
  

 

 
 
 
 
Verktyg för den agronomiska 
detektiven  
– Hitta den lokalt nåbara skördenivån och de 
skördebegränsande faktorerna  
  

K. Persson, B. Stenberg, O. Alshihabi, M. Söderström 

Sveriges lantbruksuniversitet, SLU 

Fakulteten för naturresurser och jordbruksvetenskap 

Institutionen för mark och miljö  

2026 



2 

 

Verktyg för den agronomiska detektiven – Hitta den lokalt 
nåbara skördenivån och de skördebegränsande faktorerna  

Kristin Persson, Sveriges lantbruksuniversitet, Institutionen för mark och miljö, 
https://orcid.org/0000-0003-2120-4486 

Bo Stenberg, Sveriges lantbruksuniversitet, Institutionen för mark och miljö, 
https://orcid.org/0000-0003-3018-4990 

Omran Alshihabi, Sveriges lantbruksuniversitet, Institutionen för mark och miljö, 
https://orcid.org/0000-0002-1973-1757 

Mats Söderström Sveriges lantbruksuniversitet, Institutionen för mark och miljö, 
https://orcid.org/0000-0001-9946-0979 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utgivare:  Sveriges lantbruksuniversitet, Fakulteten för naturresurser och 

jordbruksvetenskap/Institutionen för mark och miljö 
Utgivningsår:  2026 
Utgivningsort:  Skara  
Omslagsbild:   Kristin Persson 
ISBN (elektroniskt): 978-91-8124-150-1 
DOI:   https://doi.org/10.54612/a.gghvf2fhv8 
Nyckelord: beslutsunderlag, fjärranalys, karta, korn, precisionsodling, 

prognos, skörd, vete. 
 
 
© 2026 Författarna 
Detta verk är licenserat under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/. Andra 
licenser eller upphovsrätt kan gälla för illustrationer.  



3 

 

Förord 
I föreliggande rapport redovisas resultat från forskningsprojektet Verktyg för den agronomiska 
detektiven – Hitta den lokalt nåbara skördenivån och de skördebegränsande faktorerna. Projektet 
syftade till att utveckla metoder för detaljerad skördekartering genom en kombination av optiska 
satellitdata och insamlade uppgifter bakom nationell skördestatistik, samt att utreda hur sådana 
kartor kan användas för att komma till rätta med lokala produktionsproblem. Med bättre 
kartunderlag kan man öka produktionen i områden där skördepotentialen i dagsläget inte utnyttjas 
till fullo, samtidigt som man kan dra ner på mängden insatsmedel i områden där skördepotentialen 
är liten. Det bör bidra till en högre och mer resurseffektiv spannmålsproduktion och tar oss mot 
målsättningarna i den svenska livsmedelsstrategin och EU:s jord till bord-strategi i den europeiska 
gröna given.  

Projektet har genomförts i samverkan mellan Sveriges lantbruksuniversitet (SLU) och Lantmännen. 
Det finansierades av Lantmännens Forskningsstiftelse (dnr: 2023H016). Vi vill särskilt tacka Emelie 
Ekholm, Johan Wågstam och Andreas Persson på Lantmännen, som medverkat i projektgruppen. 
Vi vill även tacka Statistiska Centralbyrån (SCB), Jordbruksverket och de fyra projektgårdarna, 
Alnarp, Bjertorp, Hidinge och Lövsta, som bidragit med data till projektet samt goda diskussioner 
av möjligheter och utmaningar med satellitbaserad skördekartering. 

Författarna, januari 2026 
1 

 

 

 

  

 
Redovisning av användning av AI: Perplexity AI har använts för översättningar, språkgranskning och språklig 
förbättring. All text har därefter granskats manuellt och författarna ansvarar fullt ut för innehållet. 
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Sammanfattning 

I projektet utvecklade och utvärderade vi ett modelleringsupplägg för satellitbaserad skördekartering 
på regional nivå, fältnivå och inom fält. Modelleringen baserades på Sentinel‑2‑bilder i kombination 
med medelskördar per gård insamlade av SCB. Genomsnittligt medelabsolutfel (MAE) för 
predikterade gårdsmedelskördar var 0,7 t ha⁻¹ för höstvete (Triticum aestivum L.) och 0,8 t ha⁻¹ för 
vårkorn (Hordeum vulgare L.) när prediktionerna gjordes efter skörd, och något högre (0,9 
respektive 0,8 t ha⁻¹) vid skördeprognoser i slutet av juni. Prognoser på regional nivå var mer 
träffsäkra (MAE: 0,6 respektive 0,5 t ha⁻¹ för de båda grödorna), och regionala medelskördar kunde 
skattas med bibehållen noggrannhet även när antalet gårdsmedelskördar i kalibreringen minskades 
med en tredjedel. 

Jämförelser mellan satellitbaserade skördekartor och skördekartor från tröskor (20 m upplösning) 
visade varierande överensstämmelse, vilket förmodligen till stor del förklaras av osäkerheter i 
tröskdata, men även i viss mån av osäkerhet i de satellitbaserade kartorna samt den utjämnande 
effekt som modelleringen ger. Båda datakällorna har begränsningar, men satellitbaserade kartor har 
fördelen att de kan tas fram utan extra utrustning och med mindre krav på databearbetning. 

För den aktuella tillämpningen fungerade enkla linjära modeller med två vegetationsindex (NDWI 
och NDRE76) lika bra eller bättre än mer komplex maskininlärning med många index, vilken 
tenderade till överanpassning och sämre generalisering till nya gårdar och år. Detta betonar vikten 
av robust validering när kalibreringsdata är osäkra. 

Satellitbaserade skördekartor från flera år lades samman och två typer av kartor togs fram: relativa 
skördekartor och frekvenskartor för låg skörd. Dessa användes för att identifiera stabila och instabila 
problemområden inom fält. Variationsmönstren stämde ofta överens med lantbrukarnas 
lokalkännedom om till exempel dräneringsproblem, viltskador och markanvändningshistorik, men 
kartorna avslöjade också tidigare mindre uppmärksammade områden med låg skörd. Kartunderlagen 
kan användas både för att stödja åtgärder för att höja skörden (där det är möjligt) och för att anpassa 
insatser till den faktiska skördepotentialen (där förbättring inte är möjlig). 

Moln, molnskuggor och dis begränsar ibland möjligheten till satellitbaserad skördekartering. Ett 
mindre test med syntetiska molnfria Sentinel‑2‑tidsserier indikerade att sådana data kan vara en 
gångbar lösning. Testet visade också att sambandet mellan optiska vegetationsindex och 
spannmålsskörd ofta är starkast i senare delen av juni (sen blomning–tidig mjölkmognad). 

Mot bakgrund av resultaten rekommenderas fortsatt utveckling av användarvänliga system med: (i) 
förbättrad och förenklad hantering av skördedata från tröskor, (ii) integrering av skördekartering 
(både trösk- och satellitbaserad) i beslutsstödsystem för precisionsodling, (iii) funktioner för 
flerårsanalyser och manuell tolkning av dessa med stöd av kompletterande data, samt (iv) 
möjligheter att analysera relativa skördar inom närområden (t.ex. inom några kilometers radie) som 
underlag för rådgivning och en produktiv och resurseffektiv växtodling. 

Nyckelord: beslutsunderlag, fjärranalys, karta, korn, precisionsodling, prognos, skörd, vete. 
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Abstract 

The project developed and evaluated a modelling approach for satellite-based yield mapping at 
regional, farm, and within-field scales. The modelling used Sentinel‑2 imagery in combination with 
average yields per farm collected by Statistics Sweden (SCB). The mean absolute error (MAE) for 
predicted average farm yields was 0.7 t ha⁻¹ for winter wheat (Triticum aestivum L.) and 0.8 t ha⁻¹ 
for spring barley (Hordeum vulgare L.) when predictions were made after harvest, and slightly 
higher (0.9 and 0.8 t ha⁻¹, respectively) for forecasts made at the end of June. Forecasts at the 
regional scale were more accurate (MAE: 0.6 and 0.5 t ha⁻¹ respectively for both crops), and regional 
average yields could be estimated with similar accuracy even when the number of farm yields in the 
calibration dataset was reduced by a third. 

Comparisons between satellite-based yield maps and yield maps derived from combine harvesters 
(20 m spatial resolution) showed varying levels of agreement. This is likely primarily due to 
uncertainties in the harvester data, but also partly to uncertainties in the satellite-based maps and the 
smoothing effect introduced by the modelling. Both data sources have limitations, but satellite-based 
maps have the advantage that they can be produced without additional equipment and require less 
data processing. 

For the intended application, simple linear models using two vegetation indices (NDWI and 
NDRE76) performed as well as, or better than, more complex machine learning models using many 
indices. The latter tended to overfit and to generalise less well to new farms and years, highlighting 
the importance of robust validation, especially when calibration data are uncertain. 

Satellite-based yield maps from multiple years were combined, and two types of maps were 
produced: relative yield maps and frequency maps of low yields. These were used to identify stable 
and unstable low-yielding areas within fields. The spatial patterns often matched the farmers’ local 
knowledge of, for example, drainage problems, wildlife damage, and land-use history, but the maps 
also revealed previously less noticed areas with low yields. The maps can be used both to support 
measures to increase yields (where possible) and to adapt inputs to the actual yield potential (target 
yield) (where improvement is not possible). 

Clouds, cloud shadows and haze sometimes limit the potential for satellite-based yield mapping. A 
small test using synthetic cloud-free Sentinel‑2 time series indicated that such data can be a viable 
solution and showed that the relationship between optical vegetation indices and cereal yield is often 
strongest in the latter part of June (from late flowering to early milk development). 

In light of these results, continued development of user-friendly systems is recommended, including: 
(i) improved and simplified handling of yield data from combine harvesters, (ii) integration of yield 
mapping (both harvester- and satellite-based) into decision-support systems for precision 
agriculture, (iii) functions for multi-year analyses and manual interpretation supported by 
complementary data, and (iv) options to analyse relative yields within local areas (e.g. within a 
radius of a few kilometres) to support advisory services and high-yielding, resource-efficient crop 
production. 

Keywords: barley, decision support, forecasting, mapping, precision agriculture, remote sensing, 
wheat, yield.  
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1. Introduktion 

Skördekartor från flera år ger ett bra underlag för att identifiera lokala 
produktionsproblem och bedöma möjligheterna att åtgärda dem. De kan också 
användas för att fastställa en realistisk målskörd. Att åtgärda begränsande faktorer 
är avgörande för en förbättrad produktion, medan en realistisk målskörd är 
nödvändig för att optimera gödslingen och öka utnyttjandegraden av tillförd 
växtnäring (Raun et al., 2017). På vissa platser i världen finns t.o.m. regler som 
kräver att lantbrukare använder så realistiska målskördar som möjligt i 
växtnäringsplaneringen (Shober & Taylor, 2025). 

När orsaker till låg skörd har identifierats kan olika strategier tillämpas beroende 
på vad som begränsar. Vissa problem, till exempel bristfällig dränering eller lågt 
pH-värde, kan åtgärdas genom markvårdande insatser. Om begränsningen däremot 
är kopplad till faktorer som jordart eller topografi bör odlingen anpassas till de 
naturliga förhållandena för att använda resurserna effektivt. I vissa fall kan det mest 
hållbara alternativet vara att ta en fältdel ur produktion. 

Man bör ha i åtanke att små områden med mycket låg skörd sällan är de som har 
störst potential att höja den totala skörden. Det är snarare i de områden som redan 
ger normal eller högre skörd som man kan få störst effekt på den totala 
produktionen genom att åtgärda skördebegränsande faktorer. För att kunna göra 
detta behövs tillförlitliga skördekartor.  

1.1 Skördekartering med tröska  
Utrustning för skördemätning på tröskor har funnits sedan mitten av 1990-talet. Då 
trodde man att tekniken skulle bli grunden för platsspecifik växtodling (Schnug et 
al., 1993; Birrell et al., 1996; Nissen & Söderström, 1999). Så har det dock inte 
blivit. Många lantbrukare har utrustningen, men av olika skäl är det fortfarande 
svårt att ta fram tillförlitliga skördekartor, och även om man lyckas har man inget 
system för att lätt använda dem. Resultaten av en fransk undersökning visade att de 
flesta av de lantbrukare som hade skördekarteringsutrustning endast använde sina 
system för realtidsvisualisering under pågående skörd; mindre än 25% tog fram och 
använde skördekartor (Lachia et al., 2021). Tidigare undersökningar från USA, 
Storbritannien och Australien visade liknande trender (Lowenberg-DeBoer et al., 
2019). Även i Sverige råder osäkerhet bland lantbrukare om hur man ska hantera 
och använda data från tröskans skördekartering (Johansson et al., 2022). 

1.2 Satellitbaserad skördekartering 
Med dagens goda tillgång till satellitbilder har det öppnats nya möjligheter att 
enkelt ta fram skördekartor med hög upplösning; satellitdata (exempelvis från 
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Europeiska Rymdstyrelsen ESA:s Sentinel-2-program) kan kalibreras mot 
uppmätta skördar med statistiska modeller. Runt om i världen pågår forsknings- 
och utvecklingsarbete, och resultaten är lovande (t.ex. Deines et al., 2021; Hunt et 
al., 2019; Perich et al., 2023; Åström et al., 2025). 

I Sverige har flera studier genomförts inom området. Alshihabi et al., (2023) testade 
en strategi där modellerna parametriserades individuellt för varje satellitbild med 
hjälp av data från en välkalibrerad tröska. Studien utfördes i höstvete (Triticum 
aestivum L.). Müller et al. (2025) använde Sentinel-2-data för att undersöka 
effekten av torka på skörd i regional skala för flera olika grödor, och Li et al. (2024) 
kombinerade olika satellitdatakällor och klimatvariabler för att göra 
skördeprognoser på områdesnivå. I den sistnämnda studien visades att det var 
möjligt att förutsäga skörden av vårkorn (Hordeum vulgare L.) i regional skala i 
Skåne redan i slutet av maj, med en felmarginal på cirka ±0,5 t ha⁻¹. 

Förutsatt att molnfria bilder och lämpliga kalibreringsdata finns tillgängliga kan 
satellitbaserad skördekartering även göras för tidigare år. Kartor kan också tas fram 
på olika aggregeringsnivåer: kartor över fältmedelvärden möjliggör analyser av 
produktionsbegränsningar i större skala, medan skördekartor på fältnivå ger 
lantbrukare möjlighet att förbättra sina metoder. 

1.3 Stabil och instabil skördevariation 
Så kallade skördestabilitetskarteringar (generaliserade skördenivåkartor baserade 
på skördekartor från många år) har tagits fram i olika forskningsprojekt sedan 1990-
talet (t.ex. Blackmore, 2000). Ofta kan fält delas in i zoner med konstant hög skörd, 
zoner med konstant låg skörd och en instabil zon som ger olika skörd, ofta beroende 
på om året är blött eller torrt (Algerbo et al., 2003; Delin, 2005). Blasch et al. (2020) 
beskrev till exempel en metod (Multi-temporal Yield Pattern Analysis; MYPA) för 
att ta fram stabila och icke stabila mönster från tidsserier av skördekartor som 
omfattar olika grödor. Maestrini & Basso (2021) använde en statistisk ansats och 
testade en rangbaserad klassificeringsalgoritm (Two-Way-Outlier), vars styrka är 
att bättre skilja mellan fältdelar med konstant låg skörd och fältdelar med vanligtvis 
låg skörd. McEntee et al. (2020) visade att det är möjligt att klassificera 
produktionen i olika delar av fält som hög och stabil, hög och instabil, låg och stabil 
respektive låg och instabil, även när både spannmål och vall ingår i tidsserien av 
skördekartor. 
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1.4 Beslutsstödsystem 
Digitala beslutsstödsystem (DSS) för växtodling kan göra det möjligt att skala upp 
satellitbaserad skördekartering och göra den tillgänglig för alla lantbrukare. 
I Sverige finns redan flera DSS som används för precisionsodling. Att integrera 
satellitbaserad skördekartering, med stöd för tolkning och som beslutsunderlag, 
vore därför ett naturligt nästa steg. 

1.5 Vision och mål  
En begränsning med de metoder för satellitbaserad skördekartering som beskrevs 
ovan är ofta tillgången på kalibreringsdata. Därför genomfördes denna studie, där 
vi undersöker möjligheten att använda mikrodata bakom nationell statistik för 
modelleringen. Den långsiktiga visionen är att det ska finnas lättillgängliga och 
användarvänliga digitala verktyg, data och metoder för att identifiera lokala 
skördegap i spannmålsproduktionen, samt för det detektivarbete som krävs för att 
hitta orsakerna till dessa. Målet är i förlängningen att öka produktionen och 
förbättra resurseffektiviteten inom jordbruket. De specifika målen med det aktuella 
projektet var att: 

a) vidareutveckla och testa metoder för skördekartering på regional nivå, 
fältnivå och inomfältsnivå baserat på satellitdata och skördeuppgifter på 
gårdsnivå från statistiska centralbyrån (SCB). 

b) utforma en praktiskt användbar metod för att avgränsa stabila och 
instabila problemområden med hjälp av satellitbaserade skördekartor. 

c) utveckla en strategi för att identifiera orsaker till låga skördar genom att 
kombinera öppet tillgängliga datamängder med lantbrukarens data och 
lokalkunskap. 

d) sammanfatta rekommendationer för hur ett DSS kan utformas så att 
lantbrukare kan utvärdera lokala skördegap inom och mellan fält samt få 
tillgång till relevanta data för att analysera orsakerna. 
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2. Material och metoder  

2.1 Områden, gårdar, år och grödor 
Projektområdet utgjordes av sex av SCB:s 108 skördeområden (SKO). Dessa SKO 
visas i Figur 1. Områdena kännetecknas av en stor andel jordbruksmark, där 
spannmålsodling är en viktig del: kring Uppsala (SKO 311), Örebro (SKO 1812), 
Vara (SKO 1622) och Lund (SKO 1213, 1214 och 1216, som slogs samman). Vi 
arbetade även med data från en specifik gård inom respektive område, Lövsta 
(Uppsala), Hidinge (Örebro), Bjertorp (Vara) och Alnarp (Lund). I projektet 
studerade vi åren 2017–2023. Grödorna var höstvete och vårkorn. 

 

 

Figur 1. Projektområdet utgjordes av fyra delområden som innefattade sex av Statistiska 
Centralbyråns (SCB:s) skördeområden (orange). I texten benämns de med de blåmarkerade 
namnen. 
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2.2 Data och databeredning 
2.2.1  Skörderegistreringar från gårdarnas tröskor 
Vi samlade in skördedata från tröskor från de fyra gårdarna, samt data om 
genomsnittlig skörd per fält. Data bereddes enligt följande protokoll (se även 
Figur 2): 

1) Urval. Data begränsades till fält med höstvete eller vårkorn. Områden 
med fältförsök eller andra tydliga avvikelser (annan gröda etc.) togs bort. 

2) Filtrering. Inom varje fält filtrerades skördedatan från felaktiga 
registreringar (punkter): 
a) Stopp: De 15 sista punkterna före stopp och de 15 första efter stopp. 
b) Sväng: Punkter utanför gränsvärden för ett svängindex beräknat från 
riktning. 
c) Arbetsbredd: Punkter med mindre än 97,5 % fullt skärbord. 
d) Punkttäthet i kördraget: Punkter närmare än 0,05 m från föregående 
punkt och punkter utanför nedre och övre gränser (0,5 m och 5 m) för 
medelavståndet till närmaste punkt, beräknat för de tio senaste och 
tio efterföljande punkterna. 
f) Punkttäthet per yta: Punkter med fler än 40 observationer inom 5 m 
radie. 
g) Motorns varvtal: Punkter där det varvtalet var under 1 RPM. 
h) Skörd: Punkter med de 0,5 % lägsta och 0,5 % högsta skördarna. 

3) Interpolation. Medianvärdet av skörden beräknades per 20 m × 20 m 
Sentinel-2-rastercell. Celler med färre än fem observationer och celler som 
korsade fältgränsen uteslöts. 

4) Nivåjustering. Den genererade skördekartans medelvärde delades med 
den invägda genomsnittliga skörden för fältet, där sådan information fanns 
tillgänglig. 

Algoritmen programmerades i R och finns tillgänglig via GitHub 
(https://github.com/lads-slu; target_f). De fyra gårdarna använde olika system för 
skördemätning (CLAAS, Harsewinkel, Tyskland; Trimble, Sunnyvale, CA, USA; 
Fendt, Marktoberdorf, Tyskland), och anpassningar gjordes för att passa respektive 
datatyp (t.ex. vilka filter och tröskelvärden som användes).  

 

https://github.com/lads-slu


12 

 

 

Figur 2. Exempel på filtreringsproceduren. De rektangulära områden som markeras med pilar togs 
bort på grund av fältförsök. 

2.2.2 Satellitdata 
Vi använde satellitdata från Sentinel-2. Sentinel-2 är en konstellation av två optiska 
satelliter som passerar Sverige ungefär två dagar av fem. En Sentinel-2-bild består 
av 13 olika våglängdsband, från synligt ljus till kortvågigt nära infrarött ljus 
(Figur 3). Relativt molnfria (enligt okulär granskning) L2A-bilder 
(dvs. atmosfäriskt korrigerade bilder som visar markytans reflektans) laddades ned 
från Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu) för vidare 
hantering.  

Vi använde alla våglängdband utom band 1, 9 och 10, som i huvudsak används för 
moln- och disdetektion. Data från övriga band räknades om till 20 m × 20 m 
rasterceller (band 2–4 och 8 har ursprungligen 10 m pixlar). Exakt samma raster 
användes även för alla andra data i projektet för att möjliggöra analyser och 
jämförelser mellan olika typer av data. 

Detaljerad molnmaskning (avgränsning av ytor som var täckta av moln, dis, eller 
molnskuggor) gjordes i huvudsak genom manuell klassning, i vissa fall i 
kombination med oövervakad klassificering (Iso Cluster i mjukvaran ArcGIS Pro 
3.5, ESRI Inc., Redlands, CA, USA). 
  

https://dataspace.copernicus.eu/
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Figur 3 Generaliserad reflektans från en gröda i olika våglängdsband (1–12) i Sentinel-2. De blå 
och gröna pilarna illustrerar (förenklat)att reflektansen typiskt ändras beroende på förändringar 
av grödans biomassa och kväveinnehåll (gröna pilar) och vattenhalt (blå pilar). Bilden är 
omarbetad från Söderström et al., 2025). 

För att minska eventuella atmosfäriska störningar i de molnmaskade bilderna 
beräknas ofta olika vegetationsindex (VI). Sentinel‑2‑banden 2–8, 8A och 11–12 
användes för att beräkna kvotindex (QI) och normaliserade differensindex (NDI) 
för alla parvisa kombinationer av band. I ekvationerna 1 och 2 anger R reflektans 
medan i och j betecknar banden. Varje satellitbild genererade därmed ett stort antal 
VI-variabler, som sedan användes i skördemodelleringen. 

 

 𝑄𝑄𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖
𝑅𝑅𝑗𝑗

    (Ekvation 1) 

 

 𝑁𝑁𝑁𝑁𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖−𝑅𝑅𝑗𝑗
𝑅𝑅𝑖𝑖+𝑅𝑅𝑗𝑗

   (Ekvation 2) 

 

2.2.3 Mikrodata från SCB 
Aktuella skördeuppgifter för höstvete och vårkorn på gårdsnivå togs fram av SCB. 
Det görs varje år för att producera allmän skördestatistik, och uppgifter samlas in 
genom webbenkät eller telefonintervjuer med ett antal lantbruksföretag inom varje 
SKO. Det är medelskörden för respektive lantbruk som samlas in, vilket betyder att 
skördesiffran kan representera flera fält. För att ta reda på vilka fält som odlats med 
vilka grödor på de olika gårdarna bidrog Jordbruksverket med uppgifter om 
skiftesidentitet. Skiftesidentiteten kunde via data från Jordbruksverkets 
skiftesdatabas knytas till rätt fält. Detta gjorde det möjligt att analysera satellitdata 
för fälten där det finns skördeuppgifter. Grunddata är sekretessbelagda och 
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anonymiserade. Därför redovisas inte skördeuppgifter eller skördeprediktioner i 
projektet på ett sådant sätt att de kan knytas till en enskild gård, utom för de fyra 
projektgårdar som ingick i projektet (Figur 1). Antalet lantbruksföretag för vilka 
det fanns skördeuppgifter uppgick inom projektområdet till ca 400 per år. 

2.2.4 Gårdarnas markkarteringar 
För att kunna tolka variationen i skördekartor från satellitmodellerna gjordes kartor 
över markanalysdata från projektgårdarnas markkarteringar. Gårdarnas mark-
karteringar skiljde sig något åt, i samtliga fall fanns pH, samt lättlöslig fraktion av 
fosfor, kalium, kalcium och magnesium (P-AL, K-AL, Ca-AL, Mg-AL) 
analyserade i ett jordprov per hektar. För tre av gårdarna fanns även koppar (Cu-
HCl), mullhalt och lerhalt. På en gård var de senare analyserade i vart tredje prov. 
I ett fall fanns även analyser av sandhalt, järn och aluminium (Fe-AL, Al-AL). Vi 
använde den geostatistiska interpolationsmetoden block kriging (Söderström, 
2010) för att beräkna markkarteringsvärden i samma raster som satellitbilderna. 

2.2.5 Geodatabaser 
Även små variationer i topografi inom fält kan vara viktiga för skillnader i skörd. 
Vi tog fram kartor över fyra olika mått som är baserade på Lantmäteriets detaljerade 
höjddata (Grid 2+, Lantmäteriet, Gävle) för projektgårdarnas fält. Dessa höjddata 
har sitt ursprung i laserskanning från flygplan. De olika måtten var: höjd över havet, 
topografiskt positionsindex TPI1 och TPI5 (höjdavvikelse jämfört med omgivande 
1 ha, respektive 5 ha) (Weiss, 2001), samt markvattenindexet SMI från SLU:s 
Markfuktighetskarta 2. Det senare bygger förutom på topografi även på avstånd till 
vatten, avrinning och jordartsinformation (Ågren et al., 2021). Dessutom gjordes 
kartor över den beräknade totala mängden naturlig radioaktiv markstrålning 
(gammastrålning), baserade på mätdata från flyggeofysiska mätningar som görs av 
Sveriges Geologiska Undersökning (SGU). På Bjertorp fanns sedan tidigare 
gammastrålningsmätning gjord med en markburen sensor. Det har i tidigare 
kartläggningar av åkermark visats att gammastrålningsdata är starkt korrelerad till 
jordarten i matjorden (Piikki & Söderström, 2019). 

2.2.6 Syntetiska satellitdata  
Satellitbaserad skördekartering fungerar bäst om man har tillgång till bilder från 
avgörande utvecklingsstadier i grödans livscykel (Alshihabi et al., 2024). I den här 
studien, var det för tre fall (områdes-år) av 28 inte möjligt att få fram användbara 
bilder på grund av utbredd förekomst av moln, molnskuggor eller dis. Därför 
gjordes ett enkelt test av kommersiella syntetiska satellitdata (ClearSKY Vision, 

 
2 https://www.slu.se/miljoanalys/statistik-och-miljodata/miljodatakatalogen/slu-markfuktighetskartor/ 
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Aalborg, Danmark). Data som motsvarar Sentinel-2 (spektralt och geometriskt) 
räknas fram från flera satellitpassager (även andra satelliter) över en viss tidsperiod, 
vilket resulterar i sömlösa och analysklara bilder.  

Pilotstudien gjordes för Bjertorp, med en bild varannan dag under perioden april–
augusti för åren 2017–2023. Sambandet mellan tröskdata och flera utvalda VI över 
tid utvärderades med Spearmans korrelationskoefficient (r). Spearmans r användes 
i denna studie i stället för Pearsons r, eftersom den baseras på rangordnade data och 
mäter således monotona samband (oavsett om de är linjära eller inte), medan 
Pearsons r endast mäter linjära samband. 

2.3 Dataanalys 
2.3.1 Skördekartering via satellit 
Principen för satellitbaserad skördekartering som används i detta projekt illustreras 
i Figur 4. Förfarandet beskrivs mer detaljerat nedan. 

Modeller 
Alla modeller använde skörd (t ha⁻¹) som responsvariabel och två eller flera VI som 
förklarande variabler. Modellberäkningarna gjordes med två typer av modeller: 

1) Multipel linjär regression (MLR) med två utvalda VI. 

2) En maskininlärningsmodell (Random Forest, RF) som inkluderade alla 
beräknade QI- och NDI-index som förklarande variabler. 

I de linjära regressionerna användes dels NDWI (normalized difference water 
index), vilket är NDI baserat på band 11 och band 8 från Sentinel-2, dels NDRE76, 
vilket är NDI beräknat utifrån de två red edge-banden 7 och 6. NDWI valdes 
eftersom det tidigare har visat god träffsäkerhet vid prognoser av skörd för höstvete 
(Alshihabi et al., 2024) och NDRE76 valdes för att det påverkas av biomassans 
totala kväveinnehåll (Prey & Schmidhalter, 2019; Wolters et al., 2021). 

Beräkningarna programmerades i statistikprogrammet R (R Core Team, 2024) och 
RF-kalibreringen gjordes med standardinställningarna i tilläggspaketet 
randomForest (version 4.7 1.2; Liaw & Wiener, 2002). All modellering 
genomfördes separat för varje gröda, område och år. 



16 

 

 

Figur 4. Principen för satellitbaserad skördekartering såsom den gjordes i detta projekt bygger på 
att vegetationsindex (VI) från Sentinel-2-satelliterna (ESA, Paris, Frankrike) omvandlas till 
skördekartor. Detta görs med hjälp av enkla eller mer avancerade modeller som har kalibrerats 
med mikrodata (genomsnittliga skördar per gård) insamlade för nationell statistik av Statistiska 
centralbyrån (SCB, Örebro, Sverige). Rumslig avgränsning gjordes mha. fältgränser och 
grödinformation från Jordbruksverket (Jönköping, Sverige) 

Modelleringsstrategier 
Modellerna utvärderades med följande tester: 

1) En k‑faldig korsvalidering, där resultaten visar hur väl modellerna 
fungerar på gårdsmedelnivå om de tillämpas efter skörd, det vill säga när 
kalibreringsdata från samma år finns tillgängliga. Korsvalidering innebär 
att observationerna slumpvis delas upp i k antal segment där ett segment i 
taget utesluts vid kalibrering och istället utgör valideringsprov. 
Valideringsresultaten beräknas sedan på samtliga k valideringssegment 
sammanslagna. En slumpmässig trettiondel (k=30) eller en slumpmässig 
tredjedel (k=3) av gårdarna uteslöts i varje iteration. Detta beskriver 
kartläggning av uppnådd skörd (skördekartering). 

2) En årsvis korsvalidering, där ett år uteslöts i varje iteration. Detta 
efterliknar en skördeprognos före skörd. Hela datasetet (alla gårdsmedel-
värden) användes både för kalibrering och validering. Detta gjordes för att 
testa hur känsliga de två modelltyperna (MLR och RF) är för 
överanpassning. 

3) Slutliga modeller (kalibrerade med alla data) tillämpades på 
satellitbildsraster (20 m upplösning) och jämfördes med skördekartor 
framtagna från tröskdata. 
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4) Prognoserna på gårdsnivå från (1) och (2) aggregerades också till 
områdesmedelvärden och jämfördes med områdesmedelvärden av 
rapporterade skördar. 

Utvärderingsmått 
Fyra valideringsmått beräknades för att kvantifiera olika aspekter av modellernas 
tillförlitlighet. Dessa var Nash-Sutcliffes modelleringseffektivitet (E), 
determinationskoefficienten för en linjär regression mellan de predikterade värdena 
och referensvärdena (r²), medelabsolutfel (MAE) och medelfel (ME).  

E‑värdet visar hur stor del av variationen i referensskördarna, som förklaras av 
modellen. r²‑värdet beskriver i vilken grad de predikterade skördarna och 
referensskördarna är korrelerade, även om den absoluta nivån skiljer sig. 
Medelabsolutfelet (MAE) anger den genomsnittliga storleken på prediktionsfelen, 
oavsett om de är över‑ eller underskattningar, medan ME visar storleken på en 
systematisk avvikelse (en generell överskattning eller underskattning, dvs. en 
skevhet).  

E‑värdet 1 betyder att de predikterade och rapporterade värdena är identiska – 
modellen ger alltså perfekta prediktioner. E‑värdet 0 innebär att modellens 
prediktioner är lika träffsäkra som att använda medelvärdet av referensskördarna 
för alla fall. Negativa E‑värden visar att de predikterade värdena är mindre rätt än 
om de alla ersatts med medelvärdet av referensvärdena, och sådana modeller är inte 
användbara.  

Uvärderingsmått för områdesmedelvärden beräknades för hela datamängden. Mått 
för gårdsmedelvärden beräknades per år och område (medianvärden och 
interkvartilavstånd av dessa redovisas) och mått för jämförelser med tröskdata 
beräknades per år och fält. Datagrupperingen är viktig för E och r², eftersom dessa 
värden utvärderar olika aspekter av hur väl variationen i referensdata fångas. För 
jämförelserna med tröskdata, gjordes dessa på ett urval av data (tröskkartan 
uppvisade inga uppenbara felaktigheter, fältet var minst 5 ha stort och 
standardavvikelsen i tröskans skörd var minst 0,5 t ha-1 (totalt 68 fält uppfyllde 
dessa kriterier). För denna jämförelse beräknades endast r2-värden då tröskdata inte 
var nivåjusterade för alla gårdar. Alla mått beräknades med R‑paketet valmetrics 
(Piikki et al., 2021a; b).  

2.3.2 Sammanläggning av flera års skördekartor 
För att kombinera skördekartorna från 2017 till 2023 beräknades först den relativa 
skörden genom att dividera med fältets medianskörd enligt ekvation 3, där 
𝑅𝑅𝑌𝑌𝑖𝑖𝑖𝑖  och 𝑌𝑌𝑖𝑖𝑖𝑖 och är den relativa respektive absoluta skörden i pixel i och år j. 

 



18 

 

 𝑅𝑅𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖
𝑌𝑌�𝑗𝑗

    (Ekvation 3) 

 

Vid normalisering ingår ofta både centrering (t.ex. till ett medelvärde på 0 eller 1) 
och skalning (t.ex. till en standardavvikelse på 1). Vi valde att centrera men inte 
skala, detta för att behålla information om storleken på inomfältsvariationen, vilken 
är större vissa år än andra. Ofta är variationen inom fältet mer uttalad när 
skördenivån är lägre (Souza et al., 2025).  

Efter normalisering avgränsades det område där fleråriga analyser var möjliga. 
Kriterierna för detta var att data skulle finnas tillgängliga från minst tre år (oavsett 
om grödan var höstvete eller vårkorn) och att fältet (dvs. området i fältet med data 
för minst tre år) skulle vara minst fem hektar stort. Därefter togs två olika kartor 
fram:  

1) Relativa skördekartor: beräknade som genomsnittet av årliga relativa 
skördar.  

2) Frekvenskartor för låg skörd: beräknade som andelen år där den relativa 
skörden klassas som låg (tröskelvärde: 0,9).  

Den första kartan visar genomsnittliga skördemönster inom fältet (högre eller lägre 
än median), medan den andra ger information om stabila och instabila 
skördemönster, eller mer specifikt, huruvida låga skördar är permanenta eller 
tillfälliga. Detta är ett sätt att ta fram frekvenskartor för låg skörd. Flera algoritmer 
för att skapa sådana kartor från tröskdata har föreslagits genom åren (Blackmore, 
2000; Maestrini & Basso, 2021; Souza et al., 2025), ofta med målet att avgränsa 
brukningszoner med mer eller mindre homogena förhållanden. Samma metoder kan 
tillämpas på satellitbaserade skördekartor i rasterformat.  

2.3.3 Tolkning av skördevariation  
Med målet att utveckla en analysstrategi för att identifiera vilka lokala faktorer som 
begränsar skörden i områden med konsekvent låga skördenivåer, användes två 
modelleringsmetoder för att koppla samman gårdens egna markkarteringsdata och 
allmänt tillgängliga topografiska data (avsnitt 2.2.4 och 2.2.5) med kombinerade 
relativa skördekartor (avsnitt 2.3.2). De två metoderna var Partial Least Squares 
Regression (PLSR) och RF (avsnitt 2.3.1).  

PLSR är en linjär multivariat regressionsmetod där flera beskrivande variabler, i 
detta fall från gårdens markkartering och en digital höjdmodell, representeras av ett 
mindre antal ortogonala latenta variabler (komponenter). Dessa extraheras och 
roteras för att optimera modellens förmåga att förutsäga den beroende variabeln 
(Wold et al., 1984), i detta fall genomsnittlig relativ skörd. På detta sätt undviks 
problem med beroende mellan variabler, och de skattade regressionskoefficienterna 
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för varje beskrivande variabel i PLSR-modellen återspeglar deras relativa betydelse 
för sambandet med skörden.  

För att eliminera artificiella enhetseffekter och ge varje variabel lika stor möjlig 
påverkan i de multivariata modellerna, viktades, normaliserades, de genom att 
divideras med sin respektive standardavvikelse. För att undvika överanpassning och 
hitta det optimala antalet komponenter testades modellerna med 20-faldig 
korsvalidering. Betydelsen av enskilda beskrivande variabler utvärderades genom 
deras normaliserade regressionskoefficient i den slutliga modellen.  

Random Forest är en ensemblemetod som bygger flera beslutsträd under träningen 
(uppbyggnaden av modellen). Resultatet utgörs av den vanligaste prediktionen (vid 
klassificering) eller medelprediktionen (vid regression, som i denna studie) av dessa 
träd. Detta ökar noggrannheten och minskar risken för överanpassning genom 
slumpmässighet vid urval av data och variabler. Variablernas betydelse i RF-
modellen bedömdes med hjälp av måttet %incMSE (procentuell ökning i 
medelkvadratfel). Detta beräknas genom permutation; hur mycket sämre blir 
modellens prediktioner om värdena för en viss förklaringsvariabel blandas om och 
därmed förlorar sitt samband med responsvariabeln? Om en variabel är viktig bör 
en sådan omkastning kraftigt försämra modellens tillförlitlighet (en stor ökning av 
felet).  
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3. Resultat och diskussion 

3.1 Utvärdering av satellitbaserade skördekartor 
3.1.1 Skördekartor i flera skalor 
Figur 5 visar framtagna skördekartor för höstvete över de fyra områdena och de sju 
åren, med en aggregerad upplösning om 5 km. Man kan se att skördenivåerna skiljer 
sig mellan år med låga skördar (2018 och i viss mån även 2023). Man kan även se 
att skördenivåerna generellt är olika mellan områdena, vilket är väntat, samt att 
skillnaden mellan områdena är större vissa år än andra. År 2021 ser exempelvis ut 
att vara ett år med små geografiska skillnader medan 2017 visar en tydlig trend med 
högst skördar i sydväst och lägre i nordost. Man kan också notera att vissa områden 
saknar prediktioner vissa år (Vara och Uppsala 2019 samt Lund 2022). Det beror 
på att inga tillräckligt molnfria satellitbilder fanns tillgängliga över dessa områden 
under den tidsperiod som användes i modellerna. 

Figur 6 visar beräknade höstveteskördar i Vara-området med ökande 
detaljeringsgrad. De mest högupplösta kartorna (20 m) visar gården Bjertorp, och 
man kan jämföra skörden i kartor framtagna från satellit (Figur 6b) med kartor 
framtagna från tröskdata (Figur 6c). Det tycks som att de generella 
variationsmönstren stämmer relativt väl överens på många fält men variationen är 
betydligt mer uttalad i tröskkartorna — modelleringen tenderar att släta ut 
variationen (ytterligare diskussion nedan).  

 

 

Figur 5 Höstveteskörd 2017–2023 i de fyra projektområdena enligt de regionala satellitmodellerna. 
Det kartlagda områdens utbredning är anpassade efter använda satellitbilder, och skiljer sig därför 
något från SKO-områdena. En detaljerad bild för området Vara 2023 visas i Figur 6. 
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Figur 6. Exempel på tillämpning av en regional satellitbaserad skördekarteringsmodell för höstvete 
i olika skalor 2023 i Varaområdet (SKO 1216 med omnejd): a) Pixelstorleken varierar mellan 
a) 1 och 5 km; b) Prediktion på fältnivå på gården Bjertorp, 20 m pixlar; c) För jämförelse – 
skördekartor från gårdens tröska som kalibrerats med invägd skörd. Teckenförklaringen visar skörd 
per ha och gäller för alla kartor a-c. 
  

3.1.2 Jämförelse mellan enkla och komplexa modeller 
Det är tydligt att den testade maskininlärningsmetoden (RF) kunde förklara 
variationen i kalibreringsdatamängden mycket väl (Figur 7; inga data utelämnade). 
När robusta modeller behövs, till exempel för att göra prognoser för ett nytt år, 
verkade dock den enklare regressionsmodellen (MLR) baserad på de två valda VI 
vara ett bättre val. För prediktioner efter skörd (Figur 7; 3% av gårdarna 
utelämnade) presterade MLR och RF ungefär lika bra; det fanns ingen tydlig 
förbättring i modellens tillförlitlighet som motiverade användningen av den mer 
komplexa RF-modellen. I ett modelleringsupplägg som detta, där även 
kalibreringsdata (skördar rapporterade av lantbrukare) sannolikt innehåller en viss 
osäkerhet, kan bristande robusthet på grund av överanpassning vara ett större 
problem. Därför valde vi att här gå vidare med de enklare MLR-modellerna. 
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Figur 7. Nash–Sutcliffes modelleringseffektivitet (E) för prediktioner av medelskörd per gård. 
Lådagrammen visar medianen (mittlinjen) och interkvartilavståndet (IQR; lådan), med spröt som 
sträcker sig upp till 1,5 × IQR från lådan. Modellerna testades genom att i) alla data för både 
kalibrering och validering (inga data utelämnades), ii) i 30-faldiga korsvalideringar (≈3 % av 
gårdarna utelämnades) samt iii) i korsvalidering där ett år i taget utelämnades. MLR = multipel 
linjär regression och RF = Random Forest-regression. 

 

3.1.3 Utvärdering av satellitkartor för gårdar och områden 
Utvärderingsmått för genomsnittlig skörd för regional nivå och gårdar visas i 
Tabell 1. Prediktionerna var mer träffsäkra efter skörd (när kalibreringsdata från 
samma år fanns tillgängliga) jämfört med prognoser under pågående säsong. Efter 
skörd var det genomsnittliga MAE-värdet för enskilda gårdar i genomsnitt 
0,71 t ha⁻¹ för höstvete, medan det var något högre för vårkorn, 0,75 t ha⁻¹. 
Motsvarande storlek på felen för skördeprognoser runt slutet av juni (från sen 
blomning till tidig mjölkmognad) var cirka 0,91 t ha⁻¹ för höstvete och 0,79 t ha⁻¹ 
för vårkorn.  

Figur 8 visar att det fanns en relativt stor variation mellan enskilda gårdar (grå 
symboler) i hur väl prediktionerna stämmer överens med de rapporterade 
skördarna, även om det generella mönstret är att prediktionerna i stort följer 1:1 
linjen väl. Vid tolkning av utvärderingsmåtten på gårdsnivå bör man komma ihåg 
att även de rapporterade skördarna som prediktionerna jämförs med har en viss 
osäkerhet, och det kan inte uteslutas att prediktionerna i vissa fall kan vara mer 
korrekta än de genomsnittliga skördar som rapporterats av lantbrukare i 
telefonintervjuer eller webbenkäter. 

Prognoser av regionala medelskördar kunde göras under säsongen med betydligt 
bättre tillförlitlighet än på gårdsnivå, vilket är väntat på grund av 
aggregeringseffekten, där lokala variationer och mätfel delvis jämnas ut när data 
slås samman. I en regional prognos var MAE 0,64 t ha⁻¹ för höstvete och 0,46 t ha⁻¹ 
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för vårkorn (Tabell 1; Figur 8a och b). Resultaten visar således att det alltså är 
möjligt att redan i slutet av juni göra en relativt noggrann regional skördeprognos 
innevarande år baserad på fjärranalys i kombination andra års rapporterade 
gårdsmedelskördar från telefonintervjuer. 

Felnivåerna (MAE-värdena) för prediktioner av regionala skördar efter skörd anges 
också i Tabell 1. Dessa stämde nästan helt överens med medelvärdena för de 
rapporterade genomsnittliga regionala skördarna (Figur 8c–d), vilket var väntat. 
Om man jämför utvärderingsmåtten från 3-faldig och 30-faldig korsvalidering 
(Tabell 1) verkar det vara möjligt att minska antalet gårdsintervjuer med minst en 
tredjedel utan nämnvärd försämring av prognoser för regional medelskörd; 
fjärranalys i kombination med ett minskat antal gårdsintervjuer kan ge likvärdiga 
resultat som om intervjuer genomförs med betydligt fler lantbrukare. 
 

Tabell 1. Modellutvärdering för olika prediktionstidpunkter och aggregationsnivåer. Måtten är 
beräknade per område och år och median (interkvartilavstånd) redovisas. Modelltypen var multipel 
linjär regression, CV= korsvalidering, E = Nash–Sutcliffes modelleringseffektivitet, r² = 
determinationskoefficient, MAE = medelabsolutfel, ME = medelfel (skevhet). 

Nivå Tidpunkt CV E r2 MAE (t ha-1) ME (t ha-1) 

Höstvete       
Region Under säsong CV (år) 0.62 0.67 0.64 -0.01 
Region Efter skörd CV (k=3) ~1 ~1 0.03 0.02 
Region Efter skörd CV (k=30) ~1 ~1 0.01 0.01 
       
Gård Under säsong CV (år)  0.20 (0.38) 0.56 (0.23) 0.91 (0.39)  0.01 (0.83) 
Gård Efter skörd CV (k=3)  0.53 (0.28) 0.54 (0.26) 0.71 (0.11)  0.01 (0.03) 
Gård Efter skörd CV (k=30)  0.53 (0.23) 0.53 (0.23) 0.70 (0.10)  0.00 (0.01) 

Vårkorn   
 
 

   

Region Under säsong CV (år) 0.79 0.79 0.46 -0.05 
Region Efter skörd CV (k=3) ~1 ~1 0.03 0.02 
Region Efter skörd CV (k=30) ~1 ~1 0.01 0.01 
       
Gård Under säsong CV (år)  0.34 (0.56) 0.47 (0.18) 0.79 (0.27)  0.09 (0.70) 
Gård Efter skörd CV (k=3)  0.33 (0.27) 0.35 (0.26) 0.75 (0.17)  0.00 (0.02) 
Gård Efter skörd CV (k=30)  0.40 (0.22) 0.40 (0.21) 0.74 (0.14)  0.01 (0.01) 

Båda grödorna 

Pixel Efter skörd Jfr. tröska --- 0.31 (0.43) --- --- 

 



24 

 

 

Figur 8. Predikterade jämfört med rapporterade skördar på gårdsnivå (grå symboler), samt 
medelskördar per år och område (symboler med olika form och färg). Legenden i d gäller för alla 
diagram. Prediktionerna gjordes med multipel linjär regression. n = antal gårdsmedelvärden. 

3.1.4 Jämförelse mellan tröskkartor och satellitkartor 
När man jämför skördekartor från tröskor med satellitbaserade skördekartor bör 
man ha i åtanke att båda metoderna har sina respektive styrkor och svagheter. I vissa 
fall är överensstämmelsen mellan de två metoderna relativt god (exempel i 
Figur 9a–b), medan den i andra fall är svag (exempel i Figur 9c–d). För tröskdata 
är det vanligt med problem kopplade till insamling, filtrering och kalibrering av 
data. När det gäller satellitbaserade kartor är en svaghet att faktorer som påverkar 
skörden efter att satellitbilden togs inte avspeglas i den slutliga skördekartan. En 
annan egenskap hos satellitbaserade skördekartor är att variationen inom fälten ofta 
blir mindre uttalad, eftersom modelleringen vanligtvis har en utjämnande effekt (se 
även Figur 6b och c).  
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Figur 9. Pixelvärden från satellitbaserade skördekartor (y-axeln) plottade mot pixelvärden från 
tröskans skördekartor (x-axeln) för fyra valda fält: (a–b) exempel med god korrelation och (c–d) 
exempel med svag korrelation. E = Nash–Sutcliffes-modelleringseffektivitet, r² = determinations-
koefficient, MAE = medelabsolutfel, ME = medelfel. 2018 (c) var ett torrt år med generellt låga 
skördar, och även 2023 (b, d) var speciellt från vädersynpunkt, med mycket torrt väder fram till 
juli, när det blev mycket regnigt fram till skörd. 

 

I den här studien är kalibreringen av satellitdata gjord på regional nivå (t.ex. utan 
hänsyn till sortskillnader) men tillämpas på enskilda fält inom regionen. Det kan 
sannolikt göra att medelskördenivån avviker när man använder modeller som 
bygger på VI. Det bör därför inte förväntas att tröskkartor och satellitbaserade 
kartor alltid överensstämmer, och jämförelser bör tolkas med viss försiktighet. 
Tidigare forskning har visat att en minskning av den rumsliga upplösningen till 
40 m (i stället för 20 m som användes här) var överensstämmelsen mellan 
satellitbilder och tröskdata bättre (Alshihabi et al., 2024). 
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3.2 Flerårsanalys  
3.2.1 Kartor över relativskörd och frekvensen av låg skörd. 
Figur 9 visar exempel på en karta över relativskörd (a) och en karta över frekvensen 
av låg skörd (b) som tagits fram baserats på minst tre års satellitdata (höstvete eller 
vårkorn) för gården Bjertorp. Visualiseringen pekar tydligt ut problemområden med 
generellt låg skörd (de med rödast färg i karta a) och indikerar hur ofta varje pixel 
har en skörd betydligt under fältets medianskörd (Figur 9b). I Figur 9 blir också en 
svårighet med flerårsanalys av skördekartor tydlig. Den odlade arealen är inte 
densamma från år till år. De områden i kartan som saknar data (inom fälten med 
svart kant), är områden där vete eller korn odlats mindre än tre år. Olika geografiska 
avgränsningar mellan år blir en utmaning att hantera om man vill bygga ett 
automatiserat system för flerårsanalys av skördekartor. På platser som 
Lantmännens framtidsgård Bjertorp är förmodligen denna problematik vanligare då 
gården står värd för många fältförsök.  

3.2.2 Tolkning av orsaker till låg skörd  
Det faktum att många variabler (markegenskaper, skörd, topografi mm) 
samvarierar när man arbetar med pixlar inom ett fält gör det svårt att peka ut 
enskilda variabler som orsaken till låg skörd. Det är viktigt att komma ihåg att de 
statistiska samband mellan markegenskaper och topografi å ena sidan och skörd å 
den andra, som i varierande grad representerades av de normaliserade 
regressionskoefficienterna i PLSR-modellerna eller som identifieras som viktiga 
prediktorvariabler i RF, inte nödvändigtvis beskriver ett funktionellt samband. Det 
kan mycket väl vara en annan variabel som kanske inte ens är analyserad som utgör 
den egentliga orsaken. Till exempel ingår inga variabler som direkt beskriver 
markstruktur och vattendynamik. I flera fält på de fyra gårdarna kunde den relativa 
medelskörden beskrivas relativt väl med markkarteringsdata och topografi, med 
upp mot 70–80 % förklaringsgrad. Det var emellertid enbart i enstaka fall man via 
variabler som identifierades som viktiga i modellerna kunde separera pixlar med 
genomgående låg skörd. Enstaka lyckade exempel utgjordes främst av fält där stora 
skillnader i textur sammanföll med skördevariationer, då ofta i kombination med 
lokala höjdområden (även till synes små topografiska skillnader kan ha påtaglig 
betydelse i detta sammanhang).  
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Figur 10. Analys av 3–6 års satellitbaserade prediktioner av skörd (höstvete och vårkorn) på 
Bjertorp: a) avvikelse från respektive fälts medelskörd; b) områden med återkommande låg skörd 
(där låg definieras som <90 % av fältets medianskörd). 

 

Svårigheterna att beskriva områden med lägst skörd med markkartering och 
topografi kan förutom vad som nämnts ovan ha flera orsaker. En kan vara att det 
inte handlar om enkla samband utan om komplex samverkan mellan flera faktorer. 
Något som RF möjligen kan vara bättre på att beskriva jämfört med PLSR, men 
inte enklare att tolka. En annan orsak kan helt enkelt vara att orsakerna varierar 
inom ett och samma fält. Något som illustrerats i tidigare studier (Engström et al., 
2025). Av dessa skäl bör visuell tolkning av kartor övervägas, där lågavkastande 
områden enkelt kan identifieras (Figur 10), när man ska identifiera orsakar till 
lokalt låga skördar. Ett bidrag från de multivariata modellerna skulle kunna vara att 
generera en lista med troliga faktorer som man sedan bedömer utifrån 
lokalkännedom och agronomisk kunskap.  

3.2.3 Erfarenheter från diskussioner med lantbrukargruppen 
De två typerna av kartor (generella skördemönster och deras dynamik; Figur 10a 
och b) diskuterades i möten mellan projektgruppen och lantbrukarna. Många 
problemområden i kartorna kändes igen och hade kända orsaker. I andra fall var 
man inte säker på orsakerna till variationen. I den mån kartorna stämmer visar det 
att de sammanvägda skördekartorna kan ge nya insikter även om man har god 
kännedom om sina fält. Det blev tydligt under mötena att enbart avancerad 
dataanalys med normalt tillgängliga mätdata inte räcker för tolkning av 
skördevariationer. Lokalkunskap krävs också, särskilt när variationer beror på 
odlingshistorik och historiska ägarförhållanden. Exempel på kända orsaker till 
problem var: jordart (avvikande textur eller mullhalt), topografi (ofta lokala höjder), 
dålig dränering, lågt pH, nedgrävda vattenledningar, gamla vägar, viltskador (gäss 
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etc.) och köldhålor. Det är noterbart att flera av dessa orsaker alltså inte 
framkommer från kända datakällor eller etablerade analysprotokoll.  

I den mån man alls använder skördekartorna från tröska, nyttjas de som ett kvitto 
på årets växtodling. Man ser dock stora möjligheter med skördekartering (från 
satellit eller tröska) och efterlyser följande för att potentialen ska kunna realiseras i 
praktiken: 

1) Bättre funktionalitet för och automatik i bortfiltrering av felaktiga 
skörderegistreringar (från tröska).  

2) Lättanvända funktioner för utvärdering av årets odling genom att man på 
ett enkelt sätt kan jämföra skördekartor med andra kartor eller annan 
information, t.ex. så att man kan följa hur vädret varit under säsongen samt 
göra jämförelser med tidigare säsonger. 

3) Möjlighet att använda kartor över generella skördenivåer som underlag när 
man genererar tilldelningsfiler för anpassning av insatsmedel efter 
varierande skördnivåer i fält.  

Diskussionerna visade att de största hindren för att fullt ut använda skördekartor för 
tolkning av odlingsresultat och styrning av insatser är tekniska svårigheter och 
tidsbrist. Därför behöver framtida system vara kompatibla med olika fabrikat av 
skördemonitorer, gödningsspridare och såmaskiner, och beslutsstödet bör utformas 
så enkelt och användarvänligt som möjligt. 

 

3.3 Modellering med ofullständiga datamängder 
3.3.1 Möjliga lösningar 
Som nämnts tidigare är det en viss utmaning att förlita sig på optiska satellitdata 
eftersom moln och dis kan göra bilderna oanvändbara för tolkning av grödstatus. 
I den aktuella studien, som omfattade fyra regioner och sju år, var det inte möjligt 
att få användbara data under perioden från sen blomning till tidig mjölkmognad för 
tre områdes‑år (Vara och Uppsala 2019 samt Lund 2022). Även under de år då data 
fanns tillgängliga täckte de molnfria partierna inte alltid hela området. I princip 
finns tre sätt att hantera detta problem: 

1) Borttagning (pruning): Ta bort alla observationer (här: pixlar) som 
innehåller saknade värden och de variabler (här: VI) som i hög grad är 
ofullständiga (t.ex. >30% saknas).  

2) Ifyllnad (imputation): Fyll i saknade värden med uppskattningar, t.ex. 
medelvärden eller prediktioner baserade på andra variabler (även från 
andra satelliter). Detta gör datamängden komplett men kan införa 
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systematiska fel om databortfallet inte är slumpmässigt och metoden för 
ifyllnad inte kan hantera det. 

3) Gruppvis modellering (reduced modelling): Dela in data i grupper där 
samma variabler finns tillgängliga och träna separata modeller för varje 
grupp. För nya data används den modell som motsvarar de tillgängliga 
variablerna (Friedman et al., 1996; Saar-Tsechansky & Provost, 2007). 

Det första och enklaste alternativet användes i denna studie: områden med moln 
eller dis togs bort från kartläggningen och om ett fält delvis saknade data uteslöts 
hela fältet. En nackdel med metoden är att inte alla fält (eller ens alla områden) får 
en skördekarta varje år. Vi genomförde även ett pilotförsök med den andra strategin 
(se nedan), där en komplett molnfri tidsserie av syntetiska Sentinel‑2‑data 
genererades. Det finns mycket att vinna på att undvika automatisk molnmaskning 
vid implementering av satellitbaserad skördekartering i digitala system, eftersom 
metoderna för detta inte alltid fungerar tillfredsställande. Dessutom kan en 
förbehandlad tidsserie av VI ge annan information om grödors tillväxt och 
utveckling, till exempel leaf area duration (tidsintegrerade bladyteindex), 
kärnfyllnadsperiodens längd eller maximal biomassa, vilka kan vara användbara 
prediktorvariabler i empiriska skördemodeller. Alternativt kan hela tidsserien 
användas för prediktion med semi‑empiriska modelleringsmetoder (se exempel av 
Bouras et al., 2023; Federolf et al., 2025; Persson et al., 2024). Sådana strategier 
testades kan vara värda att utforska vidare. 

3.3.2 Test av syntetiska satellitdata 
Figur 11 visar hur korrelationen mellan kärnskörd och utvalda VI utvecklas över 
tid, baserat på syntetiska satellitbilder i kombination med skördedata från tröska för 
höstvete och vårkorn och två kontrasterande år: 2018, som var mycket torrt, och 
2021, som var mindre extremt. Resultaten indikerar att satellitbaserade 
skördemodeller kan förväntas vara mer tillförlitliga från slutet av juni och framåt 
för de flesta VI. Korrelationerna är däremot avsevärt mer osäkra under maj och 
början av juni, när grödan ännu inte har avslutat sina vegetativa utvecklingsstadier, 
jämfört med under och efter blomning. GRVI, som endast baseras på synliga band 
(grönt och rött) och därför inte fångar information från nära-infraröda (NIR) och 
red edge-regionerna där grödans reflektans är särskilt känslig för beståndsstruktur, 
kvävestatus och vatteninnehåll, avvek från de övriga indexen för höstvete 2021. 
NDWI, som baseras på band 11 där reflektansen påverkas av grödans vattenstatus 
fungerade väl även senare på säsongen för höstvete under båda åren. Detta är en 
mindre pilottest som snarare visar vilka analyser som möjliggörs med kompletta 
tidsserier, än ger underlag för säkra slutsatser.  
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Figur 11. Variation i Spearmans r-värden (för korrelationen mellan vegetationsindexen och 
skördekartor från tröska) över perioden juni–augusti, för två grödor under två år: ett torrt år, 2018 
(a–b), och ett mer normalt år, 2021 (c–d), för höstvete (a och c) respektive vårkorn (b och d) på 
Bjertorp. Vegetationsindexen var av NDI-typ och baserades på följande Sentinel-2-band: GRVI: 
band 3 och 4, NDVI: band 8 och 4, NDRE76: band 7 och 6, NDI83: band 8 och 3, samt NDWI: 
band 8 och 11. 

 

3.4 Identifierade forskningsbehov 
3.4.1 Fältkanter är svåra att kartlägga 
En svaghet med både satellitbaserad och tröskbaserad skördekartering är att det är 
svårt att samla in användbar information om skördenivåer nära fältets kanter. 
Satellitdata påverkas av omgivande markanvändning och skörderegistrering med 
utrusning på tröska genererar många felaktiga värden i kanterna som måste filtreras 
bort (tex pga. vändningar, start, stopp och icke-fulla skärbord; se Figur 2). I ett 
system kan det vara enkelt att helt enkelt ta bort data längs kanten och fylla i 
(extrapolera) med hjälp av mer pålitliga värden längre in i fält. Möjligen bör man 
arbeta mer med hur man hanterar fältkanter då exempelvis Persson et al. (2025) 
visade att skördnivåer nära fältkanter ofta är lägre än längre in i fält. Fältkanter 
utgör en icke försumbar del av åkermarken (ca 25 % av arealen ligger in om 20 m 
från en kant ibid.) och om skörden är lägre där bör man precis som i resten av fältet, 
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åtgärda produktionsproblem där så är möjligt, alternativt anpassa sina 
gödningsgivor efter permanent lägre skördepotential.  

3.4.2 Satellitbaserade kartor jämnar ut skördevariationen 
Som nämnts ovan tenderar skördekartorna som baseras på satellitbilder att ge 
mindre uttalad inomfältsvariation jämfört med skördekartor från tröska (se t.ex. 
Figur 6b och c). Det kan ha flera orsaker, bland annat att modellen i sig gör att 
resultatet blir mer utjämnat; höga skördar underskattas och låga skördar överskattas 
systematiskt. I ett diagram med predikterade skördar plottade mot observerade 
skördar ger detta en regressionslinje med lägre lutning jämfört med 1:1-linjen 
(Figur 8). En större spridning av punkter runt linjen visar i stället på större varians. 
Hur ska man då komma till rätta med detta? Enkla modeller (som linjär regression) 
är ofta stabila och pålitliga, men har vanligtvis lite större systematiskt fel och 
mindre varians i resultaten. Mer flexibla modeller (som RF) kan minska det 
systematiska felet, men riskerar å andra sidan att ge större varians i resultaten om 
de blir för komplexa eller om det finns för lite referensdata för kalibrering. Mer 
arbete kan läggas på att undersöka hur man kan balansera den utjämnande effekten 
mot modellens varians, men kanske ännu viktigare är att hitta sätt att hantera 
utjämningen av variationen inom fältet vid användning av skördekartor som 
beslutsstöd för precisionsodling.  
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4. Konklusioner  

I projektet utvecklades och utvärderades ett modelleringsupplägg för 
skördekartering på regional nivå, fältnivå och inom fält. Modelleringen baserades 
på satellitbilder och medelskördar per gård insamlade av SCB. Följande 
konklusioner sammanfattar projektet: 

• Genomsnittligt MAE för predikterade gårdsmedelskördar var 0,7 och 
0,8 t ha-1 för höstvete respektive vårkorn när prediktionerna gjordes efter 
skörd (dvs. när rapporterade skördar från samma år kunde användas i 
modellutvecklingen). När prognoser gjordes under växtsäsongen (i slutet 
av juni) var MAE bara något högre, 0,9 och 0,8 t ha-1. 

• Prognoser på regional nivå var mer träffsäkra än de på gårdsnivå och hade 
ett MAE på 0,6 respektive 0,5 t ha-1 för höstvete respektive vårkorn. 
Skattning av områdesskördar efter skörd, kunde göras med bibehållen 
noggrannhet även när antalet rapporterade genomsnittliga gårdsskördar 
som användes för modellkalibrering minskades med en tredjedel. 

• Jämförelser mellan skördekartor från satellit och skördekartor från tröskor 
(båda med 20 m upplösning) visade att de i vissa fall var mycket lika, 
medan överensstämmelsen i andra fall var svag. Det kan ha flera orsaker, 
t.ex. ett litet variationsspann av skörd inom fältet, felaktiga tröskdata trots 
filtrering, händelser som påverkat inomfältsvariationen i skörd som 
inträffat mellan tidpunkten för satellitbilden och tidpunkten för skörd, 
samt den utjämnande effekten på skördevariationen som modelleringen 
naturligt ger upphov till. Sammanfattningsvis är båda typerna av data 
osäkra, och det är svårt att veta vilken som är mest korrekt men 
satellitbaserade skördekartor kan utan utrustning och besvärlig 
datahantering enkelt tillhandahållas åt alla, överallt.  

• Vi har utvecklat en praktiskt användbar metod för att avgränsa stabila och 
instabila problemområden med hjälp av satellitbaserade skördekartor. Två 
typer av kartor togs fram: relativa skördekartor och frekvenskartor för låg 
skörd. Även om variationsmönstren i kartorna ofta kändes igen av 
lantbrukarna och hade kända orsaker, är kartläggningen av variationen 
viktig; för att denna typ av information ska kunna användas i 
beslutsstödsystem för precisionsodling behövs den i detaljerad och digital 
form.  
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• Kartorna visade också på potentiella tidigare okända (mindre uttalade) 
problemområden och kan därmed utgöra en startpunkt för det 
detektivarbete som krävs för att hitta, förstå och åtgärda 
produktionsproblem och därigenom höja skörden. Om detta inte är möjligt 
kan kartorna i stället användas som underlag för att anpassa insatser till 
den faktiska skördepotentialen, dvs. man låter målskörden variera inom 
fälten. 

• Ett praktiskt problem med satellitbaserad skördekartering är att förekomst 
av moln och molnskuggor ger ofullständig datatillgång, och i vissa fall är 
dataförlusten så stor att kartering inte alls är möjlig. Syntetiska Sentinel-2-
tidsserier kan vara en lösning att komma förbi detta. I en pilotstudie på 
Bjertorp, där vi testade sådana data såg vi också att sambandet mellan 
optiska VI och spannmålsskörd var starkast under senare delen av juni, 
vilket för både höstvete och vårkorn ofta betyder sen blomning–tidig 
mjölkmognad. 

• Multivariata dataanalyser (PLSR och RF) av relativa skördekartor 
tillsammans med tolkningsdata (resultat från jordprovtagning topografiska 
index mm) kunde visa vilka variabler som var statistiskt relaterade till 
varandra och den varierande skörden. I många fall berodde dock de 
verkliga orsakerna på faktorer som inte fångades av de tillgängliga 
tolkningsvariablerna (markanvändningshistorik, dräneringsproblem, 
viltskador etc.). Dataanalysmetoderna kan därför främst användas för att ta 
fram en förslagslista över troliga orsaker som sedan behöver utvärderas 
manuellt av lantbrukaren, vars lokalkännedom är nödvändig för 
tolkningen. 

• För den satellitbaserad skördekartering fungerade enkla linjära modeller 
med två valda VI (NDWI och NDRE76) lika bra eller bättre än en 
maskininlärningsmetod som försågs med ett stort antal VI. Den 
sistnämnda modelleringsstrategin ledde till överanpassning; variation i 
kalibreringsdatasetet förklarades mycket bra men modellerna fungerade 
inte bättre för nya gårdar och för nya år. Det är viktigt att välja en 
valideringsstrategi som säkerställer robusta modeller men kanske särskilt 
när det som här finns en icke försumbar osäkerhet även i kalibreringsdata.  

• Sammanfattningsvis rekommenderar vi, baserat på resultat från projektet, 
följande utvecklingsinsatser för att identifiera problemområden och 
därefter antingen åtgärda problemen och höja skörden, eller i stället 
anpassa insatser till permanent låga skördenivåer och därigenom öka 
resurseffektiviteten: 
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o De största hindren för att utnyttja skördekartor är tekniska 
svårigheter och tidsbrist. Därför behöver system som utvecklas 
vara kompatibla med olika tröskor såmaskiner och spridare från 
olika tillverkare och utformas så enkla och användarvänliga som 
möjligt. 

o Gör skördekartor lätt tillgängliga för alla genom att bygga in 
funktionalitet för satellitbaserad kartering i beslutsstödsystem för 
precisionsodling. Undersök möjligheten att använda kompletta 
tidsserier av t.ex. syntetiska Sentinel-2-data för att säkerställa full 
täckning, förbättra modelleringen och förenkla datahanteringen.  

o För lantbrukare med skördemätare på tröskan: utveckla 
funktionalitet för enklare datafiltrering (vilket är nödvändigt för att 
data ska vara användbara överhuvudtaget) och nivåjustering med 
invägda skördar.  

o Tillhandahåll funktionalitet för flerårsanalyser av skördekartor. En 
utmaning här är hur karteringsområden ska avgränsas, eftersom 
växtföljd är vanlig och fält ofta delas eller ändrar geometri av 
andra orsaker.  

o Tillhandahåll funktionalitet för enkel manuell jämförelse mellan 
skördekartor (för enskilda år och fleråriga) och stöddata (väder, 
markkartor, topografi etc.). Lägg eventuellt till en förslagslista över 
förklarande variabler kopplade till låg skörd, framtagen med 
multivariat dataanalys, men använd den inte automatiskt. Manuell 
tolkning med stöd av lokal kunskap är nödvändig innan beslut tas 
om hur låga skördar ska hanteras (åtgärdas eller accepteras).  

o Funktionalitet för att analysera relativa skördar inom närområden i 
större skala (t.ex. inom 5 km radie) kan också vara användbar, till 
exempel inom rådgivningen. 
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