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Identifying key genes for European
canker resistance in apple: machine
learning and gene expression
profiling of quantitative disease
resistance
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European canker, caused by Neonectria ditissima, is a major disease of apple (Malus x domestica) with
limited control options, making host resistance a key management strategy. Although quantitative
disease resistance (QDR) has been identified, the underlying molecular basis remains poorly
understood. We investigated candidate genes associated with resistance using transcriptomic profiling
of a bi-parental population segregating for six QTLs linked to canker resistance. RNA sequencing
combined with machine learning enabled the identification of key biomarkers predictive of disease
resistance. Integration of expression and QTL data highlighted genes involved in phenylpropanoid
biosynthesis, immune receptors (NLRs, RLKs, WAKSs), and epigenetic regulators, implicating their
roles in host defense. Expression patterns were further resolved into cis- and trans-regulatory effects,
providing insight into allele-dependent regulation. Independent validation in a separate dataset
confirmed the robustness of key expression patterns. These findings advance understanding of the
genetic architecture underlying QDR in apple and provide a basis for marker development to support
breeding of cultivars with durable resistance to European canker.
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European canker, caused by the ascomycete Neonectria ditissima, severely affects apple (Malus x domestica)
production worldwide and is particularly problematic in cool, wet climates'. The fungus primarily colonizes
woody tissues, entering via pruning cuts or other injuries on shoots and trunks, and then spreading internally
through the vascular system?. N. ditissima has a wide host range and is able to infect a large number of decidious
tree species'.

Preventive measures, including sanitation and fungicide applications, provide limited control of disease
establishment, making the development of genetically resistant cultivars the most effective management
strategy. Despite this, there is limited information on the response of the host apple plants to infection nor
is there information on the resistance mechanisms involved in limiting the spread of the disease. Reported
sources of partial resistance to N. ditissima in Malus are all of quantitative nature’~’. Several quantitative trait
loci (QTL) with relatively small to moderate effects, in the range of 4-19%, have been reported to contribute to
partial resistance to European canker in apple scion material. Together, these findings indicate that resistance to
N. ditissima is polygenic and reflects the combined influence of multiple loci rather than the action of a single
major gene. Interestingly, a number of quantitative disease resistance (QDR) alleles are also present in cultivars

INIAB, Lawrence Weaver Rd, Cambridge CB3 OLE, UK. 2School of Agriculture, Policy and Development,
University of Reading, Reading RG6 7EU, UK. 3Swedish University of Agricultural Sciences (SLU), Sundsviagen
14, Alnarp 234 56, Sweden. “Wageningen University and Research , Wageningen 6708, Netherlands PB. *School
of Biosciences , University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom. *‘email:
Amanda.Karlstrom@slu.se

Scientific Reports | (2026) 16:3419 | https://doi.org/10.1038/s41598-025-33478-6 nature portfolio


http://orcid.org/0000-0002-2884-6759
http://orcid.org/0000-0002-7453-3710
http://orcid.org/0000-0003-0115-5218
http://orcid.org/0000-0003-2147-665X
http://orcid.org/0000-0002-3307-3519
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-33478-6&domain=pdf&date_stamp=2025-12-27

www.nature.com/scientificreports/

considered susceptible, such as ‘Gala, which highlights that accumulating or “stacking” several favourable alleles
may be required to achieve stronger levels of tolerance.

Despite its prevalence, the molecular basis of QDR remains poorly defined. In contrast, the functions of many
resistance (R) genes that confer qualitative or race-specific resistance are well characterised®. Most of these have
been shown to belong to the nucleotide-binding site leucine-rich repeat (NLR) family, which plays a central
role in pathogen recognition®. Genes associated with QDR are functionally diverse and include those encoding
kinases, WRKY transcription factors, zinc-finger proteins, and enzymes involved in lignin biosynthesis as well
as NLRs®. Cell-surface receptors with extracellular sensing domains are also thought to play an important part in
quantitative resistance, as they mediate the perception of pathogen-derived molecules at the plasma membrane®.
These include receptor-like kinases (RLKs), receptor-like proteins (RLPs), LysM-domain receptors, lectin-type
RLKs (LecRLKSs), and wall-associated kinases or kinase-like proteins (WAKs/WAKLs)°’.

A study investigating the host response of apple trees to Valsa mali, a necrotrophic fungal pathogen with
a mode of infection and biology similar to N. ditissima, demonstrated that V. mali infection activates genes
involved in plant-pathogen interactions, plant hormone signal transduction, flavonoid biosynthesis, and
phenylpropanoid biosynthesis'’. The phenylpropanoid pathway plays a crucial role in the synthesis of secondary
metabolites, initiated by the deamination of phenylalanine to cinnamic acid via phenylalanine ammonia-lyase
(PAL)!'!. Cinnamic acid serves as a precursor for the production of lignin, suberin, coumarins, flavonoids, and
stilbenes, which contribute to plant defense mechanisms!2. Similar host responses have been observed in poplar
trees infected with canker pathogens!>!4. We hypothesize that apple trees infected with European canker exhibit
comparable responses. However, studies on the genetic responses of trees to fungal wood pathogens remain
limited, despite their critical significance in forestry and horticulture.

Approaches to identifying genes underlying QDR include bulk transcriptome profiling to examine gene
expression in resistant and susceptible hosts!® or contrasting individuals carrying resistant or susceptible alleles
ata QTL!"!8, Machine learning (ML) is emerging as a valuable tool to identify transcriptional predictors of plant
immune responses!'® and gene markers for classifying resistant and susceptible genotypes using transcriptome
data®. Algorithms like Random Forest and Support Vector Machines identify key resistance-associated
biomarkers by analysing gene expression patterns, while feature selection methods enhance model accuracy and
biological interpretability.

We embarked on this transcriptome sequencing project not only to deepen our comprehension of
the molecular mechanisms guiding the interaction between N. ditissima and apple but also to improve our
understanding of the broader host responses to infection by fungal wood pathogens. Furthermore, our goal was
to pinpoint candidate genes associated with QDR to facilitate the development of apple cultivars with heightened
resistance.

We analyzed transcriptomic responses in a bi-parental offspring population segregating for six additive QTLs
previously linked to disease resistance®. Individuals were grouped into ‘resistant’ and ‘susceptible’ bulks based
on canker disease phenotypes, and gene expression patterns were identified using random forest-based variable
selection and differential expression analysis.

We examined gene expression differences regulated by each QTL, focusing on both cis and trans variation.
Our aim was to identify genes within QTL haplotypes with differential expression between resistant and
susceptible alleles, either constitutively or in response to pathogen challenge. Gene expression patterns were
validated in ‘Golden Delicious, which carries at least one copy of each QDR-associated haplotype and shares
partial ancestry with the studied population through its offspring, ‘Gala] which was used as a parent in the
segregating population®.

In this stepwise approach, we aim to understand both the general mechanisms of resistance and how specific
elements of the host’s response to pathogen invasion are modulated in the presence of additive QTL.

Methods

Plant material

A subset of progeny from one of the families used for QTL identification by Karlstrém et al.’ were subject to
transcriptome sequencing: 25 progenies from a cross between ‘EM-Selection 4’ x ‘Gala’ as well as the two parents
were grafted in six replicates on ‘M9 EMLA’ rootstocks in January 2019 at NIAB, East Malling. All graftwood
used was obtained from trees maintained at NIAB, East Malling. The trees were kept in pots in an unheated
polytunnel and drip-irrigated for the full duration of the experiment.

Genotype bulks consisting of the ten most resistant (bulk-R) and ten most susceptible (bulk-S) progeny were
selected based on recorded disease phenotype in the field experiment reported in Karlstrém et al.>.

‘Golden Delicious’ and ‘M9 EMLA trees used for validation and prediction were grafted onto ‘M9 EMLA
rootstocks in January, 2017 at NIAB, East Malling, United Kingdom. The trees were maintained in pots in an
unheated greenhouse and irrigated weekly. Six replicates were propagated. No trees showed symptoms of canker
prior to the experiment. The trees in both experiments were kept in 2 1 pots fertilised with a slow-release fertiliser
(Osmocote).

Artificial inoculation with Neonectria ditissima and sampling
The progeny trees were artificially infected in the unheated polytunnel in December, 11 months after grafting.
The temperature and humidity in the polytunnel were not controlled or recorded”

Four replicate trees of each genotype were inoculated with N. ditissima spore suspension and two trees mock-
inoculated with a water control (Fig. S1).

Inoculation in the GD and M9 trees was carried out under different conditions compared to the progeny.
At the end of July, six months after grafting, the ‘GD’ and ‘M9’ trees were moved to a chilled glasshouse four
days prior to being inoculated. The glasshouse conditions were the following: temperature 15-25°C, relative
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humidity >80%. Misting lines were installed under the benches with trees on top in order to maintain the
humidity. These were equipped with 360° misting units spraying water for one minute at ten minute intervals.
Three replicate trees of each variety were inoculated with either a spore suspension or with a control consisting
of water (Fig. S1).

Inoculations and the preparation of inoculum were performed as per Gomez-Cortecero et al.. A single spore
isolate of N. ditissima, Hg199, was used. Two leaf positions were inoculated (positioned at the 15 and 30th node
from the apex) but only the top infection-point was used for sequencing. Each tree was inoculated by removing
two leaves and the corresponding axillary bud with a scalpel and thereafter adding 3 pl of spore suspension with
a concentration of 10° macroconidia/ml to the wound with a pipette.

Progeny trees were sampled four months post-inoculation, when the majority of inoculated trees showed
symptoms. Samples from lesions on progeny trees that had still not developed symptoms at 8 months post
inoculation were removed. Samples from ‘GD’ and ‘M9’ were collected at 25 days post-inoculation, by which
time symptoms had appeared for all inoculated trees?!. In both experiments samples were taken shortly after
the majority of trees showed the first emergence of canker symptoms. Stem samples were approximately 5 x 3
mm and included transverse tissue sections from the cortex, phloem, cambium and xylem of each tree. Samples
from infected trees were collected at approximately 0.5 cm distance above the leading edge of the developing
canker lesion. Mock-inoculated plant samples, hereafter referred to as ‘control’ samples, were taken from healthy
wood, 0.5 cm from the point of water inoculation. All samples were taken apically in relation to the point of
inoculation. Samples were flash frozen upon collection and stored at —80°C' until RNA extraction.

RNA-extraction and transcriptome sequencing
The frozen stem samples were ground using DEPC-treated pestle and mortars in the presence of liquid
nitrogen. Total RNA was isolated using Qiagen RNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA) according to
instructions from the manufacturer.

One sample per tree was sequenced. Sequencing was performed by Novogene (Novogene, Hong Kong and
Cambridge) on Illumina HiSeq 4000.

Processing of sequence data and genome alignment

Adaptor sequences and low-quality data were removed from sequencing reads using fastqc-mcf?2. RNA-seq data
quality was evaluated using the quality control tool FastQC version 0.10.1%%. Quantification of the expression of
transcripts was done using Salmon version 0.9.12* using the ‘GD’ transcriptome GDDH13 version 1.1.

Analysis of differential expression in partially resistant and susceptible bulk

Differential expression (DE) analysis was performed in R (R version 4.5.1) using packages edgeR?° and limma
(version 3.52.1)%%3!. Initially, transcripts with low expression in the experimental samples were removed from
the dataset. edgeR was used to calculate normalisation factors. Multidimensional scaling (MDS) plots were used
to visually inspect the clustering of samples. Differential expression analysis was conducted by using function
voom in package limma. Voom transforms raw counts to log, counts per million reads (CPM), incorporating
the normalisation factors. A correlation factor was added to the linear model fit in limma-voom to account for a
higher degree of correlation between samples derived from the same genotype, thus enabling comparisons both
within and between apple genotypes. Thresholds of log, Ratio | > 1 and a Benjamini-Hochberg (BH) adjusted
p-value of < 0.05 were used to determine if a gene was to be considered DE.

Five contrasts were used to identify differentially expressed genes (DEGs):

a. Infected vs. Control for bulk-R genotypes.
. Infected vs. Control for bulk-S genotypes.
c. Bulk-R vs. bulk-S for infected plants. This contrast was used to identify transcriptional differences between
the groups during infection.
d. Bulk-R vs. bulk-S for control plants. This contrast aimed to reveal constitutive transcriptional differences
between the two groups under control conditions.

Variable selection and classification using random forest

Random Forest (RF) classification implemented in R (packages randomForest and caret) was used to identify
genes whose expression profiles best distinguished resistant and susceptible apple genotypes. Classification was
performed on 72 inoculated samples, derived from 10 resistant and 10 susceptible genotypes within a full-sib
progeny (33 resistant and 39 susceptible infected trees in total). The five progeny genotypes with intermediate
resistance level were not used for this analysis. DEGs from any of the reported contrasts were included as
predictors in the initial RF models.

To avoid confounding due to shared genetic background, a 5-fold cross-validation blocked by genotype was
implemented, ensuring that all samples from a given genotype were assigned to the same fold. Within each
training fold, 200 RF models were fitted using different random seeds to assess the stability of variable importance
scores. Genes were ranked by their mean permutation importance across these repetitions, and the top 50 most
informative genes were retained within each fold. Each model was then retrained using only the selected genes
and evaluated on the held-out genotypes, yielding an unbiased estimate of predictive performance.

To evaluate feature stability, the frequency with which each gene appeared among the top 50 predictors across
all folds was calculated. Genes selected in = 80% of folds were considered stable predictors of resistance and were
used for functional interpretation.

To further test the predictive capacity of the selected genes, model performance was evaluated using an
independent RNA-seq dataset from three inoculated trees of the partially resistant cultivar ‘GD’ and three of the
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partially susceptible ‘M9 EMLA2728, Performance metrics were computed using the caret package, including
accuracy, class sensitivity, specificity, and precision.

Functional annotation and enrichment analysis

Predicted genes in the GDDHI.1 genome were annotated with Kyoto Encyclopedia of Genes and Genome
(KEGG) and protein family (PFAM) terms. First, FASTA sequences for all genes were obtained from the Genome
database for Rosaceae®?. The gene annotation was thereafter performed in eggNOG-mapper 2.1.733.

Gene set enrichment analysis was conducted in clusterProfiler** for KEGG and PFAM terms. The list of
background genes considered in the enrichment analyses was limited to genes that were expressed within the
experiment. Terms with BH adjusted p-value of < 0.05 were considered to be enriched. Only KEGG pathways
that were represented in M. x domestica in the KEGG PATHWAY Database™® are presented.

Comparative analysis of QTL-R and QTL-S transcriptomes

Progeny from the ‘EM Selection-4’ x ‘Gala’ cross were grouped based on the presence/absence of specific SNP-
haplotypes at six genetic loci linked to QDR to European canker’. Individuals with the QDR haplotype are
denoted QTL + while those lacking the haplotype are denoted QTL-. The DE analysis to identify candidate genes
within QDR QTL was performed as described above.

1. The following contrasts were used to identify differentially expressed genes:

a. QTL- Control vs. QTL+ Control: This contrast aimed to reveal constitutive transcriptional differences
between the two groups under control conditions.

b. QTL- Infected vs. QTL + Infected: This contrast was used to identify transcriptional differences between
the groups during infection.

The analysis did not differentiate between individuals with one or two copies of the QDR haplotype. The DEGs
for each QTL with a genome position within the QTL interval were further explored. The physical position of
the QTL regions were defined by the genome position of the boundary SNPs identified in Karlstrom et al.>.
InterPro’ was used to provide further information on putative gene function for validated genes.

To determine whether there was a correlation between presence/absence of haplotypes at different QTL a
chi-square test (chisq.test in base R) was performed for each pair-wise combination.

Validation of gene expression in an independent experiment

Independent validation of gene expression was performed by contrasting control vs. infected trees from ‘GD.
DEGs from ‘GD’ was further used to validate candidate genes underlying QTL. ‘GD’ was used as a parent for
QTL discovery by Karlstrém et al.” and has at least one copy of each haplotype associated with the QDR QTL.

Results

Transcriptome profiling of apple trees upon N. ditissima infection using RNA-Seq

We sequenced the transcriptomes of a full-sibling progeny segregating for partial resistance QTL to N. ditissima
during disease infection to investigate transcriptional responses linked to quantitative resistance. A mean
library size of 18.5 Mb was obtained and 32,353 transcripts were retained after filtering out transcripts with
low expression. A total of 146 samples were included in the final analysis after the removal of samples that
showed unusual MDS plots compared to other replicates of the same genotype. For prediction and validation,
the average number of reads mapped to the reference genome was 48 and 49 million for infected respectively
uninfected ‘GD’ trees, and 46 and 51 million for infected ‘M9’ trees.

Differential gene expression depending on resistance level to European canker

To investigate the differences in gene expression patterns between resistant and susceptible genotypes, a DE
analysis was performed. This included within-group comparisons of infected versus mock-inoculated trees for
ten partially resistant (bulk-R) and ten susceptible (bulk-S) genotypes, as well as between-group comparisons of
bulk-R and bulk-S in both infected and control trees (Fig. 1, Table S1).

A total of 101 DEGs were identified from the comparison of infected bulk-R vs. bulk-S. Nine out of
these transcripts were also DE in the partially resistant ‘GD’ upon infection (Table S1). Among the gene
models identified in both experiments were a putative Lec-RLK (MD05G1263100), ABC-transporter protein
(MD03G1172200) and a RLK (MDO00G1101400).

The 30 DEGs with largest difference between bulk-R and bulk-S are shown in Table 1.

Ten transcripts were identified at the intersection of the ‘Bulk-R Infected vs. Control’ and ‘Infected: Bulk-R vs.
Bulk-S’ contrasts (Fig. 3, Table S2), indicating that they were induced upon infection and exhibited differential
expression between resistant and susceptible genotypes. Of these, only one transcript, MD05G1187500, was
DE upon infection in the partially resistant genotype ‘GD’. Although MD05G1187500 lacks a predicted gene
function, a BLAST search revealed strong sequence similarity to predicted non-coding RNA sequences in
Malus sp. (E-value=0.0, sequence similarity>99%). Among the ten transcripts, two were putative NLRs
(MD04G1015300 and MD10G1018400), both of which showed lower transcript abundance in infected tissue
and were less expressed in bulk-R genotypes. Additionally, a putative LecRLK, MD10G1177500, was DE in both
comparisons, with increased expression in infected bulk-R compared to control bulk-R and higher abundance
in bulk-R than in control (Table 1).

Thirteen predicted genes were identified at the intersection of the ‘Infected: Bulk-R vs. Bulk-S’ and ‘Control:
Bulk-R vs Bulk-S’ contrasts, indicating they were constitutively different between bulk-R and bulk-S genotypes
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Fig. 1. Venn diagram illustrating differentially expressed genes (DEGs) in 10 partially resistant (bulk-R) and
10 susceptible (bulk-S) apple genotypes from the same F1 progeny. The diagram shows DEGs derived from
both the comparison between bulks (Bulk-S vs. Bulk-R) and within bulks (Infected vs. Control).

regardless of infection status (Fig. 1, Table S1). None of these transcripts were found among the DEGs in ‘GD,
which is consistent with the finding that they are constitutively expressed and not induced upon infection.
Among the putative gene functions of these gene models were one NLR (MD10G1137400), two transcription
factors (MD10G1276200 and MD10G1278800), two with functions within RNA-processing (MD10G1268700
and MDI10G1232900) and four transcripts predicted to be non-coding RNA. Notably, ten of the 13 transcripts
were located on chromosome 10.

Variable selection in random forest for classification of resistant and susceptible Apple
genotypes
Random Forest classification was applied to identify genes whose expression profiles best discriminated resistant
and susceptible apple genotypes within a full-sib progeny. Using a genotype-blocked 5-fold cross-validation
approach, in which all samples from a given genotype were assigned to the same fold, models trained on the top
50 most informative genes achieved an overall prediction accuracy of approximately 0.67 (95% CI=0.55-0.77;
p=0.021, Table 2), significantly higher than expected by random classification (No Information Rate=0.54).
Across folds, 26 genes were consistently ranked among the top predictors in >80% of cross-validation folds,
and were therefore considered stable transcriptional markers of resistance (Fig. 2; Table S3).
The predictive capacity of these 26 stable genes was further evaluated using an independent RNA-seq dataset
from inoculated trees of the partially resistant cultivar ‘GD’ and the partially susceptible ‘M9 EMLA’ (Table 2).

Functional categorisation of stable gene features

The functional annotation of the 26 stable predictors identified through the variable importance spectrum
indicated that they could be classified into eight main functional categories based on putative gene function
(Fig. 3; Table S3). Three genes were associated with disease resistance and defense response, including one NLR
and two G-type LecRLKs. Three genes were linked to secondary metabolism, comprising one phenylalanine
ammonia-lyase (PAL), one terpene synthase, and one polyphenol oxidase. Two genes were associated with cell-
wall modification, including TUNICAMYCIN INDUCED 1-like and 2-hydroxy-palmitic acid dioxygenase
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Gene ID GDDH13_v1.1 | Chromosome | log2 fold-change (LFC) | BH adj. p-value | Predicted gene function DE in ‘GD’ Infected vs. ‘GD’ Control
MDI10G1115400 10 -4.97 0.009 TUNAMYCIN INDUCED 1-like No
MD10G1129900 10 -4.36 0.001 Small conductance mechanosensitive ion channel | No
MD10G1299100 10 -3.85 0.019 Polyphenol oxidase No
MDO01G1010300 1 -3.81 0.011 SAM dependent methyltransferase No
MD02G1025000 2 -3.79 <0.001 Non-coding RNA* No
MDI10G1137400 10 -3.58 <0.001 Disease resistance protein (NLR) No
MDO03G1172200 3 -3.33 0.001 ABC-2 type transporter Yes
MDI10G1141100 10 -3.12 0.001 Disease resistance protein (NLR) No
MD15G1267400 15 -291 0.001 Translocase of outer membrane No
MD10G1248700 10 -291 0.002 Coatomer No
MDI10G1120500 10 -2.82 <0.001 Unknown function No
MD05G1213100 5 -2.8 0.041 Ankyrin repeat family protein No
MD00G1101400 NA -2.79 0.021 Cysteine-rich receptor-like protein kinase Yes
MDI15G1239400 15 -2.69 <0.001 LRR receptor-like serine threonine-protein kinase | No
MDO00G1169900 NA -2.66 0.019 Interferon-related developmental regulator (IFRD) | No
MDO05G1187500 5 3.64 0.013 Non-coding RNA* Yes
MD10G1086300 10 3.56 <0.001 Unknown function No
MD05G1214700 5 3.28 0.026 G-type lectin receptor-like kinase (LecRLK) No
MD10G1177500 10 3.1 0.001 2-hydroxy-palmitic acid dioxygenase mpo1-like Yes
MD10G1306300 10 3.06 0.002 AGAMOUS-like 24 No
MD04G1002200 4 3.03 <0.001 Non-coding RNA* No
MD15G1252900 15 2.95 0.001 Non-coding RNA* No
MD10G1122300 10 2.88 0.001 Cyclase-associated protein No
MD10G1278800 10 2.79 0.026 Myb family transcription factor PHR1-like No
MD03G1121500 3 2.74 0.045 Phenylalanine ammonia-lyase (PAL) No
MD15G1294100 15 2.67 0.049 Non-coding RNA* No
MDI10G1283900 10 2.6 0.001 HXXXD-type acyl-transferase No
MD10G1160000 10 2.57 0.041 SUPPRESSOR OF AUXIN RESISTANCE 1-like No
MD05G1217400 5 2.43 0.043 G-type lectin receptor-like kinase (LecRLK) No
MDO01G1113000 1 2.43 0.003 Magnesium transporter No

Table 1. The 30 DEGs with largest log2 fold-change between infected trees of bulk-R and bulk-S.

Performance metric Independent validation (26 stable genes, ‘GD’ & ‘M9’) | Genotype-blocked 5-fold cross-validation (top-50 genes)
Accuracy 1.00* 0.67 *

95% CI (Accuracy) 0.54-1.00 0.55-0.77

Sensitivity (Resistant) 1.00 0.64

Specificity (Susceptible) | 1.00 0.69

Cohen’s Kappa 1.00 0.33

Table 2. Predictive performance of random forest models using the top 50 most informative genes under
genotype-blocked 5-fold cross-validation, and independent validation of the 26 stable genes in the partially
resistant ‘GD’ and partially susceptible ‘M9 EMLA’ genotypes. *Asterisk indicates that model accuracy is
significantly greater (p <0.05) than the no information Rate, representing the accuracy expected by always
predicting the majority class.

MPO1-like. Seven transcripts were related to epigenetic and gene expression regulation, including a splicing
factor (YJU2), one pentatricopeptide repeat (PPR-like) protein, one eukaryotic translation initiation factor 4E
(eIF4E), one RNA methyltransferase, and three non-coding RNA transcripts. Two genes encoded transcriptional
regulators, represented by AGAMOUS-like 24 and a MYB-like transcription factor. Three genes were linked
to transport and membrane functions, including an ABC-2 type transporter, a mechanosensitive ion channel,
and a translocase of the outer membrane (TOM22-V). Three additional genes were associated with signal
transduction and kinase activity, comprising S-methyl-5-thioribose kinase, sphingosine kinase 1, and a protein
kinase superfamily member. The remaining transcripts included one serine carboxypeptidase-like 20 and two
genes of unknown function.
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Fig. 2. A Heatmap showing normalized read count data for the 26 transcripts selected as transcriptional
predictors of canker resistance. Mean logCPM expression per genotype is presented for 20 full-sibling progeny,
along with ‘Golden Delicious’ (GD) and ‘M9’ (B) Phenotypic classification of the 20 full-sibling progeny as
‘resistant’ or ‘susceptible; based on the characterization by Karlstrom et al®.

KEGG pathway enrichment in differentially expressed genes

29% of predicted genes were annotated with KEGG pathways. The most enriched pathway in both bulk-R and
bulk-S was phenylpropanoid biosynthesis (ko00940, table S4), with 146 DEGs in bulk-R and 167 in bulk-S,
including genes like 4CL, peroxidases, and cinnamyl alcohol dehydrogenase (CAD). It also included genes specific
to the lignin pathway such as Cinnamoyl-CoA reductase (CCR). Over 63% of these genes were upregulated
in response to infection. Additional enriched pathways included biosynthesis of secondary metabolites, such
as flavonoids and terpenoids, and nitrogen metabolism (ko00910). Key pathways related to environmental
information processing, including ABC transporters, plant hormone signaling, and MAPK signaling, were also
enriched. The cutin, suberin, and wax biosynthesis pathway (ko00073) showed enrichment, with 18 DEGs in
bulk-R and 20 in bulk-S (table S4).

KEGG pathways unique to bulks

Among within-group comparisons, the only uniquely enriched pathway in bulk-R was carbon fixation (ko00710,
table S4). Bulk-S showed five unique pathways, including ascorbate metabolism (ko00053) and amino acid
metabolism (ko00270, ko00400). A comparison of infected bulk-R versus bulk-S revealed enriched pathways
related to B-alanine biosynthesis (ko00410) and amino acid degradation (ko00280).
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Fig. 3. Heatmaps showing mean normalized gene expression for resistant and susceptible genotypes for stable
transcriptional predictors of European canker resistance, categorized by putative gene functions: (a) disease
resistance and defense response, (b) epigenetic and gene expression regulation and (c) secondary metabolism.

PFAM domain enrichment in differentially expressed genes

PFAM analysis annotated 81% of the predicted genes. The most significant domain in both bulks was the leucine-
rich repeat N-terminal domain (LRRNT_2), followed by cytochrome p450s and UDP-glycosyltransferases
(table S5). The majority of LRRNT_2 genes were putative Leucine-rich repeat RLKs. Domains such as B_
lectin, S_locus_glycop, PAN_2, and DUF3403 were enriched in both bulks, with over 79% of associated DEGs
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upregulated. The DEGs associated with these domains are primarily G-type lectin receptor-like kinases (Sun et
al. 2020). Additionally, the galacturonan-binding domain (GUB_WAK_bind) was enriched, with over 88% of
related WAK/WAKL genes upregulated upon infection. DEGs with a Malectin domain were also enriched in
both bulks (table S5).

PFAM domains unique to bulks

In bulk-R, 12 unique domains were enriched, including KIP1, methyltransferases, and dynamin protein family
domains (table S5). While the enrichment of these protein domains was not significant in bulk-S, the vast
majority (>85%) of these genes were also DE in bulk-S. Bulk-S had 38 unique enriched domains, including sugar
efflux transporters (MtN3_slv) and the ‘Dirigent’ domain, which is involved in lignin synthesis.

Enrichment of PFAM domains in DEGs from partially resistant vs. susceptible Apple
genotypes

There were 13 significantly enriched protein domains among the 68 DEGs that could be annotated from the
contrast of bulk-R infected vs. bulk-S infected (Table S5). The Toll Interleukin Receptor (TIR) domain was
enriched due to five putative TIR-NBS-LRR NLRs, with four downregulated and one upregulated in bulk-R. The
leucine-rich repeat domain (LRR_3) was linked to three of these NLRs. Coatomer-related domains (COPI_C,
Coatomer_WDAD) were enriched, with three genes more highly expressed in bulk-S. Four PFAM domains
associated with G-type lectin receptor-like kinases (B_lectin, S_locus_glycop, PAN_2, DUF3403) were also
enriched, with corresponding genes located on chromosome 5.

Transcriptome comparisons based on presence/absence of QDR-haplotype

A comparative analysis was conducted to identify candidate resistance genes for loci with a small effect on the
disease resistance phenotype. The analysis was based on the presence/absence of QDR SNP-haplotypes across six
QTL regions’ (Table 3, table S6). ‘GD;, a parent with at least one QDR haplotype per locus, was used for expression
validation. Transcriptomes of QTL+ and QTL— plants were compared under infection and control conditions to
assess constitutive expression differences. No significant correlations (p < 0.05) were found between haplotype
presence at different QTL (chi-square tests).

Differential expression (DE) results are summarized in Table S7, with full gene lists provided in Tables S8-S9.
Key DEGs of interest are presented in Table 4, including those validated in ‘GD) functionally similar genes
within the same QTL, and genes encoding NLRs or RLKs. The complete validation dataset from ‘GD’ is available
in Table S10.

QTL interaction network: genes associated with multiple QDR-haplotypes

To investigate interactions between QTLs, we investigated genes that were DE in multiple QTL+/QTL- contrasts
for infected trees. A total of 147 DEGs were associated with more than one QDR haplotype (Fig. 4, Table S11),
indicating potential cross-talk between resistance loci.

Genes involved in the phenylpropanoid pathway were differentially expressed across multiple QTLs,
including 4CL (MD16G1112900, MD16G1113000) on chr 16 and PAL (MD03G1121400, MD03G1121500) on
chr 3. These genes showed varied expression patterns across resistance backgrounds.

Pathogen recognition and signaling genes were also affected, with seven NLRs (chr 2, 3, 10, 15, 16) and two
WAKLSs (chr 2) showing differential expression in plants carrying resistance alleles.

Ten transcripts, including a Zinc-finger protein (MDI1G1125800), eIF4AE (MD10G1268700), and a
Ca®-binding EF-hand protein (MD10G1306200), were downregulated in both RND-QTL10+and RND-
QTL2 +genotypes.

Fifteen genes exhibited opposing expression patterns between RND-QTL8 +and RND-QTL15+, including
genes involved in mRNA splicing (MD15G1111800, MD15G1111000, MD15G1111900), chromatin modification
(MD15G1111800, MD15G1076200), and pathogen response (NLR MD03G1202400; LRR-RLK MD03G1072600).

Additionally, 33 transcripts showed inverse expression patterns between RND-QTL8 + and RND-QTL2+,
including genes involved in disease resistance (MD08G1042700, MD02G1042000), jasmonate signaling

QTL +haplotypes
No. of No. of QTL- | in ‘Golden
Chr | QTLID SNP haplotype denoted QTL+ QTL +individuals | individuals | Delicious’
2 RND-QT-2 CGAAAAGAGGAGGACGGGAAGAGAAACCACAGGAGCCGCAAAAAAAGAGGGAA 18 9 1
CGAAG
6 RND-QTL6 | GGAAACAGA 23 4 2
AGCGGGGCAAGAAAAGGAGGAGAGAGGGAAAAAGGGAGAGGGGAAGAAGCAAGG
8 RND-QTL8 | AGAAGGG and CAAAGGGCAGAGAGGAGGGAGAGGGAAGAAAAAGGGAGAGGGGG | 22 5 1
AAGAAAACAGGGAGGAA
10 RND-QTL10 | AAGAGCAGCCGCGGGACAACAGGAGAAACGCAGAG 23 4 2
15 RND-QTL15 | AAAAG 18 9 1
16 RND-QTL16 | GAGGACCGAGAAACGAGGAGAGGAAGAACAAGAAAAGAAAAA 10 17 1

Table 3. QTL configuration for six loci associated with European canker resistance in 25 Apple full-sibling
progeny, their parents (‘Gala’ and ‘EM-Selection-4’), and ‘Golden Delicious.
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Gene ID GDDH13_v1.1 | Resistance QTL | LFC Control | LFC Infected | Putative gene function DE in ‘GD’
MD02G1188900 RND-QTL2 N.S -1.8 ACT domain Up
MD02G1164500 RND-QTL2 -33 -2.6 Disease resistance protein (CC NBS LRR class) -
MD02G1217100 RND-QTL2 N.S 1.5 Disease resistance protein (TIR NBS LRR class) -
MD02G1260200 RND-QTL2 1.5 1.5 Disease resistance protein (TIR NBS LRR class) -
MD02G1282000 RND-QTL2 N.S -14 Protein kinase -
MD02G1164900 RND-QTL2 N.S -2.7 Unknown function Up
MD02G1245800 RND-QTL2 1.0 1.2 Wall associated kinase like (WAKL) -
MD02G1246300 RND-QTL2 1.0 14 Wall associated kinase like (WAKL) -
MD02G1247400 RND-QTL2 N.S -1.9 Wall associated kinase like (WAKL) -
MD02G1234300 RND-QTL2 54 4.9 Wall associated kinase like (WAKL) -
MD02G1234800 RND-QTL2 32 2.6 Wall associated kinase like (WAKL) -
MD02G1246100 RND-QTL2 1.9 2.2 Wall associated kinase like (WAKL) -
MD02G1246600 RND-QTL2 4.0 2.4 Wall associated kinase like (WAKL) -
MD02G1274600 RND-QTL2 N.S -2.0 Wall associated kinase like (WAKL) -
MD02G1246700 RND-QTL2 2.8 2.2 Wall associated kinase like (WAKL) -
MD02G1249500 RND-QTL2 N.S -1.2 Wall associated kinase like (WAKL) -
MD02G1273500 RND-QTL2 N.S -1.3 Wall associated kinase like (WAKL) Up
MD02G1273700 RND-QTL2 N.S -1.8 Wall associated kinase like (WAKL) Up
MD02G1249700 RND-QTL2 N.S -1.4 Wall associated kinase like (WAKL) -
MD02G1254300 RND-QTL2 N.S -2.0 Wall associated kinase like (WAKL) Down
MD02G1267000 RND-QTL2 -4.0 N.S Zinc induced facilitator Up
MD06G1099100 RND-QTL6 N.S -1.1 ABC transporter -
MD06G1069800 RND-QTL6 N.§S 2.3 RNA-polymerase Down
MD06G1103300 RND-QTL6 N.S -3.8 UDP-Glycosyltransferase Up
MD08G1042700 RND-QTLS8 N.S -2.5 Disease resistance protein (NB-ARC domain) -
MD08G1019600 RND-QTLS N.S -1.2 Disease resistance protein (TIR-NBS-LRR class) -
MD08G1020000 RND-QTLS8 N.S -1.8 Disease resistance protein (TIR-NBS-LRR class) -
MD08G1055100 RND-QTL8 N.S -12 Glutathione peroxidase Up
MD08G1064100 RND-QTL8 N.§ 1.5 Heat shock factor protein Down
MD08G1026800 RND-QTLS8 N.S 1.6 Heavy metal associated isoprenylated plant protein (HIPP) | Down
MD10G1238200 RND-QTL10 N.S =25 NAC transcription factor Up
MD10G1250000 RND-QTL10 -5.6 -34 Wall associated kinase (WAK) -
MD10G1250500 RND-QTL10 -2.9 N.S Wall associated kinase (WAK) -
MD10G1251200 RND-QTL10 -4.9 -2.2 Wall associated kinase (WAK) -
MD15G1102100 RND-QTL15 -1.3 N.§ ABC transporter Up
MD15G1090400 RND-QTL15 2.8 3.6 Disease resistance protein (CC NBS LRR class) -
MD15G1090100 RND-QTL15 2.7 2.9 Disease resistance protein (LRR and NB-ARC domains) -
MD15G1090000 RND-QTL15 32 35 Disease resistance protein (NB-ARC domain) -
MD15G1090300 RND-QTL15 35 4.2 Disease resistance protein (NB-ARC domain) -
MD15G1179700 RND-QTL15 N.S -2.0 Disease resistance protein (TIR NBS LRR class) -
MD15G1073400 RND-QTL15 N.S 23 Epimerase -
MD15G1073500 RND-QTL15 4.1 3.5 Epimerase Down
MD15G1103500 RND-QTL15 -3.1 -2.1 LisH-domain Down
MD15G1061900 RND-QTL15 -3.0 -35 PITH domain-containing protein Up
MD15G1077600 RND-QTL15 14 N.§ Transcription factor Down
MD15G1103400 RND-QTL15 -1.6 -14 Transcriptional co-repressor/LisH domain -
MD16G1112900 RND-QTL16 N.S -21 AMP dependent synthetase and ligase Up
MD16G1113000 RND-QTL16 =23 -2.4 AMP-dependent synthetase and ligase -
MD16G1104200 RND-QTL16 2.0 N.S Cytochrome P450 -
MD16G1104300 RND-QTL16 2.0 N.S Cytochrome P450 -
Continued
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Gene ID GDDH13_v1.1 | Resistance QTL | LFC Control | LFC Infected | Putative gene function DE in ‘GD’
MD16G1116300 RND-QTL16 -3.2 N.S Cytochrome P450 Up
MD16G1055500 RND-QTLI16 N.S 2.6 D-aminoacyl tRNA deacylases Up
MD16G1082200 RND-QTL16 N.S 3.0 Disease resistance protein (TIR NBS LRR class)

MD16G1125800 RND-QTL16 N.S -1.2 NAC transcription factor Up
MD16G1072500 RND-QTL16 -4.1 -4.0 Transmembrane amino-acid transporter Down

Table 4. DEGs of interest from QTL+vs. QTL- comparison. This table displays differentially expressed genes
(DEGs) that meet the following criteria: validated genes, genes with the same predicted function as a validated
gene at the same QTL, or genes predicted to function as NLR or RLK. A negative log2 fold-change (LFC)
indicates higher expression in QTL+ genotypes, while a positive LogFC indicates higher expression in QTL-

genotypes.
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RND-QTL15
= N
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Fig. 4. QTL interaction network showing differentially expressed transcripts from a comparative analysis of
gene expression in infected trees based on presence/absence of SNP-haplotypes associated with quantitative
disease resistance to N. ditissima. Purple indicates higher expression in QTL+and green indicates higher
expression QTL-. A) All DEGs from the analysis of six QTL, B) Subset of DEGs identified in more than one
comparative analysis of QTL-haplotype.

(MD08G1027300), H,0, production (MD13G1087700), calcium signaling (MD03G1005600), and ribosomal
function (MD02G1015900, MD02G1001700).

Discussion

This study utilized transcriptomes from 25 full-sibling apple progeny and their two parents, ‘Gala’ and EM-
Selection-4, to investigate gene expression during infection by the canker pathogen N. ditissima. The progeny, part
of a multi-parental population aimed at identifying canker resistance QTL, segregated for six out of seven QTL
associated with partial resistance to this pathogen®, Through RNA-Seq, key DEGs and pathways contributing
to resistance mechanisms were identified. The results from Random Forest classification, functional annotation,
KEGG pathway enrichment, and PFAM domain analysis have highlighted candidate genes and pathways linked
to host defence responses.

DE and functional enrichment analyses revealed that genes in the phenylpropanoid pathway were
differentially regulated during canker infection in both bulk-R and bulk-S, with over 63% showing increased
abundance post-infection. Protein domains related to peroxidases and laccases (Cu-oxidases) were enriched,
which is notable as both enzymes contribute to lignin polymerization®. Two PAL genes on chromosome 3,
MDO03G1121500 and MD03G1121400, were identified from the analysis. The former was one of the stable
predictors of resistance, while the latter was DE in comparisons of RND-QTL16+/-. PAL, a key enzyme in the
phenylpropanoid pathway, converts phenylalanine into trans-cinnamic acid, a precursor for lignin and flavonoid
biosynthesis. Both PAL genes showed higher expression in bulk-R, indicating increased activity in the partially
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resistant apple genotypes, particularly in those with RND-QTL8 + and RND-QTL16 + haplotypes, suggesting
regulation downstream of genetic variations conferring resistance.

Further evidence for the role of the phenylpropanoid pathway in partial resistance to N. ditissima includes
two putative 4CL genes (MDI16G1112900 and MD16G1113000) located within the QTL interval on chromosome
16. Both genes were significantly more expressed in apple progeny with the RND-QTL16 + haplotype, and one
also DE in GD. 4CL is a key enzyme that catalyzes the conversion of hydroxycinnamates into CoA esters for
lignin and flavonoid biosynthesis®®, and its activity has been linked to pathogen resistance in multiple crops®-*2.
Additionally, three putative CYP genes were identified within RND-QTL16, involved in secondary metabolite
synthesis*>. These findings suggest a shift in phenylpropanoid gene expression and altered lignin accumulation
via peroxidase and laccase activity in response to N. ditissima infection. However, further studies are needed to
assess the relative contributions of lignin biosynthesis and phenylpropanoids to quantitative disease resistance
to European canker. Higher lignin levels generally correlate with increased resistance, especially against vascular
pathogens such as Fusarium, Xanthomonas, and Verticillium that spread through the xylem*4.

N. ditissima infection triggered differential expression of genes involved in pathogen recognition, including
pathogenesis-related proteins, NLRs, and RLKs. Our findings suggest that apple recognises N. ditissima through
a combination of basal immunity and specialised NLRs. However, it remains unclear whether NLRs contribute to
QDR or if the pathogen exploits them as susceptibility factors®. One NLR on chromosome 10, MD10G1137400,
were among the top predictors of canker resistance. MDI10G1137400 showed significant expression differences
between bulk-R and bulk-S, regardless of infection and exhibited lower expression in resistant progeny, suggesting
that downregulation may be a defense strategy to prevent pathogen exploitation of the immune response.

G-type LecRLKs emerged as potentially having an important role in the apple defense to European canker.
G-type LecRLKs play key roles in plant immunity, growth, and development®. As a subgroup of RLKs with
a lectin domain for carbohydrate recognition, they are crucial in cell signaling, but also in plant defense®.
Two of these genes, both located on chromosome 5, showed higher expression in bulk-R genotypes following
infection and were among those with stable predictive ability for canker resistance. G-type LecRLKs have been
shown to positively regulate chitin signalling in the interaction between Nicotiana benthamiana and Sclerotinia
sclerotiorum™®® as well as regulating immunity activated by the recognition of nlp20 (Necrosis and ethylene-
inducing peptide 1-like proteins), a group of proteins derived from certain pathogen and especially important in
the pathogenesis of necrotrophic pathogens®’.

In addition to above mentioned groups of genes there was also an enrichment of protein domains like
malectin, COPI_C, Coatomer_WDAD, and ECH_2 in differentially expressed genes from bulk-R vs. bulk-S
infected trees, suggesting roles in intracellular signaling and metabolic adaptation during pathogen attack.
Malectin supports stress responses and protein quality control*®, while COPI_C and Coatomer_ WDAD are
involved in vesicle trafficking for defense molecule secretion?’. Additionally, ECH_2 enzymes are involved in
auxin metabolism, and their role in peroxisomal fatty acid p-oxidation affects the generation of jasmonic acid
precursors and can contributes to reactive oxygen species (ROS) production®.

Seven out of the 26 genes most predictive of canker resistance were genes or transcripts with a putative role
in epigenetic regulation and gene expression, including roles in RNA splicing, translation initiation, and non-
coding RNA regulation. Interestingly several putative ncRNA were found in this group. An increasing number of
ncRNAs have been identified as key players in plant immunity, though the mechanistic details are still limited®!.
These ncRNAs regulate various aspects of immunity, including pathogen perception, signal transduction, and
immune responses, through strategies such as modulating gene expression, interacting with proteins, and
working in concert with other ncRNAs. A single ncRNA can target multiple genes, potentially influencing not
only immunity but also plant development and responses to abiotic stresses.

We identified several candidate genes involved in pathogen interactions within QTLs associated with partial
resistance to N. ditissima in apple®. Clusters of putative WAKs and WAKLs were found on chromosomes 10 and 2,
respectively. WAKSs typically contain serine/threonine kinase, epidermal growth factor (EGF), and galacturonan-
binding (GUB) domains, while WAKLs generally lack the EGF domain’. These RLKs regulate plant growth
and stress responses, often enhancing immunity but occasionally suppressing resistance®>>%. In apple, WAKs
show both positive and negative regulation in response to pathogens®!. Among candidate genes in QTL10, three
WAKSs had lower expression in QDR-allele trees, with two showing upregulation under both control and infected
conditions. A cluster of 14 WAKLs in QTL2 included two (MD02G1273500 and MD02G1273700) with higher
expression in QTL2-R trees and significant upregulation in ‘GD’ upon infection.

A putative HIPP gene within the QTL on chr 8 showed lower expression in QTL-R trees and was downregulated
in ‘GD’ HIPPs are susceptibility targets of necrotrophic pathogens® and nematodes. Oryza sativa HIPP05
(Pi21) is a well-known susceptibility factor for Magnaporthe oryzae, where loss-of-function mutations confer
resistance, while overexpression in Arabidopsis increases pathogenicity>”.

The transcript of a putative ncRNA, MD10G1176800, was linked to both QTLs on chromosomes 2 and 10,
with higher abundance in individuals carrying the QTL + genotype. It was located on chromosome 10, 57 kbp
from the predicted QTL region.

This study used a transcriptome approach to identify candidate genes linked to multiple resistance QTL
for European canker in apple. However, only a subset of DE genes between QTL-R and QTL-S plants could be
validated in ‘GD;, despite its QDR alleles. This may be due to differences in infection stage at sampling, which
significantly influences gene expression, or the validation focusing only on infection-induced genes, excluding
constitutively expressed ones.

Some resistance QTL genes may have gone undetected due to the DE analysis focusing on single alleles and
ignoring background QTL effects, especially if the QTL has a minor impact on disease progression. Differences
in haplotype alleles for QTL 8 suggest potential genetic variation in resistance, and the low representation of
genotypes lacking QDR alleles for QTL6 and QTL8 may have reduced detection power. Despite these limitations,
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this study identified candidate genes that, with further functional validation, could aid in breeding canker-
resistant apple varieties.

Our results suggest that the partial resistance QTLs may act additively at the transcriptional level. Several
genes, including PAL, 4CL, and multiple immune receptors, were differentially expressed in association with
more than one QDR haplotype. In total, 147 transcripts showed expression differences linked to multiple QTLs,
indicating shared regulatory effects across loci.

While we did not model expression relative to allele dosage, the overlap in DEGs across QTL contrasts, and
the increased expression of defense-related genes in individuals carrying multiple QTL + haplotypes, supports
additive modulation of resistance pathways. However, we also observed opposing expression patterns between
certain QTLs, suggesting potential complexity in their interactions. Overall, these findings point to cumulative,
and in some cases interactive, effects of QTLs on defense gene expression.

We used a Random Forest variable selection approach to reduce complexity and highlight gene expression
patterns that differ between resistant and susceptibe responses to N. ditissima infection in apple. ML techniques
help address challenges such as handling large datasets, recognizing patterns, and optimizing models, improving
the efficiency and accessibility of analyzing complex biological systems®’. In human transcriptomics ML is
commonly used for RNA-seq data to predict disease states, identify key transcripts, discover disease biomarkers,
determine differentially expressed genes and deconvolve single-cell data®. However, there are only limited
examples of ML being used as a tool to understand and predict host-pathogen interactions in plants. Sia et
al.’® used ML to predict Arabidopsis transcriptomic responses to multiple pathogens and identified key gene
sets predictive of disease development through feature selection. Similarily to our study Panahi et al.?* used
a combination of RNA-Seq and ML to rank differentially expressed genes associated with Rhizoctonia solani
resistance in sugar beet in order to identify key biomarkers of resistance.

Feature selection in RF can be unreliable for identifying candidate genes due to variability in selected features,
bias toward strong predictors, and the exclusion of correlated genes, potentially missing biologically significant
candidates. To address this, we applied a cross-validated stability selection approach based on repeated estimation
of variable importance across genotype-blocked folds. This method identified a consistent subset of genes with
stable predictive ability for canker resistance. The resulting gene set was highly predictive of disease resistance
in the ‘Golden Delicious’ and ‘M9’ varieties. However, further testing in a broader range of cultivars is needed to
assess whether these genes are specific to certain genetic backgrounds. Additionally, it is important to note that
canker resistance is a complex trait, not a binary response, with many cultivars exhibiting moderate resistance.

This study provides valuable insights into the genetic and molecular basis of partial resistance to N. ditissima
in apple, offering potential targets for breeding canker-resistant varieties. By integrating transcriptomic analysis
with QTL mapping and machine learning-based feature selection, we identified candidate genes and pathways
that contribute to host defense. Notably, the phenylpropanoid pathway, immune receptors, and epigenetic
regulators emerged as key components of the resistance response.

The identification of putative resistance-associated genes within QTL regions highlights opportunities for
marker-assisted selection, potentially accelerating the development of resistant cultivars. In particular, PAL and
4CL genes linked to lignin biosynthesis may serve as biomarkers for enhanced structural defense, while NLRs
and RLKSs could be further explored for their roles in pathogen recognition and signaling.

Despite challenges such as the complex genetic architecture of resistance and variability in gene expression,
this study underscores the power of transcriptomics and machine learning in dissecting quantitative disease
resistance. Future work should focus on functional validation of candidate genes and their integration into
breeding programs, ensuring their effectiveness across diverse genetic backgrounds. By refining selection
strategies, these findings can contribute to the development of apple varieties with improved resilience against
European canker, ultimately supporting sustainable apple production.

Data availability
The raw sequence data underlying this article is available in NCBI (BioProject accession number: PRINA1055417)
at [https://www.ncbi.nlm.nih.gov/sra/PRJNA1055417].
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