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Keywords: The continuous release of synthetic chemicals into aquatic systems underscores the need for long-term assess-
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were analyzed using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) suspect/non-target
screening (SS/NTS) to evaluate temporal trends. Using retention-time indices and orthogonal MS/MS evidence
(mzCloud, FISh, CFM-ID), 332 compounds were identified at varying Schymanski confidence levels (2.1: 3.0 %;
2.2: 5.7 %; 3.1: 53 %; 3.2: 38 %). Temporal analysis of LC-HRMS peak areas revealed that 25 % of contaminants
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increased over time, with a higher proportion at Koblenz (29 %) than Weil (18 %). Conversely, several com-
pounds exhibited statistically significant decreasing trends at both Koblenz (14 %) and Weil sites (13 %),
consistent with regulatory measures, improved wastewater treatment, and shifts in industrial practices. Aquatic
toxicity prediction (ECOSAR) indicated that 47 % (154 of 332) of annotated structures were highly acutely toxic
(LCso/ECso < 1 mg/L) to at least one test group (fish, Daphnia, or green algae). This study provides the first 18-
year, site-specific non-target time series from a national archive and integrating orthogonal identification with
hazard prediction to support chemical prioritization. Archived SPM enables retrospective and comparable
assessment of particle-associated contaminants, complementing dissolved-phase monitoring, and supporting the
identification of unmonitored emerging CECs. Crucially, long-term NTS of these SPM samples provides
screening-level early-warning signals and a watch list for targeted confirmation and risk management.

1. Introduction

Suspended particulate matter (SPM) comprises fine particles sus-
pended in rivers, lakes, reservoirs, and coastal/seawater systems and
plays a vital role in aquatic ecosystems. It influences biogeochemical
cycles, water-sediment interactions, and facilitates the transport and
transformation of trace organic micropollutants [1,2]. SPM originates
from both natural and anthropogenic sources, including terrigenous and
autochthonous particles as well as human-made materials [1]. The
composition of SPM, both inorganic and organic, is strongly influenced
by climatic conditions and hydrology, which in turn affect biogeo-
chemical cycles [3]. In addition to its ecological effects, SPM signifi-
cantly impacts water quality by transporting contaminants, both
elemental and organic micropollutants, depending on its source and
composition [4]. Contaminants with higher organic carbon normalized
partition coefficients (Koc) increasingly partition to SPM under typical
suspended solids and organic carbon conditions in large rivers, whereas
more polar compounds remain predominantly in the dissolved phase
[5]. Consequently, SPM reflects the particle-bound fraction of the
contaminant load and complements dissolved-phase monitoring rather
than capturing the full chemical mixture on its own [5,6]. Recent
research on the Yellow River showed that SPM plays a critical role in the
distribution and transport of heavy metals, underscoring its function as a
major pathway for contaminants in large river systems [7]. Similarly,
common detected organic micropollutants including per- and poly-
fluoroalkyl substances (PFASs) [8], pharmaceuticals, surfactants, bio-
cides, and industrial intermediates in rivers downstream of urban and
industrial sources can contribute substantially to particle-associated
contaminant mixtures [9,10].

SPM particles are coated with a bio-organic film rich in carbon and
hydroxyl functional groups, promoting adsorption and transformation
of pollutants, making SPM a major driver of contaminant transport in
aquatic systems [1,11]. However, its heterogeneity (particle type/-
size/surface) and hydrological variability require careful interpretation
and cross-year comparability checks [5]. Analyzing contaminants of
emerging concern (CECs) in SPM remains challenging due to diverse
composition, variable particle sizes, matrix effects, and complex chem-
ical interactions [12-15]. Addressing these challenges requires inte-
grated temporal and spatial monitoring with robust statistical trend
analysis to support sustainable river and sediment management strate-
gies [16].

Non-target screening (NTS), recognized for its ability to detect un-
known chemicals, alongside suspect screening (SS), has been extensively
utilized in environmental sciences [16]. However, its use in the analysis
of SPM and sediments remains comparatively limited [12-15]. When
coupled with gas chromatography (GC) or liquid chromatography (LC)
and high-resolution mass spectrometry (HRMS), SS/NTS plays a pivotal
role in full-scan analysis of aquatic environments, enabling the detection
of emerging contaminants and providing crucial insights for risk
assessment and regulatory action [17]. Although NTS is increasingly
used in monitoring of CECs, studies investigating temporal trends
(especially for particle-phase matrices) remain scarce [17]. Environ-
mental specimen banks (ESBs) provide archived samples that enable
retrospective NTS, supporting the creation of multi-year datasets,

characterization of complex contaminant mixtures, evaluation of man-
agement effectiveness, and strengthening early-warning systems (EWS)
[18,19]. This approach complements EU Watch List frameworks for
regulatory monitoring, including the Water Framework Directive (WFD)
surface water Watch List (Commission Implementing Decision (EU)
2025/439) [20], and the German Drinking Water Ordinance Watch List
(Commission Implementing Decision (EU) 2022/679) [21], alongside
associated analytical guidance for Watch List substances [22]. However,
since NTS signals are prone to ionization and matrix effects, and iden-
tification confidence relies on MS/MS library coverage and in-silico
predictions, Schymanski levels are reported [23]. Retention-time indices
(RTI), orthogonal evidence (MS/MS library/annotation tools), and
quality assurance/quality control (QA/QC) measures, are applied to
minimize false positives and interpret trends cautiously [17]. This
approach is consistent with recent interlaboratory findings, showing
that experimental RT projection and RTI provides robust cross-system
retention constraints compared with purely predictive models [24].
Combining these strategies enables early detection of emerging
contaminant signals and supports timely preventive measures [17]. A
recent bibliometric analysis highlights the rapid growth of NTS in
water-pollution research and identifies key hotspots, underscoring cur-
rent gaps that long-term time series can help address [25]. Archived
materials therefore provide a practical approach to obtaining long-term
chemical trend information without the need for new field campaigns.

A recent study demonstrated the feasibility of applying SS/NTS to
archived SPM from large river systems. LC-HRMS-based NTS of SPM
samples from Rhine and Saar revealed increasing trends of previously
overlooked cationic contaminants and enabled an initial ecotoxicologi-
cal prioritization of quaternary ammonium compounds and dyes [12,
26]. In the present study, archived SPM samples from the German ESB,
collected between 2005 and 2022 at two contrasting Rhine sites (Weil
am Rhein and Koblenz), were analyzed using LC-HRMS with SS/NTS to
evaluate temporal trends and screen for emerging contaminants across a
much broader range of contaminant classes. While previous in-
vestigations of these archives, such as analyses of heavy metals and PFAS
profiles (https://www.umweltprobenbank.de) [27], have provided
valuable insights, our work extends this scope by characterizing a wider
suite of CECs and assessing long-term pollution dynamics to support
trend-based prioritization. Supported by in-silico predictions and
orthogonal evidence, these findings advance long-term environmental
monitoring and provide screening-level signals that support early
warning and prioritization of emerging contaminants. This site-specific,
non-target time series analysis of 36 archived annual composites from a
national archive integrates retention-time indices and MS/MS
library-based annotation tools with predicted acute toxicity informa-
tion. The results demonstrate how archived SPM can be used to priori-
tize chemicals for targeted confirmation and source control, while
complementing dissolved-phase monitoring strategies.

2. Materials and methods
2.1. Sampling

SPM samples were obtained from the German ESB, a long-term
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national program dedicated to the systematic collection, analysis, and
archiving of samples from human populations as well as marine, fresh-
water, and terrestrial ecosystems. The ESB supports chemical and
environmental policy and regulation by providing high-quality data for
long-term monitoring and research [18]. The SPM samples were
collected monthly between 2005 and 2022 using sedimentation boxes at
two Rhine River sites: Weil and Koblenz (Figure S1 in Supplementary
Information, SI1). Weil (Upper Rhine, just downstream of Basel) and
Koblenz (Middle Rhine, directly upstream of the Moselle confluence)
were selected to span an upstream-downstream pressure gradient,
well-treated/closely monitored upstream vs cumulative industri-
al-municipal inputs downstream, enabling site-resolved trend analysis
and early-warning assessment [27-29].

Monthly samples were collected using sedimentation traps installed
at about 1 m depth. Samples were pre-sieved at 2 mm and immediately
cryo-archived on site using liquid nitrogen to preserve its biological and
chemical integrity, in line with ESB standard operating procedures [30].
The bulk < 2mm fraction was analyzed without further <63 pm size
fractionation. At the end of each year, the twelve-monthly samples were
freeze-dried and pooled to an equal-mass (dry-weight) basis into a single
annual composite sample per site (18 per site; n=36 total). No
flow-weighting or additional normalization was applied during
compositing. Aliquots of the samples were stored above liquid nitrogen
at below —130 °C in the German ESB archive [30]. For this study,
cryo-archived aliquots were dispatched in insulated shippers packed
with dry ice to maintain sub-zero temperature during transport. Ship-
ments were received cold and upon arrival, aliquots were immediately
transferred to —20 °C storage and handled on ice to avoid thaw—freeze
cycles prior to extraction.

The detailed sampling locations are described in Gockener et al. [27]
and on the website of the German ESB (https://www.umweltp
robenbank.de/en/documents/profiles/sampling areas). Physicochem-
ical characterization of the annual SPM composites including pH
(CaClz), total carbon (TC), total organic carbon (TOC), total inorganic
carbon (TIC) (% dry weight), as well as grain size (sand/silt/clay, %) is
provided for Weil (Table S1, SI1) and Koblenz (Table S2, SI1) in SI1.

2.2. Chemicals

All solvents and chemicals utilized in the study were of analytical
grade. Dichloromethane (DCM) was purchased from Honeywell
(34411-2.5L), n-hexane from Supelco (1.04371.2500), and methanol
(HPLC grade, >99.8%) from Merck (M/4056/17X). Filtration was
performed using Whatman GF/F filters (1825-047, Cytiva). VWR
centrifuge tubes (525-1588) with PTFE screw caps (10132422, Fish-
erbrand) were used for sample processing.

2.3. Extraction and pre-treatment of the SPM Samples

Before proceeding with the extraction procedure, all glassware and
laboratory tools were pre-cleaned and heat-treated at 450 °C for 3 h. The
SPM samples were extracted using sequential ultrasonic extraction with
n-hexane:dichloromethane (Hx:DCM) and methanol (MeOH). Briefly,
5g of each SPM sample was weighed and extracted twice by adding
25 mL of Hx:DCM (1:1, v/v) each time, followed by ultrasonication for
30 min per extraction. The supernatant was then transferred to a round
flask. Subsequently, the remaining samples were extracted twice each
with 25 mL of MeOH using ultrasonication. The obtained extracts were
then concentrated to approximately 1 mL using rotary evaporation and
filtered (Whatman GF/F filters) into 8 mL vials. To recover analytes
retained on the filter, it was rinsed with approximately 7 mL of the
respective extraction solvent (Hx:DCM or MeOH) into the 8 mL vial. The
volume was adjusted to 5 mL under a gentle nitrogen flow, and the ex-
tracts were stored at —20°C until analysis. For each annual sample,
extracts were prepared in duplicate (n=2), except for one sample
(Koblenz 2005), where limited material permitted only a single
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extraction.

An aliquot corresponding to approximately 0.4 g dry weight of each
sample was used for LC-HRMS analysis, with injections performed in
triplicate. For this study, only the methanolic extracts were analyzed,
selected after a preliminary screening showing higher LC-HRMS feature
yield; while the Hx:DCM extracts are being analyzed by GC-HRMS in a
separate study. Procedural blanks, consisting of the extraction solvents,
were included with each extraction and processed identically to the
samples to monitor potential contamination.

Unspiked sediment QC samples were included in each batch. These
QC samples were prepared by pooling different sediment samples that
had previously been shown to induce AhR activity and exert antago-
nistic AR effects, making them particularly relevant for the accompa-
nying bioassay testing. Prior to analysis, the QC samples were freeze-
dried and extracted using the same procedure as the SPM samples,
ensuring consistency in processing. QC samples and procedural blanks
were analyzed in parallel to identify potential background signals or
laboratory-introduced contaminants. Moreover, procedural blanks were
included specifically to monitor potential contamination. While the QC
samples provided qualitative information on procedural cleanliness and
matrix-derived background, they were not used for quantitative
correction.

2.4. Chemical analysis using LC-HESI-HRMS

LC separation was carried out using a Vanquish Horizon ultra-
performance liquid chromatography (UPLC) system (Thermo Fisher
Scientific, Bremen, Germany). MilliQ water and MeOH were used as
mobile phases, modified both with 0.1 % formic acid for positive ioni-
zation mode (4ESI) and with 5mM ammonium acetate for negative
ionization mode (—ESI). A CORTECS C18+ column (90 fo\, 2.7 pm,
2.1 mm x 100 mm) was used at a flow rate of 0.3 mL/min, applying a
gradient elution from 10% to 90% of organic solvent over 18 min,
followed by an equilibrating step, while 10 pL. of each sample was
injected in triplicate (triplicate responses were averaged; standard de-
viation (SD) retained; duplicate-extract handling is described in 2.3).

HRMS detection was carried out on a QExactive Focus Orbitrap mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped
with a heated electrospray ionization (HESI-II) source. Both +ESI and
—ESI ionization modes were utilized to maximize the detection of
diverse compounds with different ionization behaviours. The full MS
scan range was 80-1000 m/z with a resolution of 70,000 (at m/z 200).
To collect MS/MS spectra for the most intense ions, the data-dependent
acquisition (DDA) mode was employed, using stepped collision energies
of 10, 20, and 40 eV. These MS/MS spectra were acquired at a resolution
of 17,500. Instrument settings included sheath and auxiliary gas flow
rates of 35 arbitrary units (a.u.) and 10 a.u., respectively, a spray voltage
of 3.0kV, capillary temperature of 350 °C, and auxiliary gas heater
temperature of 300 °C. To ensure and monitor mass accuracy
throughout the analytical sequence, the LC-HRMS system was calibrated
prior to each batch using Cal-Mix and Thermo Scientific™ Pierce™
FlexMix™ calibration solutions. In addition, an in-house system suit-
ability test (SST) standard was injected throughout the sequence to
monitor mass accuracy and detect drifts [31]. Each batch was bracketed
by MeOH and control blanks, an unspiked QC sediment, and MQ blanks.
Calibration and SST checks were performed before and after each batch.
Quality control focused on carry-over and background signals in blanks,
mass accuracy (+5ppm), and retention time consistency for both RTI
and SST mixtures. Reproducibility of RTI calibrants (mean retention
time and %RSD) is reported in Tables S3-S5 (SI1), along with calibration
curve of calibrants presented in Figure S2 (SI1). Features that failed
blank evaluation, mass accuracy, or RT/RTI criteria were excluded from
further analysis. Temporal trends were inferred from unnormalized peak
areas under controlled conditions. At the screening stage, p-values were
not adjusted for multiple comparisons, and trends were interpreted as
directional indicators rather than definitive statistical outcomes.
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Targeted quantification was beyond the scope of this study. All 36
annual composites were extracted and analyzed using identical pro-
tocols and LC-HRMS settings within a single analytical campaign for
each ionization mode, incorporating bracketed QC samples and RTI
calibrants to ensure maximum comparability across years.

3. Results and discussion
3.1. Identification of compounds

After data preprocessing using Compound Discoverer 3.3 (Thermo
Fisher Scientific), following the workflow outlined in Table S3 (SI1), a
total of 24,691 and 27,143 features, defined as distinct signals charac-
terized by mass-to-charge ratio, retention time, and intensity, repre-
senting potential chemical compounds, were initially detected in the
negative (-ESI) (NEG) and positive (+ESI) ionization modes (POS),
respectively (Fig. 1). Stepwise feature numbers per sample and per
ionization mode are summarized in Table S4a and S4b (SI1) and text in
SI1. Background removal reduced the number of features to 15,612
(NEG; 63% of initial) and 19,120 (POS; 70% of initial). Further
refinement, including multiple filtering steps, was applied to retain only
features with MS? spectra, ensuring robust feature selection. This
resulted in 2634 (NEG; 11 % of initial) and 2512 (POS; 9.3 % of initial)
features. Subsequent time-trend prioritization retained only features
consistently detected for at least five years at each sampling site, nar-
rowed the dataset to 215 (NEG; 0.87 % of initial) and 186 (POS; 0.69 %
of initial) features. Finally, eliminating false positives manually (n = 65,
Tables S5-7), and considering that some compounds were detected in
both POS and NEG modes, reduced the number of features to 332
compounds (173 in NEG; 0.70 % of initial and 159 in POS; 0.59 % of
initial).

The 332 unique compounds identified in the Rhine-Koblenz (n = 18)
and Rhine-Weil (n = 18) catchments were classified into seven main
categories (Fig. 2). The most prevalent group consisted of non-
anthropogenic compounds (39 %), followed by industrial chemicals
(33 %) (including per- and polyfluoroalkyl substances (PFASs) (1.0 %)),
pharmaceuticals (12 %), other chemicals (9.0 %), personal care prod-
ucts (4.5 %), and pesticides (1.5 %).

Identified compounds were assigned Schymanski confidence levels
and reported as two tiers: probable/putative (levels 2.1 and 2.2) and
tentative (levels 3.1 and 3.2) [23]. A detailed list of compounds iden-
tified at each confidence level, along with their corresponding molecular
formula, m/z, calculated molecular weight, SMILES, neutral loss, mass
error, retention time, category, applications, and related peak area
across samples, is provided in SI2. Overall, among the 332 compounds
identified, 29 (8.7 %) were robustly assigned to Schymanski Level 2
(2.1, n =10, 3.0 % of total compounds identified; 2.2, n = 19, 5.7 %),
while 303 (91 %) were tentatively identified at Level 3 (3.1, n =175,
53 %; 3.2, n =128, 38 %) (Figure S3 SI1). Confidence levels were

Total no. of features

After removing background
Peak rating 2 6.5

mass accuracy *5 ppm

Area max 2 1e5

RT 1-20 min

Having MS2

Time trend prioritization

After removing false positives
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Industrial
Natural Products g

39%

Chemicals
33%

Pesticides -
1.5% " Pharmaceuticals
’ 0
Personal Care 12%
Products
4.5%

Fig. 2. Classification of identified compounds in SPM samples collected from
Rhine-Koblenz and Rhine-Weil (n = 332).

assigned based on MS? similarity against mass spectral libraries
(mzCloud, mzVault, and ChemSpider), MS? fragmentation libraries
(MassBank), and in silico fragmentation tools (CFM-ID). Detailed level-
ling criteria and spectral-validation steps are provided in SI1. Addi-
tionally, Figure S4 (SI1) illustrates MS? spectra matching for several
compounds identified at level 2, showing spectral similarity compari-
sons with the mzCloud mass spectral library. It should be noted that this
NTS analysis provides screening-level early warning signals based on
annual SPM composite peak areas, whereas quantification concentra-
tions measurements are beyond the scope of this study.

Pharmaceuticals were among the most prominent compound groups
identified in this study. Due to the substantial variability in removal
efficiencies across conventional wastewater treatment plants (WWTPs),
readily biodegradable pharmaceuticals—such as paracetamol—are
typically well eliminated from the aqueous phase during treatment [32].
Consequently, they are often not detected in effluent samples, which is
consistent with our observations. In contrast, f-blockers like metoprolol
exhibit moderate and variable removal, primarily through biotransfor-
mation [33], consistent with our detection of this compound at both
sites. Moreover, persistent pharmaceuticals, such as carbamazepine,
tend to exhibit low removal efficiencies in conventional WWTPs [34], as
confirmed by our detection of this compound at both sites. The pre-
dominance of pharmaceuticals in Rhine SPM is consistent with recent
LC-HRMS studies of rural surface waters, where pharmaceuticals also
dominated the CEC mixture despite limited local wastewater infra-
structure [35].

Recent research on non-steroidal anti-inflammatory drugs (NSAIDs)

NEG POS
24691 27143
15612 19120
15426 16361
14219 14454
14209 13747
13200 13248
2634 2512
215 186
173 | 159

Fig. 1. Number of features at each processing step in positive (POS) and negative (NEG) ionization modes based on the 36 SPM samples.
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indicates that pharmaceutical residues can still spread across various
environmental compartments, even when WWTPs effectively remove
them from the dissolved phase. In a comprehensive case study, Dolu and
Nas (2023) monitored four widely used NSAIDs and six metabolites from
an advanced WWTP into its discharge channel, sewage sludge, irrigated
soils, and crops. They observed that, despite achieving over 93 %
removal from the aqueous phase (except for diclofenac), several NSAIDs
and metabolites accumulated in these downstream compartments [36].
These findings show that WWTPs and discharge channels act as redis-
tribution hubs between aquatic and terrestrial systems. This is relevant
to our case study, as NSAID signals in Rhine SPM likely stem from
combined inputs of WWTP effluents, irrigation channels, and contami-
nated soils.

The fate of surfactants and industrial additives is more variable and
depends on both their chemical class and the specific configuration of
the treatment process [37]. Among the industrial chemicals identified in
this study, surfactant classes such as alkyl (ether) sulfates (AES) and
alkyl sulfates (AS) were detected. Although AES (e.g., myreth sulfate,
laureth-2 sulfate) and AS (e.g., undecyl hydrogen sulfate, myristyl sul-
fate) are generally well removed in activated sludge-based
WWTPs—with removal efficiencies typically ranging from ~98 % to
> 99 % —residual concentrations can still persist in effluents and be
continuously discharged into receiving waters. In contrast, WWTPs
employing trickling filters exhibit lower and more variable removal ef-
ficiencies, with AES removal averaging around 83 % [38]. A national
German campaign across 33 WWTPs reported an average effluent con-
centration of 0.57 pg/L for total AES, despite their high removal effi-
ciencies. This finding highlights that basin-scale loads can remain
detectable downstream [39]. The detection of AS and AES compounds at
both Rhine sites reflects consistent usage of these substances. However,
the absence of significant temporal trends at either location suggests
stable performance of WWTPs throughout the study period, rather than
an increase in environmental inputs [40].

3.2. Temporal analysis of identified contaminants

A time trend analysis was conducted to prioritize features exhibiting
increasing trends over the study period (R scripts in Table S8, SI1). In
this study, “increasing” indicates a significant monotonic association
between year and unnormalized LC-HRMS peak area (p < 0.05) for
features present in > 5 annual composites per site. This > 5-year pres-
ence requirement makes the workflow a conservative, confirmatory
workflow focused on repeatedly observed signals. These counts are
therefore screening-level directionality indicators rather than quantified

100
90
80
70
60
50
40
30

20
10 .

. I

SP MK SP

Time trend significance (%)

Rhine-Koblenz
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changes in concentration.

Spearman’s rank correlation was selected as the primary method for
trend analysis due to its sensitivity to directional changes and its ability
to identify more statistically significant monotonic trends under the
sampling cadence (n = 142 in Rhine-Koblenz and n = 103 in Rhine-
Weil), compared to the more conservative Mann-Kendall test (n = 42
in Koblenz and n = 94 in Weil), which is more robust in the presence of
tied values (Fig. 3). Annual SPM composites vary between years,
therefore linear regressions in figures (Figures S4, S5, S8, S9, and S11 in
SI1) are shown only as visual aids. Since p-values were not adjusted
during this screening level, trends should be interpreted primarily as
directional rather than definitive. Peak-area patterns may also be
influenced by hydrological variability, SPM heterogeneity, and temporal
shifts in chemical usage or production; therefore, they represent pre-
liminary signals that warrant targeted follow-up for risk assessment.
Using temporal trends as a prioritization layer is consistent with recent
NTS case studies, where time profiles helped distinguish persistent or
increasing signals from transient background variability [41]; however a
recent study has shown that the apparent temporal variability in
LC-HRMS NTS time series can depend strongly on the chosen
data-processing approach and emphasize the need for conservative
trend interpretation [42,43].

In our study, site-specific differences are interpreted qualitatively
due to the lack of quantitative data on domestic vs industrial wastewater
contributions. Reliable source attribution would require flow-
normalized loads and verified shares of municipal and industrial efflu-
ents. Complete cross-tabulations and agreement rates are provided in
SI2.

At the Rhine-Koblenz site, 97 compounds showed statistically sig-
nificant increasing trends (29 %), 45 compounds exhibited decreasing
trends (14 %), and 190 compounds showed no significant trend (57 %)
(Figure S5, for details see SI2). At the Rhine-Weil site, 59 increased
(18 %), 44 decreased (13 %), and 229 compounds exhibited no signifi-
cant change over time (69 %).

Interpreted as screening-level directionality, the larger number of
increasing compounds at Koblenz suggests a more dynamic contaminant
profile, plausibly reflecting its role as a downstream confluence inte-
grating cumulative municipal/industrial inputs and tributaries with
episodes of reduced dilution, whereas Weil (immediately downstream of
Basel) benefits from advanced wastewater treatment and intensive
surveillance that may constrain SPM accumulation (Fig. 3); however,
without flow-normalized loads, hydrological covariates, and verified
effluent shares, this remains a qualitative interpretation [27-29].

SP (Spearman’s rank
correlation)

MK (Mann-Kendall
test)

No significant trend

Decreasing trend

Hiil N

Increasing trend
MK

Rhine-Weil

Fig. 3. Percentage of the chemicals identified showing significant trend using Spearman’s rank correlation (SP) and Mann-Kendall test (MK) at Koblenz and Weil
(n = 332). Colors denote trend direction (red = increasing, blue = decreasing, grey = no significant trend).
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3.2.1. Increasing time trends

A greater number of contaminants exhibited statistically significant
upward trends (Spearman’s Rs > 0.8) over time at the Rhine-Koblenz
site (n = 20) compared to the Rhine-Weil site (n = 9) (for details see
Tables S9 and S10 in SI1 and SI2). Despite its proximity to the industrial
Basel region, Rhine-Weil benefits from Switzerland’s advanced waste-
water treatment and a long-standing monitoring station that analyzes
over 680 substances, enabling early pollution detection and limiting
long-term contaminant buildup in SPM samples [27,28]. In contrast,
industrial pollution remains a pressing concern for the Rhine near
Rhine-Koblenz, originating from upstream hubs including Mannheim or
Ludwigshafen [27]. For example, Ludwigshafen is home to BASF, the
world’s largest chemical producer, while Mannheim accommodates a
wide range of chemical and industrial facilities [29].

Within the highest confidence set (level 2; n=29), industrial
chemicals comprised the largest group (n =11), followed by natural
substances (n = 9) and pharmaceuticals (n = 5). Notably, most features
flagged for acute toxicity (see SI2) were associated with industrial
chemicals, underscoring the need for heightened attention to this subset.
The persistent detection of industrial chemicals corroborates recent
findings, highlighting the widespread occurrence of industrial CECs
across European aquatic environments [44]. For instance, a recent study
monitoring WWTPs and transnational river basins in Spain and Portugal
reported incomplete removal of several industrial chemicals, including
xylenesulfonate, TBEP (tris(2-butoxyethyl) phosphate), and TCPP (tris
(1-chloro-2-propyl) phosphate). Despite treatment, elevated concentra-
tions of these substances were still observed in effluents and surface
waters, underscoring the limitations of conventional wastewater treat-
ment technologies in effectively eliminating industrial contaminants
[45].

Pharmaceuticals, plant-protection compounds, and personal-care
products significantly contribute to pollution in the Rhine River. These
contaminants originate primarily from municipal wastewater and
catchment inputs via runoff and tributaries. For most micropollutants,
particularly pharmaceuticals, effluents from WWTPs represent the
dominant source. In contrast, plant-protection compounds mainly enter
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the river through diffuse agricultural runoff and drainage [46].
Numerous studies underscore the need for targeted monitoring and
regulation of CECs, particularly due to their presence and potential risks
in drinking water, highlighting the importance of effective water quality
management [47]. Furthermore, special attention should be given to the
application of diverse analytical tools to capture a wide range of
chemicals with varying physicochemical properties, for instance,
PMT/vPvM substances (persistent, mobile, and toxic/very persistent
and very mobile), which can potentially evade conventional treatment
and migrate through aquatic systems into drinking water sources [48].
This highlights the importance of incorporating hydrophilic interaction
liquid chromatography (HILIC) as a complementary separation tech-
nique to broaden the detection scope for such contaminants [49].
Rhine-Koblenz
The chemical profile at the Rhine-Koblenz site reflects a complex
mixture of industrial chemicals, natural substances, pharmaceuticals,
and personal care products (Figure S6 and SI2). This composition re-
flects the site’s downstream location along the Rhine, where it is influ-
enced by cumulative discharges from several upstream industrialized
regions. Among the 20 substances showing statistically significant up-
ward trends, several industrial chemicals (n = 6) are identified as likely
originating from upstream industrial hubs such as Mannheim and Lud-
wigshafen [27]. The fitted trend lines are included solely to visualize the
direction of change, acknowledging the substantial year-to-year vari-
ability observed in the SPM composite samples. For example, 3,
4'-(dioctyloxy)acetophenone (Fig. 4A), commonly used as a plastic ad-
ditive and UV stabilizer, reflects the expansion of plastic production and
may enter aquatic environments via leaching and degradation. Its
environmental behavior is similar to that of other UV filters, such as
benzotriazoles and benzophenones, which have been shown to hinder
algal growth and disrupt photosynthesis [50], regulated under the EU
cosmetics legislation (Regulation (EC) No 1223/2009, Annex VI) [51].
Octyl sulfate, a surfactant found in personal care and cleaning
products, is being detected more frequently due to its widespread usage
and poor removal efficiency in WWTPs (Fig. 4B) [52]. Its persistence in
aquatic environments highlights the challenges associated with treating
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Fig. 4. Time trend analysis of selected compounds at the Rhine-Koblenz site (n = 18), showing statistically significant increasing trends (Spearman’s rank corre-
lation): (A) 3',4-(Dioctyloxy)acetophenone, (B) octyl sulfate, (C) arachidic acid, and (D) 2-arachidonyl glycerol ether.
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surfactant-rich effluents, especially in densely populated or industrial-
ized catchments [53].

Pharmaceuticals are also prominent in the chemical profile. These
compounds often resist conventional treatment methods, leading to a
lasting presence in surface waters [54]. The environmental fate of many
pharmaceuticals in WWTPs and receiving rivers is largely influenced by
their ionization state and hydrophobicity, which govern their sorption to
SPM and affect removal efficiency. Moreover, in large lake-river sys-
tems, mass-flow based assessments reveal that hydrology and pollutant
loads, not just concentrations, play a critical role in shaping downstream
occurrence [55,56]. As an example, metoprolol, an antihypertensive
drug, was tentatively identified at level 3.1 and exhibited increasing
trends at both sites. This finding aligns with its high prescription rates
and frequent detection in European surface waters, reflecting its
persistence and incomplete removal during conventional wastewater
treatment [57].

In addition to anthropogenic chemicals, a large number of naturally
occurring compounds (n = 129) were characterized (SI2). At Koblenz,
increasing examples included arachidic acid, chrysin, and 2-arachidonyl
glycerol ether (2-AGE). Since each feature was assigned to a single pri-
mary category, compounds with potential mixed provenance (e.g.,
arachidic acid, 2-AGE) were classified as natural, although their signals
likely reflect mixed origins, biogenic organic matter cycling and
anthropogenic wastewater inputs, commonly observed in urban rivers
[28]. Arachidic acid has mixed origins—biogenic (plant waxes/organic
matter) and anthropogenic (domestic/industrial; e.g., food processing,
cosmetics) (Fig. 4C) [58]. 2-Arachidonyl glycerol ether (noladin ether,
2-AGE) was originally reported as an endogenous CB1 agonist isolated
from porcine brain, but its endogenous occurrence remains debated. In
this study, it is treated putative endogenous, with environmental de-
tections likely reflecting wastewater-influenced inputs (Fig. 4D) [59].
Furthermore, cholestane derivatives (fecal sterol biomarkers) indicate
human or animal fecal inputs [60].

The diversity and persistence of these compounds, along with their
increasing temporal trends, emphasize the relevance of the Rhine
catchments, particularly Koblenz, as a receptor site for both legacy and
emerging contaminants. This pattern is likely intensified by reduced
dilution capacity during low-flow conditions and the potential for
sediment remobilization, as highlighted in recent ICPR assessments of
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Rhine water quality [61]. These factors emphasize the need for sys-
tematic monitoring and implementation of effective source control
strategies.

Rhine-Weil

The chemical profile at the Rhine-Weil site reveals a complex
mixture of industrial chemicals, pharmaceuticals, personal care prod-
ucts, and synthetic intermediates, reflecting its location downstream of
Basel, as a major industrial and pharmaceutical center [61] (Table S10
in SI and SI2). This composition is consistent with localized discharges
from urban and manufacturing sources in the region. Although fewer
substances at Rhine-Weil showed statistically significant upward trends
(n = 59) compared to Rhine-Koblenz (n = 97), the detected compounds
are noteworthy for their emerging use, limited regulatory oversight, and
potential environmental persistence (Figure S7 in SI). Several of the
detected industrial compounds (n = 17) reflect the increasing use of
industrial and consumer products. For example, N-2-ethylhexyl bicy-
cloheptenedicarboximide (Fig. 5A), used for pesticide production, and
octhilinone (Fig. 5B), commonly found in paints and coatings, point to
rising applications in the construction industry and highlight gaps in
regulatory oversight, emphasizing their potential environmental sig-
nificance [62].

Among the features showing upward trends at Weil, two quinone-
type compounds, (2Z,6 R)-5,6-dihydroxy-2-[(2E,4E)-1-hydroxy-2,4-
hexadien-1-ylidene]-4,6-dimethyl-4-cyclohexene-1,3-dione and phe-
nanthrenequinone, were particularly notable. These increases are
interpreted as consistent with in-situ oxidative transformation of aro-
matic precursors (e.g., polycyclic aromatic hydrocarbons (PAHs) and
phenolic/p-phenylenediamine (PPD) antioxidants) within WWTPs and
stormwater systems under photochemical aging, rather than a single
point source [63]. Downstream mixing and attenuation processes (e.g.
redox reactions, biodegradation, sorption, and settling) along the
Weil-Koblenz reach likely diminish these signals by the time they reach
Koblenz [27-29].

The detection of pharmaceutical-related substances, such as peptide-
based drug intermediates, and synthetic research chemicals like pyrro-
lidinedione derivatives reflects ongoing advancements in chemical
synthesis and therapeutic development [64]. For instance, Boc-LALALW
was tentatively identified at level 3.1., possessing its alternating hy-
drophobic alanine and leucine residues together with two tryptophan
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Fig. 5. Time trend analysis of selected compounds at the Rhine-Weil site (n = 18), showing statistically significant increasing trends (Spearman’s rank correlation):
(A) N-2-ethylhexyl bicycloheptenedicarboximide, (B) octhilinone, (C) diethyl phosphate.
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residues, this synthetic peptide has been widely used as a model system
for studying conformation, sidechain dynamics, and peptide-membrane
interactions [65].

These compounds often fall outside current regulatory frameworks
and environmental monitoring efforts. Although increasingly used in
medicine, antimicrobial peptides and peptide-based drugs have poorly
understood environmental fates, with limited data on their degradation
and ecological effects [66].

Octyl sulfate, a surfactant commonly found in shampoos and soaps, is
a typical personal care product contaminant whose persistence in sur-
face waters is primarily due to incomplete removal during wastewater
treatment processes [67]. Beyond its chemical persistence, recent
studies have shown that sodium octyl sulfate can indirectly affect
aquatic ecosystems by inducing colony formation in green algae, leading
to the inhibition of grazing by key zooplankton species such as Daphnia
and Bosmina [68]. These surfactants can enter aquatic environments
through wastewater discharges from municipal sources or industrial
facilities, including those located near pharmaceutical production sites.
Such interactions suggest that surfactants can disrupt food web dy-
namics, further emphasizing the importance of long-term ecological
monitoring and comprehensive risk assessment [69].

Diethyl phosphate, a degradation product of organophosphate pes-
ticides, serves as a recognized indicator of agricultural runoff. It is
known for its chemical stability in the environment and its potential to
add to long-term pollution levels in surface waters (Fig. 5C) [58].

Although excluding 2022 slightly reduced the magnitude of the
slopes, the direction of temporal trends for all plotted compounds at
both sites remained unchanged (Figures S8 and S9 in SI1). Pettitt tests
and Sen’s slope estimates for the selected compounds consistently
confirmed positive trends across both segments (Figures S8 and S9;
Table S11 in SI1). Given the consistency in sampling protocols, extrac-
tion procedures, and quality control diagnostics, with no analytical or
batch-related anomalies observed, the detected trends are likely driven
by environmental factors, such as hydrological dynamics or variations in
SPM loads.

These findings highlight the importance of upstream monitoring at
sites like Rhine-Weil, where localized industrial activity and urban
wastewater inputs contribute to a chemically diverse and evolving
contaminant profile. While the number of increasing trends is lower
than at Rhine-Koblenz, the nature of the compounds detected at Rhine-
Weil suggests a need for proactive monitoring of emerging contaminants
and their transformation products [70]. These findings underscore the
strong influence of upstream sources and highlight the transboundary
nature of chemical pollution in this part of the Rhine [70].

3.2.2. Decreasing time trend compounds identified at both sites

Several compounds showed statistically significant declines at
Rhine-Koblenz (n = 45) and Rhine-Weil (n = 44), indicating the positive
impact of regulatory actions, improved wastewater treatment systems,
and changes in industrial practices (Table S12, Figures S10 and S11 in
SI1; SI2). Among them, 11 and 13 compounds demonstrated a pro-
nounced downward trend (Spearman’s Rs < —0.8) at the Koblenz and
Weil sites, respectively.

Perfluorooctanesulfonic acid (PFOS), a persistent and bio-
accumulative PFAS, has significantly declined in usage since the
voluntary phase out by producers in the early 2000s and its inclusion in
the Stockholm Convention in 2009, leading to a global phase-out of most
of its applications [71] and declining trends in human populations and
environment, including Germany, where PFAS levels show clear
declining trends across human plasma and environmental matrices [72].

Climbazole, an antifungal agent frequently applied in anti-dandruff
shampoos, has shown a decreasing trend, likely due to regulatory
limits introduced by the EU Cosmetics Regulation (EC) No 1223/2009
[73]. Similarly, a tentatively identified anticonvulsant, carbamazepine
(level 3.2), showed a downward trend at both sites. Given its poor
removal in conventional WWTPs [57], this decline likely reflects
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improved catchment-scale attenuations such as the implementation or
optimization of advanced treatment, rather than reduced usage.
Notably, carbamazepine is designated by the EU Urban Wastewater
Treatment Directive as an indicator pharmaceutical for verifying qua-
ternary treatment, with a benchmark of > 80 % removal [74]. The
observed decrease thus suggests enhanced treatment efficiency over
time downstream of both catchments. However, interpretation is limited
by the lower identification confidence and the screening-level nature of
the SPM data.

Within the pesticide group, diazinon, an organophosphate insecti-
cide, has dropped in usage, primarily due to its removal from residential
use and regulatory restrictions imposed by European Commission
Directive 2007/6/EC, reflecting concerns about its neurotoxic effects
and long-term environmental persistence [75]. Additionally, diuron, a
well-known herbicide, has also shown a downward trend in
Rhine-Koblenz, likely influenced by regulatory measures by the
European-Commission in 2007 [75], followed by the European Com-
mission in 2023, along with improved runoff management and waste-
water treatment [76].

The decline in key pollutants at both sites highlights the success of
regulatory efforts and improvements in treatment technologies. These
findings also emphasize the role of long-term monitoring in supporting
early-warning-oriented assessment, enabling the timely detection of
environmental changes and supporting informed policy-making.

3.3. Acute toxicity assessment of the identified chemicals using the QSAR
model

Ecological Structure Activity Relationships (ECOSAR) predictions of
the 332 identified compounds covering acute toxicity in aquatic or-
ganisms including fish, daphnia (Daphnia magna), and green algae, are
detailed in SI2. In this study, ECOSAR outputs were used as screening-
level indicators of intrinsic hazard for the 332 identified compounds,
covering acute toxicity in aquatic organisms including fish, Daphnia
magna, and green algae (SI2). These predictions are not intended for
quantitative risk assessment or mixture prioritization and have limited
applicability to ionizable or surface-active compounds, transformation
products outside the model domain, and complex chemical mixtures. All
analytes were derived from the SPM-bound fraction. Sorption to SPM
typically reduces freely dissolved concentrations, thereby limiting direct
exposure. Nevertheless, SPM-bound compounds can still pose ecological
risks through trophic transfer (e.g., ingestion of particles) and processes
such as sediment deposition or resuspension [5]. Accordingly, ECOSAR
predictions, based on freely dissolved chemical structures, are inter-
preted here as indicators of intrinsic hazard rather than
exposure-adjusted risk for SPM-associated compounds [77,78]. To
illustrate sorption, we used the measured TOC of Rhine SPM (2.4-5.4 %;
Tables S1 and S2 in SI1). The resulting SPM-bound fraction was
consistently high across all years (Fspy ~ 0.83-0.92), supporting our
interpretation that SPM can retain the majority of a moderately sorbing
compound while still enabling trophic uptake through particle
ingestion.

Based on the highest predicted toxicity for each compound, 47 %
(n =154) were classified as highly acutely toxic, 27 % (n = 90)
demonstrated moderate toxicity, and 17 % (n =56) showed slight
toxicity. The remaining 8.7 % (n = 29) showed no significant toxicity.
Among the highly toxic responses, daphnia indicated the highest fre-
quency (n = 69), underscoring its pronounced sensitivity to the tested
compounds. This supports its function as a sentinel species in aquatic
ecotoxicology, as daphnia is widely recognized for its responsiveness to
a broad spectrum of environmental contaminants, making it a reliable
indicator for evaluating ecological risks in aquatic environments [79].

Several compounds predicted as highly toxic by ECOSAR have also
been reported in the literature to exhibit significant aquatic toxicity. For
instance, TCC (triclocarban), a widely used antimicrobial agent in per-
sonal care products, has been detected in surface waters and sediments.
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It is highly toxic to aquatic invertebrates and other organisms, with ef-
fects observed at environmentally relevant concentrations [80]. TCC is
also bioaccumulative and persistent in sediments, raising concerns
about long-term ecological impacts [81]. Furthermore, it acts as an
endocrine disruptor, impairing thyroid homeostasis and affecting
reproduction and development in aquatic species [82]. Irganox 1098, a
hindered amine antioxidant used as a stabilizer in polymers [83], is
considered potentially toxic to aquatic life due to its persistence, low
biodegradability, and bioaccumulative potential, which align with
ECOSAR-based screening criteria [84].

Several compounds identified at level 2 of confidence exhibited
increasing trends over time at the Rhine-Koblenz (n = 8) and Rhine-Weil
(n = 1), suggesting growing inputs of certain emerging contaminants
into the Rhine River. Table 1 integrates ECOSAR (most sensitive species/
endpoint) with temporal trends derived from LC-HRMS peak areas
(presence >5 years per site; Spearman p < 0.05; Rs reported with Rs >
0.80 flagged) to prioritize Level-2 identifications. This approach yields a
screening-level watch list of contaminants with the highest potential for
environmental concern.

Among them, linalyl cinnamate, a fragrance compound commonly
used in cosmetics and personal care products, was identified for the first
time in the SPM samples at both sites. Despite its widespread use,
existing safety assessments focus solely on human exposure, with no
documented environmental occurrence or aquatic toxicity data [85]. Its
predicted high aquatic toxicity based on the QSAR model (ECsp: 2.90 x
1072 mg/L for green algae over 96 h), combined with the absence of
prior environmental monitoring, highlights its potential as a novel
ecological risk. Consistent with these observations, another study on the

Table 1

Journal of Hazardous Materials 503 (2026) 140993

SPM samples reported declining concentrations of two synthetic fra-
grances used in personal care products and household cleaners, Galax-
olide® and Tonalide®, supporting the trends observed in the present
findings [86].

Moreover, chrysin, a flavonoid naturally present in honey and
propolis, exhibited an upward trend at Rhine-Koblenz. Although it has
moderate predicted aquatic toxicity (LCso: 8.66 mg/L for daphnids over
48 h), its detection may be linked to plant runoff or increased use in
dietary supplements. While recent studies support its biological safety
[87], its environmental behavior remains poorly understood. The pre-
sent study is a relative, peak-area-based trend screening, while trend
directionality was interpreted from unnormalized LC-HRMS peak areas
under documented QA/QC (calibration/SST, bracketed blanks,
unspiked QC sediment, RTI checks; see 2.4 and SI1), noting that SPM
heterogeneity and hydrology can affect signal magnitude. Accordingly,
ECOSAR-based hazard flags should be interpreted cautiously and
corroborated with targeted confirmation before any risk
characterization.

At the Rhine-Koblenz site, long-chain fatty acids and esters like 2-
hydroxybehenic acid and methyl (13E,16E,19E)-13,16,19-docosa-
trienoate suggest inputs from biological activity, cosmetics, and indus-
trial use. Both compounds pose notable ecological risks, showing high
aquatic toxicity (Fish LCso: 2.90 x107 mg/L; Algae ECso: 1.90 x10™
mg/L). Other compounds with increasing trends at Rhine-Koblenz
include 2-hydroxy-23-methyltetracosanoic acid and CHEMBL488417
((2E,4E,6E,8E)-9-(2-Acetyl-5,5-dimethyl-1-cyclopenten-1-yl)-3,7-
dimethyl-2,4,6,8-nonatetraenoic acid), while 1,7-diphenyl-3,5-heptane-
dione showed a significant rise at Rhine-Weil.

Schymanski Level 2 identifications with modeled acute aquatic toxicity (most sensitive species/endpoint) and site-specific trends from Spearman’s tests on annual LC-

HRMS peak areas (p < 0.05)*

Chemical Category Trends in Rhine-Koblenz Trends in Rhine-Weil

Lansiolic acid Natural Product r ns
2-Hydroxy-23-methyltetracosanoic acid Industrial Chemical 7 ns EPA guidelines

Methyl (13E,16E,19E)-13,16,19- Industrial Chemical r ns Highly Toxic (< 1 mg/L)
docosatrienoate Moderately Toxic (1 - 10 mg/L)
2-Hydroxybehenic acid Personal Care Products ? ns Slightly Toxic (10 - 100 mg/L)
(7E)-7-Hexadecen-9-yne Industrial Chemical ns ns Non-Toxic (> 100 mg/L)
Docosahexaenoic acid Natural Product ns ns

Linalyl cinnamate Natural Product r ns

Eicosapentaenoic acid Pharmaceutical ns ns

Arachidonic acid Natural Product ns ns

(7E)-7-Hexadecen-9-yne Industrial Chemical ns (increased from 2021-2022) ns

(R)-2-hydroxystearic acid Personal Care Products ns ns (increased from 2021-2022)
(42)-4-Hexyl-4-undecen-2-one Industrial Chemical ns ns

Methadone Pharmaceutical ns ns

Amitriptyline Pharmaceutical ns a

2-Octadecanyl hydrogen sulfate Industrial Chemical A ns (decreased from 2012-2022)
Irbesartan Pharmaceutical ns ns

CHEMBL488417° Industrial Chemical r ns
5H-Cyclopenta[b]phenanthren-5-one Other Chemicals ns (increased from 2021-2022) N

Euscaphic acid Natural Product ns (increased from 2021-2022) ns
1,7-Diphenyl-3,5-heptanedione Industrial Chemical ns (increased from 2021-2022) 7

4-Phenyl-6-hepten-2-one Industrial Chemical ns ns

Chrysin Natural Product 7 ns

Wogonin Natural Product ns (increased from 2021-2022) ns (decreased from 2021-2022)

PFASs

Natural Product
Industrial Chemical
Industrial Chemical
Pharmaceutical
Natural product
Industrial Chemical

Perfluorooctanesulfonic acid (PFOS)
Adenylthiomethylpentose
(4-Vinyl-1H-indol-3-yl)acetonitrile
Tris(2-chloroethyl) phosphate
Pantoprazole

Indole-3-carbinol

2-Oxindole

©

ns (decreased from 2012-2022)

A
ns (decreased from 2009-2022)
ns (increased from 2020-2022)
ns (increased from 2021-2022)
A
A
ns

@ ~: significant increasing trend (p < 0.05); \: significant decreasing trend (p < 0.05); ns: no significant trend (p > 0.05); more details on temporal behavior is

provided in parentheses. ® (2F,4E,6F,8E)-9-(2-Acetyl-5,5-dimethyl-1-cyclopenten-1-yl)-3,7-dimethyl-2,4,6,8-nonatetraenoic acid.
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As demonstrated in Table S13 (SI1), 55 % of level 2 compounds
(n =29) were classified as highly acutely toxic, while 17 % were
moderately toxic, 21 % slightly toxic, and 7 % showed no toxicity.
Among the source categories, personal care products had the highest
proportion of highly toxic predictions (100 %), followed by pharma-
ceuticals (80 %), industrial chemicals (55 %), and natural products
(44 %). PFAS exhibited only slight toxicity, and the single compound in
the “other chemicals” category was moderately toxic. These results are
intended solely for prioritization purposes, given the uncertainties
associated with compound identification and predictive modeling.

These SPM-based trends and the resulting watch list complement
previous LC-HRMS NTS studies on Rhine and Saar SPM that focused on
permanent cations [12] by extending the chemical space to PFAS,
pharmaceuticals, surfactants, biocides and industrial additives and
integrating acute-toxicity-based prioritization. Together, these datasets
illustrate the value of archived SPM for reconstructing long-term
contaminant dynamics and supporting across-class substance prioriti-
zation. However, given the limited data on their environmental occur-
rence, referring to the detection of these compounds in environmental
samples without corresponding concentration data, these upward trends
warrant further investigation into their ecological relevance. While the
actual impact of these findings depends on concentration levels, their
consistent detection and increasing trends highlight the need for addi-
tional studies to support future risk assessment efforts. Ultimately, this
work contributes to the development of early-warning-oriented moni-
toring frameworks that (i) flag potential watch list chemicals, (ii) trigger
targeted confirmation, quantification, and risk quotient screening, and
(iii) inform source control and surveillance priorities in aquatic
ecosystems.

4. Conclusion

This case study highlights the value of long-term SPM archives in
conjunction with suspect screening and NTS for the identification of
emerging contaminants in aquatic environments. The identification of
various compounds with increasing trends, particularly at the Rhine-
Koblenz site, indicates continued chemical exposure from diverse
sources, including industrial chemicals, pharmaceuticals, and biocides.
Across both Rhine sites, a total of 332 compounds were identified with
varying levels of confidence. Spearman trend analysis revealed 97
increasing (29 %) and 45 decreasing (14 %) compounds at Koblenz, and
59 increasing (18 %) and 44 decreasing (13 %) compounds at the Weil
catchment.

At the acute screening level, ECOSAR-based toxicity predictions
were used to further prioritize these substances for ecological risk
assessment. The results indicated that 47 % of the compounds exhibited
high acute toxicity, 27 % moderate, 17 % slight, and 8.7 % low or no
acute toxicity. Daphnia frequently emerged as the most sensitive species
across the dataset.

In contrast, the observed declining trends in regulated organic
micropollutants such as PFOS and diazinon reflect the effectiveness of
environmental regulations and improved wastewater treatment. The
combined application of LC-HRMS and SS/NTS provides a powerful
analytical framework for high-resolution detection, trend analysis, and
prioritization of emerging contaminants, thereby supporting early-
warning-oriented monitoring and risk-based prioritization. Future
studies focusing on targeted analysis of prioritized chemicals, supported
by Level 1 confirmation using reference standards, validated extraction
protocols and matrix-effect assessment, combined with integration of
hydrological covariates, effect-based approaches, and complementary
GC-HRMS data, can further strengthen the regulatory relevance of this
work. This study provides a robust framework for extending similar
investigations on sediments, soils, and biota by integrating temporal
trend analysis with LC-HRMS-based SS/NTS. Such an approach enables
early detection of emerging contaminants and supports timely man-
agement and policy decisions in coordination with regulators for source
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tracing and mitigation.
Environmental implications

Long-term non-target screening (NTS) of suspended particulate
matter (SPM) from two Rhine sites (2005-2022) identified 332 con-
taminants, with about 25 % showing significant upward trends, indi-
cating emerging particle-associated exposure risks. Combining temporal
trends (Spearman p < 0.05), persistence markers and ECOSAR-based
hazard predictions, we derive an SPM-based watch list including
PFAS, pharmaceuticals, anionic surfactants, UV stabilizers, biocides,
organophosphate indicators, and fragrance ingredients as candidates for
targeted confirmation, load-based monitoring and source control mea-
sures. The approach provides screening-level early-warning signals that
complement dissolved-phase monitoring and can support regulators and
utilities prioritize mitigation efforts, while recognizing that quantitative
risk assessment still requires targeted concentration data and hydro-
logical context.
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