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The role of soil microorganisms in supporting multiple ecosystem functions
(multifunctionality) remains poorly understood across diverse environmental
conditions. Here, we investigate 484 soils from 27 European countries span-
ning a range of climatic and edaphic contexts. We assess the contribution of
climate, soil properties, and soil microbiome traits (i.e., the relative abundance
of co-occurring taxa) to explain six key functional proxies related to soil
structure, biochemical activity, and productivity. We find the highest multi-
functionality values in grasslands, woodlands, loamy and acidic soils, and
temperate humid regions, and the lowest in croplands, alkaline soils, and drier
regions. Soil properties explain 12-31% of variation in multifunctionality, with
microbial biomass and nitrogen content emerging as the strongest predictors.
The soil microbiome accounts for 2-14% of unique variance in multi-
functionality but explains more than 25% of variation in enzymatic activities
and primary productivity in clay-rich soils and soils originating from temperate
dry regions. Specific taxa, particularly within Actinobacteria, Acidobacteria,
and the fungal genus Mortierella consistently emerge as strong predictors of
ecosystem multifunctionality. Our findings highlight that ecosystem multi-
functionality is jointly shaped by soil properties and microbial communities.
We argue that specific taxa hold potential as context-dependent indicators for
multifunctionality monitoring across environmental gradients.

Soils are the foundation of terrestrial ecosystems and represent an
important habitat for organisms across the tree of life'. Soils also
contribute to a wide range of ecosystem services including food
production, climate regulation, as well as cultural and educational
services’. These ecosystem services are directly supported by eco-
system functions, such as nutrient cycling, water holding capacity,
and primary production®”. In recent years, research has

increasingly focused on ecosystem multifunctionality, recognizing
that ecosystem services depend on multiple functions simulta-
neously, often assessed through measurable functional proxies
(e.g., enzymatic activities, soil respiration)®s, Previous research has
shown that greater soil biodiversity is associated with higher levels
of multiple functions, such as nutrient cycling and primary
production®™.,
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Microorganisms are sensitive, ubiquitous, and react quickly to
environmental stress, reflecting cumulative impacts®, and potentially
constituting an important indicator of changes in ecosystem
multifunctionality”. This is especially important as sequencing is
becoming a cheaper and highly standardized technology allowing
direct comparison of data across different studies and national
surveys'*. However, assessments on the capacity of the soil micro-
biome in explaining ecosystem multifunctionality at larger scale
are urgently needed to support the monitoring and conservation
of soils.

Unfortunately, there are still important uncertainties about the
capacity of the soil microbiome to predict multifunctionality across
large spatial scales. First, despite the enormous diversity of soil biota
(particularly microbial diversity), the focus is still often placed on a
narrow subset of organisms. For instance, mycorrhizal fungi and
nitrogen-fixing bacteria are among the few microbial functional
groups currently assessed in Europe as potential indicators of eco-
system multifunctionality>'®. Second, despite growing interest in
microbial indicators of ecosystem multifunctionality, current studies
do not specifically address how multiple environmental contexts, such
as land use, soil texture, and climate, influence the relationship
between the taxonomic identity of soil organisms and their capacity to
predict multifunctionality”. Finally, although overall microbial diver-
sity (i.e., taxa richness) has been shown to positively influence multi-
functionality in global and national contexts, similar large-scale
analyses linking microbial community structure to multifunctionality
are lacking for Europe™'®", This gap is especially relevant considering
that less than 40% of European soils are currently categorized as
healthy, despite the continent’s long history of land management and
its significant role in global food production and biodiversity?’. These
knowledge gaps hinder our ability to evaluate how the soil microbiome
relate to specific ecosystem functions across diverse contexts (i.e., soil
types, climatic regions, or land uses).

Here, we use a harmonized pan-European observational field
survey (named LUCAS Soil) to quantify the contribution of the soil
microbiome in explaining ecosystem multifunctionality. We analyze
484 fresh soil samples collected across diverse environmental condi-
tions, using categorical groupings to test the effects of land use, cli-
matic region, soil texture, and soil pH, as these factors have previously
been shown to structure soil microbial communities and ecosystem
multifunctionality”. Using metabarcoding, we obtain site-level infor-
mation on the relative abundance of bacteria and fungi. We assess
ecosystem multifunctionality by integrating several functional proxies
that capture key functions linked to broader ecosystem services.
Specifically, we measure soil aggregate stability (flood regulation,
habitat for organisms), net primary productivity (food and fiber/tim-
ber provision), and basal respiration (climate regulation). In addition,
we quantify enzymatic activities including N-acetyl-glucosaminidase
(nitrogen cycling), phosphatase (phosphorus cycling), and xylosidase
(carbon cycling), all of which are involved in organic matter decom-
position. Together, these indicators provide a multidimensional pic-
ture of ecosystem functioning, which we summarize as ecosystem
multifunctionality.

To quantify the contribution of the soil microbiome to explain
multifunctionality, we apply Random Forest models to identify the
most important predictors of multifunctionality, considering a wide
set of abiotic (climate and soil properties) and biotic (microbial com-
munity composition) variables. To quantify the relative contributions
of these predictor groups, we perform variance partitioning analysis,
allowing us to attribute the unique and shared variance in multi-
functionality to climate, soil properties, and the soil microbiome. We
finally employ structural equation models (SEMs) to test for the direct
and indirect effects of climate, soil properties, and the soil microbiome
on ecosystem multifunctionality. We hypothesize that soils from less-
disturbed environments (e.g., woodlands) would support higher

multifunctionality due to more favorable conditions for microbial
activity. We also hypothesize that the contribution of microbial taxa to
multifunctionality would be context-dependent, varying across land
use, climatic region, pH, and soil texture.

Results and discussion

We analyzed 484 soils across Europe to investigate how ecosystem
multifunctionality varies with land use, climatic region, soil texture,
and pH, and we also investigated the relative contribution of the soil
microbiome compared to soil properties and climate as indicators of
multifunctionality. For each soil, we measured six functional proxies:
soil basal respiration, xylosidase, N-acetylglucosaminidase, phospha-
tase activities, soil aggregation, and primary productivity (Table S1).
Consistent with our first hypothesis, our study found the highest
multifunctionality values in less-disturbed grassland and woodland
soils (average multifunctionality value=0.33+0.09, n=92, and
0.31+0.10, n=165, respectively), loam soils (0.31+0.09, n=179),
acidic soils (0.30 + 0.09, n = 290), and soils originating from temperate
humid locations (0.31+ 0.08, n=249). On the contrary, cropland soils
(0.25+0.07, n=227), alkaline soils (0.25 + 0.09, n=131), and soils ori-
ginating from drier regions (0.25+ 0.10, n=122) showed the lowest
multifunctionality values (Fig. 1, Table S3). Multifunctionality in crop-
land soils was 24.2% lower than in grasslands, and 19.4% lower than in
woodlands. Our study also found that a combination of soil properties
(i.e., total nitrogen, organic carbon, and microbial biomass), together
with the relative abundance of a few taxa, significantly associate with
multifunctionality (Fig. 2). More importantly, the soil microbiome
explained a portion of variation of multifunctionality across soils.
Specifically, the community composition of bacterial and fungal
modules (i.e., co-occurring OTUs) explained between 2.27% and
14.08% of unique variance (Fig. 3, Table S4). Soil properties accounted
for 12.2-31.4% of the unique variance in multifunctionality, whereas
climate explained very little (0-1%), suggesting that climate influences
multifunctionality mainly through indirect effects. At the level of
individual functional proxies, the soil microbiome explained more
unique variance than soil properties or climate for primary pro-
ductivity and enzymatic activities (Figures S4-S7), while soil properties
dominated to explain variation in soil aggregation and basal respira-
tion (Figures S8-S9).

Context-dependency of soil microbiome contributions to
multifunctionality

Our findings indicate that the potential of the soil microbiome to act as
indicator of ecosystem multifunctionality is strongly context-depen-
dent, varying with soil characteristics and environmental conditions.
We observed that in croplands, the unique variance in multi-
functionality explained by the soil microbiome (13.94%) was compar-
able to that explained by soil properties (13.92%), suggesting that
microbial composition in these intensively managed systems is an
important factor explaining ecosystem performance (Fig. 3). A similar
pattern was evident in soils from temperate dry climates, in neutral pH
conditions (pH between 6.5 and 7.3), and in clay-rich soils, where the
predictive power of the microbiome closely matched that of soil
properties (Fig. 3, Table S4). These results suggest that under certain
soil and environmental configurations, the microbiome may serve as a
reliable indicator for assessing ecosystem functioning. In contrast, in
soils from other contexts, such as those originating from woodlands
and continental climatic regions, the unique contribution of the
microbiome to explaining multifunctionality was noticeably lower
compared to that of soil properties (Fig. 3). Our results contrast with
previous studies showing that multifunctionality in intensively mana-
ged ecosystems (e.g., croplands) depends primarily on external inputs
(e.g., fertilizers), as we demonstrate that these systems also rely on
their soil microbiome (Gossner et al., 2016). We also suggest that the
utility of the soil microbiome as indicator of multifunctionality is not
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Fig. 1| Ecosystem multifunctionality across soil grouping categories. Results
are shown for land-use types (A), climatic regions (B), soil texture types (C), and soil
pH (D). Chi-squared (x?) statistic, eta-squared (r?), and significance (p value) are
indicated following Kruskal-Wallis non-parametric test. Different letters represent

significant differences among groups (p value < 0.05). In the boxplots, the central
line indicates the median, the box limits correspond to the 25th (Q1) and 75th (Q3)
percentiles (interquartile range), and the whiskers extend to 1.5 x IQR. Points
beyond the whiskers represent outliers.

universal but depends on the interaction between microbial commu-
nities and their surrounding environment, which is in line with pre-
vious research showing that soil microbial diversity depends on the
interplay between soil properties and climate”?.

At the level of individual functions, the soil microbiome explained
substantial unique variance (>25%) for xylosidase activity in dry and
clay-rich soils, phosphatase activity in neutral and clay-rich soils, and
N-acetylglucosaminidase activity in neutral soils (Figures S4-S6). The
soil microbiome was also the main predictor of primary productivity,
particularly in alkaline and sandy soils (Figure S7). On the other hand,
soil properties (e.g., organic carbon) were the main predictors of basal
respiration. Future studies should address whether the freeze-thaw of
soil samples might have disrupted microbial community signals and
make respiration more strongly dependent on substrate availability
than on community composition.

We hypothesized that microbial indicator taxa of multi-
functionality vary across soil types, and our results confirmed the
hypothesis. Random forest analyses revealed that the contribution of
microbial groups to ecosystem multifunctionality is context-
dependent and varies across land uses and environmental gradients
(Fig. 2). In croplands, multiple microbial modules (particularly bac-
terial modules 3, 5, 7, and 9, and fungal modules 13 and 1) emerged as
strong predictors of multifunctionality. Taxonomically, most bacterial
modules were dominated by Proteobacteria, representing 30-35% of
OTUs in nearly all modules (Figure S10, Supplementary dataset 1).

Module 7, however, was distinct in being dominated by Actinobacteria,
especially the genus Gaiella, a pattern also observed to a lesser extent
in module 3. Both modules 3 and 7 also contained numerous OTUs
affiliated with Sphingomonas, Nocardioides, Solirubrobacter, and
Streptomyces (Actinobacteria). Module 1, together with modules 2 and
5, included a high proportion of Acidobacteria. Module 5 also con-
tained many OTUs within Bacteroidetes, particularly taxa from the
genus Flavobacteria (Figure S10). Fungal modules were largely domi-
nated by Ascomycota, which accounted for 48-61% of OTUs across
modules (Figure S11). Modules 1, 3, and 5 contained many OTUs
associated with the genus Mortierella, while modules 5 and 13 included
members of Glomeromycota (arbuscular mycorrhizal fungi). In
woodlands, fungal module 5, enriched in Mortierella and symbiotic
fungi such as Archaeorhizomyces and members of Glomeromycota,
emerged among the top predictors of multifunctionality for certain
soil categories (Fig. 2). Notably, Glomeromycota (arbuscular mycor-
rhizal fungi) have repeatedly been shown to support plant growth and
contribute to ecosystem multifunctionality*?**, although they repre-
sented as small proportion of all fungal sequences in our dataset
(=1.00%). Similarly, previous research at the regional scale have
identified Actinobacteria and members of Mortierella as hubs in
microbial co-occurrence networks??, We finally acknowledge that all
taxa identified here as potential indicators of multifunctionality are
strict aerobes, which is consistent with sequencing bulk soil from the
top 20 cm where oxygen is abundant. Future studies should extend to
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Fig. 2 | Random Forest results indicating predictor importance of ecosystem

multifunctionality. Results are shown for different land uses (A1-A3), soil texture
classes (B1-B3), pH classes (C1-C3), and climatic regions (D1-D3). Importance is

shown for each predictor as the increase in mean-squared error (%). For each

model, the ten most important predictors are displayed. Model performance is
reported as cross-validated R? (CV R?) and out-of-bag error (OOB). Asterisks indicate
significance after non-parametric permutation test with 1000 permutations:

** p value < 0.010, *; p value < 0.050.

deeper layers, where community composition may shift and alter-
native microbial indicators could emerge”.

Taken together, our results open the path towards the develop-
ment of biomarkers where the abundance of these taxa could be
monitored through qPCR assays, integrated into soil health indices, or
used as features in predictive models®. Given their sensitivity to land-
use and soil conditions, these taxa may serve as early-warning markers
for shifts in ecosystem multifunctionality.

To explore how environmental context shapes the relationships
between microbial communities, soil properties, climate, and
ecosystem multifunctionality, we employed multi-group structural
equation models (SEMs). These models tested direct contributions of
climate, soil properties, and the microbiome to multifunctionality, as

well as indirect effects of climate and soil mediated through the
microbiome (Fig. 4, Figure S3, Supplementary dataset 2). For each
environmental classification (land use, climatic region, soil texture,
and pH class), we compared unconstrained models (allowing regres-
sion paths to vary among groups) with constrained models that
assumed equal relationships across groups. Unconstrained
models consistently outperformed constrained ones based on like-
lihood ratio tests, supporting the idea that the effects of microbial,
soil, and climatic factors on multifunctionality are context
dependent (Table S5). Among the classification schemes tested,
grouping by land use yielded the best model fit, as indicated by the
lowest AIC in chi-squared comparisons (Fig. 4). This, together with
previous research, suggests that land use is a primary organizing
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factor in determining how environmental drivers influence
multifunctionality®.

SEMs also confirmed that while the direct effects of climate, soil
properties, and the microbiome were relatively balanced in croplands
and grasslands, woodlands exhibited a high influence of soil properties
on multifunctionality (Fig. 4). This may reflect the greater influence of
accumulated organic matter and nutrient pools in woodland soils,
together with microclimatic buffering by tree cover®®. These factors
strengthen the role of soil properties in regulating ecosystem multi-
functionality in woodlands, while reducing the relative contribution of
climate and microbial community composition.

SEMs showed that the direct effect of climate (air temperature
and precipitation) on ecosystem multifunctionality was strongest in
soils from dry regions, where water limitation potentially amplifies
both direct and microbiome-mediated climate effects (Fig. 4). In soil
originating from continental regions, soil properties also played a
dominant direct role, exceeding their influence in other regions.
Analyses by soil texture showed that in loam soils, the microbiome had
a greater direct influence on multifunctionality than soil properties, a
pattern not observed in clay or sandy soils, where soil properties were
more dominant. Loamy soils occupy the middle of the soil texture
spectrum, reflecting a balanced composition of sand, silt, and clay®.
Such conditions likely support diverse and active microbial commu-
nities, enabling them to directly regulate multiple ecosystem pro-
cesses. Finally, pH classification revealed that in alkaline (pH > 7.3) and

neutral (pH 6.5-7.3) soils, the microbiome and soil properties con-
tributed equally to multifunctionality (Fig. 4). In contrast, in acidic soils
(pH <6.5), multifunctionality was driven primarily by soil properties,
with the microbiome playing a minor role. We argue that acidic soils
impose stronger physiological constraints on microorganisms,
enhancing the relative importance of soil chemical properties
such as pH and nutrient availability in regulating ecosystem
multifunctionality®’. Taken together, these findings highlight the
highly context-specific nature of soil functioning and underscore the
need to consider environmental background when interpreting the
role of the soil microbiome. To confirm the mechanisms proposed
(regarding the influence of loam texture, woodland organic matter, or
acidic soils on the relationship between the soil microbiome and
multifunctionality), controlled manipulative experiments are needed.
Laboratory or field studies altering soil texture, pH, or organic inputs
could directly test microbial contributions to multifunctionality.

European-level assessment of the link between microbiomes
and functions

We here assess ecosystem multifunctionality across Europe by simul-
taneously comparing multiple environmental factors, including land
use (croplands, grasslands, and woodlands), climatic regions (con-
tinental, temperate dry, and temperate humid), soil texture (clay,
loam, and sand), and soil pH classes (acidic, neutral, and alkaline soils).
Previous works have modeled multifunctionality in grasslands and
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Fig. 4 | Summary of multi-group structural equation models (SEMs) showing
direct and indirect effects of climate, soil properties, and microbial commu-
nity composition on multifunctionality. Multi-group SEMs were built for land use
categories (A), climatic regions (B), soil types (C), and pH classes (D). For each SEM,
colors (red, green, blue) indicate soil grouping categories. Numbers adjacent to
arrows indicate standardized path coefficients across all variables in each category.
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X2 =6470.26, df = 759, P < 0.001, AIC = 21467.93,
RMSEA = 0.216

Predictor variables included in each box and a priori model are available in
Figure S3. Model fit parameters are indicated as chi-squared (X?), degrees of free-
dom (d.f.), p value of two-sided test (P), Akaike Information Criterion (AIC), and
root mean squared error of approximation (RMSEA). Full details including indivi-
dual path coefficients are available in Supplementary Dataset 2.

croplands, showing that agricultural practices can pose risks to eco-
system functions by creating trade-offs between biodiversity and
functions such as productivity and nutrient cycling, with pesticide use
and fertilization emerging as key drivers®***. Similarly, a European-
scale study covering 94 soils in 13 countries found that interactions
between land use and climatic zones drive ecosystem functions in
croplands and grasslands®. More recently, Siinnemann and colla-
borators (2023) found a Europe-wide decline in ecosystem multi-
functionality under rising temperatures and dry conditions, worsened
by fertilizer and pesticide application. Our study adds primary pro-
ductivity as an additional ecosystem function, thereby moving beyond
soil-focused analyses toward a broader ecosystem perspective of
multifunctionality. We argue that future studies should incorporate
direct measurements of actual biomass, such as kilograms of dry
weight per hectare, because these are likely to provide more accurate
estimates than satellite-derived proxies®. Remote sensing has been
used in similar studies and captures vegetation greenness or pro-
ductivity indices at coarse resolution, while field-based biomass mea-
surements directly reflect the material available for carbon storage,
reducing uncertainty and improving the precision of multi-
functionality assessments**%, Finally, ecosystem multifunctionality
relies on the number of functions integrated’. In this study, six

ecosystem functions were measured across all the 484 sites, including
primary productivity, which is a key function. Future studies should
also incorporate direct measurements of soil gas emissions (e.g., CO»,
CHa4, N20), as these are critical processes linking microbial activity to
climate regulation®*°,

Considering that habitat conversion to croplands will likely
increase worldwide for food production and to satisfy needs of a
growing population, our results stress that the capacity of ecosystems
to supply multiple functions simultaneously could be compromised if
conversion to croplands is preferred. In line with this, Jeanneret and
collaborators (2021) estimated that conversion to arable lands nega-
tively impacts biodiversity of vascular plants and arthropods across
Europe. Similarly, conversion to cropland causes homogenization of
microbial communities**2. A similar study found that European
croplands were particularly abundant in potentially pathogenic fungi
compared to grasslands and woodlands, but the richness of beneficial
taxa (e.g., mycorrhizal fungi) decreased*’. Our results add to these that
the conversion of natural ecosystems to croplands not only has an
impact on soil biodiversity but also on multifunctionality. Moreover,
we show that the contribution of the soil microbiome to multi-
functionality is context-dependent. We acknowledge that comparing
multifunctionality across highly disturbed ecosystems (croplands) and
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natural or semi-natural ecosystems (woodlands or grasslands) is
challenging, since these are very different ecosystem types with dif-
ferent disturbance regimes and the dynamics of each ecosystem might
differentially impact multifunctionality. For example, woodlands are
stable ecosystems dominated by trees where primary productivity is
rather constant over time, whereas croplands are subjected to crop
rotations, whereas grasslands are often dominated by annual herbs
and forbs, with consequences for organic carbon stocks, and
productivity**. Taken together, we argue that despite being part of the
same landscape, soils from different land uses, textures, climatic
regions, and pH classes respond to distinct microbial predictors of
multifunctionality. This indicates that monitoring should adopt
context-specific microbial indicators rather than a uniform approach.

Our continental analysis provides evidence that ecosystem mul-
tifunctionality is shaped by both environmental context and biotic
composition, with land use, soil properties, climate, and the soil
microbiome each contributing to ecosystem multifunctionality. Mul-
tifunctionality was highest in grasslands and woodlands, in loam-
textured and acidic soils (pH <6.5), and in temperate humid regions.
The best predictors of ecosystem multifunctionality overall were
microbial biomass and nitrogen content. Random forest and variance
partitioning analyses further revealed that the soil microbiome (i.e., co-
occurring microbial OTUs) explains a substantial and context-
dependent share of multifunctionality. The soil microbiome was the
main factor contributing to variation in enzymatic activities and pri-
mary productivity, while soil basal respiration and soil aggregation
were mostly explained by soil properties. We also found that modules
dominated by Actinobacteria (e.g., Gaiella, Sphingomonas), Acid-
obacteria, and Mortierella frequently emerged as strong predictors of
ecosystem multifunctionality. Our use of multi-group structural
equation models further highlights that the strength and nature of
relationships among climate, soil properties, the microbiome, and
multifunctionality differ across environmental classifications. Among
all groupings, land use emerged as the most influential structuring
variable. Collectively, these findings underscore the need for context-
aware approaches in using microbial indicators for soil monitoring. As
land-use change intensifies globally, understanding how local condi-
tions modulate microbiome-function relationships is essential to
designing effective, scalable soil health strategies and sustaining eco-
system services under environmental change.

Methods

Field survey and soil sampling

Our study was built upon the EU Statistical Office’s Land Use and
Coverage Area Frame Survey (LUCAS) Soil, the largest pan-European
scheme for assessing soil characteristics in relation to land cover and
land use***¢. The sampling approach used a composite strategy, where
the final sample at each location consisted of five combined topsoil
(0-20 cm) subsamples. The initial subsample was obtained precisely at
the coordinates of the designated LUCAS point, while the four addi-
tional subsamples were collected 2 m from the central point, aligning
with the cardinal directions (North, East, South, and West). To mini-
mize the impact of seasonality and temporal variation, all samples
were collected over the shortest possible timeframe during spring/
summer 2018. For this study, a total of 484 soil samples were collected,
comprising 165 from woodlands, 92 from grasslands, and 227 from
croplands. Based on the Koppen-Geiger climate classification,
113 samples originated from sites in a continental climate, 122 from
temperate dry regions, and 249 from temperate humid regions
(Figure S1).

Soil edaphic factors and climatic variables

Soil samples were used to determine a range of edaphic factors fol-
lowing standard procedures*°. Total phosphorus content (mg kg*) was
measured by the ISO 11263:1994 protocol following phosphorus

solubilization in a sodium hydrogen carbonate solution. Total nitrogen
content (gkg™) was measured following the 1SO 11261:1995 protocol.
Extractable potassium content (mg kg™) was determined with atomic
absorption spectrophotometry”’. Soil pH was measured according to
the ISO 10390:1994 standard using 0.01M CaCl, as the extractant,
while the proportions of silt, clay, and sand were determined using
laser diffraction particle size analysis following ISO 13320:2009. Based
on these measurements, samples were further grouped by pH and
texture. For soil texture classification, we used the USDA system
integrated within the soil texture wizard*®. We classified 290 soils
as acidic (pH<6.5), 63 as neutral (pH 6.5-7.3), and 131 as alkaline
(pH >7.3). Regarding texture, 129 soils were identified as clay, 179 as
loam, and 176 as sand.

Soil organic carbon was measured following the ISO 10694:1995
protocol. Briefly, the total carbon content in each sample was deter-
mined using an elemental analyzer following dry combustion and
corrected for carbonate content (ISO 10693:1994), resulting in soil
organic carbon (gkg™). Soil bulk density was measured following the
ISO 11272:2017 procedure®. Soil bulk density was expressed as the dry
weight of soil divided by its volume (gcm™), which includes the
volume of soil particles and the pores among them®. Soil microbial
biomass (expressed as pg Cmic g soil dry weight) was estimated as a
proxy using substrate-induced respiration, based on the respiration
response to glucose addition measured directly after potential basal
respiration on the same soil samples. Climatic variables, including
monthly mean air temperature and precipitation (averaged values over
the 1970-2000 period) were obtained for each sampling location from
the WorldClim database (worldclim.org).

Soil microbial community composition

Soil samples (n=484) were analyzed for bacterial and fungal biodi-
versity using DNA metabarcoding. DNA was extracted using the Qiagen
DNeasy PowerSoil HTP 96 Kit, with three 0.2 g aliquots per sample
pooled post-extraction®. DNA quality and quantity were assessed
using the Qubit™ 1X dsDNA HS Assay Kit. PCR amplification was per-
formed in triplicate using 5xHOT FIREPoI® Blend Master Mix (Solis
BioDyne, Tartu, Estonia) in 25 pl volume. The PCR conditions for bac-
terial amplification included 55°C annealing temperature, 26 cycles,
and 1.5ng of DNA template in 1ul, following an optimized protocol
derived from the Earth Microbiome Project (https://earthmicrobiome.
org/protocols-and-standards/16s) to minimize PCR bias while ensuring
sufficient yield for sequencing. For fungal amplification, the PCR
conditions included an annealing temperature of 55 °C, 30 cycles, and
1.5 ng of DNA template in 1pl. Amplified DNA was tagged with multi-
plex identifier tags, pooled, and verified on a TBE 1% agarose gel. Pri-
mer sets for barcode amplification of 16S rRNA gene were 515F
(GTGYCAGCMGCCGCGGTAA) and 926R (GGCCGYCAATTYMTTT
RAGTTT), targeting the bacterial V4-V5 hypervariable region®>** and
ITS9mun (GTACACACCGCCCGTCG) and ITS4ngsUni (CGCCTSC
SCTTANTDATATGC) for the fungal ITS region®. Sequencing was per-
formed using Illumina MiSeq platform with 2 x300 paired-end mode
for bacterial amplicons and PacBio Sequel Il platform for fungal
amplicons.

The Illumina and PacBio amplicon data (for bacteria and fungi,
respectively) were demultiplexed using LotuS2 and paired-end reads
were assembled using FLASH 1.2.10°°¢. For bacteria, zero-radius
operational taxonomic units (zOTUs) were generated using the
UPARSE algorithm (usearch version 10.0.024°"). The process involved
merging paired-end reads, trimming off 16S primer sequences, quality
filtering, and denoising. For fungi, 98%-OTUs were obtained following
the VSEARCH algorithm®®, Our datasets, consisting of 484 soils,
included 79,593 zOTUs (bacteria) and 35,152 98%-OTUs (fungi). The
bacterial dataset was rarefied at 40,000 sequences per sample, and the
fungal dataset was rarefied at 1000 sequences per sample. Taxonomy
was assigned to the bacterial dataset using the Ribosomal Database
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Project v16*° and to the fungal dataset using MegaBLAST searches
against the UNITE 9.1 database®’.

To identify groups of co-occurring microbial taxa, we used the
WGCNA (Weighted Gene Co-expression Network Analysis) R
package®. OTU tables containing relative abundances were first for-
matted with samples as rows and OTUs as columns. We assessed the
data for missingness using the goodSamplesGenes function, followed
by hierarchical clustering (hclust) to detect potential sample outliers. A
soft-thresholding power was selected based on scale-free topology
and mean connectivity criteria (pickSoftThreshold, with blockSize =
1000). An adjacency matrix was then constructed using this threshold
and transformed into a Topological Overlap Matrix (TOM) to compute
dissimilarity between OTUs. Taxa were clustered using hierarchical
clustering, and modules were defined via the cutreeDynamic function,
with a minimum module size of 15 for fungi and 100 for bacteria.
Module eigengenes were calculated (moduleEigengenes function) and
used as indicators of microbial community composition. Finally, OTUs
were taxonomically annotated and assigned to their corresponding
modules for interpretation. This network-based approach allowed us
to reduce community data dimensionality and link modules to envir-
onmental variables and multifunctionality.

Ecosystem multifunctionality
We assessed six functional proxies across 484 soils (Table S1): soil basal
respiration, three enzymatic activities (N-acetylglucosaminidase,
phosphatase, and xylosidase), net primary productivity, and soil
aggregate stability. These proxies capture different ecosystem pro-
cesses and associated services. Soil basal respiration reflects microbial
activity and relates to climate regulation. N-acetylglucosaminidase
breaks down chitin and complex carbohydrates, informing nitrogen
cycling and organic matter decomposition. Phosphatase releases
inorganic phosphate from organic compounds, a key process in
phosphorus cycling. Xylosidase cleaves xylose from hemicellulose,
contributing to plant litter decomposition and carbon cycling. Net
primary productivity reflects primary production and food provision,
while soil aggregate stability represents soil structure, linked to ero-
sion regulation, flood regulation, and habitat provision. Our selection
of functions was based on biotic or abiotic processes that can be
measured as a rate or directly contribute to ecosystem services’.
Potential soil basal respiration (uL O, g™ soil dry weight h™) was
measured using an O,-microcompensation apparatus: respiration was
determined at 20 °C using the pressure difference between a sealed
chamber containing the sample and a control chamber at atmospheric
pressure. For this, 5-7 g of thawed soil, which had been previously
acclimated for five days at 4 °C and sieved at 2 mm, was used. Mea-
surements of potential basal respiration lasted from 22 to 42 hours,
depending on the time taken for respiration rates to reach detectable
levels. A timeframe of 5-7 consecutive measurement hours, in which
respiration was stable, was used to calculate the average potential
basal respiration of the sample®>®>, The activities of the soil enzymes N-
acetylglucosaminidase, xylosidase, and phosphatase were measured
based on 4-methylumbelliferone (MUF)-coupled substrates®. Briefly,
fresh soil samples (250 mg each) were suspended in 50 uM acetate
buffer (pH 5), sonicated to disrupt soil aggregates, and incubated at
25°C for 60 min in 96-well microplates containing substrates, MUF
dilutions for quenching and extinction coefficients, and controls for
substrate and soil suspensions. Reactions were stopped with 2M
NaOH, and fluorescence was measured in eight technical replicates
using an Infinite 200 PRO instrument (Tecan Group, Ménnedorf,
Switzerland). Enzymatic activities were quantified as substrate turn-
over rates, expressed as nmol of MUF per gram of dry soil per hour. Net
Primary Productivity (NPP) was estimated at each sampling location
using MODerate resolution Imaging Spectroradiometers (MODIS)
imagery from NASA’s Terra and Aqua satellites, specifically through
the MOD17 PSN/NPP algorithm. NPP was calculated as the sum of eight-

day net photosynthesis (PSN) products based on the Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR). FAPAR, which
indicates the solar radiation absorbed by plants, is derived using
variables such as the maximum radiation conversion efficiency,
ground temperature, and vapor pressure®’. The NPP data for 2018,
aligning with LUCAS sampling locations, were averaged across
+6 months surrounding the sampling times at a 500 m resolution, and
expressed as g Cm™ yr, Soil aggregation was determined from the
percentage of water-stable aggregates (WSA) following the wet-sieving
method®>®, Briefly, 4 g of fresh soil (FM) were placed into 0.25-mm
sieves and allowed to rewet by capillarity for 5 min. Samples were then
wet-sieved for 3min and dried overnight at 70 °C, after which dry
matter was measured. Coarse Matter (CM) was measured after another
night at 70 °C. Finally, the percentage of water-stable aggregates was
calculated as follows:

@

%WSA = (WSA — CM> *100

FM - CM

To quantify ecosystem multifunctionality, we calculated four
distinct indices based on the six measured functions. The first index
was a simple average, where all functions were standardized to a
0-1 scale and then averaged, assuming equal contribution of each
function. The second index applied a z-score transformation, stan-
dardizing each function using the formula z= (X -p)/o, where X is the
function value, p is the mean, and ¢ is the standard deviation®*°. This
approach facilitates direct comparability among functions by expres-
sing values in terms of standard deviations from the mean. The third
index was a weighted average, which accounted for the fact that three
of the six functions were enzymatic activities representing similar
processes. In this index, each enzymatic function was assigned a
relative weight of 0.33, while non-redundant functions retained full
weight. In addition, we calculated a multiple-threshold index by
assessing the number of functions (0-6) performing above predefined
thresholds (25%, 50%, and 75% of the maximum observed value). We
also analyzed each function individually to provide detailed insights
into how predictors influenced both single functions and overall
multifunctionality. Because the calculated indices were highly corre-
lated (Figure S2), we selected the weighted index for downstream
analyses (see next section). This index best reflects ecosystem multi-
functionality, as it corrects for the overrepresentation of enzymatic
activities (3 out of the 6 measured proxies).

Statistical analyses

All statistical analyses were conducted in R version 4.2.1”. We explored
the relative contribution of the soil microbiome, soil properties, and
climate in explaining patterns on multifunctionality by means of ran-
dom forest analyses, variance partitioning, and structural equation
models (SEMs). We first investigated how multifunctionality and indi-
vidual soil functions varied across different environmental groupings.
Specifically, we categorized our 484 soil samples based on land use
(cropland =227, grassland=92, woodland =165), climatic region
(continental =113, temperate dry =122, temperate humid =249), soil
texture (clay =129, loam =179, sand =176), and pH class (acidic =290,
neutral = 63, alkaline =131). We then used Kruskal-Wallis tests followed
by pairwise Dunn’s tests (Bonferroni correction) to assess group dif-
ferences. For each test, we reported the chi-squared statistic, p value,
and eta-squared as a measure of effect size. Since overlaps among soil
groupings could confound interpretations, we quantified the percen-
tage of overlap between categories. With few exceptions, overlap was
limited. However, woodland, continental, and sandy soils largely
coincided with acidic soils (Table S2). This indicates that patterns
attributed to these groupings may partly reflect their strong associa-
tion with soil pH.
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To identify key predictors of multifunctionality (weighted index),
we employed Random Forest (RF) regression using the rfPermute
package with 1000 trees®®. Models were trained on standardized data
and evaluated using out-of-bag (OOB) R? and 10-fold cross-validation
(repeated 3 times). Variable importance was assessed based on the
increase in mean squared error when each predictor (microbial mod-
ules, soil properties, climate) was permuted.

Next, we partitioned the variance in multifunctionality using
adjusted R? to determine the unique and shared contributions of three
predictor groups: climate (precipitation, temperature), edaphic fac-
tors (excluding total nitrogen due to collinearity with SOC), and
microbial composition (bacterial and fungal modules). Unique and
shared contributions were calculated through a nested linear models.

Finally, to disentangle direct and indirect effects, we used multi-
group Structural Equation Models (SEMs) with the lavaan package®.
Predictors were grouped into climate, soil properties, and microbial
variables (see Figure S3 for a priori model). We fit SEMs and estimated
standardized path coefficients. A constrained model was also fit to test
whether relationships differed significantly across groups. Direct
effects on multifunctionality and indirect effects on the microbiome
were summarized by group and category.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data that supports the findings of this study are freely available in
figshare with the identifier https://doi.org/10.6084/m9.figshare.
28645625. Raw DNA sequences can be accessed through the Eur-
opean Soil Data Centre (ESDAC) portal: https://esdac.jrc.ec.europa.eu/
content/soil-biodiversity-dna-bacteria-and-fungi. The raw data (DNA
sequences) generated in this study have been deposited in the
Sequence Read Archive (SRA) database under BioProject ID
PRJNA952168. Detailed information on the taxonomic composition of
bacterial and fungal modules is available as Supplementary Dataset 1.
Detailed information on Structural Equation Models (SEMs) results is
availabel as Supplementary Dataset 2.

Code availability
Code used to perform all analyses described in this study is freely
available at https://github.com/fromerob/Multifunctionality.git.
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