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 A B S T R A C T

Forest attribute maps are essential for supporting local decision-making regarding forest resource use. Such 
maps are produced by combining remote sensing and field data through various modeling approaches. When 
mapping across large areas, spatial gaps in field data used for model training are common. Our study 
evaluates the performance of three methods—𝑘-Nearest Neighbor (𝑘-NN), Random Forests (RF), and Multi-
Layer Perceptron (MLP)—for forest resource mapping across Norway, Sweden, and Finland in an experimental 
setup with respect to availability of field data around the target area. Models were trained with sample plot 
sizes (𝑁) ranging from 100 to 3000. RF consistently produced the most accurate predictions in terms of relative 
bias and RMSE. While spatial gaps in the training data (radius: 7–141 km) affected %RMSE of broad-leaved 
above ground biomass (AGB), they had minimal impact on %RMSE of both local and country-level predictions 
of total AGB and volume. For RF with 𝑁 = 3000, %RMSE of total AGB ranged between 53%–55% in Finland 
and Sweden, and 70%–72% in Norway across gap sizes. However, %bias increased for local predictions across 
the whole study region with larger gaps: RF with 𝑁 = 500 showed bias of −12%–12% (7 km gap) and 
−17%–28% (78 km gap). Similarly, country-level %bias of total AGB for Norway increased from −1.7% to 
−3.7% with larger gaps. In conclusion, spatial gaps in training data can significantly affect bias in predictions. 
Therefore, forest attribute maps should always be accompanied by metadata describing the training data used.
1. Introduction

Forests store huge carbon stocks, possess high climate mitigation 
potential (Hetemäki et al., 2022), and play an important role for 
biodiversity (Hunault-Fontbonne and Eyvindson, 2023). Climate-smart 
decision-making requires accurate and up-to-date information about 
local forest resources. High-resolution forest resources maps can be 
produced by combining remote sensing and field data available par-
ticularly from national forest inventories (NFIs) (e.g. Mäkisara et al., 
2022; Nilsson et al., 2017; Hauglin et al., 2021). Due to proposed 
EU regulations (e.g. COM, 2023b,a), there is an increasing need for 
such maps also across countries, which brings new aspects to consider 
in comparison to studies done more locally or nationally. This paper 
focuses on how spatial gaps in the coverage of field plots used to train 
various mapping models influence map accuracy. Such gaps are likely 
when mapping is performed at large scales (Miettinen et al., 2025).
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Models are required for linking ground truth and remotely sensed 
data. There are several different approaches that can be used ranging 
from parametric models to non-parametric models, machine learning 
methods and deep learning. One of the most popular and widely used 
method for large scale forest mapping in Europe is the 𝑘-Nearest 
Neighbor (𝑘-NN) method (Tomppo and Halme, 2004; Chirici et al., 
2016). A key benefit, and one reason for the popularity of the 𝑘-NN 
method is that consistent predictions can be straightforwardly obtained 
simultaneously for all variables of interest. For example, seemingly 
unrelated regression (SUR) (Fiebig, 2003) and Gaussian process regres-
sion (Rasmussen and Williams, 2005) also allow multivariate modeling, 
but generally require a larger modeling effort. Machine learning tech-
niques, such as neural networks, boosted regression trees or random 
forests (RF), are also widely used in remote sensing applications (e.g. 
Lourenço, 2021; Pohjankukka et al., 2018; Hauglin et al., 2024). Some 
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of these methods have been developed and implemented for the mul-
tivariate case, i.e., simultaneous modeling of multiple forest attributes. 
In addition to the 𝑘-NN method, we tested multivariate RF (Ishwaran 
et al., 2008) and Multi-Layer Perceptron (MLP) (Abadi et al., 2015), a 
shallow neural network suitable to be used with satellite data. The set 
of these three models represent commonly used approaches in forest 
attribute mapping (e.g. Lourenço, 2021; Zhang et al., 2023).

Different modeling approaches have been compared in several stud-
ies. For example, Balazs et al. (2022) tested 𝑘-NN and different neural 
networks for predicting volume of growing stock, stand mean height 
and mean diameter, for each variable separably. In their study using 
airborne laser scanning (ALS) and field data from Central Finland, 
the neural networks outperformed the benchmark 𝑘-NN method by 
a slight margin, and they called for further investigations, e.g., with 
higher ALS point density. Moisen and Frescino (2002) compared several 
approaches with satellite and NFI data from the United States and 
found only little differences between them when using real data for 
model training. Brosofske et al. (2014) also reviewed regression, 𝑘-NN, 
artificial neural networks, decision trees, and ensembles such as RF and 
found that none of these methods was superior for predicting forest 
inventory attributes. Thus, there is a tendency to find little differences 
between model performances. However, most studies compared the 
models in local or national situations and with training data available 
homogeneously across the study region.

Large area mapping of forest inventory attributes brings additional 
challenges to the prediction methods used. While it would be preferable 
that the field data available for model training are homogeneously 
distributed in the region of interest, this may often not be the reality 
and there may be areas (spatial gaps) with no ground truth data. Using 
models to predict to such areas is a type of interpolation or extrapo-
lation, which is generally not recommendable. For example, Mitchard 
et al. (2013) concluded that a good quality map requires good quality 
field data drawn from across the spatial extent and ecological vari-
ability of the prediction area. Meyer and Pebesma (2021, 2022) also 
stressed the spatial distribution of training data as a prerequisite for 
applicable maps, see also discussion in Kangas et al. (2023). However, 
using models trained with data from other regions is often the only 
way to make predictions for areas that are missing training data. Thus, 
the models are evidently used in this manner to produce large-scale 
wall-to-wall maps (Kangas et al., 2018) and their performance should 
be understood in this context.

The objective of this work was to compare different models for 
the production of large-scale forest attribute maps. Our main aim was 
to compare the performance of the tested methods with respect to 
data availability in the vicinity of the target area. The models were 
trained using varying numbers of the nearest available field plots, 
allowing us to evaluate performance in relation to the amount of 
training data. We also tested different sizes of areas without training 
data and hypothesized that map accuracy would deteriorate as the size 
of these areas increase. Furthermore, we expected that differences in 
model performance observed in the previously mentioned studies could 
become more pronounced under such conditions. We compared three 
approaches, 𝑘-NN, RF, and MLP, all of which are able to produce consis-
tent predictions simultaneously for multiple forest attributes. We used 
NFI field data and Sentinel-2 satellite mosaics from Norway, Sweden, 
and Finland. The field data had a good coverage across the whole 
Nordic region. This allowed us to construct artificial gaps and to use the 
field data in the gaps to evaluate model performances. We evaluated 
the model performance at country level as well as locally. The study 
highlights that the quality of predictions decreases with regard to 
prediction bias when interpolation or extrapolation is required.

2. Material

2.1. Field data

We used Norwegian, Swedish, and Finnish NFI plot level data from 
years 2020–2021 (Fig.  1). The NFI plots in each country are distributed 
2 
according to a probability sampling design (Särndal et al., 1992). The 
main forest type in these countries is boreal forest in high, middle 
and southern boreal subzones. Scots pine and Norway spruce are the 
most dominant tree species. A total of 4701, 6482 (1360 clusters), 
and 16558 (3010 clusters) sample plots were available from Norway, 
Sweden, and Finland, respectively. Response variables calculated for 
sample plots were harmonized volume (m3/ha) and above ground 
biomass (t/ha) of total growing stock, conifer and broad-leaved species. 
Sample plot locations were available for modeling in one kilometer pre-
cision due to data policy restrictions. However, precise plot locations 
were used to calculate remote sensing features.

The Norwegian NFI plots were fixed circular plots with a radius of 
8.92 m and trees with a diameter at breast height (dbh) ≥ 5 cm were 
measured. Smaller trees were assessed at four circular subplots located 
5 m from the plot center in the cardinal directions with a radius of 
1.3 m (Breidenbach et al., 2020). For this study, sample plots whose 
plot center was located inside forest and other wooded land by the 
FAO’s definition (FAO, 2023) were available. The Norwegian sample 
plots are positioned according to a sampling grid with different sizes in 
three strata: 3 × 3 km in the productive lowland region, 3 × 9 km in 
the mountain region, 9 × 9 km in the northern Finnmark region.

The Swedish NFI plots used in this study were concentric circular 
plots and trees with a dbh ≥ 10 cm were measured within a radius 
of 7 m. Trees with 4 cm ≤ dbh < 10 cm were measured on a 3.5 m 
radius plot, and trees with a dbh < 4 cm were measured on two 
0.5 m radius plots (Fridman et al., 2014). The criteria for Swedish 
NFI sample plots to be included in our study was that at least half of 
the plot’s area was within FAO’s forest land-use class. In the Swedish 
NFI sample plots are located in rectangular clusters, whose side length 
varies between 300 and 1800 m and the distance between sample plots 
within the clusters varies between 300 and 600 m form south to north. 
Clusters are distributed in 5 strata covering the entire country with 
increasing sampling intensity from north to south and from higher to 
lower elevations (Persson et al., 2017).

The Finnish NFI plots were concentric circular plots, trees with a 
dbh ≥ 9.5 cm were measured within a radius of 9 m, trees with 4.5 cm 
≤ dbh < 9.5 cm were measured within a radius of 4 m, and smaller trees 
with height >1.3 m from a relascope plot with factor 1.5 (Korhonen 
et al., 2024). The inclusion criteria for Finnish sample plots was that 
the plot’s center was within forest land according to FAO’s definition. 
Additionally, plots within other forestry land defined by the Finnish 
land-use/land-cover classification system were also included. The basis 
of the sampling design was the grid of permanent clusters established in 
1996. In this study 4 strata out of the 6 covering Finland was included, 
as Northernmost Lapland and Åland were not sampled in 2020–2021. 
Grid spacing was 12 km in southern Finland, 14 km in Central and 
the southern part of Northern Finland, and 20 km in southern Lapland. 
Between these already existing permanent clusters one temporary and 
3 permanent clusters were additionally established and measured. The 
number of sample plots per cluster was ranging from 8 to 11 and 
distances of neighboring plot centers were between 250 m and 450 m. 
Both, the number of plots per cluster and plot distances varied by 
stratum (Korhonen et al., 2024).

Plot level volume and biomass calculations for all sample plots 
were carried out using stem volume harmonization as described by
Gschwantner et al. (2019) to avoid discrepancies in growing stock 
statistics between countries. Country-wise statistics of the field data are 
shown in Table  1.

2.2. Remotely sensed data

Annual growing season cloud free Sentinel-2 composite images from 
2020 and 2021 were used as remote sensing dataset. The image com-
positing was conducted with an approach developed by Terramonitor 
and described in detail by Miettinen et al. (2021). To build snow-free 
growing season composite images, imagery between 15th of June and 
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Fig. 1. Approximate locations of NFI field plots (left), and total AGB map of the study region at 10 km resolution derived from field observations (right). The 
background of the left figure features Sentinel-2 cloudless mosaic (EOX IT Services GmbH, 2020). Biomass was computed for each 10 km grid cell as the average 
of the nearest 300 sample plots.
Table 1
Country-wise statistics of volume (m3/ha) and AGB (t/ha) of total growing 
stock, conifers, and broad-leaved species (𝑛: number of sample plots per 
country).
 Vtot Vcon Vbl AGBtot AGBcon AGBbl
 Norway (𝑛 = 4701)  
 Mean 102.5 77.8 24.8 67.3 49.2 18.2 
 SD 111.8 107.6 40.9 67.2 63.1 30.2 
 Max 950.4 950.4 476.4 545.7 545.7 335.1 
 Sweden (𝑛 = 6482)  
 Mean 148.1 117.0 31.1 82.8 63.6 19.1 
 SD 123.7 113.0 64.1 60.2 54.9 33.8 
 Max 884.8 874.8 822.3 428.8 410.7 355.6 
 Finland (𝑛 = 16558)  
 Mean 131.3 105.2 26.1 75.2 58.1 17.1 
 SD 103.9 95.6 44.8 55.9 49.4 28.6 
 Max 922.3 922.3 635.5 525.4 437.9 393.5 

15th of September were used. The final composite image pixels were 
weighted averages of the available cloud-free observations. The weights 
of the observations were based mainly on haziness and shadows (Miet-
tinen et al., 2021). The final composite images included seven spectral 
bands (B02 Blue 0.49 μm central wavelength, B03 Green 0.56 μm, B04 
Red 0.67 μm, B05 Red Edge 1 0.71 μm, B08 NIR 0.84 μm, B11 SWIR 
1.61 μm and SWIR 2.19 μm). These bands were selected based on earlier 
results on optimal set of bands for forest variable prediction (Astola 
et al., 2019; Miettinen et al., 2021). All bands were resampled to 10 m 
spatial resolution using nearest neighbor resampling.

In addition to spectral bands, the composite images included a 
quality band. The composite quality band was calculated per pixel 
using the formula 𝑃 = 1−∏𝑛

𝑖=1(1− 𝑝𝑖) where the probability of a good 
observation, 𝑝𝑖, was derived from the weight of observation 𝑖. High 
composite quality band values indicate that the observations that were 
available to create the composite image at the corresponding location 
included at least one high quality observation (Miettinen et al., 2021). 
The quality band was used to select the spectral vector for plots that 
3 
were covered by several images due to the overlap of adjacent Sentinel-
2 tiles. In case of multiple spectral vectors available for one plot, the 
observation with the highest quality value was selected.

3. Methods

3.1. Sentinel-2 features

Sentinel-2 band values were calculated for each sample plot as area 
weighted means of pixel values using the R package terra (Hijmans, 
2024). Pixels overlapping a 5.64 m radius circle (covering an area of 
100 m2) around sample plot centers were considered in the calcula-
tion, and pixel values were weighted by the proportion of the pixel 
area within the circle (Contributors, 2024; Miettinen et al., 2025). In 
addition to band-wise reflectance features, we explored the potential 
benefits of incorporating features such as spectral band ratios and 
vegetation indices. While we observed a slight improvement in the 
relative root mean squared error (%RMSE) for broad-leaved forests, 
the %RMSE values for all other response variables deteriorated. Based 
on these findings, we decided to limit our feature set to reflectance 
values, which provided a more balanced and consistent performance 
across variables. This approach is also consistent with the methodol-
ogy used in the operational Multi-Source National Forest Inventory of 
Finland (Mäkisara et al., 2022).

3.2. Models

Modeling was carried out using three different methods: 𝑘-Nearest 
Neighbor, Multivariate Random Forest, and Multilayer Perceptron.

3.2.1. 𝑘-Nearest Neighbor (𝑘-NN)
The 𝑘-Nearest Neighbor method has been widely used in forest 

inventory applications (Chirici et al., 2016). In 𝑘-NN, a prediction to a 
target unit is computed as a weighted average of the response variable 
values of the 𝑘 nearest training data units. The 𝑘 nearest units are 
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determined by a distance metric in the 𝑞-dimensional feature space, 
with 𝑞 equal to the number of features. In this study, the features were 
equal to the Sentinel-2 spectral band values described in Section 2.2, 
the distance metric was the Euclidean distance, and equal weights were 
given to all seven features. Calculations were carried out in R statistical 
software using the nabor package (Elseberg et al., 2012). Utilizing the 
Finnish field dataset, we evaluated various 𝑘 values (3, 4, 5, and 6) 
by predicting the response variables and choosing the 𝑘 value that 
minimized the total RMSE score. The best fit for 𝑘 was found to be 
5 which was used in all analysis that follow.

3.2.2. Multivariate Random Forest (RF)
Random Forest is a method from the family of ensemble learning. 

Random Forests are an ensemble of bagged decision trees introduced 
by Breiman (1996). We utilized the R package randomForestSRC (Ish-
waran and Kogalur, 2025), which enables the application of Random 
Forests for multivariate regression tasks. The response variable given to 
randomForestSRC in our study was six-dimensional including volume 
and AGB of total growing stock, conifers and broad-leaved species. The 
explanatory variables were the seven features, i.e., Sentinel-2 bands. 
Similarly to the 𝑘-NN method, we used the Finnish dataset to test values 
ranging from 1 to 7 for the number of variables randomly selected at 
each node (mtry) and values 50, 100 and 300 for the number of trees in 
the forest (ntree). The values tested for ntree were relatively low, which 
was a conscious choice due to the computationally intensive nature of 
the study design. As a result of the test runs, the value 2 was chosen 
for mtry, and 100 for ntree.

3.2.3. Multi-Layer Perceptron (MLP)
MLPs are simple, fully connected neural networks. In this study 

MLPs were implemented in Python language using TensorFlow (Abadi 
et al., 2015). MLPs included a single hidden layer, with the number of 
neurons matching the count of Sentinel-2 bands utilized. MLPs were set 
to minimize mean squared error (MSE) of the response variables. The 
initial learning rate of 0.01 was lowered after each epoch exponentially 
in a way that it was 0.001 after the maximum number of epochs. Epoch 
refers to one complete pass through the entire training dataset. The 
training data was fed to the MLPs in minibatches of 32. The batch size 
was selected after testing the values 8, 16, 32, and 64 on the Finnish 
data. Other parameters like number of layers, number of neurons, and 
learning rate were not tuned due to the high number of individual 
models to be trained (see Section 3.3). We aimed for a design that is 
light-weight, but is able to compete with the other two methods.

Since neural networks are prone to overfitting, we withheld 20% 
of the training data for model validation during training. After each 
training iteration the MSEs of predicted response variables were calcu-
lated using the initially withheld data. Training was stopped when the 
sum of validation MSEs did not improve after 30 validation rounds. 
The best performing model weights in terms of validation MSE were 
saved. MLPs were trained for 200 epochs with at least 1000 sample 
plots in the training dataset, and below 1000 plots for 400 epochs. 
During one training epoch the training data was fed to the MLP in 
minibatches (training step). Model weights were updated between each 
training step. At the end of each epoch a validation round was carried 
out and the model was saved if validation results were better than in 
earlier epochs. In order to obtain consistent results for all response 
variables, conifer and broad-leaved biomass predictions were derived 
within the MLPs from conifer and broad-leaved volume predictions by 
means of least squares linear regression models. Models for conifer 
and broad-leaved species were fitted separately on the training data 
before training/validation split with biomass as response and volume 
as explanatory variable. Parameters of the regression models were 
then used within the MLPs to calculate biomass predictions for conifer 
and broad-leaved species from volume predictions, and total biomass 
predictions were calculated by the sum of these. Finally all response 
variable predictions were joined and error metrics calculated. This 
4 
approach was found to be suitable due to the high correlation between 
AGB and volume. In some cases MLPs did not converge likely due to 
small training sample size. In such cases model fitting was repeated 
with randomly re-initialized model weights.

3.3. Experimental setup

To evaluate model performance under varying conditions of training 
data availability, we designed an experiment using a 10 km × 10 km 
grid, aligned with the INSPIRE grid and using the ETRS89 Lambert 
Azimuthal Equal Area coordinate reference system. Each 10 km × 10 
km grid cell represents a localized prediction area for which a separate 
model is fitted. The 10 km grid was chosen to allow the model fit to 
adapt smoothly to local conditions, while balancing spatial resolution 
with field data availability and computational feasibility. Importantly, 
sample plots located within a given grid cell were excluded from the 
training data used to fit the model for that cell. Instead, these plots 
were reserved for validation, allowing us to assess prediction accuracy 
independently of the training data. This design simulates the scenario 
where field data are unavailable within the target mapping area, and 
models must rely on data from surrounding regions. For model training, 
we selected the 𝑁 nearest sample plots located outside a circular gap 
centered on each grid cell. The radius 𝑅 of this gap was defined as 
𝑅 =

√

(2𝐵2)∕2, where 𝐵 is a multiple of the grid cell side length (10, 
30, 50, 110, 150, 200 km), resulting in approximate radii of 7, 21, 
35, 78, 106, and 141 km. This setup allowed us to test the impact 
of increasing distances between training data and prediction locations. 
We trained models using six different values of 𝑁 (100, 200, 300, 
500, 1000, and 3000 plots). With each value of 𝑁 , we considered 
each value of 𝑅, resulting in 36 training configurations in total. This 
factorial design allowed us to isolate the effects of spatial gap size 
from the effects of training sample size and to evaluate their individual 
and combined influence on model performance. For each configuration, 
localized models were fitted using 𝑘-NN, RF, and MLP methods. In total, 
over 206,000 models were trained per method across 5736 grid cells. 
An illustration of the experimental design using real data is provided 
in Figs.  2 and 3.

3.4. Evaluation of model performances and validation metric maps

Each fitted model was used to predict forest attributes at the plot 
locations within its corresponding 10 km × 10 km grid cell. These plots, 
which were excluded from model training (see Section 3.3), served as 
independent validation data. This approach allowed us to assess model 
performance in a realistic extrapolation scenario, where predictions are 
made for areas lacking local training data. For each sample plot in the 
study region (Fig.  1), we obtained both the observed value 𝑦𝑖 and the 
predicted value 𝑦̂𝑖 for all response variables and modeling methods. 
Validation metrics – relative RMSE and relative bias – were calculated 
using the following formulas:

%RMSE = 1
𝑦̄

√

√

√

√

∑𝑁𝑎
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2

𝑁𝑎
(1)

%bias = 1
𝑦̄

∑𝑁𝑎
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)

𝑁𝑎
(2)

where 𝑁𝑎 is the number of validation plots in the area and 𝑦̄ is the 
mean of the observed values. We computed %RMSE and %bias at 
country level, at sub-country level areas in the three countries, and for 
neighborhoods of all 10 km × 10 km grid cells. Here the neighborhood 
of a grid cell was the area covered by 300 sample plots nearest to 
the grid cell center, i.e. the validation metrics for each grid cell were 
computed from the 300 plots. This multi-scale evaluation enabled us to 
assess both general model performance and localized prediction accu-
racy, highlighting how spatial gaps in training data influence mapping 
outcomes.
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Fig. 2. Graphical representation of the experimental setup. The red square represents a grid cell of size 10 km × 10 km. (Note: in this case 𝐵 and the grid cell 
size are both 10 km.)

Fig. 3. Example of the research design with 𝑅 ≈ 141 km, 𝑁 = 500 and 𝑁 = 3000.
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Fig. 4. %bias of AGB of total growing stock (a), conifers (b) and broad-leaved species (c) for Finland, Sweden, and Norway with the number of training plots 
(𝑁) equal to 500 and 3000.
4. Results

Below we describe in detail the simulation study results. Figures 
S.1–S.10 can be found in the Supplementary Material.
6 
4.1. Country-wise results

We first inspected country-specific %bias and %RMSE with respect 
to the number of sample plots used for training 𝑁 (Supplementary 
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Material Figures S.1, S.2, S.3, and S.4). While the other methods were 
less affected, 𝑁 had a significant impact on MLP predictions. With 
increasing 𝑁 %bias steeply decreased in absolute terms. The same 
effect could be observed for %RMSE particularly in the case of broad-
leaved AGB and volume (Figure S.2c and S.4c). In most of these cases 
MLP achieved %bias and %RMSE scores comparable to k-NN and RF 
with 𝑁 = 500 and above. Based on these results we have selected 
𝑁 = 500 and 3000 to further examine the impact of spatial gap size on 
model performances.

Results of %bias and %RMSE for total, conifer, and broad-leaved 
AGB with respect to spatial gap radius 𝑅 are shown in Figs.  4 and
5. RF and k-NN led to similar %bias for total and conifer AGB. MLP 
predictions were the most biased, regardless of 𝑅 and for all countries. 
RF models produced the least biased broad-leaved AGB predictions. 
In Finland and Sweden 𝑅 had no significant impact on the %bias 
of biomass variables. However, in Norway AGB predictions’ %bias 
increased in absolute terms with increasing spatial gap size. Regarding 
the volume predictions, there were no significant differences between 
the tested methods for total and conifer volume predictions (Figure 
S.5). However, for broad-leaved volume, RF and MLP (with 𝑁 = 3000) 
performed markedly better than k-NN. 𝑅 had no visible effect on the 
results.

In terms of %RMSE, RF produced the best results throughout 
biomass variables and countries with MLP being the second best 
method (with 𝑁 = 3000) (Fig.  5). 𝑅 had a significant impact on 
%RMSE only in the case of broad-leaved AGB, resulting in higher 
%RMSE values with increasing gap radius in all countries. %RMSE of 
volume predictions showed a very similar pattern compared to AGB 
(Figure S.6). For both broad-leaved biomass and volume, MLP produced 
significantly more accurate predictions in terms of %RMSE with 𝑁 =
3000 compared to 𝑁 = 500.

4.2. Local results

In addition to country-wise results, we inspected the spatial distri-
butions of %RMSE and %bias across the whole study region by raster 
maps. Recall that these evaluation metric values were computed from 
the sample plot data, which were not used for model training (see 
Section 3.4). We applied adaptive smoothing of the metrics with the 
%bias and %RMSE computed for each grid cell from the nearest 300 
sample plots. In the following, we present AGB maps created using RF 
models. Corresponding maps produced by 𝑘-NN (Figures S.7 and S.8) 
and MLP (Figures S.9 and S.10) can be found in the Supplementary 
Material. The 𝑘-NN and MLP maps produced with different 𝑅 and 𝑁
values exhibited very similar patterns to RF maps.

Raster maps show high variation between and within countries in 
terms of local %RMSE with largest values found in Norway (Fig.  6). The 
effects of the number of plots used for training the models, 𝑁 (top vs. 
bottom of Fig.  6) and the spatial gap radius 𝑅 (left vs. right of Fig.  6) on 
the %RMSEs were minor: the minimum and maximum values of all four 
maps of Fig.  6 were between 40%–42% and 94%–98%, respectively.

Maps of %bias also display a similar spatial pattern regardless of 
𝑁 and 𝑅 (Fig.  7). However, both 𝑁 and 𝑅 had a significant effect 
on the magnitude of variation. With 𝑅 ≈ 78 km and 𝑁 = 3000 (Fig. 
7(b)), %bias ranged from −21% to 27%, whereas in case of 𝑅 ≈ 7 km 
and 𝑁 = 500 (Fig.  7(c)) the value range was reduced to −12%–12%. 
When comparing maps using other parameter combinations to the case 
of 𝑅 ≈ 7 km and 𝑁 = 500 (Fig.  7(c)), one can see regional differences 
on how 𝑁 and 𝑅 affected %bias and %RMSE. Higher number of sample 
plots used for model training with the same spatial gap size (Fig.  7(a)) 
produced more biased results than the increased spatial gap size and 
the same number of training plots in Norway and Sweden (Fig.  7(d)). 
On the other hand, increasing the spatial gap radius led to higher %bias 
in Finland than with increased 𝑁 . %bias values ranged from −18% to 
24% and from −17% to 28% for maps shown in Figs.  7(a) and 7(d), 
respectively.
7 
We also investigated some of the bias-hotspots visible in Fig.  7(b). 
Our hypothesis was that the explanation for high positive or negative 
%bias was the difference in the amount of biomass at these locations 
and the surrounding area further away from them. Fig.  8 shows three 
hotspots with high positive %bias (from 26% to 27%) and correspond-
ing distributions of observed total AGB calculated from the nearest 100, 
and 3000 sample plots excluding the nearest 100. Fig.  9 on the other 
hand displays three locations with high negative %bias (from −20% 
to −16%) and corresponding distribution curves. Hotspot locations are 
also displayed over observed total AGB maps for reference. As expected, 
the areas with high positive %bias had less plots with high biomass, 
while the biomass distribution in areas with high negative %bias was 
shifted towards larger values in comparison to the 3000 reference plots. 
This at least partly explains why the predictions were too high in the 
former and too low in the latter case.

We further inspected the %biases of the tested methods in the neigh-
borhood of high positive and negative %bias hotspot areas, respectively 
(Figs.  10 and 11). Validation plots were selected around the locations 
displayed in Figs.  8(a) and 9(a), numbers 1, 2, and 3 corresponding to 
the locations in Norway, Sweden, and Finland, respectively. This way 
we were able to compare the performances of the methods locally. The 
results indicate that the spatial gap radius (𝑅) had a significant effect on 
the %bias of estimates with the number of validation plots being 100 or 
300. On the other hand, the size of spatial gaps had a less marked effect 
when tested with 3000 validation sample plots. Furthermore, estimates 
produced using models trained with 500 sample plots were less biased 
compared to models with 𝑁 = 3000. Generally, we can say that there 
was no clearly superior method in terms of %bias when looking at the 
results of bias-hotspot areas.

5. Discussion and conclusions

The aim of this study was to investigate how missingness of field 
data for training models affects map accuracy and to compare the 
performance of 𝑘-NN, RF and MLP methods when such missingness 
occurs. Map accuracy was expected to decrease when no field data 
were available in the neighborhood of the area of interest, and we 
also expected to observe larger differences between the methods in 
such cases. As expected, increasing the radius of spatial gaps, i.e. the 
area with no field data available for training the models for mapping, 
generally led to decreased map accuracy in terms of %bias. The effect 
of the gap radius was minor in terms of %RMSE for the total AGB 
and volume predictions. However, broad-leaved predictions, which had 
higher %RMSEs overall, further suffered from increasing spatial gaps 
(Figs.  5 and S.6). Larger effects were observed in terms of %bias of 
AGB. Here, the country-level %bias clearly increased with respect to 
the size of spatial gaps in Norway (Fig.  4). Further, we could see that 
more locally the magnitude of %bias increased with spatial gaps across 
the whole studied Nordic region (Fig.  7). We did not find any clear 
differences between the tested modeling approaches’ behavior with 
respect to the spatial gap radius. However, RF was generally the best 
approach both in terms of %RMSE and %bias and regardless of the 
number of training plots and the radius of spatial gap used.

The amount of training data 𝑁 also affected the results. While 𝑘-NN 
and RF were not that sensitive to 𝑁 in terms of country-level %RMSE 
and %bias, MLP required a large number of field plots for training (in 
our study 𝑁 = 3000). This could be expected as sufficient amount of 
training data is needed for neural networks to converge (Alwosheel 
et al., 2018; Baum and Haussler, 1988). Additionally, MLP showed 
an unexpected behavior: MLP’s volume predictions were less biased 
than AGB predictions (Figs. S.5a vs. 4(a)). This could be due to the 
way AGB predictions were calculated from volume predictions using 
linear models, even though the fit of the linear models was rather good 
(𝑅2 > 0.95 on country level). Future studies could test other possible 
ways to produce consistent predictions with MLP simultaneously for a 
set of forest attributes.
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Fig. 5. %RMSE of AGB of total growing stock (a), conifers (b) and broad-leaved species (c) for Finland, Sweden, and Norway with the number of training plots 
(𝑁) equal to 500 and 3000.
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Fig. 6. Maps showing spatial variation of %RMSE at 10 km resolution. Pixel values were derived from RF models that were trained using different combinations 
of spatial gap radius (𝑅) and number of training plots (𝑁). Note: the applied value range of 39%–98% is only for visualization purposes, actual range of pixel 
values of individual maps might differ.
In our country-wise comparison, Norway’s results clearly stood out 
from those of Finland and Sweden. Overall, %RMSE by RF was larger in 
Norway than in Sweden and Finland: the country-level %RMSE values 
for total AGB were between 70% and 72% for Norway, and 53%–55% 
for Sweden and Finland. This was partly attributed to the lower av-
9 
erage volume and AGB values in Norway (see Table  1), and similar 
differences between the countries have been reported before (Puliti 
et al., 2020; Persson et al., 2021; Pitkänen et al., 2024). Absolute RMSE 
values for AGB were in comparable ranges across all countries. For 
example, absolute RMSE results for total AGB with 𝑅 ≈ 7 km and 
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Fig. 7. Maps showing spatial variation of %bias at 10 km resolution. Pixel values were derived from RF models that were trained using different combinations 
of spatial gap radius (𝑅) and number of training plots (𝑁). Note: the applied value range of −21%–28% is only for visualization purposes, actual range of pixel 
values of individual maps might differ.
𝑁 = 500 were 41.0, 45.1, and 47.0 t/ha for Finland, Sweden, and 
Norway, respectively.

While we are not aware of publications that would have consid-
ered spatial gaps in the training data and be both thematically and 
geographically relevant, there are several studies that have reported 
%RMSE results in parts of our study region. Our mean %RMSE results 
10 
align well with the studies from the literature in Finland, Sweden and 
Norway. All numerical results of the present study reported below are 
for spatial gap size of 7 km.

In Finland, Pitkänen et al. (2024) estimated AGB and volume us-
ing various mosaicing techniques of Sentinel-2 imagery and the k-NN 
method over approximately 75 000 km2. Their best approach yielded 
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Fig. 8. Map indicating high %bias hotspots (method: RF, 𝑅 ≈ 78 km, and 𝑁 = 3000) (a), hotspot locations over map of observed total AGB (b), and distributions 
of observed total AGB for each hotspot using the nearest 100 and 3000 sample plots (c).
a %RMSE of 56.2% for total volume of growing stock, whereas in our 
study, k-NN produced a relative RMSE of 61.1% with 𝑁 = 3000 (56.5% 
using RF). For deciduous species, their best %RMSE was 131.4%, 
while our k-NN model resulted in 148.3% with 𝑁 = 3000 (137.8% 
using RF). Tuominen et al. (2017) tested various feature combinations 
11 
for forest variable estimation using the k-NN method in Finland and 
reported %RMSEs of 61.0% for total volume and 162.1% for volume of 
broad-leaved species, using bands 1–7 of Landsat 8 imagery.

In Norway, Puliti et al. (2020) reported a %RMSE of 80.7% for total 
AGB in Norway when using only Sentinel-2 reflectance values and RF. 
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Fig. 9. Map indicating low %bias hotspots (method: RF, 𝑅 ≈ 78 km, and 𝑁 = 3000) (a), hotspot locations over map of observed total AGB (b), and distributions 
of observed AGB for each hotspot using the nearest 100 and 3000 sample plots (c).
By combining Sentinel-2 data with a 2-meter-resolution canopy height 
model derived from ArcticDEM imagery, they achieved a reduced RMSE 
of 72.8%, which is consistent with our RF-based country-level result for 
Norway (70.1% with 𝑁 = 3000). The authors also documented a %bias 
12 
of −2.8%, slightly higher (in absolute terms) than the −1.7% observed 
in our study.

Further, a regional study by Fazakas et al. (1999) in central Swe-
den, using only Landsat TM reflectance values and the k-NN method, 
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Fig. 10. %bias of total AGB using various amounts of validation plots around high positive %bias hotspot areas in Norway, Sweden, and Finland with respect 
to spatial gap radius (𝑅) and with 𝑁 = 500 or 𝑁 = 3000.
resulted in approximately 66% relative RMSE for both total AGB and 
volume, validated with Swedish NFI plots. In our study, %RMSE scores 
for Sweden using k-NN with 𝑁 = 500 were 57.6% and 66.7% for total 
AGB and volume, respectively. In a study covering 70% of Sweden’s 
forest area, Persson et al. (2021) combined TanDEM-X and Sentinel-2 
13 
data to predict tree volume and AGB using k-NN. They reported a plot-
level %RMSE of 68.0% for total volume using Sentinel-2 data alone, 
which closely matches our result of 66.7%. When combining TanDEM-
X and Sentinel-2 data, %RMSE decreased to 59.3%, indicating that the 
use of multiple sensors can enhance prediction accuracy.



A. Balazs et al. International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105104 
Fig. 11. %bias of total AGB using various amounts of validation plots around high negative %bias hotspot areas in Norway, Sweden, and Finland with respect 
to spatial gap radius (𝑅) and with 𝑁 = 500 or 𝑁 = 3000.
Besides %RMSE being highest in Norway, the effect of missingness 
of field plots in the vicinity of the area where the predictions were 
produced had the highest effect on %bias in Norway (Fig.  4). This 
likely results from more abrupt changes in the landscape in Norway 
in comparison to that in Sweden and Finland. Furthermore, due to the 
14 
shape of Norway, in case of bigger gap sizes the field data used for 
model training was partly dominated by Swedish sample plots, which 
tend to have higher biomass than Norwegian plots, given the same 
features. In our study, always the nearest 𝑁 sample plots were used 
for training the models, with the specified spatial gap. Future research 
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may investigate if restricting the plot selection by other meaningful 
conditions, such as altitude, could make them more representative for 
the targeted conditions.

Regarding local results, it is interesting to note how similar the local 
%RMSEs of total biomass behaved with respect to both the number 
of training plots (𝑁) and the gap radius (𝑅) (Fig.  6). Possibly, even 
if the most localized collection of plots is used for training, they extend 
spatially far enough to include the ‘‘full range’’ of variation, i.e. the 
amount of field data is sufficient even in this case. More generally, if 
local conditions are very variable, decreasing the radius for selecting 
plots may not help much for minimizing the %RMSE. On the other 
hand, the relative local bias for different 𝑁 and 𝑅 differed substantially 
from each other (Fig.  7). The smallest %bias was observed when a 
small number of nearby plots was used (Fig.  7(c)) - this was the case 
even in the most ‘‘difficult’’ areas with high %RMSE. This may suggest 
that the biggest advantage of localizing the selection is to get better 
estimates on the distribution and the mean value, while not helping 
much at the level of a single plot or in small area estimation. Another 
noteworthy aspect involves the areas where biomass was substantially 
over- or underestimated (Figs.  8 and 9). Our study shows that notably 
higher biases often arise at biomass gradients: negative biases occur 
in high-biomass areas adjacent to lower biomass, while positive biases 
appear where low-biomass zones are surrounded by higher biomass. 
When either the spatial exclusion gap is extended, or 𝑁 is increased, the 
distribution of the training plots shifts further from the characteristics 
of the target region, and results become more biased (Fig.  7).

Our study demonstrated that spatial gaps in field data and the result-
ing need for interpolation or extrapolation can reduce map accuracy, 
particularly by increasing %bias. This outcome was expected and aligns 
with previous studies that have already called for methods to esti-
mate the area of applicability of spatial prediction models (Meyer and 
Pebesma, 2021, 2022). Therefore, it would be preferable to have train-
ing data available from the entire target area. As this evidently does not 
always hold, map products should always include metadata describing 
the spatial coverage of the field data used in their production.
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