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physical drivers.
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1 | INTRODUCTION

Characterizing spatial patterns in the abundance of organisms in re-
lation to environmental factors and how that affects the dynamics of
ecological communities, is central to spatial ecology. At local scales,
the abundance of species and demographic processes are shaped by
both local habitat conditions, such as physical structure, competition
and predation, and larger-scale processes (Menge & Olson, 1990).
The latter could refer to, for example, temperature and climate indi-
ces, such as the North Atlantic Oscillation (Millon et al., 2014), and to
variables related to dispersal pathways (Gomez-Pompa et al., 1972;
Jonsson et al., 2016). Understanding how processes across spatial
and temporal scales interact to shape species' distribution and com-
munity structure is an important area of research in these times of
rapid shifts in species distributions (McCabe & Cobb, 2021; Pinsky
etal., 2013; Roberts et al., 2019).

Species distribution models (SDMs) fitted to local occurrence,
count, or biomass data are key tools in spatial ecology (Elith &
Leathwick, 2009). They can be used to quantify species' distribu-
tion, abundance and realized environmental niche and thereby be
used to forecast range shifts (Liu et al., 2023; Pinsky et al., 2018).
Over time, there has been a trend towards larger data sets over
broader spatial and temporal scales (Rollinson et al., 2021). This has
led to increased power to detect effects and estimate functional
relationships between covariates and responses, but also chal-
lenges related to non-stationarity. Non-stationarity here refers
to the situation where the relationship between covariates and
responses varies across space and/or time (Banerjee et al., 2014;
Rollinson et al., 2021). In regression-based SDMs, which are the
focus of this study, this form of non-stationarity can be accounted
for by specifying effects of covariates that are allowed to evolve
through time or vary in space (Anderson et al., 2024; Bartolino
etal.,, 2011; Hastie & Tibshirani, 1993; Thorson et al., 2023). Some
examples include allowing the association of bottom-dwelling
fishes with depth to change over time as they shift their distri-
bution due to warming (English et al., 2022), allowing regional
ocean condition indices to cause a density response that varies
spatially (Lehodey et al., 1997; Thorson, 2019), and modelling the
cumulative effect of temperature on the emergence of aphids by
allowing temperature at different lags to interact with time (Miller
et al., 2025).

4. The covariate-diffusion method introduced here constitutes a fast and efficient
approach to modelling non-local covariate effects. This flexible method may be
useful in cases when covariates influence nearby population densities, for in-

stance due to movement of the sampled species or its important biological or

breeding bird survey, diffusion, Gaussian Markov random fields, geostatistical models, north-
eastern Bering Sea, spatial scale, species distribution models, TMB

Another challenge related to spatial non-stationarity that has
received less attention is the scale dependence of covariates.
Typically, local covariates are used in regression-based SDMs to
infer the relationship between habitat covariates and the response
variable. However, the true habitat an individual uses corresponds
to the area it integrates via individual movement. Hence, for sessile
species, local covariates may be warranted, but as species mobility
increases, local-scale covariates would increasingly underestimate
the habitat use in a typical scenario with a limited sample size. One
could average covariates (and/or the response) prior to fitting the
model to address that the relevant spatial scale that links covariates
to the response is larger than the observation scale (e.g. Lindmark
et al,, 2023; McKeon et al., 2024), or evaluate multiple scales
and find which leads to the best performance metrics (Bartolino
et al., 2012; Nunez-Riboni et al., 2021). However, a limitation of this
approach is that it is impossible to know the optimal scale of aggre-
gation beforehand, and the scale resulting in the strongest effect
does not necessarily mean it is the most relevant scale.

In this study, we introduce an approach that involves applying
a diffusion operator to a covariate within the SPDE framework.
This allows us to estimate the optimal spatial scale for computing
a weighted average of a covariate and can be thought of as a way
to measure the effective ‘habitat area’ that individuals are inte-
grating via movement. Using simulation testing, we show how this
covariate-diffusion model can correctly recover diffused covariate
effects or collapse to the raw covariate when no covariate diffusion
is present. We then apply the covariate-diffusion model to two real-
world datasets on bottom-associated fishes and birds. We find that
it is a parsimonious model for more than half the species-maturity
combinations in the fish case study and four of the 20 bird species.

2 | METHODS
2.1 | Covariate diffusion

The stochastic partial differential equation (SPDE) method (Lindgren
et al., 2011) is widely used to define spatially correlated variables in
statistical models in two continuous spatial dimensions. We briefly
summarize the method here, before discussing how our covariate-
diffusion model arises as a novel reuse of the underlying math.
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At the highest level, the SPDE method seeks to specify a Gaussian
random field (GRF) Z, where the value of this random field z, at a set
of locations s € D within a spatial domain D follows a Matérn cova-

riance function
Cov(z(sy),2(sy)) = v7%f(d(s1,52), &, v), (o))

where d(sl,sz) is the distance between two locations, f(d(51,52),x, v)
is the Matérn correlation function, x is the decorrelation rate, v is the
smoothness parameter, and =2 is the pointwise variance. This cova-
riance function then allows the GRF to be evaluated at a fixed set of
locations as a multivariate normal distribution

z~MVN(,V), (2)

where V is the matrix of covariance among those locations. We could
then calculate the value of the GRF z* at a new location using bilinear
interpolation, represented by a matrix A, z* = Az.

In two-dimensional coordinates, and assuming that Matérn
smoothness v = 1, the SPDE method then approximates this GRF
as a Gaussian Markov random field (GMRF) by specifying a sparse

inverse-covariance (a.k.a. ‘precision’ matrix) vl=qQ
z ~ GMRF(0,Q), 3

where evaluating the multivariate normal density function involves the
precision matrix, and hence can be directly calculated from Q without
matrix inversion. Importantly, the sparse precision matrix can also be

constructed directly using the SPDE method
Q=172(x*Mg + 2x2M; + M,), (4)

where M, is a diagonal matrix, M, has first-order adjacency within a
triangulated mesh, and M, has second-order adjacency. These three
matrices are typically constructed by lower-level software (e.g. the R
package fmesher Lindgren, 2023), and fitting this model does not re-
quire advanced understanding of the model derivation. However, we
here summarize the underlying theory to introduce our extension.

In particular, the SPDE approximation to a GMRF is derived by
discretizing a diffusive process (the partial differential equation from
the method's name) and a stochastic ‘shock’ € as a simultaneous

equation involving the realization z of our GMRF:

x¥2Cz= — Gz +e¢, (5)

€ ~MVN (o, T-ZE), 6)

where C is a diagonal matrix and diag(a) is the volume of the linear
basis functions centred at each location and G is a sparse matrix rep-
resenting the spatial overlap between basis functions (i.e. is zero for
nonadjacent locations), as well as assumed boundary conditions for the
SPDE process. Adding Gz to both sides yields

(KZE+G)z=e, 7)

and then dividing the left-hand-side across and expressing as a GMRF

yields

z ~ GMRF(0,Q), (8)

Q= T2(K'2C+G)C_1(KZC+G). ©)

Multiplying out the quadratic form for the precision matrix then
results in the original expression (Equation 4), where M, = (NZ, M, =G
andM, = GC "G

Having re-iterated the diffusion process that underlies the SPDE
precision matrix, we now define a diffusion matrix D (Supporting

Information S1):
Dl=1+x2C G, (10)

where the inverse-diffusion D~ has the same sparsity as G, which fol-
lows first-order adjacency. This operator satisfies four desiderata:

1. Conservation of mass: Given a field approximated as vector z at the
vertices of the finite-element mesh, N evenly spaced locations s that
cover the domain, and bilinear interpolation matrix A that projects
to those N locations, we can approximate the average value of
the field by predicting and then averaging across those locations
X = N-11T Az. Pre-multiplying by the diffusion operator has (almost)
no effect on this average mass, 1" Az = 1" ADz, which shows that the
diffusion operator approximately conserves the total value of z

2. Invariance to centring or scaling: Given that we approximate diffusion
using a linear operator, we can apply a linear transformation to any
vector z* = a + bz, and this will result in the same linear transforma-
tion of the diffused versionDz* = a + bDz. For example, if we meas-
ure temperature in Celsius at a set of sites, convert to Fahrenheit and
then apply the diffusion operator, this will be equivalent to applying
the diffusion operator and then converting to Fahrenheit;

3. Invariance to geographic units: If we multiply the geographic units
by a constant (e.g. convert from kilometres to metres) with asso-
ciated change in SPDE matrices (My,M;,M,), and also divide the
covariate-diffusion rate x by the same constant, then the diffu-
sion operator remains unchanged;

4. Efficient computation: The diffusion matrix D is ‘dense’ (i.e. values
become small but remain nonzero even as distances become large),
and hence, the time to compute Dz scales as S2 where S is the num-
ber of sites (Figure S1). However, we can instead calculate Dz effi-
ciently by solving the sparse linear system D™'z* = z using a sparse
LU decomposition of D% Doing so works directly with the sparse

matrix D! and avoids computing or storing the dense matrix D.

We also note that this inverse-diffusion matrix operates across the
entire domain of the FEM (which typically extends beyond the range
of the data), and implicitly uses the Neumann (‘reflective’) boundary
condition (which is conventional when applying the SPDE approach).
Covariate values must be specified for all FEM vertices (including
boundary vertices), and future research could explore alternative
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FIGURE 1 Applying the diffusion operator D when interpolating covariate x from finite-element mesh vertices to locations

using interpolation matrix A largely conserves total mass for the different values of k (i.e. ) Ax ~ Y. ADx). In the top row, the diffusion is
visualized for a single central point and in the bottom row diffusion is applied to a vector of draws from IID standard normal distributions to
visualize diffusion on the full covariate field. Columns correspond to different k values, from large « (low diffusion) to small « (high diffusion).
Note that the covariate values are scaled within each k scenario to visualize the diffusion; the number in the top left corresponds to the total
mass of the covariate.

options; for example, defining a Dirichlet (‘absorptive’) boundary con-
dition for covariate diffusion at the precise edge of available data.
However, we do not explore boundary conditions further here.

In the following, we therefore define a vector of covariate values
X at the vertices of the finite-element mesh, where the covariate x*
is interpolated at new locations using the same interpolation matrix
x* = Ax. We then replace the covariate value x* for sample i at lo-
cation s; with its diffused value ADx, and use ADx to predict local
densities in a species distribution model. The effect of applying the
diffusion operator and its effect on the total mass of the covariate is
visualized in Figure 1. We then estimate parameter « (used to con-
struct diffusion matrix D) simultaneously with other regression coef-
ficients representing habitat associations. As k — oo in Equation (10)
then diffusion D71 — I and the diffused covariate collapses on its
local value Dx = x. Alternatively, as k — 0 then Dx = c1 and the dif-
fused covariate collapses on an constant value c. We are therefore
interested in intermediate values of ¥ where Dx represents the im-

pact of covariates within the neighbourhood of a given location.

2.2 | Simulation testing

2.21 | Testing the ability to recover diffusion with a
simulation experiment

We developed a simulation experiment to explore the following
questions: (1) how well the estimate for a diffused covariate could be

Sum=3.51

log(k)=2.5

Sum=3.52

Scaled
covariate

1.00
075
0.50
0.25
0.00

recovered under varying observation error, (2) how often marginal AIC
favoured the correct estimation model (diffusion or null model) in a
self-and-cross experiment, (3) how well the diffusion parameters could
be recovered under varying strengths of diffusion and (4) how well the
diffusion model can collapse to the null model (i.e. how well the diffu-
sion model can match the null model estimates when data are simu-
lated without diffusion). We simulated 200 datasets from a Poisson
model with an observation-level random intercept in link space to
allow for additional dispersion beyond the 1:1 mean-variance of the
Poisson—a lognormal Poisson. Parameters were largely taken from a
model fitted to counts of juvenile Pacific cod (Gadus macrocephalus) in
a subsequent case study, with a scaled depth covariate (subtracting the
mean and dividing by the standard deviation). Each dataset contained
15,592 spatially correlated observations, and for every dataset, a new
GMRF was simulated. For a more detailed description of the models,
we refer to the north-eastern Bering Sea case study, see Case studies.
In the first exercise (Questions 1 and 2), we generated data
by simulating from models without and with covariate diffusion.
In the former, we set the intercept g, to -0.4, the linear effect of
the raw or diffused covariate f; to -2.4, the scalar of the precision
matrix log(r) to -1.4 and the decorrelation rate log(x,,) to -0.8.
For the diffusion model, we in addition set the strength of the
diffusion Iog(KX) to 2.5 (which corresponds to moderate diffusion).
Henceforth, we refer to the diffusion parameter ky (not to be con-
fused with the decorrelation rate k) as simply . In both operating
models, we set the observation-level standard deviation to values
of 0.1, 1 and 2, and tested how well both models could return the
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true depth coefficient, and how often marginal AIC favoured the
correct operating model.

In the second exercise (Questions 3 and 4), we simulated data
from a diffusion model to evaluate how well the true value of the
diffused covariate could be retrieved, given varying strengths of the
diffusion and how often marginal AIC favoured the correct operat-
ing model. We used the same parameters for the diffusion model as
above (o, = 1), and set log(x) to 1 (strong diffusion), 2.5 (moderate
diffusion) and 5 (low diffusion). These levels of diffusion are illus-

trated in Figure 1.

2.2.2 | Speed comparisons

We also used simulation testing to compare fitting speeds between
the two estimation models (null model and diffusion model). To this
end, we simulated 1000, 10,000 and 100,000 spatially correlated
observations following a Poisson distribution, with a spatial random
effect, an intercept and a predictor, using the R (R Core Team, 2024)
package sdmTMB (Anderson et al., 2024). Next, we compared the
time to conduct numerical optimization and uncertainty quantifica-
tion across a range of mesh resolutions. To standardize and make
timing benchmarks as comparable as possible across machines and
operating systems, we used OpenBLAS (Xianyi et al., 2012) and a

single core.

2.3 | Case studies

To illustrate a diffused covariate in practice, we also present two
real-world case studies. In the first case study, we use count data
for 20 species from the US Breeding Bird Survey (Sauer et al., 1997)
in the western United States (westward of Wyoming, Colorado,
Montana and New Mexico) in 2019. We test whether there is sup-
port for non-local effects of log human population density. This
could, for instance, indicate a response to urbanization affecting the
habitat quality. For example, outside densely populated areas there
may still be large impacts of habitat due to infrastructure. We use
marginal AIC to determine whether the more complex covariate-
diffusion model is supported. As a sensitivity test, we also calculated
conditional AIC, following Zheng et al. (2024). The second case study
is based on bottom trawl survey data from the north-eastern Bering
Sea in 2019, collected by the NOAA Alaska Fisheries Science Center
using a fixed station design. Each trawled site contains information
on catch in numbers of 44 combinations of species and maturation
status. Here, we test whether there is support for non-local effects
of a quadratic sea floor depth. A diffused depth effect could, for
instance, indicate a response to being near (but not actually on) the
continental slope.

In both case studies, we modelled the counts at each site using a

lognormal Poisson observation model and a log link

Ys,t = IOg(:us,t)’ (11)

211
Hst = Xs,tﬁ + ag + ws, (12)
w, ~MVN(0,%,), (13)

where ug, represents the mean count, X;, is the design matrix, a, is a
random intercept for observation g, and w, represents spatial random
effects drawn from a Gaussian Markov random field with inverse pre-
cision (i.e. covariance) matrix X, constrained by a Matérn covariance
function.

We constructed finite-element meshes using the function fm_
mesh 2d() in the R package fmesher (Lindgren, 2023), using a
cut-off distance (minimum triangle edge length) of 0.1° in the north-
eastern Bering Sea case study (1295 knots) and 1° in the Breeding
Bird Survey (170 knots) (Figures S3 and S4). Mesh construction is
a complex topic, can impact parameter estimation and involves a
trade-off between accuracy and estimation speed (Commander
et al., 2022; Righetto et al., 2020; Raste, 2020). The impact of mesh
resolution on the diffusion model presented here is a topic of fu-
ture research, but we expect mesh resolution will impact both the
estimation of the diffusion process and the spatial random fields.
Just as systems with less smooth spatial correlation will benefit from
higher resolution meshes (Raste, 2020), we expect that systems with
more concentrated diffusion processes will require higher resolution
meshes to accurately estimate the diffusion process. As a sensitivity
test, we compared the outcomes of model selection across different

mesh resolutions.

2.4 | Estimation process

We fit the SPDE-based spatial models in the simulation experiment
and the case studies using the R (R Core Team, 2024) package TMB
(Kristensen et al., 2016) (version 1.9.17), with matrices in Equation (5)
constructed with the R package fmesher (Lindgren, 2023).
Parameter estimation is done via maximum marginal likelihood using
the non-linear minimizer n1minb () in the R stats package (R Core
Team, 2024).

3 | RESULTS

The covariate-diffusion estimation model is able to retrieve the
true parameters accurately both when the underlying model (‘op-
erating model’) generating the data had covariate diffusion and
when it did not, since the diffusion model reverts to the sub model
without covariate diffusion as k becomes large (Figure 2). However,
when the operating model is a covariate-diffusion model, the null
estimation model leads to biased parameter estimates (Figure 2a).
We also find that marginal AIC (mAIC) favours the covariate-
diffusion model in >98% of iterations when the operating model
is covariate diffusion (Figure 2a) and favours the null model in
>89% of iterations when the operating model is null (Figure 2b).
Neither the ability to retrieve the true parameter estimate nor the
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FIGURE 2 Diffusion model can recover diffused covariate effects and collapse to the null model in the absence of diffusion. Simulation
testing the ability to recover the true estimated depth coefficient for diffusion and null operating models (left (a) and right (b), respectively),
for diffusion and null models (x-axis), for three levels of overdispersion, that is the rate at which the observation variance scales with the
mean in excess of the Poisson o, (colour). The strength of the diffusion, log(x), is set to 2.5 when the operating model is a diffusion model
(left). Each point represents a fit from a simulated data set, black points and vertical lines correspond to the median, 50% and 95% quantile
range. Horizontal lines correspond to the true value. Numbers above vertical bars correspond to the proportion of simulated datasets
(n=200) assigned to the estimation model (per value of 5,) based on marginal AIC.

assignment based on mAIC are affected by the observation error
standard deviation (overdispersion) given the ranges tested here
(Figure 2). We also find that mAIC identifies the true operating
model (diffusion) more frequently when the strength of the dif-
fusion is medium or large (98%-100% of iterations, respectively)
(Figure 3a,b). For low diffusion (Figure 3c), mAIC favours the null
model in 90% of iterations. The covariate-diffusion model is able
to retrieve the true parameter value on average regardless of the
strength of the diffusion, but the spread of individual estimates is
larger when the diffusion is stronger (Figure 3a).

Estimation time tends to increase with a diffusion model. The
proportional increase in estimation time with a diffusion model
increases with mesh resolution, but the rate of increase along the
mesh axis depends on the number of observations. For larger data
sets, the increase in estimation time with increased mesh resolution
is less steep than with small data sets (Figure S2). Time to calculate
standard errors is similar across estimation models (Figure S2).

Our case studies show that covariate diffusion is supported to
varying degrees in both bird species and fish groups. In four of 20
bird species, covariate diffusion is supported for the human popula-
tion density covariate as they have AmAIC > 2 (Figure 4a). In contrast,

we find support for covariate diffusion of a quadratic depth effect in
26 out of 44 species-maturity combinations in the eastern Bering Sea
case study on fishes (Figure 4b). In both case studies, a AmAIC = — 2
indicates that the covariate diffusion and the null model have the
same marginal log likelihood, and the correlation between the raw
and diffused covariate approaches 1 (Figure 4). When the same com-
parison is done with conditional AIC (cAlC) instead, which generally
penalizes complexity more heavily than marginal AIC since it includes
a correction for the number of random effects estimated, 18 of the
fish species and O bird species show support for covariate diffusion in
our examples (Figure S5). We also find that these results are relatively
consistent across mesh resolutions in the Eastern Bering Sea case
study. For example, in 64% of species, mAIC favours the same model
across 3 different mesh resolutions (Figure S6).

A lower correlation between the diffused and raw covariate is
typically found in species where the covariate-diffusion model is
supported (Figure 4). For example, in the Breeding Bird case, the
covariate-diffusion model is not supported for the common starling
(Sturnus vulgaris; top row) and the diffused covariate (middle column)
is nearly identical to the original covariate (left column), while for
black-headed grosbeak (Pheucticus melanocephalus; bottom row)

85U0| 7 SUOWIWOD BA TR0 8 geoldde aup Ag peusenob ae sejolie O 8N Jo Sa|ni 10 Ariq1 8UIUO AB|1M UO (SUONIPUCD-pUe-SLLBI W0 A8 | 1M ARe1q 1)BUl UO//:SdNY) SUONIPUOD Pue SWwis | 8Y) 89S *[9202/10/62] Uo AkiqiTaulluo A8[IM ‘Seoue s einnouby JO AiseAIuN UsIpBNS Aq 2/T0L X0TZ-TY0Z/TTTT OT/10p/woo /8 |1m Areiqjpul|uo's feunoksq/sdny wouy pspeojumod ‘T ‘9202 ‘X0TZTY0Z



LINDMARK €T AL. 213
log(k) =1 log(k) = 2.5 log(k) =5
High diffusion Medium diffusion Low diffusion
ol @ 0.005 (b) (c)
0.995
0.025
= .97
S 0.935 0.085 0.915
L) 4
ol l___ » - |l v _____ * _______
3 g w
& |
=
5
3 -4
e]
2
©
£
&
-6
Diffusion Null Diffusion Null Diffusion Null

Estimation model

FIGURE 3 As the diffusion declines (k increases, from left to right column, panels a--c), the difference between estimated depth
coefficients from the diffusion and null models decreases. Each point represents a fit from a simulated data set, black points and vertical
lines correspond to the median, 50% and 95% quantile range. Horizontal lines correspond to the true value. Numbers above vertical bars
correspond to the proportion of simulated datasets (n=200) assigned to estimation model based on AIC.

the human population density covariate is smoothed with a strong
diffusion (log(x) = — 1.09) (Figure 5b). Similarly, in the north-eastern
Bearing Sea case, the depth covariate from the covariate-diffusion
model is nearly identical to the raw covariate in adult starry flounder
(Platichthys stellatus), and AIC suggests diffusion is not supported.
In contrast, for capelin (Mallotus villosus), the diffusion is strong
(logx = — 0.63), the covariate exhibits a smoother pattern, and the
diffusion model is supported in terms of marginal AIC (Figure 6).

For several species-maturity combinations in the fish case study,
there is a notable difference in the partial effect of depth on den-
sity (Figure S7). However, the covariate-diffusion model and the null
model often generate similar predictions, even in cases of strong dif-
fusion, presumably because the spatial random effects can change

between the models (Figures S8 and S9).

4 | DISCUSSION

We have introduced a sparse inverse-diffusion operator based on
the SPDE method, which can be used to efficiently model non-local
covariate effects, such as to approximate the effective habitat area
that individuals integrate via movement. Specifically, when applied
to a covariate, this operator calculates a spatially weighted average
covariate given the estimated range of the diffusion processes. With
simulation testing, we have demonstrated that the diffusion model
can correctly identify the underlying processes model and estimate
the density response to the diffused covariate.

We then tested the approach on spatial models fitted to data-
sets for birds and fishes. Covariate diffusion was more parsimonious
than the null model for only two of 20 bird species, but for a ma-
jority of species-maturity combinations in fishes. As an example of
interpretation, for some species-maturity combinations in the fish
case study, the partial effect of depth was smaller for the covariate-
diffusion model than the null model near the continental shelf slope,
suggesting that these groups avoid these habitats despite being of
similar depths to other, more inshore areas. Hence, our approach
could aid in generating hypotheses as to what drives non-stationarity
across space, which is important for improving large-scale species
distribution modelling (Rollinson et al., 2021).

Covariate diffusion could result from any ecological telecon-
nection such that local ecological properties are influenced by pat-
terns happening at a broader scale. For example, fish move over
time and therefore their body condition (how plump they are given
their length) may be affected by the combination of habitat and
spatially varying prey they encounter over their lifetime (Lindmark
et al., 2023). Covariate diffusion could represent how this broader
scale of conditions the fish moved through might affect their body
condition. Alternatively, a species may be stationary with environ-
mental processes changing around them. For example, the number
of eggs produced by sessile clams may be influenced by environ-
mental conditions as ocean currents move water past the clams.
Covariate diffusion could represent how this broader scale of expe-
rienced environment might affect clam fecundity. Future research
could extend our approach by estimating diffusion that differs based
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FIGURE 4 Marginal AIC favours covariate diffusion in four bird species (a), and more than half of fishes (b). The points depict delta
marginal AIC between the null and diffusion model, where positive values indicate support for the diffusion model and negative values
indicate support for the null model. Point colours correspond to the correlation between the raw and the diffused covariate. Points in
the grey rectangle have AmAIC > 2, indicating strong support for the diffusion model. Points within the two vertical dashed lines have

inconclusive AmAIC results. Letters in brackets in the Eastern Bering
ej=early juvenile). Note the x-axis is fourth-root power transformed.

on direction (i.e. extracting the diffusion kernel from the SPDE
method given geometric anisotropy), or by incorporating covariate
effects that decay across space and persist into future times (i.e. ex-
tracting the diffusion kernel from a diffusion-enhanced GMREF, see
Lindgren et al., 2023). Furthermore, the inverse-diffusion operator

Sea fish case study refers to the life stage (j=juvenile, a=adult,

should remain sparse (and therefore computationally efficient) in
these and other cases.

We observe that predicted densities from the diffusion model
and the null model tend to be similar. While both the covariate and
the estimate of its coefficient change when the diffusion model is
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FIGURE 5 Human population density covariate, a diffused version of the covariate, and predicted counts from the breeding bird case
study. Panel (a) depicts the raw human population density covariate. Panel (b) depicts the diffused covariate for two species with contrasting
support for diffusion. Common starling (Sturnus vulgaris) in the top row does not show support for the diffused covariate and the diffusion is
estimated to be small whereas black-headed grosbeak (Pheucticus melanocephalus) in the bottom row shows strong support for the diffused
covariate and has a relatively strong estimated diffusion. The strength of the diffusion (log(x)) is shown towards the bottom of the (b) panels,
where a low value indicates strong diffusion. Panel (c) depicts the predicted log counts for the two species.

applied and supported, the predicted counts do not substantially
differ between the two models, partly because the spatial random
effects also change. Which model to use then depends on the objec-
tives of the analysis—whether it is to learn about ecologically rele-
vant scales of covariates and non-local effects or whether a model
that generates similar predictions by placing additional variation in
the spatial random effects will suffice. Since we have also shown
that the diffusion model can revert to a non-diffused model in the
absence of diffusion, the diffusion model can be applied at little cost
even when it is not known a priori whether diffusion is supported.
We recommend three topics for future research. The first is to
augment our covariate-diffusion model by incorporating advection,
that is where local densities respond to environmental conditions
that are centred on a location that is geographically distant. This
‘covariate-advection’ is feasible using the SPDE method (Clarotto
et al., 2024) and would presumably represent advective movement,
for example, where densities during summer sampling respond to

habitat conditions in a winter habitat. Secondly, we note that covari-
ate diffusion collapses to an index of regionally averaged conditions
as diffusion becomes large. In this case, fitting a spatially varying
coefficient (SVC) (Gelfand et al., 2003; Hastie & Tibshirani, 1993) re-
sponse to the diffused covariate across multiple years would allow
a wide range of model behaviours, from a stationary and local re-
sponse to a non-stationary response to a regional climate index.
Lastly, future research could investigate best practices for model se-
lection and mesh construction comparing covariate-diffusion mod-
els, as our results suggest some sensitivity to the choice of selection
criteria and mesh resolution. It is also important that these practices
are tied together with objectives—whether prioritizing predictive ac-
curacy or ecological inference.

We note several drawbacks to the covariate-diffusion approach.
First, the approach replaces the high-resolution covariate measured
at each unique location with an interpolated value that is defined at
each vertex of the finite-element mesh. This mesh can be defined
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FIGURE 6 Bottom depth covariate, a diffused version of the covariate and predicted counts from the north-eastern Bering Sea bottom
trawl data. Panel (b) depicts the diffused covariate for two species with contrasting support for diffusion. Adult starry flounder (Platichthys
stellatus) in the top row does not support the diffusion model and the diffused covariate is similar to the raw covariate, while capelin
(Mallotus villosus) in the bottom row shows strong support for the diffusion model. The strength of the diffusion (log(x)) is shown in the
bottom-right corner of the (b) panels; a low value indicates strong diffusion. Panel (c) depicts the predicted log counts for the two species

(values <1% of the maximum density are omitted for visualization).

at a high resolution, but still requires some loss of fine-scale vari-
ation. Second, although computationally efficient due to working
with the sparse inverse-diffusion matrix, the approach is still more
computationally intensive than fitting a model without covariate dif-
fusion. Third, the model requires users to define covariate values
not just for the location of samples, but at all locations across a given
domain. This results in a more complex user interface than the re-
gression models typically used for SDMs and will therefore require
some consideration before integrating into GMRF- and TMB-based
SDM software, such as sdmTMB (Anderson et al., 2024) or tinyVAST
(Thorson et al., 2025).

Despite these drawbacks, we conclude that covariate diffusion
using the SPDE method is computationally efficient, statistically
performant and ecologically important for a wide range of species.
We therefore recommend that ecologists estimate non-local habitat
responses across the wide range of studies applying SDMs.
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