference in the dielectric
constant of water and soil solid constituents makes the method relatively
insensitive to soil composition and texture (Jones et al., 2002).

The bulk dielectric constant of soil infers the volumetric soil water
content (0,) by using empirical relationships. The most widely used for
agricultural soils is the empirical model developed by Topp et al. (1980):

0, =(53x107%) +(2.29 x 107%)g, — (5.5 x 107*)&f + (4.3 x 10°%) ¢}
€Y

It is a third-order polynomial, considered valid for relating soil volu-
metric water content (0,) and bulk dielectric constant () for most
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mineral soils, independently of soil composition and texture, up to 6, <
0.5 cm® cm 2 (Munoz-Carpena et al., 2005; Topp et al., 1980). A specific
calibration is required for higher water content and organic or volcanic
soils.

The relationship between volumetric soil water content (0,) and
bulk dielectric constant () depends on the electromagnetic wave fre-
quency. It is more soil-specific at low frequencies (<100 MHz) (Munoz-
Carpena et al., 2005). Alternative relationships to the empirical equation
(Eq. (1) are the three-phase mixing model (Roth et al., 1990) and the
four-phase mixing model (Dobson et al., 1985), which requires dividing
soil moisture into mobile and immobile regions (Dirksen and Dasberg,
1993). Mainly, two different PSS techniques rely on the dielectric
properties, i.e., time/frequency domain reflectometry and ground
penetrating radar.

The dielectric constant is commonly measured by recording the
propagation velocity or reflection of an electromagnetic pulse through
the soil using probes or antennas in contact with, or placed above, the
surface. Time Domain Reflectometry (TDR) and Frequency Domain
Reflectometry (FDR) determine ¢, by measuring the travel time or
resonant frequency of the signal along a waveguide inserted into the soil,
while Ground Penetrating Radar (GPR) estimates ¢, from the two-way
travel time of radar waves between the transmitter and receiver.
These methods allow non-destructive and in situ measurement of the
bulk dielectric constant, which can then be converted into volumetric
water content using the empirical or physically based relationships
described above.

2.4.1. Time domain reflectometry (TDR)

Time domain reflectometry (TDR) is a technique that was used
originally for testing high-speed cables (Ferré and Topp, 2000). TDR was
adapted to estimate at the same time both soil water content (Davis and
Chudobiak, 1975; Topp et al., 1980) and soil bulk electrical conductivity
(Dalton et al., 1984). The water content depends on the polarizability of
the water molecules, and the bulk electrical conductivity depends on the
attenuation encountered. A waveguide or probe of known length L is
embedded in soil, and the travel time (t) for a TDR-generated electro-
magnetic ramp to cross the probe length is determined. The end of the
probe is a point of ‘discontinuity’ where the electromagnetic signal is
reflected. The travel time t allows computing the bulk dielectric constant
of soil surrounding the probe as a function of the propagation velocity

v=2L/t (2)

According to the equation : &, = (£>2 = (C—t)z 3
v 2L

where c is the speed of light in vacuum (3 x 108 m s_l), t is the travel

time for the pulse to cross the length of the embedded waveguide (2 L:

down the soil and back).

The widespread use of TDR has led to several efforts focused on
finding alternatives to Eq. (1). A critical review of the models used to
determine soil volumetric water content using the bulk dielectric con-
stant measured by TDR is available in He et al. (2023).

A typical TDR instrument consists of a device capable of producing a
series of precisely timed electrical pulses with a wide range of high
frequencies (e.g., 0.2-3 GHz) traveling along a transmission line con-
structed with a coaxial cable and a probe (Munoz-Carpena et al., 2005).
There are several different geometrical probe configurations, all of
which have a single central conductor and one to six outer conducting
rods, consisting of two, three, or six metallic wires and two parallel
plates (Jones et al., 2002).

2.4.2. Frequency domain: capacitance and frequency domain reflectometry
(FDR)

Frequency domain reflectometry (FRD) is based on the detection of
changes in soil water content by changes in the circuit's operating
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frequency using a capacitor and an oscillator (Munoz-Carpena et al.,
2005). In the FDR, the oscillator frequency is swept under control within
a specific frequency range to find the most significant amplitude. This is
known as the resonance frequency and represents a measure of the water
content in the soil. Probes consist of two or more electrodes that are
inserted into the soil. Electrodes can be metallic plates, rods, or metal
rings around a cylinder. In the case of a ring configuration, an access
tube is installed in the field in which the probe is introduced. The access
tube enables multiple sensors to take measurements at various depths
(Munoz-Carpena et al., 2005).

2.4.3. Ground penetrating radar (GPR)

Ground Penetrating Radar (GPR) operates between 10 MHz and 3
GHz frequency range, within the radio wave region of the EM spectrum
(Fig. 6). Like TDR and FDR, GPR primarily responds to subsurface var-
iations in relative dielectric permittivity (RDP), with energy transport
dominated by polarization and displacement currents (Everett, 2013b).
Electrical conductivity (EC) has a significant influence on signal atten-
uation during wave propagation (Davis and Annan, 1989). The most
common survey configuration is the common-offset reflection mode,
where fixed-geometry transmitter and receiver antennas are moved
across the surface. Reflected signals from dielectric contrasts are
recorded as waveforms (A-scans), which are then assembled into 2D
profiles (B-scans) or 3D volumes (C-scans). Depth conversion is possible
via velocity calibration using known subsurface targets (such as soil
layer boundaries or objects) or hyperbola fitting on round shaped ob-
jects in the subsoil.

Despite offering high spatial resolution among near-surface
geophysical methods, GPR’s application in PSS is constrained by data
analysis time, its difficulty in detecting gradual soil texture changes with
depth, signal loss due to scattering, absorption, and geometrical
spreading (Reynolds, 1997). The method resolution decays with pene-
tration depth due to frequency-dependent attenuation (Bradford, 2007);
higher-frequency systems provide finer resolution but have a shallower
reach.

GPR is widely used in agricultural contexts for water management
(Huisman et al., 2001; Liu et al., 2016), as well as mapping soil layer
thickness, stratigraphy, and tree root systems or sometimes drainage
pipes (Comas et al., 2015; Zhang et al., 2014). Outside of agricultural
applications, GPR is used in archaeology, environmental assessments,
road construction analysis, and more. Emerging drone-mounted GPR
systems show promise for rapid mapping of root-zone moisture and EC
(Wu and Lambot, 2022).
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2.5. X-ray fluorescence

X-ray fluorescence (XRF) is a type of spectroscopy that involves the
emission of X-ray photons following the excitation of electrons in a
sample by primary X-ray photons. When the sample is exposed to X-rays,
the atoms within it absorb the photons if their energy is higher than the
binding energy of the core—shell electron. When photons are absorbed,
they cause the ejection of core—shell or subshell electrons, which are also
called photoelectrons. This process leaves behind a vacancy in the cor-
e-shell or subshell, putting the atom in an excited state. After absorp-
tion, XRF emissions occur when an electron transitions from an upper
subshell to fill the electron vacancy, resulting in a de-excitation process
that emits a corresponding photon. These emitted XRF photons have
unique energies characterizing the electron transition in the given atom,
and so the spectroscopic lines can be assigned to specific chemical ele-
ments. The intensity of each characteristic energy level is directly pro-
portional to the number of atoms in the respective elements involved in
the process, allowing for the measurement of element concentration
(Jenkins et al., 1995).

In the 1990 s, the extensive instrumentation used for the XRF process
was downsized and made more portable. This led to the creation of
modern portable fluorescence instruments, also known as pXRF or
handheld XRF. Small, portable instruments with a gun design (Fig. 7)
now use a vacuum-sealed tube, approximately the size of a coin, as the
source of primary X-ray radiation. The tube has a metal anode (such as
Ag, Rh, Ta, Au, W, and others) that is hit by electrons accelerated to
20-60 kV. This collision produces X-rays that correspond to the char-
acteristic K and L line fluorescence of the target atoms, as well as a less
intense continuum. The source of emission is situated near the front
aperture of the instrument, which comes into contact with the sample.
Then, the detector captures the entire emitted spectrum and separates
the signals using the energy-dispersive principle (EDXRF) (Beckhoff
et al., 2007; Shackley, 2010).

The XRF technique is widely used for determining elemental con-
centrations in various matrices, including soils. Advancements in pXRF
technology and applications are well-documented in annual atomic
spectrometry updates (e.g., Potts and Sargent, 2022; Vanhoof et al.,
2022). pXRF can function as a qualitative, semi-quantitative, or quan-
titative analytical tool. The USEPA Method 6200 (2007) offers a
comprehensive guide for pXRF use in soil and sediment analysis, high-
lighting pre-calibration modes (e.g., Geochem, Soil, Mining) provided
by manufacturers, and other laboratory-based standards such as EN
15309:2007 that provide protocols XRF spectrometry. It is essential to
note that pXRF measures total elemental concentrations, unlike tradi-
tional wet methods (e.g., aqua regia extractions as per ISO 11466 or
USEPA 3051a), which often yield lower, pseudo-total values, depending
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Fig. 7. Schematic design of a portable X-ray fluorescence (pXRF) instrument
(with permission of Thermo Fisher, Waltham, MA, USA).

on the element and soil type.

Unlike the other techniques covered in this article, XRF is used
directly to determine elemental contents, not requiring proxies to
convert spectral readings into elemental content. However, it must
indeed use specific algorithms to compensate for the complex spectral
interactions that X-rays produce at the atomic level. Beyond the direct
determination of elemental concentrations in the soil, the technique has
been used to predict from these i) the concentrations of available forms
of plant nutrients (Antonangelo and Zhang, 2024; Tavares et al., 2023);
ii) other soil properties that are indirectly related to the elemental
composition (McBratney et al., 2011b, Toth et al., 2019) or iii) the
concentration of elements (such as C or N) that do not emit an RX signal
under the measurement conditions of portable instruments (de Faria
et al., 2022; Song et al., 2024).

2.6. Combined techniques

The fusion of measurements obtained from a range of sensors is
becoming increasingly common, often improving the prediction of soil
properties and chemical elements’ concentrations in soil samples
(Schmidinger et al., 2024). Independent measurements from function-
ally different techniques offer a broader insight, providing information
on a wide range of soil properties and their spatiotemporal changes.
Sensor fusion is a broad term, and as indicated by Ji et al. (2019), there is
no consensus on a standard definition. In the case of soil sensors, fusion
has been performed by combining data from two or more sensors, using
arange of statistical methods, including linear and non-linear regression
techniques, as well as more sophisticated approaches such as Granger
and Ramanathan’s model averaging procedure (1984) and others (Ji
et al., 2019). Several authors have suggested using auxiliary soil prop-
erties or sensory data in conjunction with Vis-NIR for enhanced soil
characterization (Morgan et al., 2009; Brown et al., 2006; Wang et al.,
2015). For example, Veum et al. (2015) found that augmenting vis-NIR
spectral data with laboratory measurements of pH and bulk density led
to improved estimations of soil health indicators related to physical and
chemical components. In a subsequent study, vis-NIR was fused with EC
and penetration resistance data, resulting in improved estimation of soil
health indicators (Veum et al. 2017). In another example, it was noted

Computers and Electronics in Agriculture 243 (2026) 111378

that for optical sensors like NIR and MIR, the accuracy of indirect
property estimations can be improved by incorporating other predictors,
such as elemental XRF, which provides contrasting and complementary
information (Greenberg et al., 2023). A combination of these two types
of sensors was reported in multiple studies for the improvement of SOC,
N, P, Mg, Ca, Na, pH, and texture estimations (Javadi et al. 2021; Wang
et al. 2013; O’Rourke et al. 2016; Towett et al., 2015; Wang et al., 2015;
Weindorf et al., 2016; Tavares et al., 2020; Greenberg et al. 2023).
However, no generalizable conclusions can be drawn as the results of
fusion were contradictory. As suggested by Greenberg et al. (2023),
systematic testing to gain an in-depth understanding of the prediction
mechanisms, depending on the property of interest, sensor type, the
principle of parsimony, and the method of sensor fusion, is crucial.

In our study, we addressed this issue by analyzing the effect of
combining data from two or more proximal sensors, which we refer to as
the 'combined techniques.' Additionally, we separately examined the
combination of proximal sensor data and traditional laboratory mea-
surements, along with covariates from various sources, including remote
sensing and morphometry. In the case of multiple soil sensors being
integrated into a single unit, several advantages were listed, including
more robust operational performance, increased confidence as different
sensors measure the same soil, higher coverage of attributes, and
increased dimensionality of the measurement space (Viscarra Rossel
et al., 2011). The use of mobile platforms supporting different soil
sensors has been reported by several authors, showing the potential for
combined on-the-go measurements for improved estimation of physical
and chemical soil properties such as pH, EC, bulk density, soil water,
SOC, potassium, nitrogen, and other nutrient contents (Lund et al. 2005;
Adamchuk and Christenson, 2005; Taylor et al. 2006; Kweon et al.,
2008; Yurui et al., 2008; Knadel et al., 2011; Knadel et al., 2015;
Tabatabai et al., 2019). Their results demonstrate that multi-sensor
systems can be beneficial and practical for conducting field surveys.
Yet, customized configurations can be logistically cumbersome and
technically challenging to implement synchronously.

3. Methods

In the context of the ProbeField project, bibliographic research was
foreseen as the basis for tracking the cost and accuracy of PSS. Literature
sources and databases were consulted between October 2022 and
December 2023. The resulting set of documents collected from that
literature search was used to perform the analyses shown in this work.
The process was visually summarized in a schematic workflow (Fig. 8).

3.1. Literature search strategy

All collected papers related to 1) the accuracy of proximal soil sen-
sors and 2) the costs involved in the different steps of soil surveying with
PSS were retrieved from search engines such as Scopus and Web of
Science.

The keywords used for the review of accuracy of proximal soil sen-
sors were “precision farming,” “proximal sensing,” “soil sensing,”
“proximal sensors,” “digital soil mapping,” “high-resolution mapping,”
“quasi 3D mapping,” “diffuse reflectance spectroscopy,” “Vis-NIR,” “soil
spectroscopy,” ‘“gamma-ray spectroscopy,” “radiometric,” “radionu-
clides,” “X-ray fluorescence,” “electromagnetic induction,” “georadar,”
“GPR,” “ground penetrating radar,” “time-domain reflectometry,”
“TDR,” “data fusion,” “combined sensors,” “combined techniques,” The
terms “soil properties estimation,” “soil organic carbon,” “soil mois-
ture,” “clay,” “sand,” “soil texture,” and “nutrients” were used in com-
bination with the keywords listed above to further narrow the spectrum
of aimed publications to the PSS context. The keywords for the research
on the costs involved in the different steps of soil surveying with PSS
were the same as for the accuracy of proximal sensing, with the addition
of the keyword “cost” during the literature search strategy (e.g., “soil
proximal sensing costs,” “diffuse reflectance spectroscopy costs,” etc.).
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Fig. 8. Schematic workflow of the review process.

The complete list of keywords and strings is shown in Table Al in the
supplementary materials.

Due to the low number of papers resulting from the cost inquiry, a
dedicated questionnaire was developed to conduct interviews with
commercial companies offering PSS services. Additionally, due to the
low number of articles, reports, and papers on cost analysis that align
with the objectives of this review retrieved from the bibliography, no
exclusion criteria were applied to the collected documents for full-text
review.

3.2. Inclusion/exclusion criteria

Original research articles were manually selected, while non-eligible
sources, such as non-English studies, extended abstracts, presentations,
conference proceedings, reviews, meta-analyses, and entire books, were
excluded. All articles retrieved for full-text reading were screened by the
authors of the present work, each with their own set of designated ar-
ticles, with the variables of interest collated in a data extraction sheet.

10

Articles included in the analysis should refer to digital soil mapping
attempts or to soil property estimation using modelling techniques based
on proximal soil sensing covariates. Additionally, papers should report
the performance indices of the models employed to estimate the soil
properties, as well as the ranges of soil property analytical values
determined by wet chemistry. Duplicated papers that did not contribute
to the objectives of the review work were manually removed. Articles
referring to the use of electromagnetic sensors for digital soil mapping
and precision agriculture attempts addressed using UAV platforms or
remote sensing alone, PSS techniques that didn’t meet the ProbeField’s
project aims, and efforts on monitoring, reporting, and verification
(MRYV) systems were excluded from this analysis. Although numerous
studies (Fedeli et al., 2024; Horta et al., 2021; Xia et al., 2019) have
demonstrated the effectiveness of both laboratory-based and portable X-
ray fluorescence (XRF) instruments, studies referring to XRF solely for
elemental concentration and mapping were excluded, while focusing
instead on those that derived additional properties from portable XRF
(pXRF) measurements.
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The complete list of papers and associated DOIs used for this analysis
is summarized in Table A2 in the supplementary materials, whereas the
PRISMA (Page et al., 2021) flowchart with the number of retrieved and
excluded documents is also included (Fig. Al). A simplified version of
the Mixed Method Appraisal Tool (MMAT) was used to assess quality
and the risk of bias in this systematic review. All selected documents met
the MMAT criteria for quantitative descriptive studies.

3.3. Literature data extraction and harmonization

An association between the DOIs and the information collected from
research papers in the data extraction sheet was performed considering
the following qualitative aspects: utilized PSS techniques single or in
combination, the sensor employed, the platform type used to perform
the survey with the sensor, the soil property or properties investigated,
the type of data produced (i.e., both bi-dimensional and tri-dimensional
spatializations, and point estimations), any additional covariate used to
generate the estimations, the modelling technique, the scale of the
study, general characteristics of the study area, soil type, land use,
experimental design, and sampling characteristics such as the number of
sampling locations, the total number of samples collected per surface
unit, and the analytical methods used to measure the soil properties
under investigation. A total of 42 soil properties were identified across
the entire set of documents, which were subsequently summarized into
groups to improve representativeness during data analysis (Table 1).

The collected quantitative information [i.e., normalized RMSE
(NRMSE) and analytical values] was entered into a separate sheet to

Table 1
Summary of soil properties collected from the literature and organized into
groups of properties.

Soil property group SOIL PROPERTIES

Soil carbon (C) Total carbon (TC)

Soil organic matter (SOM)

Soil organic carbon (SOC)

Total Nitrogen (N)

Phosphorus (P)

Potassium (K)

Cation exchange capacity (CEC)
Plant available potassium (paK)
Exchangeable Magnesium (ex-Mg)
Exchangeable Calcium (ex-Ca)
Exchangeable Phosphorous (ex-P)
Exchangeable Potassium (ex-K)
Other secondary nutrients

Soil inorganic carbon (SIC)
Carbonates (CaCO3)

Salinity (ECe)

Exchangeable Aluminium (ex-Al)
Base saturation percentage (BSP)
Electrical conductivity (EC)

Lime buffer capacity (LBC)

pH

H+ Al

Other chemicals (e.g., potentially toxic
elements)

Clay type

Moisture

Volumetric water content (VWC)
Field capacity

Nitrogen (N)
Nutrients, CEC, and exchangeable
bases

Acidic-basic properties

Mineralogy

Hydrological properties

Evapotranspiration
Wilting point

Bulk density (BD) Bulk density

Soil depth Soil depth

Texture Coarse fragments

Silt, sand, and clay contents
Horizons

Compacted layer

Soil structure

Penetration resistance
Total porosity

Biological properties

Profile features & other properties
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facilitate data analysis, as described below.

3.4. Cost survey and questionnaire design

Several questions about the derived cost of applying PSS services in
the private sector that aligned with the research topics of the ProbeField
project were structured as a questionnaire and translated into four
languages (English, German, Spanish, and Italian). The four versions of
the questionnaire are available in the supplementary materials of this
study. The questionnaire was distributed to PSS companies via the
Google Docs platform, along with a letter of introduction to the Probe-
Field project, or, sometimes, more informally via telephone interviews.
It was submitted to numerous PSS companies worldwide, although
higher representation was found across Europe, North America, and
Midwestern Asia.

The questionnaire is structured as follows: 1) a set of general ques-
tions about the activity of the company regarding used sensor types,
types of products, and services they offer; 2) a set of specific questions
about the use of proximal sensors on-the-go, about what are the critical
points referred to the using of sensors, analysis of data, and reporting
that have more influence on the final cost such as weighted costs based
on personnel costs, working days, equipment costs, etc.; 3) which soil
properties are estimated with which sensors, number of samples taken
per hectare, the most used line spacing in survey and if equipment is
available for rent; 4) specific questions about what are the critical points
referred to the traveling to the area of interest, workability, and field
characteristics; and 5) two last sets of questions about calibration and
validation methods of the final product. In all sections, companies were
asked to roughly assess the cost as a percentage range of the total for
each step of the process. Finally, a section was proposed for companies
to make further comments and suggestions for future research on PSS.

3.5. Data analysis

3.5.1. Accuracy synthesis (descriptive systematic review)

This study follows a systematic review methodology, in accordance
with structured literature identification and screening, and provides a
descriptive synthesis of reported results. Consequently, this methodol-
ogy did not match the analytical procedure of a meta-analysis. The
collected accuracy information was summarized into a single data
frame. Each row contained the value of RMSE (Eq. (4) and the minimum
and maximum analytical values of the predicted soil property as re-
ported in the respective papers. That quantitative information was
associated with the following columns based on the information
collected from the retrieved papers (Table 2): A) to the PSS-derived
covariate used to model the target property, henceforth, PSS tech-
nique (i.e., DRS, EMI/ER, y-ray, XRF, TDR/FDR, and combined tech-
niques); B) to other variables eventually used besides the sensors’ signal
response, that were grouped into macro categories such as morphom-
etry, remote sensing, other soil properties, and their combinations. In
this work, we refer to such a set of macro categories of variables syn-
thetically as “other covariates” (Table 2); C) to the type of model used to
get the estimated soil property, which was classified into the groups
“linear” and “non-linear” modeling (Table 2); D) to the group of soil
property associated with the accuracy estimation (Table 1); E) to the soil
strata where the estimation is performed, that is, topsoil (i.e., 0-30 cm
depth) or subsoil (i.e., >30 cm depth); and F) to the scale of the research
(i.e., local, non-local). In order to compare the resulting distributions,
the following descriptive statistics were calculated: the range from
minimum to maximum, the average, the standard deviation, and the 1%t
and 3" quartile values, which were reported as charts (i.e., boxplots) or
table form. Table 2 provides details about the grouping factors associ-
ated to each NRMSE value.

We recall that the following equation gives RMSE:
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Table 2

Summary of groups used in the data set for harmonizing the collected accuracy
records of using proximal sensors from the literature (techniques, other cova-
riates, and the scale of reference of the study.

Grouping
factor

Categories within
grouping factors

Description of categories

Techniques EMI/ER Electromagnetic induction and electrical
resistivity

Gamma-ray spectroscopy

Ground penetrating radar

X-ray fluorescence

Diffuse reflectance spectroscopy (Vis-NIR-
MIR)

Time domain reflectometry and Frequency
domain reflectometry

Drone, aerial image, satellite

Wet chemistry, soil class

Digital elevation model (DEM) and
derivatives of DEM (i.e., slope, orientation,
hydrography, hydrological basin, etc.)
Field(s) scale

Includes regional, national, continental
scales, together with larger areas (e.g.,
several sparse fields within a single or more
pedoclimatic or administrative zone) not
defined by the previous “Local” (field)
scale.

Generalized linear model (GLM); Spatio-
Temporal Generalized Linear Models
(SGLM); Linear regression (LR), Stepwise
Multiple Linear regression (SMLR); Partial
least squares regression (PLSR); Latent

y-ray
GPR
XRF
DRS

TDR/FDR

Covariates Remote sensing
Soil property

Morphometry

Local
Non-local

Scale

Model Linear (LM)

variable partial least squares (L-PLS);
Ordinary Least Squares regression (OLS);
Granger-Ramanathan Combination; K-
means(KM); Kriging; Regression kriging;
Geographically weighted regression
(GWR); Langmuir-Goodwin-Richards
(LGR) model; Linear mixed-effects models
(LMEm); odds ratio (OR); PCR; quasi-3D
modeling

Machine learning; Machine learning +
regression residuals (MLRR); Artificial
neural network (ANN); Convolutional
neural network (CNN); XGBoost (XGB);
Cubist regression (CR); Regression tree
(RT); Random Forest (RF); RF and
regression residuals (RFRR); Support
vector machine (SVM); SVM and regression
residuals (SVMRR); PLS-support vector
machine (PLS-SVM); Classification and
Regression Tree (CART); Multivariate
Adaptive Regression Splines (MARS);
Penalized Spline Regression (PSR);
Generalized additive model (GAM)

Non-Linear (NLM)

N
RMSE = 2117 4

where N is the number of data points, y; is the i" measurement, and yiis
its corresponding prediction. In addition, the normalized root-mean-
squared error (NRMSE, Eq. (5) was calculated and used alongside the
remaining grouping factors, and analytical values for each RMSE record,
to make the accuracies comparable across soil properties with variable
ranges. The NRMSE was calculated by dividing the RMSE by the range of
the soil property, using the following formula:

RMSE

max — ymin

NRMSE = ()

where Ymqx and ymin are the maximum and minimum analytical values of
the soil property object of study, RMSE is the metric of accuracy as re-
ported in papers. We decided to normalize by the maximum and mini-
mum values, as this was the most appropriate given the available data.
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The normalization based on quartiles (e.g., Q3—Q1) was also evaluated,
as it can reduce the metric's sensitivity to skewed distributions and
extreme values, which may otherwise artificially compress the range.
However, quartile values are seldom reported in the studies reviewed,
making min-max normalization the only consistently applicable
approach across the dataset.

3.5.2. Analysis of cost

3.5.2.1. Analysis of costs from literature. After reviewing a selection of
papers that included the keyword 'cost' alongside topics such as preci-
sion farming and proximal sensing, we skimmed those that enabled us to
assess and compare overall budgets. We then refined the list by focusing
on studies involving on-the-go or point-based sensors that allow for
comprehensive soil characterization. This selection also took into ac-
count financial factors, labor hours, and the benefits compared to
traditional approaches that do not use proximal sensors, as well as how
costs can vary non-linearly depending on the size of the investigation
area.

3.5.2.2. Analysis of questionnaire’s replies. A semi-quantitative analysis
using basic descriptive statistics was conducted on responses to the
questionnaires from companies. The non-quantitative replies were
summarized based on several factors, including the sensors employed in
surveys, the target soil properties, the implementation of fieldwork, and
associated difficulties encountered during fieldwork. On the other hand,
replies regarding costs were classified into three categories: i) personnel
costs, including traveling to the area of interest, ii) equipment costs, and
iii) cost of data analysis and reporting. Quantitative data such as costs,
areas, and distances were standardized using the qualitative and semi-
quantitative information provided by companies as follows: a) costs
were reported and transformed to € when necessary; b) areas were
converted into hectares (ha), and c¢) distances to meters (m) for com-
parison purposes. When the availability of data permitted it, the quan-
titative information was summarized using descriptive statistics (i.e., the
range from minimum to maximum, the median, and the 1% and 3"
quartile values). Due to privacy agreements with companies, this dataset
is not being made publicly available. The structure of the questionnaire
is available as supplementary material.

4. Results on accuracy
4.1. Dataset description

A total of 1,544 NRMSE records from 114 papers are included in the
dataset (Table 3). The resulting dataset is available at the repository
ZENODO (https://doi.org/10.5281/zenodo.17121809). DRS is the most
frequently used technique individually (32.6 %). Applications for XRF
(14.2 %), EMI/ER (11.9 %), y-ray (8.8 %), and TDR/FDR (2.3 %) are less
common. Among applications that utilize combined techniques, which
account for 30.1 % of the total, the most investigated combination was
EMI/ER + y-ray (41.4 %). Moderately investigated were the combina-
tions of DRS with XRF and EMI/ER (23.8 % and 15.1 %, respectively). A
lower number of applications were found for the following combina-
tions: EMI/ER + y-ray + DRS, DRS + TDR/FDR, EMI/ER + TDR/FDR,
EMI/ER + GPR, y-ray + XRF (6.8 %, 4.6 %, 1.5 %, 0.9 %, and 0.7 %,
respectively).

Based on the number of papers, the most studied groups of soil
properties (Table 4) were in order: C (58 %), texture (38.6 %), acidic-
basic soil properties (30.7 %), and nutrients, CEC, and exchangeable
bases (25.4 %). This last group accounted for the highest number of
NRMSE records.
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Composition of the dataset in terms of techniques. Both the number of papers (i.e., collected DOIs) and the number of observations (Obs.) were reported as raw
numbers (n) and as percentages (%). On the left, observation and DOIs are reported for techniques applied individually, whereas on the right, the data zoomed in on the

types of combinations that occurred.

Single techniques

Combined techniques

Type Observations DOI Combination Observations DOI
n % n % n % n %
DRS 504 32.6 55 48.2 EMI/ER y-ray 192 41.4 11 31.4
XRF 220 14.2 21 18.4 XRF DRS 139 23.8 10 28.6
EMI/ER 184 11.9 19 16.7 EMI/ER DRS 48 15.1 8 22.9
y-ray 136 8.8 11 9.6 EMI/ER y-ray + DRS 40 6.8 1 2.9
TDR/FDR 36 2.3 5 4.4 DRS TDR/FDR 27 4.6 2 5.7
Combined techniques 464 30.1 35 30.7 EMI/ER TDR/FDR 9 1.5 1 2.9
EMI/ER GPR 5 0.9 1 2.9
y-ray XRF 4 0.7 1 2.9
Total 1544 100.0 114 100.0 Total 464 100.0 35 100.0

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom-
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling.

Table 4

Composition of the dataset in terms of groups of properties. Both the number of
papers (i.e., collected DOIs) and the number of observations (Obs.) were re-
ported as raw numbers (n) and as percentages (%).

Groups of properties Observations DOI
n. % n %

Nutrients, CEC, and exchangeable bases 374 24.2 29 25.4
C 347 22.5 67 58.8
Texture 324 21.0 44 38.6
Acidic-basic properties 154 10.0 35 30.7
Hydrological properties 146 9.5 18 15.8
Mineralogy 58 3.8 2 1.8
N 55 3.6 20 17.5
Soil depth 46 3.0 4 3.5
BD 30 1.9 8 7.0
Profile features and other properties 10 0.6 2 1.8
Total 1,544 100.0 114 100.0

CEC: cation exchange capacity, C: carbon, N: nitrogen, BD: bulk density.

4.2. Results for accuracies

Table 5 reports the accuracies filtered by the PSS technique and the
group of soil properties. The average NRMSE equals 0.217 for the whole
dataset (Table 5). However, when groups of soil properties are consid-
ered individually, the overall NRMSE varies mainly depending on the
measured soil property and the technique employed. Concerning the soil
property groups, the top three overall average accuracies revealed are
reached in the profile features and other properties group (NRMSE =
0.105, 10 observations), soil depth (NRMSE = 0.123, 46 observations),
and mineralogy (NRMSE = 0.129, 58 observations). In contrast, others,
such as the soil carbon group, had the lowest average accuracy, with the
highest overall NRMSE of 0.390 (347 observations, Table 4). Notice that
such a low average accuracy value attributed to the soil carbon group is
due to the NRMSE data collected from Zhang et al. (2020), ranging from
3 to 10 (i.e., outliers, see Table 5), who estimated SOC and other
properties in three dimensions, as well as predicted values of soil carbon
from non-local calibrations such as SSLs, where NRMSE values ranged
from 0.6 to 2 (Guerrero et al., 2016; Guerrero and Lorenzetti, 2021).
Excluding those values, the accuracy for the soil carbon group equals
0.098 in 311 observations, which becomes the highest average accuracy
for a group of properties. Other groups of properties showing low
average accuracy estimations were bulk density (NRMSE = 0.201, 30
observations), texture (NRMSE = 0.196, 324 observations), and hy-
drological properties (NRMSE = 0.193, 146 observations). The N and
nutrients, CEC, and exchangeable bases groups reached average NRMSE
values of 0.158 and 0.150, with 55 and 374 observations, respectively.
From the point of view of PSS techniques, the highest overall average
accuracy was found in XRF (NRMSE = 0.131, 220 observations),

followed by DRS (NRMSE = 0.135, 504 observations). The on-the-go
PSS techniques, EMI/ER, and y-ray spectroscopy, yielded average
NRMSE values of 0.168 and 0.178, with 184 and 136 observations,
respectively. The TDR/FDR technique achieved the lowest overall
average accuracy values for single PSS techniques (NRMSE = 0.208, 36
observations). In studies where techniques are used in combination in
multi-sensor assets (combined techniques group), the NRMSE showed
the highest overall average value; in other words, the lowest average
accuracy (NRMSE = 0.378, 464 observations). Notice that such low
accuracy values are attributed to the sorting of data. As we state later,
specific combinations of sensors can be as accurate as single techniques
or even higher. The spread of the NRMSE distributions (Fig. 9) varied
considerably among techniques. XRF showed the lowest variability,
with narrow distributions and few outliers, as indicated by its low
standard deviations, whereas DRS and combined sensor approaches
exhibited much wider spreads and several extreme values. This greater
dispersion is reflected in their higher standard deviations (Table 5).

The DRS technique showed the highest average accuracy in esti-
mating acidic-basic properties (NRMSE = 0.116, 56 observations), ni-
trogen (NRMSE = 0.125, 27 observations), hydrological properties
(NRMSE = 0.020, 2 observations), nutrients, CEC, and exchangeable
bases (NRMSE = 0.087, 78 observations), as shown in Fig. 9. Moreover,
it was the only PSS technique that provided estimations for the profile
features and other properties group (see the paragraph above). XRF
showed the highest average accuracy in estimating properties of the
mineralogy group (NRMSE = 0.103, 18 observations) and the soil
texture group (NRMSE = 0.107, 24 observations). Additionally, XRF
demonstrated the highest accuracy in estimating BD (NRMSE = 0.141),
although only one observation was found. Amongst the on-the-go PSS
techniques, y-ray spectroscopy achieved the highest average accuracy in
estimating soil carbon group properties (NRMSE = 0.116, 5 observa-
tions), closely followed by the combined techniques group (NRMSE =
0.169, 85 observations). The EMI/ER technique demonstrated higher
average accuracy in producing maps of soil depth (NRMSE = 0.121, 44
observations) compared to y-ray spectroscopy (NRMSE = 0.174, 2 ob-
servations). The combined techniques group never showed the highest
average accuracy value among all the groups of properties (Table 5).
Instead, it occupied second place in estimating bulk density (NRMSE =
0.174, based on 17 observations) and mineralogy (NRMSE = 0.113,
based on 18 observations). Combinations of techniques were also com-
mon in estimating other groups of properties, such as acidic-basic
properties, nitrogen, hydrological properties, soil texture, and the
nutrient, CEC, and exchangeable bases group. Still, they showed
generally lower average accuracy compared to the application of single
PSS techniques.

Table 6 presents the accuracy of estimations based on the average
NRMSE for the group of combined techniques. The combination of DRS
and XRF reached higher accuracy values to predict acidic and basic
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Table 5
Descriptive statistics of NRMSE grouped by technique and group of soil
properties.

Technique  Group of soil Obs. Min. Avg. SD Max.
properties
DRS 504 0.001 0.135 0.227 3.450
Acidic-basic 56 0.018 0.116  0.068 0.358
properties
Bulk density (BD) 4 0.102  0.204 0.168 0.455
C 222 0.003  0.140  0.319 3.450
Hydrological 2 0.001  0.021  0.029 0.041
properties
Mineralogy 22 0.082 0.165 0.033 0.254
N 27 0.002  0.125  0.093 0.375
Nutrients, CEC, 78 0.035 0.087 0.035 0.178
exchangeable bases
Profile features and 10 0.017  0.105  0.039 0.160
other properties
Texture 83 0.032 0.178 0.171 0.723
EMI/ER 184 0.007 0.178  0.131 0.800
Acidic-basic 31 0.007 0.159 0.177 0.731
properties
Bulk density (BD) 6 0.152  0.262  0.107 0.433
C 13 0.028 0.132  0.082 0.371
Hydrological 38 0.083 0.234 0.134 0.800
properties
N 2 0.118 0.152  0.048 0.186
Nutrients, CEC, 23 0.066 0.234 0.172 0.661
exchangeable bases
Soil depth 44 0.054 0.121  0.036 0.199
Texture 27 0.026  0.167 0.101 0.343
y-ray 136 0.010 0.169 0.127 0.726
Acidic-basic 9 0.010 0.123  0.083 0.228
properties
Bulk density (BD) 2 0.150 0.275 0.177 0.400
C 5 0.063 0.116  0.057 0.187
Hydrological 3 0.165 0.282  0.177 0.485
properties
N 2 0.200  0.220  0.028 0.240
Nutrients, CEC, 21 0.055 0.225 0.199 0.726
exchangeable bases
Soil depth 2 0.159 0.174 0.020 0.188
Texture 92 0.017  0.156  0.106 0.667
TDR/FDR 36 0.020 0.208  0.231 1.000
Hydrological 36 0.020 0.208  0.231 1.000
properties
XRF 220 0.001  0.131  0.068 0.522
Acidic-basic 24 0.106 0.146  0.027 0.195
properties
Bulk density (BD) 1 0.142 — - 0.142
C 22 0.050 0.123  0.049 0.289
Hydrological 2 0.189 0.206 0.024 0.223
properties
Mineralogy 18 0.090 0.104 0.012 0.136
N 18 0.062 0.154 0.064 0.258
Nutrients, CEC, 111 0.000 0.134  0.085 0.522
exchangeable bases
Texture 24 0.060 0.107 0.028 0.163
Combined techniques 464 0.002 0.378 1.093 10.4
Acidic-basic 34 0.012  0.209 0.168 1.000
properties
Bulk density (BD) 17 0.069 0.174 0.122 0.455
C 85 0.002 0.169 2354 10.358
Hydrological 65 0.025 0.161  0.127 1.000
properties
Mineralogy 18 0.085 0.113  0.015 0.137
N 6 0.043  0.303 0.364 1.000
Nutrients, CEC, 141 0.038 0.172  0.165 1.000
exchangeable bases
Texture 98 0.026  0.280  0.392 2.520
Total 1544 0.074 0.217 0.626 0.791

Where values in the “Total” row represent, respectively, the sum of observations,
and the average of values in the successive columns (i.e., the average of mini-
mums, the mean NRMSE of the dataset, the average SD, and the average of
maximums).

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER:
electromagnetic induction/electrical resistivity; TDR/FDR: time-domain
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reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM:
linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C:
carbon, N: nitrogen, BD: bulk density.

properties (NRMSE = 0.157, 13 observations), soil carbon (NRMSE =
0.044, 29 observations), mineralogy (NRMSE = 0.113, 18 observations),
nitrogen (NRMSE = 0.142, 3 observations), and nutrients, CEC, and
exchangeable bases (NRMSE = 0.084, 62 observations); whereas DRS
and TDR/FDR was the combination reaching higher average accuracy to
estimate bulk density (NRMSE = 0.098, 9 observations) and hydrolog-
ical properties (NRMSE = 0.050, 18 observations). The combination of
DRS and EMI/ER techniques yielded average NRMSE values of 0.184 in
17 observations in estimating soil texture.

Fig. 10 compares the performance of the best combinations based on
the average NRMSE with the average accuracy of predictions achieved
using single techniques. This chart illustrates that a specific combination
of techniques may yield more accurate predictions compared to the
average NRMSE of a single PSS technique. This affects, for example, bulk
density, soil carbon, hydrological properties, and the group of nutrients,
CEC, and exchangeable bases. In fact, DRS + TDR/FDR for BD and hy-
drological properties, as well as DRS + XRF for C, and the group of
nutrients, CEC, and exchangeable bases, yielded more accurate estima-
tions of those groups.

Table 7 presents the accuracy of spatializations (i.e., thematic maps
of soil properties) realized with on-the-go techniques (i.e., EMI/ER,
y-ray spectroscopy, and combined techniques including on-the-go DRS,
which was considered as a combination of techniques because it was
always employed in multisensor assets in the set of the literature that
was checked for this study) in the top and subsoil, respectively. The
accuracy of the estimations was assessed by considering the groups of
properties. The total number of observations by technique was 171 for
EMI/ER (40 topsoil and 131 subsoil), 131 for y-ray spectroscopy (87
topsoil and 44 subsoil), and 361 for combined techniques (182 topsoil
and 179 subsoil). The average NRMSE for EMI/ER in the topsoil was
0.219, and 0.178 in the subsoil. For y-ray spectroscopy, average NRMSE
values of 0.158 were achieved in the topsoil and 0.235 in the subsoil. In
the case of combined techniques, the topsoil attained a value of 0.156,
while the subsoil achieved a value of 0.279. The ranking of spatializa-
tions of groups of properties, from the most accurate to the less precise,
was sorted as follows: hydrological properties using combined tech-
niques in the topsoil (NRMSE = 0.086, 24 observations), soil texture
fractions with the EMI/ER technique in the subsoil (NRMSE = 0.109, 15
observations), acidic and basic properties using y-ray spectroscopy in
the subsoil (NRMSE = 0.123, 9 observations), nutrient, CEC, and
exchangeable bases using y-ray spectroscopy (NRMSE = 0.132, 2 ob-
servations), BD using EMI/ER in the topsoil (NRMSE = 0.153, 2 obser-
vations), and finally, hydrological properties in the subsoil with
combined techniques (NRMSE = 0.204, 41 observations).

4.3. Effect of covariates on soil property estimations

Table 8 shows the NRMSE data organized into sets of studies
applying covariates during the modeling process. When the overall
average NRMSE of the covariates datasets was compared, higher overall
average accuracies were reached when using remote sensing covariates
(average NRMSE = 0.116, 24 observations), followed by the average
NRMSE value of the dataset in which several covariates are used
together (average NRMSE = 0.180, 100 observations), soil properties
covariates (average NRMSE = 0.195, 188 observations), and morpho-
metrical covariates (average NRMSE = 0.710, 177 observations). A
higher number of observations was found in studies applying combined
techniques and morphometrical covariates, where the lowest average
accuracy of the whole dataset was observed when estimating the soil
carbon group (NRMSE = 2.923, 32 observations). Instead, the most
accurate NRMSE average value was obtained when applying y-ray
spectroscopy for estimating soil texture using morphometrical
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Fig. 9. Diagrams accounting for the normalized root-mean-square error (NRMSE) of each PSS technique estimating the groups of soil properties. NRMSE values over
1.5 are excluded from this chart. DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity;
TDR/FDR: time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation ex-

change capacity, C: carbon, N: nitrogen, BD: bulk density.

covariates (NRMSE = 0.043). When soil properties are used as cova-
riates, the most frequent technique is XRF (75 observations). Still, the
most accurate estimation was found when using the EMI/ER technique
for modeling soil depth (NRMSE = 0.100). High average accuracies were
obtained when combining DRS with remote sensing covariates to esti-
mate soil carbon (NRMSE = 0.075, 13 observations). It is worth
mentioning that the use of several covariates together yielded accurate
estimations in combination with XRF soil carbon, nitrogen, and soil
texture (NRMSE = 0.083, 0.074, and 0.099, respectively). In addition,
the use of more than one type of covariate and combined techniques also
yielded accurate estimations (Table 8, see Section 4.5 for details).

4.4. Effect of the modeling technique on the accuracy of estimations

Fig. 11 presents the accuracy of the linear modeling (LM) and non-
linear modeling (NLM) models filtered by the PSS technique and the
group of soil properties. NLM achieved a lower accuracy (average
NRMSE = 0.303) compared to LM (average NRMSE = 0.185). However,
the accuracy of NLM was found to be superior to that of LM in specific
cases. For point-based estimations, NLM outperforms LM: DRS achieved
an average accuracy of 0.128, using 85 observations with NLM,
compared to an NRMSE of 0.136, using 419 observations with LM.
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Similarly, XRF estimations with NLM yielded 0.125, 103 observations,
and NRMSE = 0.136, 117 observations applying LM. In contrast, the
average accuracy of using LM in the specific case of mapping soil
properties with EMI/ER exceeds mapping studies using the same tech-
nique and NLM (i.e., NRMSE = 0.162, 147 observations vs. NRMSE =
0.240, 37 observations, respectively). Similarly, the average accuracy of
using LM to produce maps of soil properties using y-ray spectroscopy
also exceeds that of NLM (i.e., NRMSE = 0.161, 107 observations vs.
NRMSE = 0.196, 29 observations, respectively). We did not find studies
that utilized NLM for estimating hydrological properties with TDR/FDR
in our dataset. Additionally, no NLM applications were found for the
specific cases of EMI/ER and y-ray spectroscopy when estimating acidic
and basic properties, bulk density, and nitrogen. The combination of
techniques seems to yield better estimations when using LM compared
to NLM (NRMSE = 0.290, 292 observations vs. NRMSE = 0.527, 172
observations, respectively). Notice the narrow difference in the com-
parison between LM and NLM in the accuracy of predictions when point-
based techniques are used, and in the case of the accuracy of soil maps,
where that difference is significantly wider.
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Table 6 4.5. Best combination of factors for soil property prediction
Best combinations of techniques for each soil property, according to the mean
values of NRMSE. The combinations with an occurrence lower than five are This section displays the mix of factors considered in this systematic
excluded. review (i.e., PSS technique, covariate, and modeling method) that yields
BEST NRMSE the most accurate estimations of soil properties. Table 9 reports on the
technique top three combinations that achieved the highest accuracy (i.e., lowest
S;;’;;i;i combination  Obs. ~ Min.  Avg.  SD Max. NRMSE). The combination “DRS-NLM-no covariates” achieved the best

solution for estimating soil properties, including acidic-basic properties,

Acidic-basic DRS + XRF 13 0024 0157 0.046  0.222 C, mineralogy, and the group of nutrients, CEC, and exchangeable bases.
properties o . . P ML . » .
BD DRS + TDR/  © 0069 0098 0026 0141 Slmllarly,. the comb.matl.on EMI/ER LM-no covar1aFes resulte(.i in the
FDR best solution for estimating BD, soil depth, hydrological properties, and
C DRS + XRF 29 0.002  0.044 0.049 0.122 C. These two were the most common combinations among the whole set
Hydrological DRS + TDR/ 18 0.025  0.050  0.021  0.108 of best combinations. Optimal NRMSE scores were also obtained with
properties FDR the combinations: i) DRS-LM-covariates for estimating the acidic-basic
Mineralogy DRS + XRF 18 0.085 0.113 0.015 0.137 £ s . f . . h
N DRS + XRF 3 0.043 0142 0158 0.325 group 9 properties; ii) DRS-LM-no covarlat.ef or estimating the gljoup
Nutrients, CEC, DRS -+ XRF 62 0.038 0084 0025 0.136 of nutrients, CEC, and exchangeable bases; iii) DRS-NLM-no covariates
exchangeable for estimating the soil carbon group, and nutrients, CEC, and
Tbases o - ) ) ) ) exchangeable bases; iv) XRF-LM/NLM-no covariates to estimate soil
exture E]]:‘S +EMY 7 0.026 0184 0133 0468 texture; v) combined techniques (specifically, DRS + TDR/FDR)-LM-

covariates to estimate BD.

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER:
electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflec-
tometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear

modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon,
N: nitrogen, BD: bulk density. 5.1. Cost data from the literature review

5. Results on costs

Table 10 summarizes the costs derived from surveys with PSS.
Chatterjee et al. (2021) estimated the cost of a PSS survey for predicting

Average NRMSE ( no.<5 excluded)

Acidic-basic
properties
0.30
Texture 0.25 BD
0.20

DRS+EMI/ER A 0.15 4h DRS+XRF

Soil depth .OA10 C
A DRS+TDR/FDR
0.05 o
DRS+XRF
0.00 A
A DRS+TDR/FDR
_ DRS+XRF 4 ®
e features‘and xDRSH(RF Hydrological properties
other properties ]
DRS+XRF ‘
Nutrients, CEC, and .
o Mineralogy
exchangeable bases
N A Best combination DRS
EMI/ER y-ray
® TDR/FDR ® XRF

Fig. 10. Radar plot showing the accuracy (NRMSE) of the combined techniques compared with the single technique for each group. The average NRMSE based on a
sample size of fewer than five is not included. DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical
resistivity; TDR/FDR: time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC:
cation exchange capacity, C: carbon, N: nitrogen, BD: bulk density
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Table 7

Computers and Electronics in Agriculture 243 (2026) 111378

Average and standard deviation of NRMSE, and number of observations for spatializations of each group of properties (maps of soil properties) in the top and subsoil.
Combined techniques include combinations of EMI/ER and y-ray spectroscopy, as well as on-the-go Vis-NIR spectroscopy, which was considered in this category
because it was always employed in multisensory assets to produce maps of soil properties.

Soil property group Layer Technique
EMI/ER y-ray Combined techniques
Obs. Avg. SD Obs. Avg. SD Obs. Avg. SD
Acidic-basic properties Topsoil 2 0.244 0.149 - - - 21 0.196 0.073
Subsoil 29 0.153 0.098 9 0.123 0.070 13 0.231 0.171
BD Topsoil 2 0.153 0.040 1 0.150 0.039 10 0.103 0.044
Subsoil 4 0.316 0.124 1 0.400 0.104 7 0.275 0.133
Hydrological properties Topsoil 19 0.276 0.126 1 0.196 0.051 24 0.086 0.055
Subsoil 19 0.194 0.112 2 0.325 0.144 41 0.204 0.087
N Topsoil 1 0.185 0.048 - - 3 0.230 0.095
Subsoil 1 0.118 0.030 2 0.220 0.064 3 0.375 0.329
Nutrient, CEC, and ex. Bases Topsoil 4 0.218 0.107 2 0.132 0.036 101 0.129 0.077
Subsoil 19 0.238 0.169 19 0.235 0.145 40 0.282 0.170
Soil depth Subsoil 44 0.121 0.049 2 0.174 0.050 - - -
Soil texture Topsoil 12 0.239 0.078 83 0.155 0.085 23 0.193 0.140
Subsoil 15 0.109 0.076 9 0.171 0.087 75 0.306 0.207
Mineralogy Topsoil - - - - - - 18 0.113 0.035

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom-
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni-

trogen, BD: bulk density.

Table 8

Number of observations, averages + standard deviations of accuracies for groups of soil properties estimation using the other covariates such as morphometrical (i.e.,
DEM, and derivatives of DEM), soil properties (i.e., SOC, clay, etc.), remote sensing derivatives (i.e., spectral indices, single bands, etc.), and several covariates

together.
Groups of Group of soil XRF y-ray EMI/ER DRS Combined techniques
Covariates properties Obs.  Avg. SD Obs.  Avg. SD  Obs. Avg. SD Obs.  Avg. SD Obs.  Avg. SD
Morphometry  Acidic-basic properties 3 0.156  0.048 — - - 1 0.094 — 15 0.080 0.059 — - -
derivatives BD - — - - - — - — - 3 0.055  0.021 - - -
C - - - - - - 1 0.111 - - - - 32 2923  3.457
Hydrological properties - - - - - - 1 0.369 — - - - 27 0.185  0.099
N 3 0.099 0.043 — - - 1 0.186 — - - - - -
Nutrient, CEC, and ex. — — — — — 1 0.148 — — — — 4 0.123 0.068
Bases
Soil depth - - - 1 0.159 — 24 0.106 0.046 — - - - - -
Soil texture 6 0.125 0.066 1 0.043 - 6 0.185 0.139 9 0.557 0.267 38 0.368 0.084
Soil Acidic-basic properties - - - - - - - - - 1 0.097 0.025 8 0.321 0.129
properties BD — — — - — — — — — — - — 7 0.141 0.055
C 13 0.133 0.055 — - - 2 0.274 0.155 19 0.194 0.097 6 0.271 0.192
Hydrological properties - - - - - - - - - - - 11 0.134  0.019
N 12 0.189 0.130 — - - - - - 1 0.142 0.037 1 1.000 -
Nutrient, CEC, and ex. 48 0.153  0.099 — - - - - - 2 0.127 0.041 4 0.544  0.930
Bases
Soil depth - - - - - - 1 0.100 - — - — - — -
Soil texture 2 0.137 0.048 — - — 6 0.234 0.147 10 0.113  0.076 12 0.393 0.488
Remote Acidic-basic properties - - - - - - - - - - - - 1 0.229 -
sensing C - - - - - - - - - 13 0.075 0.038 4 0.121  0.081
derivatives Hydrological properties - - - - - - - - - - - - 1 0.236 —
Nutrient, CEC, and ex. — — — — — — — — — — — — 2 0.255 0.199
Bases
Soil texture - - - - - - - - - 1 0.119 - 2 0.111  0.038
Several Acidic-basic properties 1 0.146  — - - - - - - - - - 5 0.259 0.131
covariates C 1 0.083 - - - - - - - - - — 20 0.059  0.023
together Hydrological properties - - - - - - 21 0.292 0.185 — - - 13 0.174  0.061
N 1 0.074 - - - - - - - - - - - - -
Nutrient, CEC, and ex. — — — — — — — — — — — — 30 0.203 0.163
Bases
Soil texture 3 0.099 0.047 1 0.045 — - - - - - - 4 0.126  0.077

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom-
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni-

trogen, BD: bulk density.

multiple soil properties for an 80-hectare field using combined tech-
niques (XRF and EMI), acquisition of DEM by using LiDAR, acquisition
of remote sensing imagery, the analysis of soil samples, and hiring
personnel for predicting multiple soil properties at 12.000 $. Priori et al.
(2019) estimated costs ranging from approximately 300 € per hectare for
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small areas (10-30 ha) to about 100 € per hectare for areas larger than
500 ha. Malone et al. (2022) reported a unit cost of approximately 640 $
per hectare for PSS surveys, considering soil core scanning, soil sam-
pling, and sample analysis. Van Egmond et al. (2018) reported that the
cost calibration per hectare of soil texture using y-ray spectroscopy,
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Fig. 11. Effect of applying linear modeling techniques (e.g., multiple regression, partial-least square regression) and non-linear modeling techniques (e.g., random
forest, regression trees, support vector machine) on the accuracy (NRMSE) of PSS techniques estimating groups of soil properties. NRMSE values over 1.5 are
excluded from this chart. DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR:
time-domain reflectometry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange ca-

pacity, C: carbon, N: nitrogen, BD: bulk density.

including soil analysis, ranges from 60 to 67 € when conducted with
UAV or car-borne platforms, while the cost reaches 77 € when performed
on foot.

5.2. Cost data from the companies’ survey

The analysis of questionnaires provided insights into the costs asso-
ciated with PSS surveys carried out by private sector companies. Out of
the 90 companies contacted, only 24 responded. Most of the replying
companies operate mainly in the European Union, although companies
from North America and Western Asia also provided information. Due to
the sensitive nature of cost information, responses varied significantly.
Nevertheless, we summarized descriptive statistics of quantitative data
extracted from questions related to in-field and service costs (Table 11).

Companies reported covering a range of one to 300 ha per day using
on-the-go sensors. The minimum daily coverage was four ha achieved on
foot using y-ray spectrometers and EMI sensors (individually or com-
bined). The maximum coverage was 300 ha using a car platform for
y-ray spectroscopy surveys. The median daily coverage was about 30 ha.
Generally, the results show that the wider the covered area is, the lower
the cost per hectare. The median cost of a surveyed hectare varies
around 142 €, with a minimum of 100 € when car or quad platforms are
employed. Notwithstanding, surveys with more than one sensor or
highly specialized robotic instruments with multiple sensors can reach
very high costs both daily and per hectare (Table 11). The average cost
for a PSS service per day oscillated from 2,575 € (Q;) to 7,025 € (Qs),
while the daily average cost of renting sensors varied from 300 € to 600
€. The main product provided by all companies was soil maps. Only a
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few companies offered soil sample scanning using spectroscopy, such as
vis-NIR or MIR spectroscopy, to track chemical properties such as soil
organic carbon (SOC), pH, and nutrients. None of the responding com-
panies offered a characterization of soil samples using XRF. Most com-
panies identified texture, water content, salinity, and nutrients as the
most important properties to measure for PA purposes due to their
impact on water and fertilization management. The most requested
service was soil texture mapping with EMI and y-ray spectrometers,
followed by SOC using vis-NIR spectroscopy. Only three companies re-
ported providing GPR surveys, and one of these applied this technique
for geo-engineering services rather than PA. The number of soil samples
for soil map calibration and validation varies widely among companies.
Some companies reported no soil sampling and claimed to use covariates
such as the digital elevation model (DEM) and its derivatives, geological
maps, satellite imagery, coring, and information provided by farmers to
validate the predictions of soil properties. Most companies collect at
least one sample every 2-4 ha. In particular, five out of eight companies
used less than 1 sample per hectare (0.2-0.5), two companies reported
taking four samples per hectare, and one company claimed to take ten
samples. Some companies declared that they base their sampling on the
extension of geomorphological units. Additionally, according to the
questionnaires, the cost of soil sample analysis varies significantly by
region, ranging from 60 to 250 € per sample. In contrast, the GLOSOLAN
Standard Operating Procedures (SOPs) established a cost range from 30
to 80 € per sample for a complete standard soil analysis.

Looking at specifics, the cost of PSS is primarily driven by personnel
costs (e.g., fieldwork, logistics, and travel to the area of interest), fol-
lowed by data analysis (including communication), and equipment costs
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Table 9
Top-three combination of factors showing the most accurate estimations for each group of soil properties based on the NRMSE.
Groups of properties Best combination of factors Type of estimation Records NRMSE
PSS technique Model technique Use of covariates n. Min Mean SD Max
Acidic-basic properties DRS LM Yes Point 16 0.038 0.081 0.025  0.117
y-ray LM No Map 9 0.01 0.123 0.083 0.228
DRS NLM No Point 9 0.043 0.128 0.051 0.216
BD Combined techniques LM Yes Point/Map 7 0.069 0.095 0.027 0.139
EMI/ER LM No Map 6 0.152 0.262 0.107 0.433
C DRS NLM No Point 26 0.014 0.092 0.1 0.553
EMI/ER LM No Map 10 0.028 0.105 0.04 0.147
Combined techniques LM No Point/Map 17 0.002 0.11 0.043 0.188
Hydrological properties Combined techniques ~ NLM No Point/Map 8 0.025 0.052  0.031 0.108
TDR/FDR LM Yes Point 22 0.02 0.145 0.107 0.359
EMI/ER LM No Map 12 0.083 0.161 0.072 0.32
Mineralogy XRF NLM No Point 18 0.09 0.104 0.012 0.136
Combined techniques NLM No Point/Map 18 0.085 0.113 0.015 0.137
DRS NLM No Point 18 0.135 0.161 0.014 0.191
N XRF LM Yes Point 7 0.074 0.134 0.062 0.25
DRS LM No Point 23 0.026 0.136 0.093 0.375
XRF NLM Yes Point 9 0.141 0.189 0.048 0.258
Nutrient, CEC, and ex. bases DRS LM No Point 65 0.041 0.085 0.033 0.173
DRS NLM No Point 11 0.035 0.089 0.047 0.178
XRF LM No Point 42 0 0.116 0.09 0.44
Profile features and other properties DRS LM No Point 10 0.017 0.105 0.039  0.160
Soil depth EMI/ER LM No Map 12 0.099 0.121 0.023 0.168
EMI/ER LM Yes Map 31 0.089 0.123 0.039 0.199
Texture XRF LM No Point 5 0.074 0.093 0.018 0.113
XRF NLM No Point 0.06 0.098 0.03 0.134
XRF LM Yes Point 11 0.075 0.12 0.028 0.163

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI/ER: electromagnetic induction/electrical resistivity; TDR/FDR: time-domain reflectom-
etry/frequency-domain reflectometry; XRF: X-ray fluorescence; LM: linear modeling; NLM: non-linear modeling. CEC: cation exchange capacity, C: carbon, N: ni-

trogen, BD: bulk density.

Table 10
Cost breakdown and main parameters for defining budgets for precision mapping activities. Costs are converted into euros for comparison.
Scenario Fieldwork  Processing  Modeling  Total Cost/ha Area Sampling N Sample Invested Reference
®© ©) (ha) locations samples density time (h)
EMI + DRS + 470 18,170 270 19,950 250 80 50 288 1.6 16 Chatterjee et al.,
XRF 2021
y-ray + EMI 3,100 73,685 10,850 28,437 398 220 300 380 0.7 - Malone et al.,
+ DRS 2022
y-ray 1,200 2,685 — 3,935 78 50 15 15 3.3 — Van Egmond et al.,
2018
EMI 1,250 - - - 130 195 36 72 5.4 60 Priori et al., 2019
GPR + EMI 714 - 4,463 - 1,035 5 - - - 128 Chiarantini et al.,
2011
ER - - 3,692 - 1,992 5 — — - 104 Chiarantini et al.,
2011

DRS: diffuse reflectance spectroscopy; y-ray: gamma-ray spectroscopy; EMI: electromagnetic induction; ER: electrical resistivity; XRF: X-ray fluorescence; GPR:

ground-penetrating radar.

Table 11

Summary of quantitative data extracted from the companies’ questionnaire re-
plies (n = 24). Data are independent of the PSS technique used. The daily cost of
the service includes data analysis and reporting.

Report Min Q1 Median Qs Max
Hectares (ha) per day 4 15 30 100 300
Space (m) between lines - 13 20 125 250
Cost (€) per hectare (ha) 100 120 142 362 1,300
Cost (€) of the service per day 400 2,575 4,510 7,025 10,070
Cost (€) of renting PSS sensors per 60 300 300 600 800

day

(e.g., sensors and materials) in last place. On average, companies attri-
bute 39 % of the total cost to the personnel category, 35 % to the data
analysis category, and 11 % to the equipment category (Fig. 12). Fig. 12
illustrates the occurrence of companies voting for each category of cost.
First, a consensus was found among the majority of companies assessing
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the impact of the equipment on the final cost of PSS services, which
ranges from O to 5 %. Second, 46 % of the companies reported that the
cost of data analysis has an impact ranging from 25 to 50 % of the total
cost of PSS services. Third, the impact of personnel costs on the final
price of PSS services is the most variable, according to the replies of
companies, which are homogeneously distributed within the range
5-75 %, with a higher occurrence in the central range.

Around 50 % of companies report that field conditions, rugged
morphology, and access difficulties can increase the final cost by 25-50
% (Fig. 13), as these factors affect the number of hectares covered daily.
However, it is noteworthy that companies typically notify customers of
such cost increases during the quotation phase.

6. Discussion
PA relies on extensive data collection for real-time soil analysis and

management. This simple statement is the driving force behind the
recent rapid advancement of technology, which enables accurate
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Fig. 12. Assignment of the impact of each single cost category on the final price of a PSS service as provided by companies. Colors represent the impact (i.e.,
percentage ranges) of each class of cost (i.e., personnel, equipment, and data analysis) on the final cost of the PSS service. The width of each percentage range (colors)
within each class of cost bars represents the consensus of companies (i.e., the sum of times that companies assessed specific percentage ranges to each class of cost).
For example, in the case of personnel cost, the 28% of companies attributed an impact of personnel cost on the total cost of a PSS service that ranges from 5 to 25%
(yellow); the 41% of companies assessed an impact of personnel cost on the total cost of a PSS service that ranges from 25 to 50% (orange); the 28% of companies
found consensus in attributing an impact of personnel cost that ranges from 50 to 75% (red) on the total cost of a PSS service; and finally, the 3% of companies
declared that the final cost of a PSS services depends up to the 75% on personnel cost (purple). The black squares and the value close to them represent the weighted
average of each class of cost, calculated on the basis of the sum of replies by each percentage range, and divided by the total number of replies.
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Fig. 13. Assignment of the impact of the different categories of difficulties found during the survey on the final price of a PSS service as reported by companies.
Colors represent the weight (i.e., percentage ranges) of each category of impact (i.e., state of soil, rugged morphology, and difficulty of access) on the final cost of the
PSS service. The width of each percentage range (colors) within each category of impact bars represents the consensus of companies (i.e., the sum of times that
companies assessed specific percentage ranges to each class of cost). For example, in the case of the state of soil, 19% of companies weighted the state of soil’s impact
on the final cost of PSS services between 0 and 5% (green); 29% of companies weighted the state of soil’s impact on the final cost of PSS services between 5 and 25%;
43% of companies weighted the state of soil’s impact on the final cost of PSS services between 25 and 50%; and finally, 10% of companies weighted the state of soil’s
impact on the final cost of PSS services between 50 and 75%. The black squares and the value close to them represent the weighted average of each category of
impact, calculated on the basis of the sum of replies by each percentage range, and divided by the total number of replies.

measurements at a reasonable cost. Fundamental research on electro- proxies), which can be related to physicochemical soil properties and
magnetism has brought the possibility of developing portable and element concentration and, in turn, to soil health and fertility. Estab-
affordable electromagnetic sensors that scan signal responses (i.e., PSS lishing relationships between specific properties and the response of
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proximal sensors is possible due to calibration and validation analysis.
Such relationships can be case-specific, as in the example of spatializing
the clay content of agricultural fields using electromagnetic induction,
or, instead, less-local calibrations, as it is the implementation of spectral
libraries to determine the content of soil samples in SOC and minerals
using DRS, for instance. The first case enables farmers to implement
smarter crop management, while the second case implies a reduction in
time and laboratory materials required for conventional soil analysis
(wet chemistry). However, in both cases, the use of PSS proxies implies a
significant decrease in the cost associated with enhancing knowledge
concerning PA. It is essential to note that PSS does not eliminate the
need for soil sampling and analysis but rather significantly reduces the
need for multiple soil samples and, subsequently, the cost of laboratory
analyses. This led us to the fundamental questions of this systematic
review: 1) How much accuracy can we expect from relating PSS proxies
to specific soil properties or element concentrations? And 2) how much
does it cost to have that information?

6.1. Evaluation of accuracy

6.1.1. Point-based techniques

DRS is the PSS technique that yielded the most accurate average
estimations in all the groups of soil properties. The majority of NRMSE
records collected in studies using DRS are laboratory measurements; in
other words, DRS applications in the field, using handheld portable
sensors and spatializations, are underrepresented. However, a signifi-
cant availability of devices and sensors based on DRS is available for
measuring crop health variables, which can be employed for soil
monitoring. Our analysis indicates that DRS was able to estimate the
most significant number of soil properties compared to the other PSS
techniques. The most popular applications of DRS are to determine soil
organic matter (or carbon), nutrients, and soil texture. The possibility of
creating calibrated models based on SSLs enables the rapid, low-cost,
and accurate determination of multiple properties, including acidic-
basic properties, soil texture, and nitrogen, using a relatively small
number of soil samples (Guerrero et al., 2016; Barbetti et al., 2025).
Recent studies have demonstrated the potential of devices like the
SoilPRO (Ben-Dor et al., 2017) or NixPro (Cascante et al., 2025) for
handheld DRS sensors to collect highly stable measurements of soil
surface spectra in the field (see further details in Ben-Dor et al., 2023).
Additionally, Castaldi et al. (2025) demonstrated that field spectra can
be aligned with spectra in lab-based SSLs, which is a huge advantage for
calibration efficiency, despite the influence of soil moisture and surface
roughness. Drone-borne multi- and hyperspectral sensors are also pop-
ular in soil mapping and soil fertility studies (Crucil et al., 2019).
Although DSM with DRS has been tempted by scanning soil cores and
profiles, this PSS technique fails to estimate soil properties in the subsoil
because the scanning is limited to a few millimeters into the soil surface
or the soil sample surface.

After DRS, XRF is the most accurate point-based PSS technique,
showing the narrowest standard deviation of NRMSE values. This is
presumably due to the sensor calibration performed by the manufac-
turer. XRF showed the highest average accuracy in estimating properties
of the mineralogy and soil texture groups. In a recent and comprehensive
review article, Gozukara et al., (2025) also found good accuracy of XRF
for sand and clay prediction, although they based their evaluation on R?
rather than NRMSE. Additionally, XRF demonstrated the highest accu-
racy in estimating BD, although only one observation was found
(Vasques et al., 2020). Most of the collected soil properties estimations
are in-field applications with hand-held pXRF sensors, in contrast to
DRS. The use of XRF is widespread in determining element concentra-
tions, including nutrients and exchangeable bases, and such properties
as cation exchange capacity, acidic-basic properties, nitrogen, and
mineralogy. The advantages of the pXRF technique include fast scan-
ning, no sample preparation or destruction required for scanning, no
generation of laboratory residues, and a moderate cost of equipment.
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However, it presents some disadvantages, such as the state of the sample
(i.e., moisture, organic matter) causing signal attenuation, dependence
of the results on the manufacturer's calibration algorithm, and the low
penetration of the X-ray; therefore, as in the DRS, the result of the
scanning pertains only to the sample surface (see Ravansari et al., 2020
for further details).

Although most PSS techniques serve multiple purposes, the TDR/
FDR technique stands out as the most specific. In fact, all the works
considered in this review used TDR and FDR to estimate soil water
content. Also, the modeling of TDR/FDR data was limited to linear
models. However, this suggests that the TDR and FDR are well-known
techniques, with predictions supported by the bibliography, as they
require minimal calibration effort. In fact, reflectometry is a technique
that accounts for high versatility and applicability in a wide range of
environments.

6.1.2. On-the-go techniques

The on-the-go PSS techniques, such as electromagnetic induction and
y-ray spectroscopy, achieved lower accuracy compared to point-based
technologies, which is expected due to the type of product generated.
Instead, they are highly accurate PSS techniques for producing soil
maps, a fact that is highly valuable in PA due to their capacity to define
management zones with specific pedological characteristics (Mgller
et al., 2021) and in water management (Zare et al., 2020). Notably, the
application of EMI/ER in crop management is particularly remarkable.
Sensors measuring the electrical conductivity of soils and geoelectrical
resistivity can be related to derived properties and ecosystem services.
An advantage of the EMI sensors is their capacity for 3D mapping. For
instance, Zare et al. (2015) successfully estimated soil salinity to a depth
of 1 m, whereas Zhao et al. (2019) estimated the clay content up to a
depth of 10 m using two EMI sensors.

I'-ray spectroscopy contributes to PA due to the relationships be-
tween radionuclides with water management, soil texture, mineralogy,
nutrients, and acidic-basic properties. Similarly, soil carbon has been
successfully estimated using y-ray spectroscopy, yielding highly accu-
rate measurements, despite its apparent independence from radionu-
clides and organic matter. However, this is possible because of the
absorption of organic matter by clay soils. Instead, y-ray spectroscopy
appears to encounter limitations in measurements of the topsoil due to
signal attenuation from deeper soil layers. Successful estimations of soil
depth and buried cemented layers have been determined with y-ray
sensors. Although y-ray spectroscopy itself is limited in determining
several soil properties, such as soil depth (Koganti et al., 2023), radio-
nuclide concentration is highly correlated with other factors related to
weathering, pedogenesis, soil transition, colluvial transport, and alluvial
deposition (de Mello et al., 2021).

6.1.3. Imaging techniques (GPR)

Ground Penetrating Radar (GPR) boasts the best resolution among
near-surface geophysical technologies. Yet its application in agricultural
soils remains confined mainly to identifying soil depth, morphology,
horizons, moisture, and underground infrastructure such as drainage or
gas pipes (Davis and Annan, 1989; Klotzsche et al., 2018; Koganti et al.,
2020; Parry et al., 2014; Pathirana et al., 2023). Although widely used in
civil engineering, industrial, and archaeological contexts, the primary
reasons for GPR's limited adoption in precision agriculture are its com-
plex data interpretation and the higher cost of surveys compared to EMI
and y-ray methods. Additionally, the GPR's penetration depth can be
considerably hampered by the soil's electrical conductivity. The devel-
opment of customized, drone-mounted GPR systems for topsoil EC or
moisture mapping offers a solution, making surveys more affordable and
less reliant on GPR specialists (Wu et al., 2019; 2022). However, current
regulations significantly constrain these efforts, permitting drone GPR
surveys only within 1 m of the terrain. The continued evolution of this
technology is contingent on future regulatory changes. Another chal-
lenge while working with a GPR is the careful choice of antenna
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bandwidths depending on the application needs. There are GPR systems
in the market, like stepped frequency continuous wave units (e.g.,
Koganti et al., 2020), to address this. However, these units are expensive
and often can only be afforded by big engineering companies.

6.1.4. Soil spectral libraries (SSLs)

The case of spectral libraries must be considered independently.
Since they represent non-local calibrations, the methodology involves
distinct steps with specific sources of uncertainty. For example, vis-NIR-
SWIR spectra acquired in the field are inherently affected by uncon-
trolled conditions and, therefore, models trained on SSLs, typically
composed of dry, sieved samples analyzed in the lab, often fail when
applied directly to field spectra (Castaldi et al., 2025). Other factors that
produce uncertainty are the prediction methods. For instance, Zhong
et al. (2021) use non-linear convolutional neural networks (i.e., CNNs)
for forecasting soil properties with the LUCAS spectral library. Liu et al.
(2019) demonstrated that linear models (i.e., PLSR) were unable to
predict SOC content in large-scale spectral libraries accurately. How-
ever, the GEO-CRADLE spectral library (Tziolas et al., 2019) used local
Gaussian regressions (LGR). In fact, investing in the improvement of
modeling algorithms allows for better predictions. However, a recent
study by Castaldi et al. (2025) has focused on harmonization and
spectral pretreatment to align field spectra with lab-based SSLs, a
considerable advantage for calibration efficiency. They demonstrated
that the conditions in which spectra are collected (i.e., primarily
roughness and moisture) have a significant effect on predictions made
with SSL, and they propose a routine based on International Soil Stan-
dard (ISS) harmonization and the application of External Parameter
Orthogonalization (EPO) to mitigate the effects of these disturbing fac-
tors. A fact that subsequently improved the prediction of such properties
as SOC. Similarly, new efforts found it challenging to estimate soil
properties with global SSLs due to the different characteristics of the
observations in the SSL and the local data, which cause their conditional
and marginal distributions to differ (Viscarra Rossel et al., 2024).
Therefore, the authors propose a transfer learning method that uses a
small number of SOC values and corresponding spectra collected in local
areas to transfer relevant information from large and diverse global
SSLs. They found that fewer than 30 local observations produce more
accurate and stable estimates of SOC than modelling with only the local
data.

Similarly, regional calibration efforts using y-ray spectra have been
employed to predict clay content, utilizing 2>2Th, in northern Europe
(van Egmond et al., 2018) and Mediterranean areas (Coulouma et al.,
2016). Similar to vis-NIR SSLs, regional calibrations encounter calibra-
tion difficulties related to local characteristics of samples and spatial
pedogenetic factors. In y-ray SSLs, mineralogy, particularly igneous
pebbles such as chlorite, is a source of uncertainty (Coulouma et al.,
2016).

6.1.5. Combined techniques

The most variable overall accuracy was observed in studies that
applied PSS techniques in combination with multi-sensor assets. Addi-
tionally, the combination of techniques never showed the highest
average accuracy value among all the groups of properties. Presumably,
this is due to the additional uncertainty associated with data fusion of
PSS proxies. Notwithstanding, specific combinations yielded highly ac-
curate estimations. For example, the combination of TDR with EMI be-
comes a powerful tool because such an application requires minimum
soil sampling, as TDR sensor calibration yields immediate measurements
of water content and electrical conductivity. The combination of point-
based techniques yields highly accurate estimations of almost the entire
spectrum of soil properties considered in this review; however, their
estimations are limited to contact with the soil surface. For example,
technological advancements introduced portable DRS and XRF sensors
in the last few years, enabling operability in the field and facilitating
calibration and validation of spectral libraries. Although the almost
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immediate determination of soil properties in the field (via previous
spectral model calibration) is desirable, converting this information into
a thematic map of soil properties requires further processing. Our
analysis revealed that the most common combination was EMI and y-ray
sensors, primarily focused on determining soil texture, soil depth,
identifying cemented layers, hydrological behavior of fields, salinity,
nutrients, exchangeable bases, and clay content and mineralogy. The
combination of DRS and TDR sensors yielded highly accurate estima-
tions of hydrological properties; however, they are point-based. On the
other hand, DRS spectra and modeling can be successfully applied to
accurately obtain soil property information and provide sufficient input
for DSM, as demonstrated by Zhang et al. (2020), as well as indicated by
our analysis, which identified the combination of DRS and EMI to be a
good strategy to estimate soil texture.

The integration of point-based and on-the-go PSS techniques offers a
powerful strategy to improve soil property estimation and DSM,
balancing the high accuracy of discrete measurements from sensors such
as TDR, portable DRS, and XRF with the continuous spatial coverage
provided by on-the-go instruments like EMI, y-ray, and multi-sensor
arrays (Wangeci et al., 2024; Loria et al., 2024; Schmidinger et al.,
2024; Grunwald et al., 2024). While data fusion can introduce addi-
tional uncertainty, specific combinations, such as TDR with EMI or DRS
with EMI, enable rapid, field-based estimation of water content, elec-
trical conductivity, soil texture, clay mineralogy, and salinity with
minimal soil sampling (Musa et al., 2024; Zhang et al., 2024). Local
calibration approaches provide high-precision, site-specific predictions
that account for micro-scale heterogeneity, whereas global calibration
models leverage multi-region datasets for broader applicability but may
introduce additional uncertainty due to soil-type and environmental
variability (Hutengs et al., 2024; Batjes et al., 2024; Filippi et al., 2024).
Advances in machine learning, including transfer learning and ensemble
modeling, allow integration of local and global calibration schemes,
improving predictive accuracy and facilitating the creation of high-
resolution, spatially explicit soil property maps that support precision
agriculture, carbon accounting, and ecosystem management (Grunwald
et al., 2024; Rosso et al., 2025).

6.2. Factors influencing the outcomes of proximal soil sensing

The accuracy with which a specific soil property is estimated using
any PSS technique not only depends on the sensor but rather is the result
of a step-by-step process that combines the selection of sampling loca-
tions, soil sampling and fieldwork, accuracy of wet chemistry analyses,
and calibration and validation of statistical models. Any step is subject to
inherent sources of error that influence the overall accuracy of the
process.

It is essential to emphasize that the general predictive ability of
mobile sensors is dependent on soil spatial variability, as well as the
concentrations and ranges of soil properties (Knadel et al., 2015). The
employed models have a substantial impact on the estimations, as
demonstrated by our analysis. In modeling studies using DRS, specific
data preprocessing steps, such as calculating spectral derivatives (Hong
et al., 2019), spectral scatter correction, and continuum removal pre-
processing, enhance the predictions of soil properties, particularly SOC
(Carnieletto et al., 2018). From our analysis, it can be inferred that
overall, there is no clear differentiation between estimations of soil
properties obtained using non-linear modeling and DRS compared to
those obtained with linear models. However, the differentiation is
evident when examining the individual properties. Properties that are
difficult to estimate, such as bulk density and acidic-basic properties,
seem to respond better to non-linear modeling compared to properties
that have known spectral signatures, which achieve better estimations
with linear modeling. In general, LM outperformed NLM, but a strong
effect on the accuracy of including covariates was identified in the group
of NLM records.

In DSM studies that employ several on-the-go PSS techniques, such as
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EMI and y-ray, comparisons have been conducted between linear, non-
linear, and hybrid modeling (i.e., linear or non-linear regressions to
analyze trends and then kriging the residuals). Results showed that the
accuracy of estimations varied, of course, depending on the modeling
technique applied, the number of covariates used, and the number of
samples used for calibration (Arshad et al., 2021). What is noteworthy is
that the effect of these factors on the accuracy of the estimations appears
to be case-specific; in other words, accuracy varied strongly depending
on the property being estimated and the local characteristics of the field,
a key difference from predicting properties using SSLs. For instance,
studies have been conducted to predict soil properties in fields using
models calibrated in adjacent fields, with negative results (Triantifilis
et al., 2024). Besides, several studies have noted that a minimum of 30
soil samples is required to obtain acceptable prediction models (Koganti
et al., 2023). We found that the accuracy of soil property estimation
using NLMs generally improves with an increase in the number of
samples and with the moderate addition of covariates. In contrast, the
addition of covariates appears to have a noisy effect on the estimation of
soil properties using LMs.

In the PA context, the accuracy of soil property spatializations using
PSS can be influenced by management practices and the time of year
when surveys are conducted (i.e., the soil's condition), as demonstrated
by Pedrera-Parrilla et al. (2016). It is expected that more accurate results
will be achieved at the soil surface due to the uniform environment in
the plow layer (Zhang et al., 2020). Additionally, various sensors have
different limitations in different environments, and thus, PSS largely
relies on site-specific calibrations after pre-processing or applying
correction algorithms to the collected data.

6.3. Cost of proximal soil sensing from different perspectives

6.3.1. Research perspective

The literature review on cost highlights several efforts to analyze the
cost structure of PSS applications. Chatterjee et al. (2021) examined
various cost components, including hardware or rental expenses, data
preprocessing and analysis, and modeling and mapping. Additionally,
authors focused on combining proximal sensors with morphometric and
remote sensing covariates, resulting in maps of land management zones
with reasonable accuracy while maintaining moderate survey costs. For
a complete and rapid digital soil mapping of 80 ha, the reported cost is
1,250 € (15.50 €/ha). This amount, excluding traditional soil analysis
costs, is divided as follows: rental cost (450 €), preprocessing cost (530
€), and modeling cost (270 €), with a total working time of 16 h. Malone
etal. (2022) reported the total cost per hectare of ~ 400 € for a rapid and
granular farm landscape characterization with a sample density of 0.7/
ha. This detection includes on-the-go proximal soil surveys, soil core
sampling and scanning, soil analysis (190 € per sample), and subsequent
data analysis and modeling to create 3D-like digital soil attribute maps.
These two authors agree on the significant advantage of using proximal
sensors compared to traditional soil surveys, estimating a gain of ~ 80
%. The technical report by van Egmond et al. (2018) describes an ad-
vantageous process that utilizes moving gamma radiation to determine
the texture of topsoil. The effectiveness of this method is due to utilizing
existing libraries rather than collecting and analyzing new samples. This
approach may reduce the cost per hectare by a factor of between 3 and
10. Priori et al. (2019) observed, through a market survey, that the total
costs of high-detail soil surveys using PSS are primarily dependent on
the size of the investigation area. For instance, using a case study of 195
ha with an EMI sensor, the authors reported a cost of approximately 130
€/ha, with a sampling density of 5.4 samples per hectare. Although the
work of Chiarantini and Diafas (2011) is no longer aligned with current
market trends, it remains a milestone in estimating the cost-effectiveness
of digital soil mapping.

For point-based measurements, Li et al. (2022) proposed an equation
that calculates the cost-effectiveness of spectroscopy, based on the
number of samples; the data acquisition capacity and the laboratory
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capacity to prepare samples for analysis or spectroscopy, the accuracy of
measurements based on the mean squared error (MSE), and compares
the whole process to the cost of the dry combustion method, considering
several spectroradiometers. The authors analytically demonstrated that
spectroscopy is a reliable alternative, reducing costs by more than 60 %
compared to conventional laboratory methods. Similarly, England and
Viscarra Rossel et al. (2018) reported a unit cost of 5 € for vis-NIR
analysis of dried ground samples and 9 € for mid-IR analysis of dried,
finely ground samples.

However, a common trait across these studies is the implementation
of high spatial and temporal resolution soil assessments. While scien-
tifically valuable, such approaches result in costs that are too high from
the standpoint of most small-scale farmers and agricultural companies.

6.3.2. Company perspective

Accurate information on the costs of PA services is scarce in the
literature, making it challenging to draw reasonable comparisons.
However, we found that the average cost per hectare surveyed is around
375 €, with a minimum of 100 € when using motorized platforms, ac-
cording to private companies. The price per hectare can be even lower if
flying platforms such as UAVs are used. This aligns with current market
trends and the literature referenced earlier. Unfortunately, estimating
the costs of soil surveys remains uncertain and variable, depending on
the survey's aim, the number of data collected, the specifics of fieldwork,
and difficulties. However, we identified two main factors that allow PSS
surveys to be comparable: the scale of the study and sampling density.

Costs can be divided into three broad classes: 1) Fieldwork, including
the acquisition with proximal sensors, soil sampling, rental costs and
possibly the depreciation cost share of the instruments; 2) preparation
and preprocessing including the selection of survey sites, the processing
and treatment of the data collected in the field, and the costs of labo-
ratory analysis; 3) the modeling and reporting including the production
of outputs through modeling with model validation, calibration, and
map generation.

Companies declare that the final price includes equipment,
personnel, and data analysis costs, but excludes costs derived from ve-
hicles, such as tractors, fuel, and driver expenses. That fact could in-
crease the final price by up to 30 %. Costs can vary significantly due to
difficulties that may arise during surveys, primarily concerning acces-
sibility, the state of growth and crop cycle, the state of the soil due to
harsh meteorological conditions, and rugged morphology, which often
imply an extra charge in the final price. However, such modifications to
the final cost were previously communicated by companies. The cost of
mapping services is also affected by geographic areas. For example, the
time of year when the survey is conducted is significant for how much
can be mapped in a single field day, given the hours of daylight available
in high-latitude countries. In fact, the daily surveyed area conducted
during the summer can double the daily surveyed area if conducted
during the winter season. In Denmark, some companies have declared a
10 % price increase due to difficulties accessing the fields. Still, in other
Scandinavian countries with mountains, the increase is much higher.
Other companies declare that they do not charge extra for accessibility
difficulties, but such replies were associated with companies that pri-
marily used flying platforms for surveying in more temperate regions.
Personnel and data analysis costs are often more significant than
equipment costs because they are typically adequately covered during
the useful life of the instruments.

Based on the replies to the questionnaires, we deduced that the
reporting of results is rarely linked to accuracy or uncertainty values,
probably because performing such an analysis requires a larger number
of soil samples. This fact would have a direct impact on the final price of
the service. Data policy is a sensitive matter among companies. For
example, some companies have open data policies, providing customers
with full access to raw data, whereas others are closed about the data,
interpretations, and algorithms employed. This fact seems to create
disagreement among companies. Finally, companies regret that the
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majority of farmers lack interest in mapping services, a fact that impacts
the sector's business efficiency.

6.3.3. Client perspective

A detailed economic evaluation approach was developed to probe
and assess the willingness-to-pay (WTP) of potential users of digital soil
maps, as part of the European DIGISOIL project (Diafas et al., 2013).
WTP can be defined as the maximum amount someone is willing to pay
for a product or service (Diafas et al., 2013). According to the results of
Chiarantini and Diafas (2011) WTP depends on the resolution and stated
accuracy of digital soil maps for key soil properties. For example, the
average end user would be WTP 263 € per hectare for a low-accuracy
measurement of carbon content. However, the same users would be
WTP 789 € per hectare (three times the previous cost) for a highly ac-
curate measurement. Instead, the low demand by farmers for soil
mapping services may stem from harmful practices and the provision of
poor-quality products, sometimes in exchange for an excessive amount
of money. Word of mouth can negatively influence farmers' perception
of digital soil mapping products.

6.4. Future perspectives and challenges

Future developments in PSS and DSM will depend on extending the
applicability of sensing technologies across a broader spectrum of soil
types, climatic regions, and management systems. This requires exten-
sive, harmonized calibration datasets and coordinated validation
frameworks to avoid inappropriate use and growing user skepticism
(Najdenko et al., 2024; Batjes et al., 2024; Hengl et al., 2025). Some soil
properties, such as bulk density and soil compaction, remain difficult to
predict reliably, despite decades of work with passive y-ray detection
(van Egmond et al., 2024; Carrera et al., 2024). Emerging active y-ray
systems offer a promising alternative but face regulatory hurdles and a
need for extensive cross-regional calibration (van Egmond et al., 2024).
In parallel, new sensor families ranging from portable LIBS (laser
induced breakdown spectroscopy), microwave, and spectrofluorometric
devices to magnetic susceptibility meters and cosmic-ray neutron probes
are rapidly maturing and will likely enter routine monitoring pipelines
once robust comparative benchmarks are established (Wigneron et al.,
2017; Wangeci et al., 2024; Loria et al., 2024; Gianessi et al., 2024;
Zhang et al., 2024). These advances coincide with the rise of integrated
multi-sensor platforms and low-cost wireless networks, which may
finally enable reliable, real-time transmission of high-resolution soil
data from mobile platforms, something currently feasible only for sta-
tionary systems (Musa et al., 2024; Tu et al., 2022; Schmidinger et al.,
2024). Emerging sensor models are expected to expand the PSS toolbox
beyond established electromagnetic techniques, with adoption driven
by comparative benchmarks, cross-site calibration robustness, and reg-
ulatory acceptance rather than by technological novelty alone.

The fusion of PSS and remote sensing is expected to become a
cornerstone of future soil monitoring and measurement, reporting, and
verification (MRV) systems for soil carbon and other ecosystem services.
Recent satellite missions (e.g., Sentinel-2, PRISMA, EnMAP, SAR con-
stellations) have demonstrated strong potential for large-scale spatiali-
zation of soil properties and land-management characterization (Zhou
et al., 2025; Filippi et al., 2024). Yet, remote sensing alone still produces
sub-optimal predictions; the most promising advances emerge when
proximal, UAV-borne, tractor-mounted, or robotic sensors are inte-
grated with multispectral, hyperspectral, and radar observations
(Schmidinger et al., 2024). Multi-tier verification frameworks, such as
those described for carbon MRV by Batjes et al. (2024) and operation-
alized in MARVIC and MRV4SOC, illustrate how modular data fusion
can enhance both accuracy and transparency. Examples from archae-
ology and geoheritage, such as mapping extinct Nile branches using
radar imagery calibrated with GPR and electromagnetic tomography
(EMT) surveys, highlight the broader cross-disciplinary utility of such
combined approaches (Ghoneim et al., 2024). Future soil monitoring
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frameworks are expected to increasingly rely on hierarchical fusion of
PSS, UAV, and satellite data, leveraging the complementary strengths of
local accuracy and large-scale spatial coverage.

Rapid progress in artificial intelligence (AI) will further shape the
next generation of soil sensing applications. Machine learning, deep
neural networks, and transfer-learning architectures are increasingly
effective at modelling nonlinear relationships between heterogeneous
sensor signals and soil properties, improving both prediction accuracy
and uncertainty quantification (Hutengs et al., 2024; Grunwald et al.,
2024). These methods also enable more adaptive, real-time DSM
workflows compatible with autonomous systems, including UAVs,
ground robots, and smart tractors (Rosso et al., 2025). To ensure
adoption, however, the field must address interoperability, user-centric
tool design, and integration of PSS data into decision-support systems.
Modular decision-tree frameworks (van Egmond et al., 2024) exemplify
how complex methodological choices can be translated into intuitive
guidance for practitioners. Ultimately, the future of PSS will depend on
bridging technological innovation with regulatory clarity, transparent
MRV requirements, and user-friendly tools that translate sensing outputs
into operational decisions for precision agriculture, carbon accounting,
and environmental monitoring. Henceforth, the long-term impact of PSS
innovations will depend on their alignment with MRV requirements,
regulatory frameworks such as the new Soil Monitoring Law in the Eu-
ropean Union (Directive (EU) 2025/2360, 2025), and standardized
reporting protocols that ensure traceability, comparability, and user
trust.

7. Concluding remarks

Since one of the future PA needs relies on the use of in situ and on-
the-go sensors without sample preparation, this review guides the se-
lection among the wide range of possible sensor combinations, remote
and terrain data for the accurate estimation of soil properties, and pre-
cision soil mapping. The broad overview of this work has identified
critical aspects influencing the accuracy involved in PSS surveys. We
identified that point-based measurements are more accurate with
respect to on-the-go techniques. However, the choice of technique to use
depends primarily on the purpose of the survey. Notably, our analysis
determined the best combination of factors yielding more accurate es-
timations for each soil property and under which conditions. Addition-
ally, we argue why some highly accurate techniques can give imprecise
outcomes depending on the situation. In fact, it is essential to keep in
mind that proximal sensor data measures bulk properties of soils rather
than individual properties (Kerry and Escola, 2021). Therefore, out-
comes require expert interpretation.

Questionnaires highlighted the extent of uptake of some technologies
among precision agriculture-focused companies, such as electromag-
netic induction, when providing mapping services. Some companies are
technologically well-equipped with new-generation sensor types, e.g.,
Cosmic Ray Neutron Sensor (CRNS) for detecting soil moisture. EMI is
the most popular PSS technique in the industry. Despite the accuracy of
point-based soil spectroscopy (i.e., DRS) and x-ray fluorescence (XRF),
there are still few companies investing in such technologies. Similarly,
investments of companies in y-ray technology were not frequent despite
the accuracy of soil mapping products. Instead, many companies relied
on DRS-based on-the-go sensors supplied by Veris Technologies for
determining soil and crop properties.

Regarding cost, we identified that it varies strongly. Based on the
replies to our questionnaire, the price of a surveyed hectare is between
120 and 362 €, whereas the customers’ willingness to pay for having
precision information of their fields rounds, on average, 789 €/ha, based
on the literature. The factors that affect variation in the cost of PSS
services are the platform employed for sensing (i.e., the number of
hectares covered per day), the required personnel, the number of sam-
ples collected for validation, and factors related to accessibility, such as
the state of the terrain and morphology, or the distance to the area of
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interest.

Our study reveals that the efficiency of soil mapping services has
significantly improved over the past decade, primarily due to the
adoption of open-source software, including GIS tools for modeling,
artificial intelligence, and advancements in sensors and data acquisition
techniques. These developments have significantly reduced the time
required for data processing, which is directly related to the growth
trends in PA.

Looking ahead, several challenges and opportunities emerge from
this work. This systematic review provided a structured and transparent
synthesis of the available evidence, capturing the diversity of sensor
types, measurement conditions, and outcomes reported across studies.
By not requiring the strict data availability criteria needed for quanti-
tative aggregation, it includes a broader spectrum of literature that other
types of review approaches, such as the meta-analysis (Page et al., 2021),
thereby offering a very comprehensive overview of the current land-
scape. Future research could build on this foundation through a dedi-
cated meta-analysis to quantitatively integrate performance metrics and
explore the sources of variability across studies. Moreover, it will be
important to extend the same level of assessment applied here (of
particular relevance to the ProbeField Project) to sensor technologies
not covered in the present review, and to update and expand the eco-
nomic analysis for both established and emerging techniques. It could be
supported by newly available literature or further questionnaire data,
and would also help strengthen the evidence base, guide future tech-
nological development, and adoption in precision soil sensing.
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