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ARTICLE INFO ABSTRACT

Keywords: Forest attribute maps are essential for supporting local decision-making regarding forest resource use. Such
Biomass map maps are produced by combining remote sensing and field data through various modeling approaches. When
Rem°telsen5‘“g mapping across large areas, spatial gaps in field data used for model training are common. Our study
Sentinel-2

R evaluates the performance of three methods—k-Nearest Neighbor (k-NN), Random Forests (RF), and Multi-
Missing reference data . . . .
Random forest Layer Perceptron (MLP)—for forest resource mapping across Norway, Sweden, and Finland in an experimental
NN setup with respect to availability of field data around the target area. Models were trained with sample plot
Multi-layer perceptron sizes (V) ranging from 100 to 3000. RF consistently produced the most accurate predictions in terms of relative

bias and RMSE. While spatial gaps in the training data (radius: 7-141 km) affected %RMSE of broad-leaved
above ground biomass (AGB), they had minimal impact on %RMSE of both local and country-level predictions
of total AGB and volume. For RF with N = 3000, %RMSE of total AGB ranged between 53%-55% in Finland
and Sweden, and 70%-72% in Norway across gap sizes. However, %bias increased for local predictions across
the whole study region with larger gaps: RF with N = 500 showed bias of —12%-12% (7 km gap) and
—17%-28% (78 km gap). Similarly, country-level %bias of total AGB for Norway increased from —1.7% to
—3.7% with larger gaps. In conclusion, spatial gaps in training data can significantly affect bias in predictions.
Therefore, forest attribute maps should always be accompanied by metadata describing the training data used.

1. Introduction Models are required for linking ground truth and remotely sensed
data. There are several different approaches that can be used ranging

Forests store huge carbon stocks, possess high climate mitigation from parametric models to non-parametric models, machine learning
potential (Hetemdki et al., 2022), and play an important role for methods and deep learning. One of the most popular and widely used
biodiversity (Hunault-Fontbonne and Eyvindson, 2023). Climate-smart method for large scale forest mapping in Europe is the k-Nearest
decision-making requires accurate and up-to-date information about Neighbor (k-NN) method (Tomppo and Halme, 2004; Chirici et al.,
local forest resources. High-resolution forest resources maps can be 2016). A key benefit, and one reason for the popularity of the k-NN

produced by combining remote sensing and field data available par-
ticularly from national forest inventories (NFIs) (e.g. Mékisara et al.,
2022; Nilsson et al., 2017; Hauglin et al.,, 2021). Due to proposed
EU regulations (e.g. COM, 2023b,a), there is an increasing need for
such maps also across countries, which brings new aspects to consider
in comparison to studies done more locally or nationally. This paper
focuses on how spatial gaps in the coverage of field plots used to train
various mapping models influence map accuracy. Such gaps are likely
when mapping is performed at large scales (Miettinen et al., 2025).

method is that consistent predictions can be straightforwardly obtained
simultaneously for all variables of interest. For example, seemingly
unrelated regression (SUR) (Fiebig, 2003) and Gaussian process regres-
sion (Rasmussen and Williams, 2005) also allow multivariate modeling,
but generally require a larger modeling effort. Machine learning tech-
niques, such as neural networks, boosted regression trees or random
forests (RF), are also widely used in remote sensing applications (e.g.
Lourenco, 2021; Pohjankukka et al., 2018; Hauglin et al., 2024). Some
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of these methods have been developed and implemented for the mul-
tivariate case, i.e., simultaneous modeling of multiple forest attributes.
In addition to the k-NN method, we tested multivariate RF (Ishwaran
et al., 2008) and Multi-Layer Perceptron (MLP) (Abadi et al., 2015), a
shallow neural network suitable to be used with satellite data. The set
of these three models represent commonly used approaches in forest
attribute mapping (e.g. Lourenco, 2021; Zhang et al., 2023).

Different modeling approaches have been compared in several stud-
ies. For example, Balazs et al. (2022) tested k-NN and different neural
networks for predicting volume of growing stock, stand mean height
and mean diameter, for each variable separably. In their study using
airborne laser scanning (ALS) and field data from Central Finland,
the neural networks outperformed the benchmark k-NN method by
a slight margin, and they called for further investigations, e.g., with
higher ALS point density. Moisen and Frescino (2002) compared several
approaches with satellite and NFI data from the United States and
found only little differences between them when using real data for
model training. Brosofske et al. (2014) also reviewed regression, k-NN,
artificial neural networks, decision trees, and ensembles such as RF and
found that none of these methods was superior for predicting forest
inventory attributes. Thus, there is a tendency to find little differences
between model performances. However, most studies compared the
models in local or national situations and with training data available
homogeneously across the study region.

Large area mapping of forest inventory attributes brings additional
challenges to the prediction methods used. While it would be preferable
that the field data available for model training are homogeneously
distributed in the region of interest, this may often not be the reality
and there may be areas (spatial gaps) with no ground truth data. Using
models to predict to such areas is a type of interpolation or extrapo-
lation, which is generally not recommendable. For example, Mitchard
et al. (2013) concluded that a good quality map requires good quality
field data drawn from across the spatial extent and ecological vari-
ability of the prediction area. Meyer and Pebesma (2021, 2022) also
stressed the spatial distribution of training data as a prerequisite for
applicable maps, see also discussion in Kangas et al. (2023). However,
using models trained with data from other regions is often the only
way to make predictions for areas that are missing training data. Thus,
the models are evidently used in this manner to produce large-scale
wall-to-wall maps (Kangas et al., 2018) and their performance should
be understood in this context.

The objective of this work was to compare different models for
the production of large-scale forest attribute maps. Our main aim was
to compare the performance of the tested methods with respect to
data availability in the vicinity of the target area. The models were
trained using varying numbers of the nearest available field plots,
allowing us to evaluate performance in relation to the amount of
training data. We also tested different sizes of areas without training
data and hypothesized that map accuracy would deteriorate as the size
of these areas increase. Furthermore, we expected that differences in
model performance observed in the previously mentioned studies could
become more pronounced under such conditions. We compared three
approaches, k-NN, RF, and MLP, all of which are able to produce consis-
tent predictions simultaneously for multiple forest attributes. We used
NFI field data and Sentinel-2 satellite mosaics from Norway, Sweden,
and Finland. The field data had a good coverage across the whole
Nordic region. This allowed us to construct artificial gaps and to use the
field data in the gaps to evaluate model performances. We evaluated
the model performance at country level as well as locally. The study
highlights that the quality of predictions decreases with regard to
prediction bias when interpolation or extrapolation is required.

2. Material
2.1. Field data

We used Norwegian, Swedish, and Finnish NFI plot level data from
years 2020-2021 (Fig. 1). The NFI plots in each country are distributed
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according to a probability sampling design (Sdrndal et al., 1992). The
main forest type in these countries is boreal forest in high, middle
and southern boreal subzones. Scots pine and Norway spruce are the
most dominant tree species. A total of 4701, 6482 (1360 clusters),
and 16 558 (3010 clusters) sample plots were available from Norway,
Sweden, and Finland, respectively. Response variables calculated for
sample plots were harmonized volume (m3/ha) and above ground
biomass (t/ha) of total growing stock, conifer and broad-leaved species.
Sample plot locations were available for modeling in one kilometer pre-
cision due to data policy restrictions. However, precise plot locations
were used to calculate remote sensing features.

The Norwegian NFI plots were fixed circular plots with a radius of
8.92 m and trees with a diameter at breast height (dbh) > 5 cm were
measured. Smaller trees were assessed at four circular subplots located
5 m from the plot center in the cardinal directions with a radius of
1.3 m (Breidenbach et al., 2020). For this study, sample plots whose
plot center was located inside forest and other wooded land by the
FAO’s definition (FAO, 2023) were available. The Norwegian sample
plots are positioned according to a sampling grid with different sizes in
three strata: 3 x 3 km in the productive lowland region, 3 x 9 km in
the mountain region, 9 X 9 km in the northern Finnmark region.

The Swedish NFI plots used in this study were concentric circular
plots and trees with a dbh > 10 cm were measured within a radius
of 7 m. Trees with 4 cm < dbh < 10 cm were measured on a 3.5 m
radius plot, and trees with a dbh < 4 cm were measured on two
0.5 m radius plots (Fridman et al., 2014). The criteria for Swedish
NFI sample plots to be included in our study was that at least half of
the plot’s area was within FAO’s forest land-use class. In the Swedish
NFI sample plots are located in rectangular clusters, whose side length
varies between 300 and 1800 m and the distance between sample plots
within the clusters varies between 300 and 600 m form south to north.
Clusters are distributed in 5 strata covering the entire country with
increasing sampling intensity from north to south and from higher to
lower elevations (Persson et al., 2017).

The Finnish NFI plots were concentric circular plots, trees with a
dbh > 9.5 cm were measured within a radius of 9 m, trees with 4.5 cm
< dbh < 9.5 cm were measured within a radius of 4 m, and smaller trees
with height >1.3 m from a relascope plot with factor 1.5 (Korhonen
et al., 2024). The inclusion criteria for Finnish sample plots was that
the plot’s center was within forest land according to FAO’s definition.
Additionally, plots within other forestry land defined by the Finnish
land-use/land-cover classification system were also included. The basis
of the sampling design was the grid of permanent clusters established in
1996. In this study 4 strata out of the 6 covering Finland was included,
as Northernmost Lapland and Aland were not sampled in 2020-2021.
Grid spacing was 12 km in southern Finland, 14 km in Central and
the southern part of Northern Finland, and 20 km in southern Lapland.
Between these already existing permanent clusters one temporary and
3 permanent clusters were additionally established and measured. The
number of sample plots per cluster was ranging from 8 to 11 and
distances of neighboring plot centers were between 250 m and 450 m.
Both, the number of plots per cluster and plot distances varied by
stratum (Korhonen et al., 2024).

Plot level volume and biomass calculations for all sample plots
were carried out using stem volume harmonization as described by
Gschwantner et al. (2019) to avoid discrepancies in growing stock
statistics between countries. Country-wise statistics of the field data are
shown in Table 1.

2.2. Remotely sensed data

Annual growing season cloud free Sentinel-2 composite images from
2020 and 2021 were used as remote sensing dataset. The image com-
positing was conducted with an approach developed by Terramonitor
and described in detail by Miettinen et al. (2021). To build snow-free
growing season composite images, imagery between 15th of June and
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Fig. 1. Approximate locations of NFI field plots (left), and total AGB map of the study region at 10 km resolution derived from field observations (right). The
background of the left figure features Sentinel-2 cloudless mosaic (EOX IT Services GmbH, 2020). Biomass was computed for each 10 km grid cell as the average

of the nearest 300 sample plots.

Table 1
Country-wise statistics of volume (m®/ha) and AGB (t/ha) of total growing
stock, conifers, and broad-leaved species (n: number of sample plots per
country).

Vtot Vcon Vbl AGBmt AGBcon AGBbl
Norway (n = 4701)
Mean 102.5 77.8 24.8 67.3 49.2 18.2
SD 111.8 107.6 40.9 67.2 63.1 30.2
Max 950.4 950.4 476.4 545.7 545.7 335.1
Sweden (n = 6482)
Mean 148.1 117.0 31.1 82.8 63.6 19.1
SD 123.7 113.0 64.1 60.2 54.9 33.8
Max 884.8 874.8 822.3 428.8 410.7 355.6
Finland (n = 16 558)
Mean 131.3 105.2 26.1 75.2 58.1 17.1
SD 103.9 95.6 44.8 55.9 49.4 28.6
Max 922.3 922.3 635.5 525.4 437.9 393.5

15th of September were used. The final composite image pixels were
weighted averages of the available cloud-free observations. The weights
of the observations were based mainly on haziness and shadows (Miet-
tinen et al., 2021). The final composite images included seven spectral
bands (B0O2 Blue 0.49 pm central wavelength, BO3 Green 0.56 pm, B04
Red 0.67 pm, BO5 Red Edge 1 0.71 pm, BO8 NIR 0.84 um, B11 SWIR
1.61 pm and SWIR 2.19 pm). These bands were selected based on earlier
results on optimal set of bands for forest variable prediction (Astola
et al., 2019; Miettinen et al., 2021). All bands were resampled to 10 m
spatial resolution using nearest neighbor resampling.

In addition to spectral bands, the composite images included a
quality band. The composite quality band was calculated per pixel
using the formula P =1 -[]/_, (1 — p;) where the probability of a good
observation, p;, was derived from the weight of observation i. High
composite quality band values indicate that the observations that were
available to create the composite image at the corresponding location
included at least one high quality observation (Miettinen et al., 2021).
The quality band was used to select the spectral vector for plots that

were covered by several images due to the overlap of adjacent Sentinel-
2 tiles. In case of multiple spectral vectors available for one plot, the
observation with the highest quality value was selected.

3. Methods
3.1. Sentinel-2 features

Sentinel-2 band values were calculated for each sample plot as area
weighted means of pixel values using the R package terra (Hijmans,
2024). Pixels overlapping a 5.64 m radius circle (covering an area of
100 m?) around sample plot centers were considered in the calcula-
tion, and pixel values were weighted by the proportion of the pixel
area within the circle (Contributors, 2024; Miettinen et al., 2025). In
addition to band-wise reflectance features, we explored the potential
benefits of incorporating features such as spectral band ratios and
vegetation indices. While we observed a slight improvement in the
relative root mean squared error (%RMSE) for broad-leaved forests,
the %RMSE values for all other response variables deteriorated. Based
on these findings, we decided to limit our feature set to reflectance
values, which provided a more balanced and consistent performance
across variables. This approach is also consistent with the methodol-
ogy used in the operational Multi-Source National Forest Inventory of
Finland (Mékisara et al., 2022).

3.2. Models

Modeling was carried out using three different methods: k-Nearest
Neighbor, Multivariate Random Forest, and Multilayer Perceptron.

3.2.1. k-Nearest Neighbor (k-NN)

The k-Nearest Neighbor method has been widely used in forest
inventory applications (Chirici et al., 2016). In k-NN, a prediction to a
target unit is computed as a weighted average of the response variable
values of the k nearest training data units. The k nearest units are
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determined by a distance metric in the g-dimensional feature space,
with g equal to the number of features. In this study, the features were
equal to the Sentinel-2 spectral band values described in Section 2.2,
the distance metric was the Euclidean distance, and equal weights were
given to all seven features. Calculations were carried out in R statistical
software using the nabor package (Elseberg et al., 2012). Utilizing the
Finnish field dataset, we evaluated various k values (3, 4, 5, and 6)
by predicting the response variables and choosing the k value that
minimized the total RMSE score. The best fit for k was found to be
5 which was used in all analysis that follow.

3.2.2. Multivariate Random Forest (RF)

Random Forest is a method from the family of ensemble learning.
Random Forests are an ensemble of bagged decision trees introduced
by Breiman (1996). We utilized the R package randomForestSRC (Ish-
waran and Kogalur, 2025), which enables the application of Random
Forests for multivariate regression tasks. The response variable given to
randomForestSRC in our study was six-dimensional including volume
and AGB of total growing stock, conifers and broad-leaved species. The
explanatory variables were the seven features, i.e., Sentinel-2 bands.
Similarly to the k-NN method, we used the Finnish dataset to test values
ranging from 1 to 7 for the number of variables randomly selected at
each node (mtry) and values 50, 100 and 300 for the number of trees in
the forest (ntree). The values tested for ntree were relatively low, which
was a conscious choice due to the computationally intensive nature of
the study design. As a result of the test runs, the value 2 was chosen
for mtry, and 100 for ntree.

3.2.3. Multi-Layer Perceptron (MLP)

MLPs are simple, fully connected neural networks. In this study
MLPs were implemented in Python language using TensorFlow (Abadi
et al., 2015). MLPs included a single hidden layer, with the number of
neurons matching the count of Sentinel-2 bands utilized. MLPs were set
to minimize mean squared error (MSE) of the response variables. The
initial learning rate of 0.01 was lowered after each epoch exponentially
in a way that it was 0.001 after the maximum number of epochs. Epoch
refers to one complete pass through the entire training dataset. The
training data was fed to the MLPs in minibatches of 32. The batch size
was selected after testing the values 8, 16, 32, and 64 on the Finnish
data. Other parameters like number of layers, number of neurons, and
learning rate were not tuned due to the high number of individual
models to be trained (see Section 3.3). We aimed for a design that is
light-weight, but is able to compete with the other two methods.

Since neural networks are prone to overfitting, we withheld 20%
of the training data for model validation during training. After each
training iteration the MSEs of predicted response variables were calcu-
lated using the initially withheld data. Training was stopped when the
sum of validation MSEs did not improve after 30 validation rounds.
The best performing model weights in terms of validation MSE were
saved. MLPs were trained for 200 epochs with at least 1000 sample
plots in the training dataset, and below 1000 plots for 400 epochs.
During one training epoch the training data was fed to the MLP in
minibatches (training step). Model weights were updated between each
training step. At the end of each epoch a validation round was carried
out and the model was saved if validation results were better than in
earlier epochs. In order to obtain consistent results for all response
variables, conifer and broad-leaved biomass predictions were derived
within the MLPs from conifer and broad-leaved volume predictions by
means of least squares linear regression models. Models for conifer
and broad-leaved species were fitted separately on the training data
before training/validation split with biomass as response and volume
as explanatory variable. Parameters of the regression models were
then used within the MLPs to calculate biomass predictions for conifer
and broad-leaved species from volume predictions, and total biomass
predictions were calculated by the sum of these. Finally all response
variable predictions were joined and error metrics calculated. This
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approach was found to be suitable due to the high correlation between
AGB and volume. In some cases MLPs did not converge likely due to
small training sample size. In such cases model fitting was repeated
with randomly re-initialized model weights.

3.3. Experimental setup

To evaluate model performance under varying conditions of training
data availability, we designed an experiment using a 10 km x 10 km
grid, aligned with the INSPIRE grid and using the ETRS89 Lambert
Azimuthal Equal Area coordinate reference system. Each 10 km x 10
km grid cell represents a localized prediction area for which a separate
model is fitted. The 10 km grid was chosen to allow the model fit to
adapt smoothly to local conditions, while balancing spatial resolution
with field data availability and computational feasibility. Importantly,
sample plots located within a given grid cell were excluded from the
training data used to fit the model for that cell. Instead, these plots
were reserved for validation, allowing us to assess prediction accuracy
independently of the training data. This design simulates the scenario
where field data are unavailable within the target mapping area, and
models must rely on data from surrounding regions. For model training,
we selected the N nearest sample plots located outside a circular gap
centered on each grid cell. The radius R of this gap was defined as
R = V/(2B2)/2, where B is a multiple of the grid cell side length (10,
30, 50, 110, 150, 200 km), resulting in approximate radii of 7, 21,
35, 78, 106, and 141 km. This setup allowed us to test the impact
of increasing distances between training data and prediction locations.
We trained models using six different values of N (100, 200, 300,
500, 1000, and 3000 plots). With each value of N, we considered
each value of R, resulting in 36 training configurations in total. This
factorial design allowed us to isolate the effects of spatial gap size
from the effects of training sample size and to evaluate their individual
and combined influence on model performance. For each configuration,
localized models were fitted using k-NN, RF, and MLP methods. In total,
over 206,000 models were trained per method across 5736 grid cells.
An illustration of the experimental design using real data is provided
in Figs. 2 and 3.

3.4. Evaluation of model performances and validation metric maps

Each fitted model was used to predict forest attributes at the plot
locations within its corresponding 10 km x 10 km grid cell. These plots,
which were excluded from model training (see Section 3.3), served as
independent validation data. This approach allowed us to assess model
performance in a realistic extrapolation scenario, where predictions are
made for areas lacking local training data. For each sample plot in the
study region (Fig. 1), we obtained both the observed value y; and the
predicted value y; for all response variables and modeling methods.
Validation metrics — relative RMSE and relative bias — were calculated
using the following formulas:

N, -
Z,-:l (v = 9)?
N,

a

9%RMSE = L )
y

N, N
1 Z,-=1(yi =)
y N,

%bias =

@

a

where N, is the number of validation plots in the area and y is the
mean of the observed values. We computed %RMSE and %bias at
country level, at sub-country level areas in the three countries, and for
neighborhoods of all 10 km x 10 km grid cells. Here the neighborhood
of a grid cell was the area covered by 300 sample plots nearest to
the grid cell center, i.e. the validation metrics for each grid cell were
computed from the 300 plots. This multi-scale evaluation enabled us to
assess both general model performance and localized prediction accu-
racy, highlighting how spatial gaps in training data influence mapping
outcomes.
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Fig. 4. %bias of AGB of total growing stock (a), conifers (b) and broad-leaved species (c) for Finland, Sweden, and Norway with the number of training plots

(N) equal to 500 and 3000.

4. Results

Below we describe in detail the simulation study results. Figures

S.1-S.10 can be found in the Supplementary Material.

4.1. Country-wise results

We first inspected country-specific %bias and %RMSE with respect
to the number of sample plots used for training N (Supplementary
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Material Figures S.1, S.2, S.3, and S.4). While the other methods were
less affected, N had a significant impact on MLP predictions. With
increasing N %bias steeply decreased in absolute terms. The same
effect could be observed for %RMSE particularly in the case of broad-
leaved AGB and volume (Figure S.2c and S.4c). In most of these cases
MLP achieved %bias and %RMSE scores comparable to k-NN and RF
with N = 500 and above. Based on these results we have selected
N =500 and 3000 to further examine the impact of spatial gap size on
model performances.

Results of %bias and %RMSE for total, conifer, and broad-leaved
AGB with respect to spatial gap radius R are shown in Figs. 4 and
5. RF and k-NN led to similar %bias for total and conifer AGB. MLP
predictions were the most biased, regardless of R and for all countries.
RF models produced the least biased broad-leaved AGB predictions.
In Finland and Sweden R had no significant impact on the %bias
of biomass variables. However, in Norway AGB predictions’ %bias
increased in absolute terms with increasing spatial gap size. Regarding
the volume predictions, there were no significant differences between
the tested methods for total and conifer volume predictions (Figure
S.5). However, for broad-leaved volume, RF and MLP (with N = 3000)
performed markedly better than k-NN. R had no visible effect on the
results.

In terms of %RMSE, RF produced the best results throughout
biomass variables and countries with MLP being the second best
method (with N = 3000) (Fig. 5). R had a significant impact on
%RMSE only in the case of broad-leaved AGB, resulting in higher
%RMSE values with increasing gap radius in all countries. %RMSE of
volume predictions showed a very similar pattern compared to AGB
(Figure S.6). For both broad-leaved biomass and volume, MLP produced
significantly more accurate predictions in terms of %RMSE with N =
3000 compared to N = 500.

4.2. Local results

In addition to country-wise results, we inspected the spatial distri-
butions of %RMSE and %bias across the whole study region by raster
maps. Recall that these evaluation metric values were computed from
the sample plot data, which were not used for model training (see
Section 3.4). We applied adaptive smoothing of the metrics with the
%bias and %RMSE computed for each grid cell from the nearest 300
sample plots. In the following, we present AGB maps created using RF
models. Corresponding maps produced by k-NN (Figures S.7 and S.8)
and MLP (Figures S.9 and S.10) can be found in the Supplementary
Material. The k-NN and MLP maps produced with different R and N
values exhibited very similar patterns to RF maps.

Raster maps show high variation between and within countries in
terms of local %RMSE with largest values found in Norway (Fig. 6). The
effects of the number of plots used for training the models, N (top vs.
bottom of Fig. 6) and the spatial gap radius R (left vs. right of Fig. 6) on
the %RMSEs were minor: the minimum and maximum values of all four
maps of Fig. 6 were between 40%-42% and 94%-98%, respectively.

Maps of %bias also display a similar spatial pattern regardless of
N and R (Fig. 7). However, both N and R had a significant effect
on the magnitude of variation. With R ~ 78 km and N = 3000 (Fig.
7(b)), %bias ranged from —21% to 27%, whereas in case of R ~ 7 km
and N = 500 (Fig. 7(c)) the value range was reduced to —12%-12%.
When comparing maps using other parameter combinations to the case
of R~ 7 km and N = 500 (Fig. 7(c)), one can see regional differences
on how N and R affected %bias and %RMSE. Higher number of sample
plots used for model training with the same spatial gap size (Fig. 7(a))
produced more biased results than the increased spatial gap size and
the same number of training plots in Norway and Sweden (Fig. 7(d)).
On the other hand, increasing the spatial gap radius led to higher %bias
in Finland than with increased N. %bias values ranged from —18% to
24% and from —17% to 28% for maps shown in Figs. 7(a) and 7(d),
respectively.
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We also investigated some of the bias-hotspots visible in Fig. 7(b).
Our hypothesis was that the explanation for high positive or negative
%bias was the difference in the amount of biomass at these locations
and the surrounding area further away from them. Fig. 8 shows three
hotspots with high positive %bias (from 26% to 27%) and correspond-
ing distributions of observed total AGB calculated from the nearest 100,
and 3000 sample plots excluding the nearest 100. Fig. 9 on the other
hand displays three locations with high negative %bias (from —20%
to —16%) and corresponding distribution curves. Hotspot locations are
also displayed over observed total AGB maps for reference. As expected,
the areas with high positive %bias had less plots with high biomass,
while the biomass distribution in areas with high negative %bias was
shifted towards larger values in comparison to the 3000 reference plots.
This at least partly explains why the predictions were too high in the
former and too low in the latter case.

We further inspected the %biases of the tested methods in the neigh-
borhood of high positive and negative %bias hotspot areas, respectively
(Figs. 10 and 11). Validation plots were selected around the locations
displayed in Figs. 8(a) and 9(a), numbers 1, 2, and 3 corresponding to
the locations in Norway, Sweden, and Finland, respectively. This way
we were able to compare the performances of the methods locally. The
results indicate that the spatial gap radius (R) had a significant effect on
the %bias of estimates with the number of validation plots being 100 or
300. On the other hand, the size of spatial gaps had a less marked effect
when tested with 3000 validation sample plots. Furthermore, estimates
produced using models trained with 500 sample plots were less biased
compared to models with N = 3000. Generally, we can say that there
was no clearly superior method in terms of %bias when looking at the
results of bias-hotspot areas.

5. Discussion and conclusions

The aim of this study was to investigate how missingness of field
data for training models affects map accuracy and to compare the
performance of k-NN, RF and MLP methods when such missingness
occurs. Map accuracy was expected to decrease when no field data
were available in the neighborhood of the area of interest, and we
also expected to observe larger differences between the methods in
such cases. As expected, increasing the radius of spatial gaps, i.e. the
area with no field data available for training the models for mapping,
generally led to decreased map accuracy in terms of %bias. The effect
of the gap radius was minor in terms of %RMSE for the total AGB
and volume predictions. However, broad-leaved predictions, which had
higher %RMSEs overall, further suffered from increasing spatial gaps
(Figs. 5 and S.6). Larger effects were observed in terms of %bias of
AGB. Here, the country-level %bias clearly increased with respect to
the size of spatial gaps in Norway (Fig. 4). Further, we could see that
more locally the magnitude of %bias increased with spatial gaps across
the whole studied Nordic region (Fig. 7). We did not find any clear
differences between the tested modeling approaches’ behavior with
respect to the spatial gap radius. However, RF was generally the best
approach both in terms of %RMSE and %bias and regardless of the
number of training plots and the radius of spatial gap used.

The amount of training data N also affected the results. While k-NN
and RF were not that sensitive to N in terms of country-level %RMSE
and %bias, MLP required a large number of field plots for training (in
our study N = 3000). This could be expected as sufficient amount of
training data is needed for neural networks to converge (Alwosheel
et al,, 2018; Baum and Haussler, 1988). Additionally, MLP showed
an unexpected behavior: MLP’s volume predictions were less biased
than AGB predictions (Figs. S.5a vs. 4(a)). This could be due to the
way AGB predictions were calculated from volume predictions using
linear models, even though the fit of the linear models was rather good
(R% > 0.95 on country level). Future studies could test other possible
ways to produce consistent predictions with MLP simultaneously for a
set of forest attributes.
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Fig. 5. %RMSE of AGB of total growing stock (a), conifers (b) and broad-leaved species (c) for Finland, Sweden, and Norway with the number of training plots
(N) equal to 500 and 3000.
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Fig. 6. Maps showing spatial variation of %RMSE at 10 km resolution. Pixel values were derived from RF models that were trained using different combinations
of spatial gap radius (R) and number of training plots (V). Note: the applied value range of 39%-98% is only for visualization purposes, actual range of pixel

values of individual maps might differ.

In our country-wise comparison, Norway’s results clearly stood out
from those of Finland and Sweden. Overall, %RMSE by RF was larger in
Norway than in Sweden and Finland: the country-level %RMSE values
for total AGB were between 70% and 72% for Norway, and 53%-55%
for Sweden and Finland. This was partly attributed to the lower av-

erage volume and AGB values in Norway (see Table 1), and similar
differences between the countries have been reported before (Puliti
et al., 2020; Persson et al., 2021; Pitkdnen et al., 2024). Absolute RMSE
values for AGB were in comparable ranges across all countries. For
example, absolute RMSE results for total AGB with R ~ 7 km and
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values of individual maps might differ.

N = 500 were 41.0, 45.1, and 47.0 t/ha for Finland, Sweden, and
Norway, respectively.

While we are not aware of publications that would have consid-
ered spatial gaps in the training data and be both thematically and
geographically relevant, there are several studies that have reported
%RMSE results in parts of our study region. Our mean %RMSE results

10

align well with the studies from the literature in Finland, Sweden and
Norway. All numerical results of the present study reported below are
for spatial gap size of 7 km.

In Finland, Pitkédnen et al. (2024) estimated AGB and volume us-
ing various mosaicing techniques of Sentinel-2 imagery and the k-NN
method over approximately 75 000 km?2. Their best approach yielded
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Fig. 8. Map indicating high %bias hotspots (method: RF, R ~ 78 km, and N = 3000) (a), hotspot locations over map of observed total AGB (b), and distributions
of observed total AGB for each hotspot using the nearest 100 and 3000 sample plots (c).

a %RMSE of 56.2% for total volume of growing stock, whereas in our for forest variable estimation using the k-NN method in Finland and
study, k-NN produced a relative RMSE of 61.1% with N = 3000 (56.5% reported %RMSEs of 61.0% for total volume and 162.1% for volume of
using RF). For deciduous species, their best %RMSE was 131.4%, broad-leaved species, using bands 1-7 of Landsat 8 imagery.

while our k-NN model resulted in 148.3% with N = 3000 (137.8% In Norway, Puliti et al. (2020) reported a %RMSE of 80.7% for total
using RF). Tuominen et al. (2017) tested various feature combinations AGB in Norway when using only Sentinel-2 reflectance values and RF.

11



A. Balazs et al. International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105104

r63.0°N

total AGB
114 t/ha

25t/ha

57.0°N-
F57.0°N 100 200 km
—
5.0°E 10.0°E 20.0°E 25.0°E
1 3
0.007|
0.006|
0.005|
% 0.004] ==3000 plots
=100 plots

0.003]

0.002|

0.001

00 100 200 300 400 500 V] 100 200 300

AGB (t/ha) AGB (t/ha) AGB (t/ha)

100 200 300 400

()

Fig. 9. Map indicating low %bias hotspots (method: RF, R ~ 78 km, and N = 3000) (a), hotspot locations over map of observed total AGB (b), and distributions
of observed AGB for each hotspot using the nearest 100 and 3000 sample plots (c).

By combining Sentinel-2 data with a 2-meter-resolution canopy height of —2.8%, slightly higher (in absolute terms) than the —1.7% observed
model derived from ArcticDEM imagery, they achieved a reduced RMSE in our study.

of 72.8%, which is consistent with our RF-based country-level result for Further, a regional study by Fazakas et al. (1999) in central Swe-
Norway (70.1% with N = 3000). The authors also documented a %bias den, using only Landsat TM reflectance values and the k-NN method,
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Fig. 10. %bias of total AGB using various amounts of validation plots around high positive %bias hotspot areas in Norway, Sweden, and Finland with respect

to spatial gap radius (R) and with N =500 or N = 3000.

resulted in approximately 66% relative RMSE for both total AGB and
volume, validated with Swedish NFI plots. In our study, %RMSE scores
for Sweden using k-NN with N = 500 were 57.6% and 66.7% for total
AGB and volume, respectively. In a study covering 70% of Sweden’s
forest area, Persson et al. (2021) combined TanDEM-X and Sentinel-2
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data to predict tree volume and AGB using k-NN. They reported a plot-
level %RMSE of 68.0% for total volume using Sentinel-2 data alone,
which closely matches our result of 66.7%. When combining TanDEM-
X and Sentinel-2 data, %RMSE decreased to 59.3%, indicating that the
use of multiple sensors can enhance prediction accuracy.
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Fig. 11. %bias of total AGB using various amounts of validation plots around high negative %bias hotspot areas in Norway, Sweden, and Finland with respect

to spatial gap radius (R) and with N =500 or N = 3000.

Besides %RMSE being highest in Norway, the effect of missingness
of field plots in the vicinity of the area where the predictions were
produced had the highest effect on %bias in Norway (Fig. 4). This
likely results from more abrupt changes in the landscape in Norway
in comparison to that in Sweden and Finland. Furthermore, due to the

shape of Norway, in case of bigger gap sizes the field data used for
model training was partly dominated by Swedish sample plots, which
tend to have higher biomass than Norwegian plots, given the same
features. In our study, always the nearest N sample plots were used
for training the models, with the specified spatial gap. Future research
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may investigate if restricting the plot selection by other meaningful
conditions, such as altitude, could make them more representative for
the targeted conditions.

Regarding local results, it is interesting to note how similar the local
%RMSEs of total biomass behaved with respect to both the number
of training plots (N) and the gap radius (R) (Fig. 6). Possibly, even
if the most localized collection of plots is used for training, they extend
spatially far enough to include the “full range” of variation, i.e. the
amount of field data is sufficient even in this case. More generally, if
local conditions are very variable, decreasing the radius for selecting
plots may not help much for minimizing the %RMSE. On the other
hand, the relative local bias for different N and R differed substantially
from each other (Fig. 7). The smallest %bias was observed when a
small number of nearby plots was used (Fig. 7(c)) - this was the case
even in the most “difficult” areas with high %RMSE. This may suggest
that the biggest advantage of localizing the selection is to get better
estimates on the distribution and the mean value, while not helping
much at the level of a single plot or in small area estimation. Another
noteworthy aspect involves the areas where biomass was substantially
over- or underestimated (Figs. 8 and 9). Our study shows that notably
higher biases often arise at biomass gradients: negative biases occur
in high-biomass areas adjacent to lower biomass, while positive biases
appear where low-biomass zones are surrounded by higher biomass.
When either the spatial exclusion gap is extended, or N is increased, the
distribution of the training plots shifts further from the characteristics
of the target region, and results become more biased (Fig. 7).

Our study demonstrated that spatial gaps in field data and the result-
ing need for interpolation or extrapolation can reduce map accuracy,
particularly by increasing %bias. This outcome was expected and aligns
with previous studies that have already called for methods to esti-
mate the area of applicability of spatial prediction models (Meyer and
Pebesma, 2021, 2022). Therefore, it would be preferable to have train-
ing data available from the entire target area. As this evidently does not
always hold, map products should always include metadata describing
the spatial coverage of the field data used in their production.
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