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SUMMARY

Forest loss, fragmentation, and transformation negatively impact forest biodiversity and ecosystem function-
ality worldwide. Improving landscape intactness and connectivity through restoration is critical. Determining
where to restore remains, however, a challenge. As an approach for prioritizing restoration areas, we define
connectivity forest (CFs) as forests outside recognized high conservation value forests (HCVFs) with capacity
to support landscape-scale connectivity and green infrastructure (Gl) functionality. Across a 1.3 million-ha
watershed in boreal Sweden, we identified approximately 130,500 ha of CFs, equal to double the current
HCVF area. By integrating CFs with consecutively lower HCVF probabilities, we demonstrate planning imple-
mentation at lower to higher ambition levels and identified specific restoration hotspots to guide local-scale
restoration planning. Our CF approach has clear implications for efficient spatial targeting of restoration in
forest regions where improving conservation in balance with continued forestry for wood production is

required to meet national and international biodiversity and environmental goals.

INTRODUCTION

Forest loss, fragmentation, and transformation impose critical
challenges globally," leading to significant deficiencies in
biodiversity and ecosystem functionality.”® Changes in stra-
tegic, tactical, and operational approaches to forest governance
and management are thus urgently needed,®® as highlighted in
high-level initiatives such as the recently ratified EU Nature
Restoration Regulation® and Biodiversity Strategy,’® the
Kunming-Montreal Global Biodiversity Framework,'" and the
UN Decade on Ecosystem Restoration.'? Forests with high or
potentially high conservation values have precedence as con-
servation and restoration target areas to maintain or improve
their conservation status and meet agreed objectives.”'® The
spatial allocation of these target areas is crucial to enhance the
overall conservation status of forest landscapes.'*~'” However,
determining where to restore remains a key strategic, tactical,
and operational planning challenge.'® Forest and environment
authorities, landowners, land managers, and policymakers
need to base decision making on evidence-based information.
In regions with long-term and extensive industrial use of forests,
such as in Sweden, remnant stands of high conservation value
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are few and fragmented, necessitating spatial restoration plan-
ning that involves forests with different levels of anthropogenic
footprint.’® Restoration efforts must be carefully balanced by
considering both conservation objectives and continued forestry
for wood production.

Restoration is a core component in functional green infrastruc-
ture (GI).%° In Gl planning, large and intact forest areas serve as
nodes contributing to resilient ecosystems and functional con-
nectivity,?'2* natural pools of ecosystem services, and climate
change adaptive capacity.**® The concept of intact forest land-
scapes’ emphasizes their importance. Strategically planned and
spatially explicit restoration can strengthen these nodes and
support linkages across the landscape.?%2°

The boreal forest is the second largest terrestrial biome,
comprising nearly one-third of the global forest area.?” It sup-
ports rich biodiversity, diverse and critical ecosystem services,
and the highest terrestrial living biomass globally.>’~>° However,
vast natural and semi-natural boreal forest landscapes have un-
dergone extensive transformation into simplified wood biomass
cropping systems, resulting in severe habitat fragmentation,
biodiversity loss, and degradation of indigenous and other socio-
cultural values.””%"-%2
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Sweden harbors a large share of the European continent and
European Union forests, approximately 12% and 18%, respec-
tively, corresponding to 28 million ha.** About 20 million ha are
forests perceived suitable for forestry, with the remaining area
being protected, not available, or on sites with too low wood pro-
duction capacity.®* Despite increased attention to environmental
considerations since the 1990s,% the prevailing forestry model
focusing on a rotation system optimizing wood biomass yield
has resulted in critical environmental, conservation, and restora-
tion challenges. The remaining contiguous areas of intact boreal
forest landscapes are primarily located in the hinterlands®® of the
Scandinavian Mountains Green Belt.*”-*® Agreed national, Euro-
pean, and international forest biodiversity and environmental
goals are not met."®*° The current formal protection share, 9%
of the total forest area, is not sufficient and geographically imbal-
anced, with 58% located in the mountain foothills and subalpine
forests in Sweden, whereas only 3%-5% is found elsewhere.*°
Thus, there is an evident and comprehensive need for both
active and passive restoration actions®' to achieve functional
Gl at both landscape and patch scales.®“? The Swedish Environ-
mental Protection Agency estimated that an additional 4 million
ha of forests need restoration and/or protection to align with
the agreed EU Biodiversity Strategy.*®

The recently published high conservation value forests (HCVFs)
national-scale prediction model** provides innovative opportu-
nities to address how much and where to locate restoration and
additional protection. The model’s training data were a national
HCVF database® covering all forest areas in Sweden with
confirmed high conservation value, regardless of protection or
not. This model predicts the probability (i.e., “relative likelihood”**)
ranging from 0.0 to 1.0 of any 1-ha area with >50% forest cover
being HCVFs. Unlike many previous approaches to map large
land surfaces (e.g., continental-scale) using coarse spatial resolu-
tion*“® or only local areas with specific conservation interests,*’
or to employ a binary classification of conservation status (e.g.,
high vs. non-conservation value), this model is particularly well
suited for Gl planning of forest landscapes. It enables the expan-
sion of connectivity from existing HCVF patches into surrounding
forests with 1-ha resolution information on HCVF likelihood.**

Leveraging the “actionable” nature of the model output, we
introduce the concept of “connectivity forests (CFs)” as an
approach for spatial identification, delineation, and prioritization
of potential restoration areas. We define CFs as forest areas
with high to intermediate likelihood of harboring HCVF qualities,
yet not recognized in the national HCVF dataset, as the dataset
is not comprehensive across the Swedish forest landscape.
When actively or passively restored, CFs have the potential to
expand or connect confirmed patches in the HCVF dataset,
thereby increasing the density of the conservation network
and supporting Gl. By progressively incorporating CF areas with
lower probabilities of being HCVFs, we outline pathways that
accommodate increasing restoration and conservation ambitions,
demonstrating changes in both the area and density of the result-
ing Gl network. Simultaneously targeting restoration, conserva-
tion, and continued forestry for wood production enables ad-
dressing the balance between these competing objectives.

As a case study, we used the 1.3 million-ha Vindelalven
River watershed in northern Sweden, stretching 450 km
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from northwest to southeast across two ecoregions: the sub-
alpine region of the Scandinavian Mountain Range and the
boreal region extending to the Gulf of Bothnia (Figure 1).
Across this gradient of mountain foothills, inland, and coastal
regions, we (1) mapped the regional and forest-type distribu-
tion of CF areas, (2) assessed successive expansion of the
conservation network by gradually incorporating CF areas
with progressively lower probabilities of being HCVF into the
existing HCVF, (3) demonstrated improved landscape con-
nectivity and habitat functionality, and (4) identified numerous
restoration hotspots within CF areas, cumulatively covering
extensive forest areas, thereby linking a landscape perspec-
tive to local-scale restoration planning and practice. Given
the varying forest landscape histories, past and present
forestry footprints, conservation status, and forest ownership
in the study area,*® our study provides innovative insights
on “where to restore,” particularly for balancing restoration
and conservation ambitions in forest landscapes where
wood biomass-oriented forestry is likely to continue. As north-
ern Sweden’s situation mirrors that of many other forest re-
gions, our approach holds promise for widespread adoption
in the much-needed, targeted, and well-balanced forest and
landscape restoration planning.

RESULTS

Methods summary

We divided the study area into three regions: Mountain, Inland,
and Coastal (Figure 1), reflecting gradients in biogeographical
variation, human impact, and forestland ownership, i.e., a domi-
nance of public land in the mountains, private forest company
land in the inland, and non-industrial private land in the coastal
region®® (see Methods S1 for a detailed introduction of the study
area).

We mapped CFs as forest areas with a minimum HCVF
probability of 0.4 outside HCVF areas in the national database®®
(hereafter HCVF baseline) across the three regions and four
forest types: spruce, pine, deciduous, and all forests combined
(Figure 1). This 0.4 threshold corresponds to the previously re-
ported minimum value for formally and voluntarily protected for-
ests.”’ We divided CFs into six classes with 0.1 intervals and
stepwise inserted these into the HCVF baseline. We then as-
sessed the changes in area and forest type composition of the
expanded HCVF baseline.

We visualized changes in the Gl density, a simple yet
indicative metric of landscape-scale structural connectivity,
also used in the Swedish national Gl-oriented landscape anal-
ysis.>* Gl density was chosen over other more comprehensive
metrics, such as cumulative current density,>*°° also because
it aligns well with the study’s focus on demonstrating a CF-
based planning approach rather than providing an in-depth
assessment of connectivity dynamics. Gl density calculated
the percentages of cumulative area of the HCVF baseline and
stepwise inserted CF classes relative to the study area, filtered
by moving windows with radii of 3 and 1 km, respectively. We
compared the Gl density value distribution and the increase
in density medians across study regions and forest types using
the 3-km results.

52,53
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Figure 1. Study area and regions, HCVF baseline, and CFs

(A) Location of the study area: Vindeldlven watershed, northern Sweden.

(B and C) (B) Elevation (m a.s.l) and (C) forest area according to National Land Cover Database’® across the three study regions (Mountain, Inland, Coastal).
The division between the Coastal and Inland regions is defined by the northwestern border of the two County of Vasterbotten municipalities adjacent to the Gulf
of Bothnia (i.e., Umeéa and V&nnas) to Vindeln and Lycksele municipalities, and between the Inland and Mountain regions, by the border of the northwestern
Sorsele municipality. The Mountain region also includes a part of Arjeplog municipality, County of Norrbotten.

(D) Distribution of HCVF baseline and CFs with HCVF model** generated probability >0.4 in the study area with a 5-km buffer. The three insert squares show
selected representative areas within each region.
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Table 1. Area of nested Connectivity Forest classes (CF-class; HCVF model-generated probability >0.9 to >0.4) classes across regions
and forest types, in hectares (ha) and proportions (%) of the total area of the corresponding forest type and study region (Mountain,
Inland, Coastal), and area increase (%) on top of the HCVF baseline area of all forest in the corresponding study region

Area (ha) Area (%) Area increase (%)
Forest type Nested CF class Mountain Inland Coastal Mountain Inland Coastal Mountain Inland Coastal
All forest CF > 0.9 9,318 42 -2 3 0° - 7 0 -
CF >0.8 20,840 834 8 6 0 0 16 8 1
CF>0.7 31,298 2,962 106 9 1 0 25 29 7
CF > 0.6 49,074 9,314 744 14 3 1 39 93 47
CF >0.5 63,851 19,704 2,256 18 6 4 50 196 142
CF>0.4 80,981 42,901 6,562 23 12 11 64 426 412
Spruce CF >0.9 4,652 22 - 2 0 - 4 0 -
CF>0.8 9,797 237 3 4 0 0 8 2 0
CF > 0.7 13,409 804 27 7 1 0 11 8 2
CF > 0.6 17,849 2,363 168 11 3 2 14 23 11
CF>05 21,710 4,763 512 16 7 5 17 47 32
CF>0.4 26,865 9,502 1,259 25 16 15 21 94 79
Pine CF > 0.9 1,074 15 = 5 0 = 1 0 =
CF >0.8 2,761 483 8 11 1 0 2 5)
CF > 0.7 4,371 1,753 62 16 2 0 3 17
CF > 0.6 7,313 5,365 436 21 5) & 6 53 27
CF > 0.5 10,792 11,274 1,237 25 11 9 8 112 78
CF >0.4 16,576 24,700 3,449 31 22 21 13 245 217
Deciduous CF > 0.9 3,576 5 - 0 - 3 0 -
CF>0.8 8,112 93 - 0 - 6 1 -
CF>0.7 13,134 384 14 9 1 0 10 4 1
CF > 0.6 23,127 1,286 124 15 2 1 18 13 8
CF>05 30,128 2,876 440 20 5 3 24 29 28
CF>04 35,507 6,720 1,596 23 12 10 28 67 100

#Dash (—) shows no area.
bZero (0) shows any area below 0.5 ha.

Applying a 20% lower threshold for habitat function-
ality, '®°%°” we delineated areas with Gl density >20% to assess
changes in functional habitats. Finally, we identified restoration
hotspots among the mapped CF areas. Inserting these hotspots
onto the HCVF baseline adds areas with Gl density >20%,
thereby improving habitat functionality.

Regional differences in area distribution and forest type
composition
The absolute CF area of all four forest types was highest in the
Mountain region, lower in the Inland region, and lowest in the
Coastal region, except for pine-dominated CF classes, which
were >0.5 and >0.4 in the Inland region (Table 1). When
weighted by the total area of each forest type, the proportional
CF area followed the same regional pattern. Although lower
than in the Mountain region, CF classes >0.4 in the Inland and
Coastal regions still accounted for 12% and 11% of their respec-
tive total forest areas (for all forest). For specific forest types,
these proportions increased up to 22% and 21% (for pine forest).
In total, close to 81,000 ha of CF area was mapped in the
Mountain region, with deciduous forest, i.e., the mountain birch
alpine tree line forest, contributing the largest share. In the Inland
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and Coastal regions, the CF area was close to 43,000 ha and
6,500 ha, respectively, with pine forest contributing the largest
share in both regions. Additionally, the CF class >0.9 for any
forest type, and the CF class >0.8 for deciduous forest, did
not occur at all in the Coastal region.

Greater area expansion in Inland and Coastal regions,
particularly of pine forest

CF insertion resulted in substantial area increases relative to the
HCVF baseline in all study regions and for all forest types. In
particular, the increases in the Inland and Coastal regions could
potentially exceed 400%, with CF of pine forest, alone, contrib-
uting over 200% (Table 1). When comparing across the three
regions after inserting all CF classes >0.7, the proportional
area increases in the Inland and Coastal regions were consis-
tently higher than in the Mountain region for all four forest types,
with the highest increases generally occurring in the Inland re-
gion. Among the three specific forest types, only the area ratio
of pine forest consistently increased with each stepwise CF
insertion across all three study regions (Figure S1), with the
most evident change observed in the Coastal region with a ratio
increase from 0.20 to 0.48.
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Figure 2. Changes in green infrastructure (Gl) density from HCVF baseline through stepwise insertion of nested CF classes for all forest and

spruce, pine, and deciduous forests

Gl density is based on a circular moving window with a 3-km radius. See Figure S2 for results using a 1-km radius.

Pine as the primary potential contributor to Gl density
increases in the Inland and Coastal regions

The Gl density gradually increased from the HCVF baseline
through the insertion of CF classes across the study area, as
illustrated in Figure 2 (see also Figure S2). For all forest, inserting
CF classes >0.6 closed the most evident gaps in Gl density (i.e.,
areas with a Gl density = 0) in the Coastal and Inland regions as
well as in the lower part of the Mountain region. Inserting CF
classes >0.6 also closed the density gaps for pine forests
throughout the study area, but not for spruce and deciduous

forests. By comparing the distribution patterns of density values
within each study region, we found that the increase in Gl density
was primarily contributed by spruce forest in the Mountain re-
gion, and by pine forest in both the Inland and Coastal regions
(Figures 3 and 4; see also Table S1). In the Inland region, pine
forest showed the highest median density increase at CF > 0.4
(Figure 4). However, a higher increase in Gl density did not
consistently result from a proportionally larger CF area inserted.
As shown in the Mountain region, the density increase associ-
ated with deciduous forest was much lower than that of spruce

iScience 28, 113263, September 19, 2025 5
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Figure 3. Changes in Gl density from HCVF baseline through stepwise insertion of nested CF classes for all forest and spruce, pine, and

deciduous forests in the Mountain, Inland, and Coastal regions

Each boxplot displays the minimum, median, and first and third quartiles, with whiskers extending to within 1.5 times the interquartile range and outliers shown in
red. The Gl density is based on a circular moving window with a 3-km radius. Note that the x axis scale varies between the regions.

and pine forests, despite the largest allocation of CF area input to
deciduous forest.

Based on the HCVF baseline alone, areas with Gl density
>20% already accounted for 26% and 41% of the total area
with Gl density >0, filtered by the 3- and 1-km moving windows,
respectively (Figures 5 and S3; Table S2). CF insertions
increased these area proportions to 40% and 43%, concen-
trated in the Mountain region and maintained primarily by spruce
and deciduous forests. Across the entire study area, patches
with a Gl density >20% were almost exclusively added by pine
forests. These patches were much fewer in number, smaller in
size, and more geographically isolated compared with those in
the Mountain region.

Numerous restoration hotspots and substantial hotspot
areas identified

A total of 9,506 restoration hotspots (>1 ha), covering
100,672 ha, were identified across the study area, in proximity
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to areas already displaying a Gl density >20% before any CF
insertions. The number, total area, average area, and largest
patch area of these hotspots decreased from the Mountain to
the Inland and Coastal regions (Figure 6). Nevertheless, 3,688
and 509 restoration hotspots covering 28,276 and 3,813 ha
were identified in the Inland and Coastal regions, respectively,
with the largest patch areas being 689 and 335 ha.

DISCUSSION

Connectivity forest approach to identify restoration
hotspots

Focusing on “where to restore,” we find the CF approach appli-
cable for prioritizing restoration areas at various spatial scales. In
addition to the HCVF baseline, our study identifies an additional
81,000, 43,000, and 6,600 ha of CF areas in the Mountain, Inland,
and Coastal regions, respectively. This showcases a significant
restoration potential for strategic and operational Gl planning.
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of 3-km radius. See Table S1 for bar values.

The stepwise nesting of CF areas with successive lower HCVF
probabilities provides a foundation for adaptive planning that
responds to actual restoration needs, ambitions, and implemen-
tation premises. Thereby, our approach supports restoration
planning as an integral part of comprehensive land-use plan-
ning'®°® while addressing the central role of forest biodiversity
conservation.”® It facilitates strategic land-sharing/-sparing
implementations to effectively manage the diverse values and
functionalities of forests.® Additionally, as the HCVF baseline
is not comprehensive across the Swedish forest landscape,*®
the CF approach aids in the in situ identification and validation
of previously unknown or undocumented HCVF areas. Thus,
the CF approach maps forest patches suitable for both active
and passive restoration, with the latter indicating set-aside
conservation.

We highlight the large restoration potential harbored in CF
areas within the Inland and Coastal regions. These CF areas
accumulated to over 10% of the total forest areas in these re-
gions, typically dominated by pine forests and with HCVF prob-
abilities below 0.8 (Table 1). Given the much less HCVF baseline
areas in these regions compared with the Mountain region
(Table S3), further conservation in the Inland and Coastal regions
is critical for improving connectivity on the watershed scale.

Among the CF areas, our approach identifies over 5,000, 3,000
and 500 restoration hotspots covering about 68,500, 28,200,
and 3,800 ha of forest patches in the Mountain, Inland, and
Coastal regions, respectively (Figure 6). These restoration hot-
spots, when restored, add areas with a Gl density of at least

20%, indicating habitat functionality.'®°%°" Prioritizing these
restoration hotspots is therefore likely to connect local-scale
restoration initiatives with landscape-scale habitat functionality
benefits. Thus, we demonstrate how the CF approach can
potentially achieve restoration benefits on multiple spatial scales
and assist strategic Gl planning. A previous validation®' demon-
strated that the restoration areas delineated by our CF approach
spatially align with “HCVF tracts” identified by the County
Administration Board using field data.®* Hence, we argue that
our CF approach can effectively support landscape restoration
and conservation planning in Sweden.

Restoration challenges and opportunities

Given the high uncertainty associated with actual conservation
outcomes of restoration,® restoration actions must be informed,
carefully planned, and evaluated. In Sweden, with extensive for-
est areas, but also facing critical environmental and conservation
challenges, '®“¢5% implementation of restoration as a compo-
nent of sustainable forest management also needs to balance
multiple forest values, such as continued wood biomass produc-
tion, recreation, and traditional and indigenous cultures.®”

The HCVF dataset indicates that about 18% (Table S3) of the
total forest area across the watershed is under conservation
attention, whether strictly protected or not. According to recent
estimates (A. Granberg, personal communication), just over
5% (40,000 ha) of the total forest area (757,104 ha) is under strict
protection. These values fall short of the committed quantitative
goals, such as the 20% target in the EU Nature Restoration

iScience 28, 113263, September 19, 2025 7
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HCVF baseline, and those in violet, additional patches with Gl density >20% as a result of the CF insertions. See Figure S3 for maps following each CF insertion.

See Table S2 for areas with Gl density >20%.

Regulation.® The current level of protection is clearly insufficient
for ensuring functional connectivity among habitat and forest
patches 67536465 and fails to emphasize key biodiversity as-
pects® in representative forest habitat types.®® Our study iden-
tifies CF areas corresponding to 17% of the total forest area,
which indicates substantial opportunity for restoration and
further protection. Most of the CF areas are found in the Moun-
tain region. This is both an indication of and a result of the intact
forest landscapes protected along the Scandinavian Mountains
Green Belt."®*"*® Consequently, the need for prioritizing resto-
ration efforts in the Mountain region is less urgent. However,
the situation changes already in the mountain foothills southeast
transition zone®® where conditions are similar to the Inland re-
gion. The CF areas identified here, as well as those in the Inland
and Coastal regions, provide critical starting points for reinforc-
ing Gl across the entire watershed.

Given the limited area of known HCVF in the Inland and
Coastal regions, our CF approach indicates a substantial in-
crease in area on top of the HCVF baseline in these two regions,
potentially expanding their respective HCVF baseline areas by
over 400% (for all forest, see Table 1). Indeed, in severely frag-
mented landscapes, even protecting smaller patches provides
conservation benefits and supports the provision of important
ecosystem services.”**"577%9 |f restoration is to proceed, how-
ever, planning will have to be balanced within the local socioeco-
nomic context, including ongoing forestry, % which remains a
key challenge. The identified CF areas, especially those with
lower probabilities approaching to 0.4, are unlikely to be set
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aside from production-oriented forestry at large scales and will
likely continue to be under harvesting pressure. Therefore,
assuming that active restoration measures allow limited harvest-
ing and wood sales to facilitate economic aspects, our results,
consistent with numerous studies, '®°%"""? advocate for diversi-
fied forest management over passive area preservation as a
feasible way to promoting restoration. Furthermore, the high pre-
cision in mapping CFs enables the identification of individual
ownership properties and landowners, facilitating inquiries into
their interest and willingness to participate.

Restoration value and potential of pine forest in
achieving watershed-scale connectivity
Some forest types are largely ignored in conservation.'®”® This
appears to be the case with pine forests in our study area. In
contrast to their low contribution to the HCVF baseline, our results
reveal the potential for pine forest restoration at the watershed
scale, particularly in the Inland and Coastal regions. Since pine
is the dominant tree species, pine forests potentially offer a
more feasible restoration pathway compared with spruce, and
even more clearly with deciduous forests. Besides harboring
biodiversity values, pine forests serve as core areas for traditional
cultures in boreal regions.”*"® Older, more open pine-dominated
forests support a rich lichen flora, which serves as critical winter-
grazing resources for traditional Sami reindeer husbandry.”®
While advocating for increased attention to the restoration po-
tentials and values of pine forests, we acknowledge the need for
restoration of deciduous and spruce forests also. Historically,
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Figure 6. Restoration hotspots (yellow), identified as CF patches in areas with a Gl density >20% (dark violet) and their surrounding 3-km
width buffer (light violet) throughout the stepwise CF insertions, for all forest in the Mountain, Inland, and Coastal regions of the study area
The Gl density is filtered by a circular moving window with a 3-km radius. The restoration hotspots are illustrated at a higher spatial resolution in the three squares
(see also Figure 1). The statistics summarize the number of patches (NoPa), total area (TAr; ha), average area with standard deviation (AAr; ha), and maximum
patch area (MaAr; ha) of all the restoration hotspots in each region. A patch denotes a contiguous cluster of pixels, where contiguity is valid between any focal
pixel and any of its eight surrounding pixels.

industrial forest production has altered the distribution, quantity,  quently, the proportion of natural and near-natural spruce and
and structure of the entire forest Iandscape,77 with systematic  deciduous forests is lower than in their natural state,”® with the
clear-cutting followed by monoculture plantations of pine and networks of spruce and deciduous forest habitats continuously
spruce, as well as systematic mechanical and chemical removal  shrinking.®” The scarcity of habitats associated with deciduous
of deciduous trees, being the most prevailing factors.”® Conse-  species is considered the most pressing Gl challenge.'®
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Implementing localized restoration hotspots to assist
strategic restoration planning

Although broad-scale restoration planning frameworks are
essential, restoration efforts typically focus on local areas tens
to hundreds of hectares in size.®" Therefore, strategically priori-
tized and well-informed localization of restoration actions is
crucial for maximizing conservation efficiency and gains.®’

Our CF approach explicitly localized potential restoration
hotspots that contribute to landscape-scale Gl density increase
and connectivity benefits and thus addressed the challenge of
prioritizing restoration sites to achieve overarching goals.®”
Local-scale restoration efforts and landscape restoration effects
are interlinked. For other CF patches with the same or higher
HCVF probability, but not identified as restoration hotspots,
restoration would rather be based on their local, intrinsic charac-
teristics than on their landscape contribution. Thereby, the CF
approach allows informed prioritization based on spatially iden-
tified actual conservation needs and premises.

From the Mountain to the Coastal region, the identified resto-
ration hotspots gradually decrease in size. In the Inland and
Coastal regions, these hotspots are generally smaller, with an
average patch size of less than 10 ha and the largest patches
covering 350-700 ha. In the boreal forest landscape of northern
Sweden, as in many forest regions worldwide, only fragments of
natural and near-natural forests remain.”**°%% Under these
circumstances, conservation planning and restoration of repre-
sentative, functional, and well-managed forests for biodiversity
protection will rely on small forest areas.®* Although small areas
are also important in biodiversity conservation,”*°¢84-% their
ecological functionality benefits from being connected in a func-
tional forest network.'*'” The gradient explored in this study
clearly shows the importance of integrating small area protection
and restoration in the regional conservation scheme.

Conclusion

The spatially explicit information we provide at the forest-type
level can support efforts to directly meet or build the capacity
to meet the principles of forest and forest landscape restora-
tion.®” It also complies with the adopted EU Nature Restoration
Regulation and other high-level restoration ambitions, specif-
ically regarding connectivity aspects. Although an HCVF model
like the one we utilized may not be available in all countries
and regions, our CF approach illustrates the potential and feasi-
bility of systematically, quantitatively, and explicitly mapping
forests with restoration capacity. Hence, our study underscores
a conceptual opportunity and workflow adaptable to diverse
datasets, landscape knowledge, and Gl-planning needs. As a
planning basis, field inventory and further implementation can
be directed to specific landscape segments, increasing the pre-
cision, accuracy, and transparency while lowering the costs.

Limitations of the study

Our identification of CFs and restoration hotspots was based on
multiple thresholds. We acknowledge that these thresholds may
not be applicable across different biodiversity aspects, forest
regions, or spatial scales. For instance, we used a Gl density
threshold of >20% to indicate functional networks, a criterion
supported in previous studies as a rule of thumb.>® Notably,
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CF areas were defined using a probability threshold of >0.4.
This may be ecologically reasonable®’ but likely reflects an
overly idealized level of restoration ambition given current
political and socio-economic realities. However, although alter-
native thresholds and buffer sizes could have been chosen, we
provide a relevant basis for discussing restoration planning.
Given the generic nature of our approach, these thresholds
and criteria can easily be adjusted to suit specific circumstances
and needs. Additionally, future implementation of this approach
should seek integrating more specific ecological attributes of
boreal forests or other targeted forest ecosystems, such as
species composition. Further refinement should address more
specific conservation challenges under the changing climate.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

High Conservation Value Forest
Model (“Naturvardeskarta Skog
(NVK skog)” in Swedish)

High Conservation Value Forest
Dataset (“Skogliga vardekarnor”
in Swedish)

National Landcover Data (“Nationella
marktackedata (NMD)” in Swedish)

Download: Swedish National
Data Service (“SND Svensk
nationell datatjanst”)
Interactive user-interface:
Google Earth Engine

Geodata catalog of the
Swedish Environmental
Protection Agency
(“Geodatakatalogen”)
Swedish Environmental

Protection Agency
(“Naturvardsverket”)

https://snd.se/sv/catalogue/dataset/2024-49/1
https://bubnicki.users.earthengine.app/
view/swedentest

https://geodatakatalogen.naturvardsverket.se/
geonetwork/srv/swe/catalog.search#/metadata/
69655223-a8f3-475¢c-bf7f-5c0354cd232b

https://www.naturvardsverket.se/
verktyg-och-tjanster/kartor-och-karttjanster/
nationella-marktackedata

Software and algorithms

ArcGIS Pro 2.7

Python 3.11
Rasterio v1.2.10

ESRI

Python Software Foundation
MapBox

https://pro.arcgis.com/en/pro-app/latest/
get-started/download-arcgis-pro.htm

https://www.python.org/
https://rasterio.readthedocs.io/en/stable/intro.html

METHOD DETAILS

Forest type reclassification

We added forest type data using the National Land Cover Data (NLCD).*° Six NLCD forest types occur in our study area (Table S4).
We then integrated the two mixed forest types (mixed coniferous and mixed deciduous-coniferous) into spruce, pine, and deciduous
types, following an area-reallocation scheme shown in Table S5. Thus, in total four forest types, spruce, pine, deciduous, and all
forest combined were applied. The forest type distribution across study areas is presented in Table S3, showing that the Mountain
region is dominated by deciduous and spruce forests, while the Inland and Coastal regions are dominated by pine forests.

High Conservation Value Forest baseline

Second, we employed the HCVF-dataset*® (originally compiled in 2016 and updated in 2019 and 2020), rasterized at a 1-ha resolu-
tion, to extract the HCVF-baseline. The HCVF-dataset encompasses formally protected, voluntary protected and unprotected forest
patches, generally covering natural forests with native tree species, forest continuity, vertical and horizontal complexity, and gener-
ally low levels of anthropogenic influence,*® mapped by field surveys during several decades without a predefined sampling
scheme.'® In our study area, the HCVF-baseline accounted for 18% of the total forest area (Table S3), with the majority located in
the Mountain region and dominated by deciduous forest (mainly Betula spp.) (Figure 1; Table S3). The HCVF-dataset included areas
categorized as non-forest by the NLCD (see Table S4). These non-forest areas (in total 31,072 ha) were excluded from our analysis.

Identification of Connectivity Forests
We applied a gradient in the HCVF-model probabilities to extract CF from the forest areas outside the HCVF-baseline across the three
study regions and four forest types. In doing so, we overlaid the HCVF-baseline, the HCVF-model, and the NLCD map, to extract
HCVF-model probability values at 1-ha resolution using ArcGIS Pro 2.7.%°

The probability quantiles were calculated using Python 3.11%° library Rasterio v1.2.10°° in order to determine the probability
gradient for CF. By comparing the quantiles (Figure S4; Table S6), we observed that in the Inland and Coastal regions, >75% of
the forest areas outside the HCVF-baseline had a probability <0.4, while >50% of the forest within the HCVF-baseline had a prob-
ability >0.4, thus in line with previous estimate.®’ We delineated CF outside the HCVF-baseline using the 0.4 threshold (Figure 1).

We divided CF into six classes with a 0.1 value interval and quantified stepwise nested CF of the six discrete classes (i.e., prob-
ability >0.9, >0.8, >0.7, ..., >0.4) across study regions and forest types. The nested stepwise insertion of CF-classes on top of the
HCVF-baseline established six levels of spatially explicit conservation scenarios. Following each insertion, we assessed the area of
nested CF-classes across forest types and regions. Further, we evaluated the area increases of the expanded HCVF-baseline result-
ing from each CF-insertion and examined the corresponding changes in forest type composition.
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Gl-density calculation

The spatial re-configuration of the stepwise insertion of CF-classes was assessed using the Gl-density metric. Gl-density calculates
the area percentage of Gl-patches filtered by a moving window, here circular moving windows with radii of 3-km and 1-km, respec-
tively. The choice of these two window sizes aligned with those employed in landscape-scale Gl-density analyses by the Swedish
EPA.>* Before applying the moving window, a buffer zone with a 5-km width, encircling the entire outer boundary of the study
area, was created to counteract the spatial shrinkage caused by the moving window scanning.

In calculating the Gl-density contributed by the three forest types (Spruce, Pine, Deciduous), the CF-areas of mixed coniferous
forest were first re-allocated to Spruce and Pine forests. This re-allocation was necessary because Gl-density analysis requires
explicit spatial distribution of a forest type, whereas the distribution of spruce and pine in mixed coniferous forests is not specified
by the NLCD.® Therefore, the partitioning of the mixed coniferous forest area, specified in Table S5, was not applicable any longer.
Consequently, all the CF-areas of mixed coniferous forest were repetitively assigned to the CF-areas of both spruce and pine forests,
resulting in minor increases in the areas of nested CF-classes for the forest types Spruce and Pine compared to their corresponding
valuesin Table 1. These adjusted areas were also used to calculate the proportional CF-area input (Table S1; see also “changes in Gl-
density” below).

Further, the CF-areas of mixed stands, whether coniferous mixed or deciduous-coniferous mixed, were assigned a weight factor of
0.5, following the approach proposed by Mikusifiski et al.'® The consideration is that habitats maintained by mixed forests might be
less effective in providing habitat qualities compared with pure stands. '’

After this two-fold approach to handling CF-areas of mixed forests, the Gl-density was calculated in ArcGIS Pro 2.7%8 using moving
window filtering.

Changes in Gl-density

After each stepwise insertion of CF-classes, we calculated and compared the value distribution of Gl-density and the increase in
density medians compared with the HCVF-baseline medians, for the three tree-species specific forest types and study regions,
filtered by the 3-km moving window. Additionally, we compared the cumulatively inserted CF-areas corresponding to the median
increases to determine whether larger inserted CF-areas led to greater increases in Gl-density.

Changes in areas with Gl-density >20%

Areas displaying Gl-density >20% were delineated across the study area. Expansion of such areas was calculated relative to the
total area with Gl-density >0. The 20% threshold was based on the assumption that over a given forest landscape, the density of
the remaining habitat-patches higher than 20% is a general indication of habitat functionality.'®°"°® This threshold also aligns
with the quantitative conservation goal set by the Swedish government.®® Although alternative density thresholds could be used,
we note that higher density thresholds would strongly limit operational planning opportunities.

Identification of restoration hotspots

We mapped restoration hotspots to translate landscape-scale habitat connectivity and functionality benefits into local restoration
areas. Essentially, the combined effect of these restoration hotspots and HCVF would add new habitat patches with Gl-density
>20%. The inclusion of the 3-km buffer was necessary because CF-insertions within this zone could influence the density variation
of any focal area. We calculated the total number, accumulated area, average size, and maximum size of these hotspots resulting
from the insertion of nested CF-classes in each region.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative analyses were conducted using Python and ArcGIS Pro 2.7, and the results were shown in Figures 1, 2, 3, 4, 5, and 6.
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