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Abstract
1.	 Species distribution models (SDMs) are widely used to standardize spatially unbal-

anced data, project climate impacts and identify habitat for conservation. SDMs 
typically estimate the impact of local environmental conditions by estimating a 
dome-shaped or non-parametric ‘environmental response function’. However, 
ecological responses often integrate across local habitat conditions, such that 
species density depends on habitat at the location of sampling but also at nearby 
locations.

2.	 To address this, we extend methods from the stochastic partial differential equa-
tion (SPDE)  method that is widely used in INLA, which approximates spatial 
correlations based on local diffusion over a finite-element mesh (FEM). We spe-
cifically introduce the sparse inverse-diffusion operator on a FEM and apply this 
operator to covariates to efficiently calculate a spatially weighted average of local 
habitat that is then passed through pointwise basis expansion to predict species 
densities. We show that this operator has several useful properties, that is con-
servation of mass, efficient scaling of computational time with spatial resolution, 
and invariance to linear (scale and offset) transformations of covariates.

3.	 We test this covariate-diffusion method using a simulation experiment and show 
that it can correctly recover a non-local environmental response while collapsing 
to a local (pointwise) response when warranted. We apply it to monitoring data 
for 25 bottom-associated fishes in the eastern Bering Sea and 20 bird species in 
the western United States. This application confirms that non-local responses 
in the eastern Bering Sea case study are parsimonious for 26 species–maturity 
combinations, while 18 collapse to the pointwise method. Estimates suggest that 
some species–maturity combinations avoid proximity to the continental slope, 
beyond what is predicted by local bathymetry in isolation. By contrast, in four 
of the 20 bird species the diffused human population density covariate is more 
parsimonious than the original covariate.
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1  |  INTRODUC TION

Characterizing spatial patterns in the abundance of organisms in re-
lation to environmental factors and how that affects the dynamics of 
ecological communities, is central to spatial ecology. At local scales, 
the abundance of species and demographic processes are shaped by 
both local habitat conditions, such as physical structure, competition 
and predation, and larger-scale processes (Menge & Olson, 1990). 
The latter could refer to, for example, temperature and climate indi-
ces, such as the North Atlantic Oscillation (Millon et al., 2014), and to 
variables related to dispersal pathways (Gómez-Pompa et al., 1972; 
Jonsson et al., 2016). Understanding how processes across spatial 
and temporal scales interact to shape species' distribution and com-
munity structure is an important area of research in these times of 
rapid shifts in species distributions (McCabe & Cobb, 2021; Pinsky 
et al., 2013; Roberts et al., 2019).

Species distribution models (SDMs) fitted to local occurrence, 
count, or biomass data are key tools in spatial ecology (Elith & 
Leathwick, 2009). They can be used to quantify species' distribu-
tion, abundance and realized environmental niche and thereby be 
used to forecast range shifts (Liu et al., 2023; Pinsky et al., 2018). 
Over time, there has been a trend towards larger data sets over 
broader spatial and temporal scales (Rollinson et al., 2021). This has 
led to increased power to detect effects and estimate functional 
relationships between covariates and responses, but also chal-
lenges related to non-stationarity. Non-stationarity here refers 
to the situation where the relationship between covariates and 
responses varies across space and/or time (Banerjee et al., 2014; 
Rollinson et al., 2021). In regression-based SDMs, which are the 
focus of this study, this form of non-stationarity can be accounted 
for by specifying effects of covariates that are allowed to evolve 
through time or vary in space (Anderson et  al.,  2024; Bartolino 
et al., 2011; Hastie & Tibshirani, 1993; Thorson et al., 2023). Some 
examples include allowing the association of bottom-dwelling 
fishes with depth to change over time as they shift their distri-
bution due to warming (English et  al.,  2022), allowing regional 
ocean condition indices to cause a density response that varies 
spatially (Lehodey et al., 1997; Thorson, 2019), and modelling the 
cumulative effect of temperature on the emergence of aphids by 
allowing temperature at different lags to interact with time (Miller 
et al., 2025).

Another challenge related to spatial non-stationarity that has 
received less attention is the scale dependence of covariates. 
Typically, local covariates are used in regression-based SDMs to 
infer the relationship between habitat covariates and the response 
variable. However, the true habitat an individual uses corresponds 
to the area it integrates via individual movement. Hence, for sessile 
species, local covariates may be warranted, but as species mobility 
increases, local-scale covariates would increasingly underestimate 
the habitat use in a typical scenario with a limited sample size. One 
could average covariates (and/or the response) prior to fitting the 
model to address that the relevant spatial scale that links covariates 
to the response is larger than the observation scale (e.g. Lindmark 
et  al.,  2023; McKeon et  al.,  2024), or evaluate multiple scales 
and find which leads to the best performance metrics (Bartolino 
et al., 2012; Núñez-Riboni et al., 2021). However, a limitation of this 
approach is that it is impossible to know the optimal scale of aggre-
gation beforehand, and the scale resulting in the strongest effect 
does not necessarily mean it is the most relevant scale.

In this study, we introduce an approach that involves applying 
a diffusion operator to a covariate within the SPDE framework. 
This allows us to estimate the optimal spatial scale for computing 
a weighted average of a covariate and can be thought of as a way 
to measure the effective ‘habitat area’ that individuals are inte-
grating via movement. Using simulation testing, we show how this 
covariate-diffusion model can correctly recover diffused covariate 
effects or collapse to the raw covariate when no covariate diffusion 
is present. We then apply the covariate-diffusion model to two real-
world datasets on bottom-associated fishes and birds. We find that 
it is a parsimonious model for more than half the species–maturity 
combinations in the fish case study and four of the 20 bird species.

2  |  METHODS

2.1  |  Covariate diffusion

The stochastic partial differential equation (SPDE) method (Lindgren 
et al., 2011) is widely used to define spatially correlated variables in 
statistical models in two continuous spatial dimensions. We briefly 
summarize the method here, before discussing how our covariate-
diffusion model arises as a novel reuse of the underlying math.

4.	 The covariate-diffusion method introduced here constitutes a fast and efficient 
approach to modelling non-local covariate effects. This flexible method may be 
useful in cases when covariates influence nearby population densities, for in-
stance due to movement of the sampled species or its important biological or 
physical drivers.

K E Y W O R D S
breeding bird survey, diffusion, Gaussian Markov random fields, geostatistical models, north-
eastern Bering Sea, spatial scale, species distribution models, TMB
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    |  209LINDMARK et al.

At the highest level, the SPDE method seeks to specify a Gaussian 
random field (GRF) Z, where the value of this random field zs at a set 
of locations s ∈ D within a spatial domain D follows a Matérn cova-
riance function

where d
(

s1, s2
)

 is the distance between two locations, f
(

d
(

s1, s2
)

, �, �
)

 
is the Matérn correlation function, � is the decorrelation rate, � is the 
smoothness parameter, and �−2 is the pointwise variance. This cova-
riance function then allows the GRF to be evaluated at a fixed set of 
locations as a multivariate normal distribution

where V is the matrix of covariance among those locations. We could 
then calculate the value of the GRF z∗ at a new location using bilinear 
interpolation, represented by a matrix A, z∗ = Az.

In two-dimensional coordinates, and assuming that Matérn 
smoothness � = 1, the SPDE method then approximates this GRF 
as a Gaussian Markov random field (GMRF) by specifying a sparse 
inverse-covariance (a.k.a. ‘precision’ matrix) V−1

= Q

where evaluating the multivariate normal density function involves the 
precision matrix, and hence can be directly calculated from Q without 
matrix inversion. Importantly, the sparse precision matrix can also be 
constructed directly using the SPDE method

where M0 is a diagonal matrix, M1 has first-order adjacency within a 
triangulated mesh, and M2 has second-order adjacency. These three 
matrices are typically constructed by lower-level software (e.g. the R 
package fmesher Lindgren, 2023), and fitting this model does not re-
quire advanced understanding of the model derivation. However, we 
here summarize the underlying theory to introduce our extension.

In particular, the SPDE approximation to a GMRF is derived by 
discretizing a diffusive process (the partial differential equation from 
the method's name) and a stochastic ‘shock’ ϵ as a simultaneous 
equation involving the realization z of our GMRF:

where C̃ is a diagonal matrix and diag
(

C̃

)

 is the volume of the linear 
basis functions centred at each location and G is a sparse matrix rep-
resenting the spatial overlap between basis functions (i.e. is zero for 
nonadjacent locations), as well as assumed boundary conditions for the 
SPDE process. Adding Gz to both sides yields

and then dividing the left-hand-side across and expressing as a GMRF 
yields

Multiplying out the quadratic form for the precision matrix then 
results in the original expression (Equation 4), where M0 = C̃, M1 = G 
and M2 = GC̃

−1
G.

Having re-iterated the diffusion process that underlies the SPDE 
precision matrix, we now define a diffusion matrix D (Supporting 
Information S1):

where the inverse-diffusion D−1 has the same sparsity as G, which fol-
lows first-order adjacency. This operator satisfies four desiderata:

1.	 Conservation of mass: Given a field approximated as vector z at the 
vertices of the finite-element mesh, N evenly spaced locations s that 
cover the domain, and bilinear interpolation matrix A that projects 
to those N locations, we can approximate the average value of 
the field by predicting and then averaging across those locations 
x = N−11

T
Az. Pre-multiplying by the diffusion operator has (almost) 

no effect on this average mass, 1TAz = 1
T
ADz, which shows that the 

diffusion operator approximately conserves the total value of z;
2.	 Invariance to centring or scaling: Given that we approximate diffusion 

using a linear operator, we can apply a linear transformation to any 
vector z∗ = a + bz, and this will result in the same linear transforma-
tion of the diffused version Dz∗ = a + bDz. For example, if we meas-
ure temperature in Celsius at a set of sites, convert to Fahrenheit and 
then apply the diffusion operator, this will be equivalent to applying 
the diffusion operator and then converting to Fahrenheit;

3.	 Invariance to geographic units: If we multiply the geographic units 
by a constant (e.g. convert from kilometres to metres) with asso-
ciated change in SPDE matrices (M0 ,M1 ,M2), and also divide the 
covariate-diffusion rate � by the same constant, then the diffu-
sion operator remains unchanged;

4.	 Efficient computation: The diffusion matrix D is ‘dense’ (i.e. values 
become small but remain nonzero even as distances become large), 
and hence, the time to compute Dz scales as S2 where S is the num-
ber of sites (Figure S1). However, we can instead calculate Dz effi-
ciently by solving the sparse linear system D−1

z∗ = z using a sparse 
LU decomposition of D−1

z Doing so works directly with the sparse 
matrix D−1 and avoids computing or storing the dense matrix D.

We also note that this inverse-diffusion matrix operates across the 
entire domain of the FEM (which typically extends beyond the range 
of the data), and implicitly uses the Neumann (‘reflective’) boundary 
condition (which is conventional when applying the SPDE approach). 
Covariate values must be specified for all FEM vertices (including 
boundary vertices), and future research could explore alternative 

(1)Cov
(

z
(

s1
)

, z
(

s2
))

= �−2f
(

d
(

s1, s2
)

, �, �
)

,

(2)z ∼ MVN(0 ,V),

(3)z ∼ GMRF(0,Q),

(4)Q = �2
(

�4M0 + 2�2M1 +M2

)

,

(5)�2C̃z = − Gz + �,

(6)� ∼ MVN
(

0, �−2C̃
)

,

(7)
(

�2C̃ + G

)

z = �,

(8)z ∼ GMRF(0,Q),

(9)Q = �2
(

�2C̃ + G
)

C̃
−1(

�2C̃ + G
)

.

(10)D
−1

= I + �−2C̃
−1
G,
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210  |    LINDMARK et al.

options; for example, defining a Dirichlet (‘absorptive’) boundary con-
dition for covariate diffusion at the precise edge of available data. 
However, we do not explore boundary conditions further here.

In the following, we therefore define a vector of covariate values 
x at the vertices of the finite-element mesh, where the covariate x∗ 
is interpolated at new locations using the same interpolation matrix 
x∗ = Ax. We then replace the covariate value x∗ for sample i  at lo-
cation si with its diffused value ADx, and use ADx to predict local 
densities in a species distribution model. The effect of applying the 
diffusion operator and its effect on the total mass of the covariate is 
visualized in Figure 1. We then estimate parameter � (used to con-
struct diffusion matrix D) simultaneously with other regression coef-
ficients representing habitat associations. As � → ∞ in Equation (10) 
then diffusion D−1

→ I and the diffused covariate collapses on its 
local value Dx = x. Alternatively, as � → 0 then Dx = c1 and the dif-
fused covariate collapses on an constant value c. We are therefore 
interested in intermediate values of � where Dx represents the im-
pact of covariates within the neighbourhood of a given location.

2.2  |  Simulation testing

2.2.1  |  Testing the ability to recover diffusion with a 
simulation experiment

We developed a simulation experiment to explore the following 
questions: (1) how well the estimate for a diffused covariate could be 

recovered under varying observation error, (2) how often marginal AIC 
favoured the correct estimation model (diffusion or null model) in a 
self-and-cross experiment, (3) how well the diffusion parameters could 
be recovered under varying strengths of diffusion and (4) how well the 
diffusion model can collapse to the null model (i.e. how well the diffu-
sion model can match the null model estimates when data are simu-
lated without diffusion). We simulated 200 datasets from a Poisson 
model with an observation-level random intercept in link space to 
allow for additional dispersion beyond the 1:1 mean–variance of the 
Poisson—a lognormal Poisson. Parameters were largely taken from a 
model fitted to counts of juvenile Pacific cod (Gadus macrocephalus) in 
a subsequent case study, with a scaled depth covariate (subtracting the 
mean and dividing by the standard deviation). Each dataset contained 
15,592 spatially correlated observations, and for every dataset, a new 
GMRF was simulated. For a more detailed description of the models, 
we refer to the north-eastern Bering Sea case study, see Case studies.

In the first exercise (Questions 1 and 2), we generated data 
by simulating from models without and with covariate diffusion. 
In the former, we set the intercept �0 to −0.4, the linear effect of 
the raw or diffused covariate � j to −2.4, the scalar of the precision 
matrix log(�) to −1.4 and the decorrelation rate log

(

��

)

 to −0.8. 
For the diffusion model, we in addition set the strength of the 
diffusion log

(

�X

)

 to 2.5 (which corresponds to moderate diffusion). 
Henceforth, we refer to the diffusion parameter �X (not to be con-
fused with the decorrelation rate ��) as simply �. In both operating 
models, we set the observation-level standard deviation to values 
of 0.1, 1 and 2, and tested how well both models could return the 

F I G U R E  1  Applying the diffusion operator D when interpolating covariate x from finite-element mesh vertices to locations 
using interpolation matrix A largely conserves total mass for the different values of � (i.e. 

∑

Ax ≈
∑

ADx). In the top row, the diffusion is 
visualized for a single central point and in the bottom row diffusion is applied to a vector of draws from IID standard normal distributions to 
visualize diffusion on the full covariate field. Columns correspond to different � values, from large � (low diffusion) to small � (high diffusion). 
Note that the covariate values are scaled within each � scenario to visualize the diffusion; the number in the top left corresponds to the total 
mass of the covariate.
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    |  211LINDMARK et al.

true depth coefficient, and how often marginal AIC favoured the 
correct operating model.

In the second exercise (Questions 3 and 4), we simulated data 
from a diffusion model to evaluate how well the true value of the 
diffused covariate could be retrieved, given varying strengths of the 
diffusion and how often marginal AIC favoured the correct operat-
ing model. We used the same parameters for the diffusion model as 
above (�� = 1), and set log(�) to 1 (strong diffusion), 2.5 (moderate 
diffusion) and 5 (low diffusion). These levels of diffusion are illus-
trated in Figure 1.

2.2.2  |  Speed comparisons

We also used simulation testing to compare fitting speeds between 
the two estimation models (null model and diffusion model). To this 
end, we simulated 1000, 10,000 and 100,000 spatially correlated 
observations following a Poisson distribution, with a spatial random 
effect, an intercept and a predictor, using the R (R Core Team, 2024) 
package sdmTMB (Anderson et al., 2024). Next, we compared the 
time to conduct numerical optimization and uncertainty quantifica-
tion across a range of mesh resolutions. To standardize and make 
timing benchmarks as comparable as possible across machines and 
operating systems, we used OpenBLAS (Xianyi et al., 2012) and a 
single core.

2.3  |  Case studies

To illustrate a diffused covariate in practice, we also present two 
real-world case studies. In the first case study, we use count data 
for 20 species from the US Breeding Bird Survey (Sauer et al., 1997) 
in the western United States (westward of Wyoming, Colorado, 
Montana and New Mexico) in 2019. We test whether there is sup-
port for non-local effects of log human population density. This 
could, for instance, indicate a response to urbanization affecting the 
habitat quality. For example, outside densely populated areas there 
may still be large impacts of habitat due to infrastructure. We use 
marginal AIC to determine whether the more complex covariate-
diffusion model is supported. As a sensitivity test, we also calculated 
conditional AIC, following Zheng et al. (2024). The second case study 
is based on bottom trawl survey data from the north-eastern Bering 
Sea in 2019, collected by the NOAA Alaska Fisheries Science Center 
using a fixed station design. Each trawled site contains information 
on catch in numbers of 44 combinations of species and maturation 
status. Here, we test whether there is support for non-local effects 
of a quadratic sea floor depth. A diffused depth effect could, for 
instance, indicate a response to being near (but not actually on) the 
continental slope.

In both case studies, we modelled the counts at each site using a 
lognormal Poisson observation model and a log link

where �s,t represents the mean count, Xs,t is the design matrix, �g is a 
random intercept for observation g, and �s represents spatial random 
effects drawn from a Gaussian Markov random field with inverse pre-
cision (i.e. covariance) matrix Σ� constrained by a Matérn covariance 
function.

We constructed finite-element meshes using the function fm_
mesh_2d() in the R package fmesher (Lindgren,  2023), using a 
cut-off distance (minimum triangle edge length) of 0.1° in the north-
eastern Bering Sea case study (1295 knots) and 1° in the Breeding 
Bird Survey (170 knots) (Figures S3 and S4). Mesh construction is 
a complex topic, can impact parameter estimation and involves a 
trade-off between accuracy and estimation speed (Commander 
et al., 2022; Righetto et al., 2020; Røste, 2020). The impact of mesh 
resolution on the diffusion model presented here is a topic of fu-
ture research, but we expect mesh resolution will impact both the 
estimation of the diffusion process and the spatial random fields. 
Just as systems with less smooth spatial correlation will benefit from 
higher resolution meshes (Røste, 2020), we expect that systems with 
more concentrated diffusion processes will require higher resolution 
meshes to accurately estimate the diffusion process. As a sensitivity 
test, we compared the outcomes of model selection across different 
mesh resolutions.

2.4  |  Estimation process

We fit the SPDE-based spatial models in the simulation experiment 
and the case studies using the R (R Core Team, 2024) package TMB 
(Kristensen et al., 2016) (version 1.9.17), with matrices in Equation (5) 
constructed with the R package fmesher (Lindgren,  2023). 
Parameter estimation is done via maximum marginal likelihood using 
the non-linear minimizer nlminb() in the R stats package (R Core 
Team, 2024).

3  |  RESULTS

The covariate-diffusion estimation model is able to retrieve the 
true parameters accurately both when the underlying model (‘op-
erating model’) generating the data had covariate diffusion and 
when it did not, since the diffusion model reverts to the sub model 
without covariate diffusion as � becomes large (Figure 2). However, 
when the operating model is a covariate-diffusion model, the null 
estimation model leads to biased parameter estimates (Figure 2a). 
We also find that marginal AIC (mAIC) favours the covariate-
diffusion model in >98% of iterations when the operating model 
is covariate diffusion (Figure  2a) and favours the null model in 
>89% of iterations when the operating model is null (Figure 2b). 
Neither the ability to retrieve the true parameter estimate nor the (11)Ys,t = log

(

�s,t

)

,

(12)�s,t = Xs,t� + �g + �s ,

(13)�s ∼ MVN
(

0,Σ�

)

,
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assignment based on mAIC are affected by the observation error 
standard deviation (overdispersion) given the ranges tested here 
(Figure  2). We also find that mAIC identifies the true operating 
model (diffusion) more frequently when the strength of the dif-
fusion is medium or large (98%–100% of iterations, respectively) 
(Figure 3a,b). For low diffusion (Figure 3c), mAIC favours the null 
model in 90% of iterations. The covariate-diffusion model is able 
to retrieve the true parameter value on average regardless of the 
strength of the diffusion, but the spread of individual estimates is 
larger when the diffusion is stronger (Figure 3a).

Estimation time tends to increase with a diffusion model. The 
proportional increase in estimation time with a diffusion model 
increases with mesh resolution, but the rate of increase along the 
mesh axis depends on the number of observations. For larger data 
sets, the increase in estimation time with increased mesh resolution 
is less steep than with small data sets (Figure S2). Time to calculate 
standard errors is similar across estimation models (Figure S2).

Our case studies show that covariate diffusion is supported to 
varying degrees in both bird species and fish groups. In four of 20 
bird species, covariate diffusion is supported for the human popula-
tion density covariate as they have ΔmAIC > 2 (Figure 4a). In contrast, 

we find support for covariate diffusion of a quadratic depth effect in 
26 out of 44 species–maturity combinations in the eastern Bering Sea 
case study on fishes (Figure 4b). In both case studies, a ΔmAIC = − 2 
indicates that the covariate diffusion and the null model have the 
same marginal log likelihood, and the correlation between the raw 
and diffused covariate approaches 1 (Figure 4). When the same com-
parison is done with conditional AIC (cAIC) instead, which generally 
penalizes complexity more heavily than marginal AIC since it includes 
a correction for the number of random effects estimated, 18 of the 
fish species and 0 bird species show support for covariate diffusion in 
our examples (Figure S5). We also find that these results are relatively 
consistent across mesh resolutions in the Eastern Bering Sea case 
study. For example, in 64% of species, mAIC favours the same model 
across 3 different mesh resolutions (Figure S6).

A lower correlation between the diffused and raw covariate is 
typically found in species where the covariate-diffusion model is 
supported (Figure  4). For example, in the Breeding Bird case, the 
covariate-diffusion model is not supported for the common starling 
(Sturnus vulgaris; top row) and the diffused covariate (middle column) 
is nearly identical to the original covariate (left column), while for 
black-headed grosbeak (Pheucticus melanocephalus; bottom row) 

F I G U R E  2  Diffusion model can recover diffused covariate effects and collapse to the null model in the absence of diffusion. Simulation 
testing the ability to recover the true estimated depth coefficient for diffusion and null operating models (left (a) and right (b), respectively), 
for diffusion and null models (x-axis), for three levels of overdispersion, that is the rate at which the observation variance scales with the 
mean in excess of the Poisson �� (colour). The strength of the diffusion, log(�), is set to 2.5 when the operating model is a diffusion model 
(left). Each point represents a fit from a simulated data set, black points and vertical lines correspond to the median, 50% and 95% quantile 
range. Horizontal lines correspond to the true value. Numbers above vertical bars correspond to the proportion of simulated datasets 
(n = 200) assigned to the estimation model (per value of ��) based on marginal AIC.
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the human population density covariate is smoothed with a strong 
diffusion (log(�) = − 1.09) (Figure 5b). Similarly, in the north-eastern 
Bearing Sea case, the depth covariate from the covariate-diffusion 
model is nearly identical to the raw covariate in adult starry flounder 
(Platichthys stellatus), and AIC suggests diffusion is not supported. 
In contrast, for capelin (Mallotus villosus), the diffusion is strong 
(log � = − 0. 63), the covariate exhibits a smoother pattern, and the 
diffusion model is supported in terms of marginal AIC (Figure 6).

For several species–maturity combinations in the fish case study, 
there is a notable difference in the partial effect of depth on den-
sity (Figure S7). However, the covariate-diffusion model and the null 
model often generate similar predictions, even in cases of strong dif-
fusion, presumably because the spatial random effects can change 
between the models (Figures S8 and S9).

4  |  DISCUSSION

We have introduced a sparse inverse-diffusion operator based on 
the SPDE method, which can be used to efficiently model non-local 
covariate effects, such as to approximate the effective habitat area 
that individuals integrate via movement. Specifically, when applied 
to a covariate, this operator calculates a spatially weighted average 
covariate given the estimated range of the diffusion processes. With 
simulation testing, we have demonstrated that the diffusion model 
can correctly identify the underlying processes model and estimate 
the density response to the diffused covariate.

We then tested the approach on spatial models fitted to data-
sets for birds and fishes. Covariate diffusion was more parsimonious 
than the null model for only two of 20 bird species, but for a ma-
jority of species–maturity combinations in fishes. As an example of 
interpretation, for some species–maturity combinations in the fish 
case study, the partial effect of depth was smaller for the covariate-
diffusion model than the null model near the continental shelf slope, 
suggesting that these groups avoid these habitats despite being of 
similar depths to other, more inshore areas. Hence, our approach 
could aid in generating hypotheses as to what drives non-stationarity 
across space, which is important for improving large-scale species 
distribution modelling (Rollinson et al., 2021).

Covariate diffusion could result from any ecological telecon-
nection such that local ecological properties are influenced by pat-
terns happening at a broader scale. For example, fish move over 
time and therefore their body condition (how plump they are given 
their length) may be affected by the combination of habitat and 
spatially varying prey they encounter over their lifetime (Lindmark 
et al., 2023). Covariate diffusion could represent how this broader 
scale of conditions the fish moved through might affect their body 
condition. Alternatively, a species may be stationary with environ-
mental processes changing around them. For example, the number 
of eggs produced by sessile clams may be influenced by environ-
mental conditions as ocean currents move water past the clams. 
Covariate diffusion could represent how this broader scale of expe-
rienced environment might affect clam fecundity. Future research 
could extend our approach by estimating diffusion that differs based 

F I G U R E  3  As the diffusion declines (� increases, from left to right column, panels a--c), the difference between estimated depth 
coefficients from the diffusion and null models decreases. Each point represents a fit from a simulated data set, black points and vertical 
lines correspond to the median, 50% and 95% quantile range. Horizontal lines correspond to the true value. Numbers above vertical bars 
correspond to the proportion of simulated datasets (n = 200) assigned to estimation model based on AIC.
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on direction (i.e. extracting the diffusion kernel from the SPDE 
method given geometric anisotropy), or by incorporating covariate 
effects that decay across space and persist into future times (i.e. ex-
tracting the diffusion kernel from a diffusion-enhanced GMRF, see 
Lindgren et al., 2023). Furthermore, the inverse-diffusion operator 

should remain sparse (and therefore computationally efficient) in 
these and other cases.

We observe that predicted densities from the diffusion model 
and the null model tend to be similar. While both the covariate and 
the estimate of its coefficient change when the diffusion model is 

F I G U R E  4  Marginal AIC favours covariate diffusion in four bird species (a), and more than half of fishes (b). The points depict delta 
marginal AIC between the null and diffusion model, where positive values indicate support for the diffusion model and negative values 
indicate support for the null model. Point colours correspond to the correlation between the raw and the diffused covariate. Points in 
the grey rectangle have ΔmAIC > 2, indicating strong support for the diffusion model. Points within the two vertical dashed lines have 
inconclusive ΔmAIC results. Letters in brackets in the Eastern Bering Sea fish case study refers to the life stage (j = juvenile, a = adult, 
ej = early juvenile). Note the x-axis is fourth-root power transformed.

 2041210x, 2026, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210x.70177 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [29/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  215LINDMARK et al.

applied and supported, the predicted counts do not substantially 
differ between the two models, partly because the spatial random 
effects also change. Which model to use then depends on the objec-
tives of the analysis—whether it is to learn about ecologically rele-
vant scales of covariates and non-local effects or whether a model 
that generates similar predictions by placing additional variation in 
the spatial random effects will suffice. Since we have also shown 
that the diffusion model can revert to a non-diffused model in the 
absence of diffusion, the diffusion model can be applied at little cost 
even when it is not known a priori whether diffusion is supported.

We recommend three topics for future research. The first is to 
augment our covariate-diffusion model by incorporating advection, 
that is where local densities respond to environmental conditions 
that are centred on a location that is geographically distant. This 
‘covariate-advection’ is feasible using the SPDE method (Clarotto 
et al., 2024) and would presumably represent advective movement, 
for example, where densities during summer sampling respond to 

habitat conditions in a winter habitat. Secondly, we note that covari-
ate diffusion collapses to an index of regionally averaged conditions 
as diffusion becomes large. In this case, fitting a spatially varying 
coefficient (SVC) (Gelfand et al., 2003; Hastie & Tibshirani, 1993) re-
sponse to the diffused covariate across multiple years would allow 
a wide range of model behaviours, from a stationary and local re-
sponse to a non-stationary response to a regional climate index. 
Lastly, future research could investigate best practices for model se-
lection and mesh construction comparing covariate-diffusion mod-
els, as our results suggest some sensitivity to the choice of selection 
criteria and mesh resolution. It is also important that these practices 
are tied together with objectives—whether prioritizing predictive ac-
curacy or ecological inference.

We note several drawbacks to the covariate-diffusion approach. 
First, the approach replaces the high-resolution covariate measured 
at each unique location with an interpolated value that is defined at 
each vertex of the finite-element mesh. This mesh can be defined 

F I G U R E  5  Human population density covariate, a diffused version of the covariate, and predicted counts from the breeding bird case 
study. Panel (a) depicts the raw human population density covariate. Panel (b) depicts the diffused covariate for two species with contrasting 
support for diffusion. Common starling (Sturnus vulgaris) in the top row does not show support for the diffused covariate and the diffusion is 
estimated to be small whereas black-headed grosbeak (Pheucticus melanocephalus) in the bottom row shows strong support for the diffused 
covariate and has a relatively strong estimated diffusion. The strength of the diffusion (log(�)) is shown towards the bottom of the (b) panels, 
where a low value indicates strong diffusion. Panel (c) depicts the predicted log counts for the two species.
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at a high resolution, but still requires some loss of fine-scale vari-
ation. Second, although computationally efficient due to working 
with the sparse inverse-diffusion matrix, the approach is still more 
computationally intensive than fitting a model without covariate dif-
fusion. Third, the model requires users to define covariate values 
not just for the location of samples, but at all locations across a given 
domain. This results in a more complex user interface than the re-
gression models typically used for SDMs and will therefore require 
some consideration before integrating into GMRF- and TMB-based 
SDM software, such as sdmTMB (Anderson et al., 2024) or tinyVAST 
(Thorson et al., 2025).

Despite these drawbacks, we conclude that covariate diffusion 
using the SPDE method is computationally efficient, statistically 
performant and ecologically important for a wide range of species. 
We therefore recommend that ecologists estimate non-local habitat 
responses across the wide range of studies applying SDMs.
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