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European canker, caused by Neonectria ditissima, is a major disease of apple (Malus × domestica) with 
limited control options, making host resistance a key management strategy. Although quantitative 
disease resistance (QDR) has been identified, the underlying molecular basis remains poorly 
understood. We investigated candidate genes associated with resistance using transcriptomic profiling 
of a bi-parental population segregating for six QTLs linked to canker resistance. RNA sequencing 
combined with machine learning enabled the identification of key biomarkers predictive of disease 
resistance. Integration of expression and QTL data highlighted genes involved in phenylpropanoid 
biosynthesis, immune receptors (NLRs, RLKs, WAKs), and epigenetic regulators, implicating their 
roles in host defense. Expression patterns were further resolved into cis- and trans-regulatory effects, 
providing insight into allele-dependent regulation. Independent validation in a separate dataset 
confirmed the robustness of key expression patterns. These findings advance understanding of the 
genetic architecture underlying QDR in apple and provide a basis for marker development to support 
breeding of cultivars with durable resistance to European canker.
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 European canker, caused by the ascomycete Neonectria ditissima, severely affects apple (Malus x domestica) 
production worldwide and is particularly problematic in cool, wet climates1. The fungus primarily colonizes 
woody tissues, entering via pruning cuts or other injuries on shoots and trunks, and then spreading internally 
through the vascular system2. N. ditissima has a wide host range and is able to infect a large number of decidious 
tree species1.

Preventive measures, including sanitation and fungicide applications, provide limited control of disease 
establishment, making the development of genetically resistant cultivars the most effective management 
strategy.  Despite this, there is limited information on the response of the host apple plants to infection nor 
is there information on the resistance mechanisms involved in limiting the spread of the disease. Reported 
sources of partial resistance to N. ditissima in Malus are all of quantitative nature3–7. Several quantitative trait 
loci (QTL) with relatively small to moderate effects, in the range of 4–19%, have been reported to contribute to 
partial resistance to European canker in apple scion material. Together, these findings indicate that resistance to 
N. ditissima is polygenic and reflects the combined influence of multiple loci rather than the action of a single 
major gene. Interestingly, a number of quantitative disease resistance (QDR) alleles are also present in cultivars 
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considered susceptible, such as ‘Gala’, which highlights that accumulating or “stacking” several favourable alleles 
may be required to achieve stronger levels of tolerance.

Despite its prevalence, the molecular basis of QDR remains poorly defined. In contrast, the functions of many 
resistance (R) genes that confer qualitative or race-specific resistance are well characterised8. Most of these have 
been shown to belong to the nucleotide-binding site leucine-rich repeat (NLR) family, which plays a central 
role in pathogen recognition8. Genes associated with QDR are functionally diverse and include those encoding 
kinases, WRKY transcription factors, zinc-finger proteins, and enzymes involved in lignin biosynthesis as well 
as NLRs8. Cell-surface receptors with extracellular sensing domains are also thought to play an important part in 
quantitative resistance, as they mediate the perception of pathogen-derived molecules at the plasma membrane8. 
These include receptor-like kinases (RLKs), receptor-like proteins (RLPs), LysM-domain receptors, lectin-type 
RLKs (LecRLKs), and wall-associated kinases or kinase-like proteins (WAKs/WAKLs)9.

A study investigating the host response of apple trees to Valsa mali, a necrotrophic fungal pathogen with 
a mode of infection and biology similar to N. ditissima, demonstrated that V. mali infection activates genes 
involved in plant-pathogen interactions, plant hormone signal transduction, flavonoid biosynthesis, and 
phenylpropanoid biosynthesis10. The phenylpropanoid pathway plays a crucial role in the synthesis of secondary 
metabolites, initiated by the deamination of phenylalanine to cinnamic acid via phenylalanine ammonia-lyase 
(PAL)11. Cinnamic acid serves as a precursor for the production of lignin, suberin, coumarins, flavonoids, and 
stilbenes, which contribute to plant defense mechanisms12. Similar host responses have been observed in poplar 
trees infected with canker pathogens13,14. We hypothesize that apple trees infected with European canker exhibit 
comparable responses. However, studies on the genetic responses of trees to fungal wood pathogens remain 
limited, despite their critical significance in forestry and horticulture.

Approaches to identifying genes underlying QDR include bulk transcriptome profiling to examine gene 
expression in resistant and susceptible hosts15 or contrasting individuals carrying resistant or susceptible alleles 
at a QTL16–18. Machine learning (ML) is emerging as a valuable tool to identify transcriptional predictors of plant 
immune responses19 and gene markers for classifying resistant and susceptible genotypes using transcriptome 
data20. Algorithms like Random Forest and Support Vector Machines identify key resistance-associated 
biomarkers by analysing gene expression patterns, while feature selection methods enhance model accuracy and 
biological interpretability.

We embarked on this transcriptome sequencing project not only to deepen our comprehension of 
the molecular mechanisms guiding the interaction between N. ditissima and apple but also to improve our 
understanding of the broader host responses to infection by fungal wood pathogens. Furthermore, our goal was 
to pinpoint candidate genes associated with QDR to facilitate the development of apple cultivars with heightened 
resistance.

We analyzed transcriptomic responses in a bi-parental offspring population segregating for six additive QTLs 
previously linked to disease resistance5. Individuals were grouped into ‘resistant’ and ‘susceptible’ bulks based 
on canker disease phenotypes, and gene expression patterns were identified using random forest-based variable 
selection and differential expression analysis.

We examined gene expression differences regulated by each QTL, focusing on both cis and trans variation. 
Our aim was to identify genes within QTL haplotypes with differential expression between resistant and 
susceptible alleles, either constitutively or in response to pathogen challenge. Gene expression patterns were 
validated in ‘Golden Delicious,’ which carries at least one copy of each QDR-associated haplotype and shares 
partial ancestry with the studied population through its offspring, ‘Gala.’, which was used as a parent in the 
segregating population5.

In this stepwise approach, we aim to understand both the general mechanisms of resistance and how specific 
elements of the host’s response to pathogen invasion are modulated in the presence of additive QTL.

Methods
Plant material
A subset of progeny from one of the families used for QTL identification by Karlström et al.5 were subject to 
transcriptome sequencing: 25 progenies from a cross between ‘EM-Selection 4’ x ‘Gala’ as well as the two parents 
were grafted in six replicates on ‘M9 EMLA’ rootstocks in January 2019 at NIAB, East Malling. All graftwood 
used was obtained from trees maintained at NIAB, East Malling. The trees were kept in pots in an unheated 
polytunnel and drip-irrigated for the full duration of the experiment.

Genotype bulks consisting of the ten most resistant (bulk-R) and ten most susceptible (bulk-S) progeny were 
selected based on recorded disease phenotype in the field experiment reported in Karlström et al.5.

‘Golden Delicious’ and ‘M9 EMLA’ trees used for validation and prediction were grafted onto ‘M9 EMLA’ 
rootstocks in January, 2017 at NIAB, East Malling, United Kingdom. The trees were maintained in pots in an 
unheated greenhouse and irrigated weekly. Six replicates were propagated. No trees showed symptoms of canker 
prior to the experiment. The trees in both experiments were kept in 2 l pots fertilised with a slow-release fertiliser 
(Osmocote).

Artificial inoculation with Neonectria ditissima and sampling
The progeny trees were artificially infected in the unheated polytunnel in December, 11 months after grafting. 
The temperature and humidity in the polytunnel were not controlled or recorded”.

Four replicate trees of each genotype were inoculated with N. ditissima spore suspension and two trees mock-
inoculated with a water control (Fig. S1).

Inoculation in the GD and M9 trees was carried out under different conditions compared to the progeny. 
At the end of July, six months after grafting, the ‘GD’ and ‘M9’ trees were moved to a chilled glasshouse four 
days prior to being inoculated. The glasshouse conditions were the following: temperature 15–25℃, relative 
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humidity ≥ 80%. Misting lines were installed under the benches with trees on top in order to maintain the 
humidity. These were equipped with 360° misting units spraying water for one minute at ten minute intervals. 
Three replicate trees of each variety were inoculated with either a spore suspension or with a control consisting 
of water (Fig. S1).

Inoculations and the preparation of inoculum were performed as per Gomez-Cortecero et al.3. A single spore 
isolate of N. ditissima, Hg199, was used. Two leaf positions were inoculated (positioned at the 15 and 30th node 
from the apex) but only the top infection-point was used for sequencing. Each tree was inoculated by removing 
two leaves and the corresponding axillary bud with a scalpel and thereafter adding 3 µl of spore suspension with 
a concentration of 105 macroconidia/ml to the wound with a pipette.

Progeny trees were sampled four months post-inoculation, when the majority of inoculated trees showed 
symptoms. Samples from lesions on progeny trees that had still not developed symptoms at 8 months post 
inoculation were removed. Samples from ‘GD’ and ‘M9’ were collected at 25 days post-inoculation, by which 
time symptoms had appeared for all inoculated trees21. In both experiments samples were taken shortly after 
the majority of trees showed the first emergence of canker symptoms. Stem samples were approximately 5 × 3 
mm and included transverse tissue sections from the cortex, phloem, cambium and xylem of each tree. Samples 
from infected trees were collected at approximately 0.5 cm distance above the leading edge of the developing 
canker lesion. Mock-inoculated plant samples, hereafter referred to as ‘control’ samples, were taken from healthy 
wood, 0.5 cm from the point of water inoculation. All samples were taken apically in relation to the point of 
inoculation. Samples were flash frozen upon collection and stored at −80◦C  until RNA extraction.

RNA-extraction and transcriptome sequencing
The frozen stem samples were ground using DEPC-treated pestle and mortars in the presence of liquid 
nitrogen. Total RNA was isolated using Qiagen RNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA) according to 
instructions from the manufacturer.

One sample per tree was sequenced. Sequencing was performed by Novogene (Novogene, Hong Kong and 
Cambridge) on Illumina HiSeq 4000.

Processing of sequence data and genome alignment
Adaptor sequences and low-quality data were removed from sequencing reads using fastqc-mcf22. RNA-seq data 
quality was evaluated using the quality control tool FastQC version 0.10.123. Quantification of the expression of 
transcripts was done using Salmon version 0.9.124 using the ‘GD’ transcriptome GDDH13 version 1.1.

Analysis of differential expression in partially resistant and susceptible bulk
Differential expression (DE) analysis was performed in R (R version 4.5.1) using packages edgeR29 and limma 
(version 3.52.1)30,31. Initially, transcripts with low expression in the experimental samples were removed from 
the dataset. edgeR was used to calculate normalisation factors. Multidimensional scaling (MDS) plots were used 
to visually inspect the clustering of samples. Differential expression analysis was conducted by using function 
voom in package limma. Voom transforms raw counts to log2 counts per million reads (CPM), incorporating 
the normalisation factors. A correlation factor was added to the linear model fit in limma-voom to account for a 
higher degree of correlation between samples derived from the same genotype, thus enabling comparisons both 
within and between apple genotypes. Thresholds of log2 Ratio | ≥ 1 and a Benjamini-Hochberg (BH) adjusted 
p-value of ≤ 0.05 were used to determine if a gene was to be considered DE.

Five contrasts were used to identify differentially expressed genes (DEGs):

	a.	 Infected vs. Control for bulk-R genotypes.
	b.	 Infected vs. Control for bulk-S genotypes.
	c.	 Bulk-R vs. bulk-S for infected plants. This contrast was used to identify transcriptional differences between 

the groups during infection.
	d.	 Bulk-R vs. bulk-S for control plants. This contrast aimed to reveal constitutive transcriptional differences 

between the two groups under control conditions.

Variable selection and classification using random forest
Random Forest (RF) classification implemented in R (packages randomForest and caret) was used to identify 
genes whose expression profiles best distinguished resistant and susceptible apple genotypes. Classification was 
performed on 72 inoculated samples, derived from 10 resistant and 10 susceptible genotypes within a full-sib 
progeny (33 resistant and 39 susceptible infected trees in total). The five progeny genotypes with intermediate 
resistance level were not used for this analysis. DEGs from any of the reported contrasts were included as 
predictors in the initial RF models.

To avoid confounding due to shared genetic background, a 5-fold cross-validation blocked by genotype was 
implemented, ensuring that all samples from a given genotype were assigned to the same fold. Within each 
training fold, 200 RF models were fitted using different random seeds to assess the stability of variable importance 
scores. Genes were ranked by their mean permutation importance across these repetitions, and the top 50 most 
informative genes were retained within each fold. Each model was then retrained using only the selected genes 
and evaluated on the held-out genotypes, yielding an unbiased estimate of predictive performance.

To evaluate feature stability, the frequency with which each gene appeared among the top 50 predictors across 
all folds was calculated. Genes selected in ≥ 80% of folds were considered stable predictors of resistance and were 
used for functional interpretation.

To further test the predictive capacity of the selected genes, model performance was evaluated using an 
independent RNA-seq dataset from three inoculated trees of the partially resistant cultivar ‘GD’ and three of the 
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partially susceptible ‘M9 EMLA’3,27,28. Performance metrics were computed using the caret package, including 
accuracy, class sensitivity, specificity, and precision.

Functional annotation and enrichment analysis
Predicted genes in the GDDH1.1 genome were annotated with Kyoto Encyclopedia of Genes and Genome 
(KEGG) and protein family (PFAM) terms. First, FASTA sequences for all genes were obtained from the Genome 
database for Rosaceae32. The gene annotation was thereafter performed in eggNOG-mapper 2.1.733.

Gene set enrichment analysis was conducted in clusterProfiler34 for KEGG and PFAM terms. The list of 
background genes considered in the enrichment analyses was limited to genes that were expressed within the 
experiment. Terms with BH adjusted p-value of ≤ 0.05 were considered to be enriched. Only KEGG pathways 
that were represented in M. x domestica in the KEGG PATHWAY Database35 are presented.

Comparative analysis of QTL-R and QTL-S transcriptomes
Progeny from the ‘EM Selection-4’ x ‘Gala’ cross were grouped based on the presence/absence of specific SNP-
haplotypes at six genetic loci linked to QDR to European canker5. Individuals with the QDR haplotype are 
denoted QTL + while those lacking the haplotype are denoted QTL-. The DE analysis to identify candidate genes 
within QDR QTL was performed as described above.

	1.	 The following contrasts were used to identify differentially expressed genes:

	 a.	 QTL- Control vs. QTL + Control: This contrast aimed to reveal constitutive transcriptional differences 
between the two groups under control conditions.

	 b.	 QTL- Infected vs. QTL + Infected: This contrast was used to identify transcriptional differences between 
the groups during infection.

The analysis did not differentiate between individuals with one or two copies of the QDR haplotype. The DEGs 
for each QTL with a genome position within the QTL interval were further explored. The physical position of 
the QTL regions were defined by the genome position of the boundary SNPs identified in Karlström et al.5. 
InterPro36 was used to provide further information on putative gene function for validated genes.

To determine whether there was a correlation between presence/absence of haplotypes at different QTL a 
chi-square test (chisq.test in base R) was performed for each pair-wise combination.

Validation of gene expression in an independent experiment
Independent validation of gene expression was performed by contrasting control vs. infected trees from ‘GD’. 
DEGs from ‘GD’ was further used to validate candidate genes underlying QTL. ‘GD’ was used as a parent for 
QTL discovery by Karlström et al.5 and has at least one copy of each haplotype associated with the QDR QTL.

Results
Transcriptome profiling of apple trees upon N. ditissima infection using RNA-Seq
We sequenced the transcriptomes of a full-sibling progeny segregating for partial resistance QTL to N. ditissima 
during disease infection to investigate transcriptional responses linked to quantitative resistance. A mean 
library size of 18.5 Mb was obtained and 32,353 transcripts were retained after filtering out transcripts with 
low expression. A total of 146 samples were included in the final analysis after the removal of samples that 
showed unusual MDS plots compared to other replicates of the same genotype. For prediction and validation, 
the average number of reads mapped to the reference genome was 48 and 49 million for infected respectively 
uninfected ‘GD’ trees, and 46 and 51 million for infected ‘M9’ trees.

Differential gene expression depending on resistance level to European canker
To investigate the differences in gene expression patterns between resistant and susceptible genotypes, a DE 
analysis was performed. This included within-group comparisons of infected versus mock-inoculated trees for 
ten partially resistant (bulk-R) and ten susceptible (bulk-S) genotypes, as well as between-group comparisons of 
bulk-R and bulk-S in both infected and control trees (Fig. 1, Table S1).

A total of 101 DEGs were identified from the comparison of infected bulk-R vs. bulk-S. Nine out of 
these transcripts were also DE in the partially resistant ‘GD’ upon infection (Table S1). Among the gene 
models identified in both experiments were a putative Lec-RLK (MD05G1263100), ABC-transporter protein 
(MD03G1172200) and a RLK (MD00G1101400).

The 30 DEGs with largest difference between bulk-R and bulk-S are shown in Table 1.
Ten transcripts were identified at the intersection of the ‘Bulk-R Infected vs. Control’ and ‘Infected: Bulk-R vs. 

Bulk-S’ contrasts (Fig. 3, Table S2), indicating that they were induced upon infection and exhibited differential 
expression between resistant and susceptible genotypes. Of these, only one transcript, MD05G1187500, was 
DE upon infection in the partially resistant genotype ‘GD’. Although MD05G1187500 lacks a predicted gene 
function, a BLAST search revealed strong sequence similarity to predicted non-coding RNA sequences in 
Malus sp. (E-value = 0.0, sequence similarity > 99%). Among the ten transcripts, two were putative NLRs 
(MD04G1015300 and MD10G1018400), both of which showed lower transcript abundance in infected tissue 
and were less expressed in bulk-R genotypes. Additionally, a putative LecRLK, MD10G1177500, was DE in both 
comparisons, with increased expression in infected bulk-R compared to control bulk-R and higher abundance 
in bulk-R than in control (Table 1).

Thirteen predicted genes were identified at the intersection of the ‘Infected: Bulk-R vs. Bulk-S’ and ‘Control: 
Bulk-R vs Bulk-S’ contrasts, indicating they were constitutively different between bulk-R and bulk-S genotypes 
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regardless of infection status (Fig. 1, Table S1). None of these transcripts were found among the DEGs in ‘GD’, 
which is consistent with the finding that they are constitutively expressed and not induced upon infection. 
Among the putative gene functions of these gene models were one NLR (MD10G1137400), two transcription 
factors (MD10G1276200 and MD10G1278800), two with functions within RNA-processing (MD10G1268700 
and MD10G1232900) and four transcripts predicted to be non-coding RNA. Notably, ten of the 13 transcripts 
were located on chromosome 10.

Variable selection in random forest for classification of resistant and susceptible Apple 
genotypes
Random Forest classification was applied to identify genes whose expression profiles best discriminated resistant 
and susceptible apple genotypes within a full-sib progeny. Using a genotype-blocked 5-fold cross-validation 
approach, in which all samples from a given genotype were assigned to the same fold, models trained on the top 
50 most informative genes achieved an overall prediction accuracy of approximately 0.67 (95% CI = 0.55–0.77; 
p = 0.021, Table 2), significantly higher than expected by random classification (No Information Rate = 0.54).

Across folds, 26 genes were consistently ranked among the top predictors in ≥ 80% of cross-validation folds, 
and were therefore considered stable transcriptional markers of resistance (Fig. 2; Table S3).

The predictive capacity of these 26 stable genes was further evaluated using an independent RNA-seq dataset 
from inoculated trees of the partially resistant cultivar ‘GD’ and the partially susceptible ‘M9 EMLA’ (Table 2).

Functional categorisation of stable gene features
The functional annotation of the 26 stable predictors identified through the variable importance spectrum 
indicated that they could be classified into eight main functional categories based on putative gene function 
(Fig. 3; Table S3). Three genes were associated with disease resistance and defense response, including one NLR 
and two G-type LecRLKs. Three genes were linked to secondary metabolism, comprising one phenylalanine 
ammonia-lyase (PAL), one terpene synthase, and one polyphenol oxidase. Two genes were associated with cell-
wall modification, including TUNICAMYCIN INDUCED 1-like and 2-hydroxy-palmitic acid dioxygenase 

Fig. 1.  Venn diagram illustrating differentially expressed genes (DEGs) in 10 partially resistant (bulk-R) and 
10 susceptible (bulk-S) apple genotypes from the same F1 progeny. The diagram shows DEGs derived from 
both the comparison between bulks (Bulk-S vs. Bulk-R) and within bulks (Infected vs. Control).
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MPO1-like. Seven transcripts were related to epigenetic and gene expression regulation, including a splicing 
factor (YJU2), one pentatricopeptide repeat (PPR-like) protein, one eukaryotic translation initiation factor 4E 
(eIF4E), one RNA methyltransferase, and three non-coding RNA transcripts. Two genes encoded transcriptional 
regulators, represented by AGAMOUS-like 24 and a MYB-like transcription factor. Three genes were linked 
to transport and membrane functions, including an ABC-2 type transporter, a mechanosensitive ion channel, 
and a translocase of the outer membrane (TOM22-V). Three additional genes were associated with signal 
transduction and kinase activity, comprising S-methyl-5-thioribose kinase, sphingosine kinase 1, and a protein 
kinase superfamily member. The remaining transcripts included one serine carboxypeptidase-like 20 and two 
genes of unknown function.

Performance metric Independent validation (26 stable genes, ‘GD’ & ‘M9’) Genotype-blocked 5-fold cross-validation (top-50 genes)

Accuracy 1.00 * 0.67 *

95% CI (Accuracy) 0.54–1.00 0.55–0.77

Sensitivity (Resistant) 1.00 0.64

Specificity (Susceptible) 1.00 0.69

Cohen’s Kappa 1.00 0.33

Table 2.  Predictive performance of random forest models using the top 50 most informative genes under 
genotype-blocked 5-fold cross-validation, and independent validation of the 26 stable genes in the partially 
resistant ‘GD’ and partially susceptible ‘M9 EMLA’ genotypes. *Asterisk indicates that model accuracy is 
significantly greater (p < 0.05) than the no information Rate, representing the accuracy expected by always 
predicting the majority class.

 

Gene ID GDDH13_v1.1 Chromosome log2 fold-change (LFC) BH adj. p-value Predicted gene function DE in ‘GD’ Infected vs. ‘GD’ Control

MD10G1115400 10 −4.97 0.009 TUNAMYCIN INDUCED 1-like No

MD10G1129900 10 −4.36 0.001 Small conductance mechanosensitive ion channel No

MD10G1299100 10 −3.85 0.019 Polyphenol oxidase No

MD01G1010300 1 −3.81 0.011 SAM dependent methyltransferase No

MD02G1025000 2 −3.79 < 0.001 Non-coding RNA* No

MD10G1137400 10 −3.58 < 0.001 Disease resistance protein (NLR) No

MD03G1172200 3 −3.33 0.001 ABC-2 type transporter Yes

MD10G1141100 10 −3.12 0.001 Disease resistance protein (NLR) No

MD15G1267400 15 −2.91 0.001 Translocase of outer membrane No

MD10G1248700 10 −2.91 0.002 Coatomer No

MD10G1120500 10 −2.82 < 0.001 Unknown function No

MD05G1213100 5 −2.8 0.041 Ankyrin repeat family protein No

MD00G1101400 NA −2.79 0.021 Cysteine-rich receptor-like protein kinase Yes

MD15G1239400 15 −2.69 < 0.001 LRR receptor-like serine threonine-protein kinase No

MD00G1169900 NA −2.66 0.019 Interferon-related developmental regulator (IFRD) No

MD05G1187500 5 3.64 0.013 Non-coding RNA* Yes

MD10G1086300 10 3.56 < 0.001 Unknown function No

MD05G1214700 5 3.28 0.026 G-type lectin receptor-like kinase (LecRLK) No

MD10G1177500 10 3.1 0.001 2-hydroxy-palmitic acid dioxygenase mpo1-like Yes

MD10G1306300 10 3.06 0.002 AGAMOUS-like 24 No

MD04G1002200 4 3.03 < 0.001 Non-coding RNA* No

MD15G1252900 15 2.95 0.001 Non-coding RNA* No

MD10G1122300 10 2.88 0.001 Cyclase-associated protein No

MD10G1278800 10 2.79 0.026 Myb family transcription factor PHR1-like No

MD03G1121500 3 2.74 0.045 Phenylalanine ammonia-lyase (PAL) No

MD15G1294100 15 2.67 0.049 Non-coding RNA* No

MD10G1283900 10 2.6 0.001 HXXXD-type acyl-transferase No

MD10G1160000 10 2.57 0.041 SUPPRESSOR OF AUXIN RESISTANCE 1-like No

MD05G1217400 5 2.43 0.043 G-type lectin receptor-like kinase (LecRLK) No

MD01G1113000 1 2.43 0.003 Magnesium transporter No

Table 1.  The 30 DEGs with largest log2 fold-change between infected trees of bulk-R and bulk-S.
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KEGG pathway enrichment in differentially expressed genes
29% of predicted genes were annotated with KEGG pathways. The most enriched pathway in both bulk-R and 
bulk-S was phenylpropanoid biosynthesis (ko00940, table S4), with 146 DEGs in bulk-R and 167 in bulk-S, 
including genes like 4CL, peroxidases, and cinnamyl alcohol dehydrogenase (CAD). It also included genes specific 
to the lignin pathway such as Cinnamoyl-CoA reductase (CCR). Over 63% of these genes were upregulated 
in response to infection. Additional enriched pathways included biosynthesis of secondary metabolites, such 
as flavonoids and terpenoids, and nitrogen metabolism (ko00910). Key pathways related to environmental 
information processing, including ABC transporters, plant hormone signaling, and MAPK signaling, were also 
enriched. The cutin, suberin, and wax biosynthesis pathway (ko00073) showed enrichment, with 18 DEGs in 
bulk-R and 20 in bulk-S (table S4).

KEGG pathways unique to bulks
Among within-group comparisons, the only uniquely enriched pathway in bulk-R was carbon fixation (ko00710, 
table S4). Bulk-S showed five unique pathways, including ascorbate metabolism (ko00053) and amino acid 
metabolism (ko00270, ko00400). A comparison of infected bulk-R versus bulk-S revealed enriched pathways 
related to β-alanine biosynthesis (ko00410) and amino acid degradation (ko00280).

Fig. 2.  A Heatmap showing normalized read count data for the 26 transcripts selected as transcriptional 
predictors of canker resistance. Mean logCPM expression per genotype is presented for 20 full-sibling progeny, 
along with ‘Golden Delicious’ (GD) and ‘M9’. (B) Phenotypic classification of the 20 full-sibling progeny as 
‘resistant’ or ‘susceptible,’ based on the characterization by Karlström et al5.
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PFAM domain enrichment in differentially expressed genes
PFAM analysis annotated 81% of the predicted genes. The most significant domain in both bulks was the leucine-
rich repeat N-terminal domain (LRRNT_2), followed by cytochrome p450s and UDP-glycosyltransferases 
(table S5). The majority of LRRNT_2 genes were putative Leucine-rich repeat RLKs. Domains such as B_
lectin, S_locus_glycop, PAN_2, and DUF3403 were enriched in both bulks, with over 79% of associated DEGs 

Fig. 3.  Heatmaps showing mean normalized gene expression for resistant and susceptible genotypes for stable 
transcriptional predictors of European canker resistance, categorized by putative gene functions: (a) disease 
resistance and defense response, (b) epigenetic and gene expression regulation and (c) secondary metabolism.
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upregulated. The DEGs associated with these domains are primarily G-type lectin receptor-like kinases (Sun et 
al. 2020). Additionally, the galacturonan-binding domain (GUB_WAK_bind) was enriched, with over 88% of 
related WAK/WAKL genes upregulated upon infection. DEGs with a Malectin domain were also enriched in 
both bulks (table S5).

PFAM domains unique to bulks
In bulk-R, 12 unique domains were enriched, including KIP1, methyltransferases, and dynamin protein family 
domains (table S5). While the enrichment of these protein domains was not significant in bulk-S, the vast 
majority (> 85%) of these genes were also DE in bulk-S. Bulk-S had 38 unique enriched domains, including sugar 
efflux transporters (MtN3_slv) and the ‘Dirigent’ domain, which is involved in lignin synthesis.

Enrichment of PFAM domains in DEGs from partially resistant vs. susceptible Apple 
genotypes
There were 13 significantly enriched protein domains among the 68 DEGs that could be annotated from the 
contrast of bulk-R infected vs. bulk-S infected (Table S5). The Toll Interleukin Receptor (TIR) domain was 
enriched due to five putative TIR-NBS-LRR NLRs, with four downregulated and one upregulated in bulk-R. The 
leucine-rich repeat domain (LRR_3) was linked to three of these NLRs. Coatomer-related domains (COPI_C, 
Coatomer_WDAD) were enriched, with three genes more highly expressed in bulk-S. Four PFAM domains 
associated with G-type lectin receptor-like kinases (B_lectin, S_locus_glycop, PAN_2, DUF3403) were also 
enriched, with corresponding genes located on chromosome 5.

Transcriptome comparisons based on presence/absence of QDR-haplotype
A comparative analysis was conducted to identify candidate resistance genes for loci with a small effect on the 
disease resistance phenotype. The analysis was based on the presence/absence of QDR SNP-haplotypes across six 
QTL regions5 (Table 3, table S6). ‘GD’, a parent with at least one QDR haplotype per locus, was used for expression 
validation. Transcriptomes of QTL+ and QTL− plants were compared under infection and control conditions to 
assess constitutive expression differences. No significant correlations (p < 0.05) were found between haplotype 
presence at different QTL (chi-square tests).

Differential expression (DE) results are summarized in Table S7, with full gene lists provided in Tables S8–S9. 
Key DEGs of interest are presented in Table  4, including those validated in ‘GD’, functionally similar genes 
within the same QTL, and genes encoding NLRs or RLKs. The complete validation dataset from ‘GD’ is available 
in Table S10.

QTL interaction network: genes associated with multiple QDR-haplotypes
To investigate interactions between QTLs, we investigated genes that were DE in multiple QTL+/QTL- contrasts 
for infected trees. A total of 147 DEGs were associated with more than one QDR haplotype (Fig. 4, Table S11), 
indicating potential cross-talk between resistance loci.

Genes involved in the phenylpropanoid pathway were differentially expressed across multiple QTLs, 
including 4CL (MD16G1112900, MD16G1113000) on chr 16 and PAL (MD03G1121400, MD03G1121500) on 
chr 3. These genes showed varied expression patterns across resistance backgrounds.

Pathogen recognition and signaling genes were also affected, with seven NLRs (chr 2, 3, 10, 15, 16) and two 
WAKLs (chr 2) showing differential expression in plants carrying resistance alleles.

Ten transcripts, including a Zinc-finger protein (MD11G1125800), eIF4E (MD10G1268700), and a 
Ca²⁺-binding EF-hand protein (MD10G1306200), were downregulated in both RND-QTL10 + and RND-
QTL2 + genotypes.

Fifteen genes exhibited opposing expression patterns between RND-QTL8 + and RND-QTL15+, including 
genes involved in mRNA splicing (MD15G1111800, MD15G1111000, MD15G1111900), chromatin modification 
(MD15G1111800, MD15G1076200), and pathogen response (NLR MD03G1202400; LRR-RLK MD03G1072600).

Additionally, 33 transcripts showed inverse expression patterns between RND-QTL8 + and RND-QTL2+, 
including genes involved in disease resistance (MD08G1042700, MD02G1042000), jasmonate signaling 

Chr QTL ID SNP haplotype denoted QTL+
No. of 
QTL + individuals

No. of QTL- 
individuals

QTL + haplotypes 
in ‘Golden 
Delicious’

2 RND-QT-2 ​C​G​A​A​A​A​G​A​G​G​A​G​G​A​C​G​G​G​A​A​G​A​G​A​A​A​C​C​A​C​A​G​G​A​G​C​C​G​C​A​A​A​A​A​A​A​G​A​G​G​G​A​A​
C​G​A​A​G 18 9 1

6 RND-QTL6 ​G​G​A​A​A​C​A​G​A 23 4 2

8 RND-QTL8
​A​G​C​G​G​G​G​C​A​A​G​A​A​A​A​G​G​A​G​G​A​G​A​G​A​G​G​G​A​A​A​A​A​G​G​G​A​G​A​G​G​G​G​A​A​G​A​A​G​C​A​A​G​G​
A​G​A​A​G​G​G and ​C​A​A​A​G​G​G​C​A​G​A​G​A​G​G​A​G​G​G​A​G​A​G​G​G​A​A​G​A​A​A​A​A​G​G​G​A​G​A​G​G​G​G​G​
A​A​G​A​A​A​A​C​A​G​G​G​A​G​G​A​A

22 5 1

10 RND-QTL10 ​A​A​G​A​G​C​A​G​C​C​G​C​G​G​G​A​C​A​A​C​A​G​G​A​G​A​A​A​C​G​C​A​G​A​G 23 4 2

15 RND-QTL15 AAAAG 18 9 1

16 RND-QTL16 ​G​A​G​G​A​C​C​G​A​G​A​A​A​C​G​A​G​G​A​G​A​G​G​A​A​G​A​A​C​A​A​G​A​A​A​A​G​A​A​A​A​A 10 17 1

Table 3.  QTL configuration for six loci associated with European canker resistance in 25 Apple full-sibling 
progeny, their parents (‘Gala’ and ‘EM-Selection-4’), and ‘Golden Delicious.
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Gene ID GDDH13_v1.1 Resistance QTL LFC Control LFC Infected Putative gene function DE in ‘GD’

MD02G1188900 RND-QTL2 N.S −1.8 ACT domain Up

MD02G1164500 RND-QTL2 −3.3 −2.6 Disease resistance protein (CC NBS LRR class) -

MD02G1217100 RND-QTL2 N.S 1.5 Disease resistance protein (TIR NBS LRR class) -

MD02G1260200 RND-QTL2 1.5 1.5 Disease resistance protein (TIR NBS LRR class) -

MD02G1282000 RND-QTL2 N.S −1.4 Protein kinase -

MD02G1164900 RND-QTL2 N.S −2.7 Unknown function Up

MD02G1245800 RND-QTL2 1.0 1.2 Wall associated kinase like (WAKL) -

MD02G1246300 RND-QTL2 1.0 1.4 Wall associated kinase like (WAKL) -

MD02G1247400 RND-QTL2 N.S −1.9 Wall associated kinase like (WAKL) -

MD02G1234300 RND-QTL2 5.4 4.9 Wall associated kinase like (WAKL) -

MD02G1234800 RND-QTL2 3.2 2.6 Wall associated kinase like (WAKL) -

MD02G1246100 RND-QTL2 1.9 2.2 Wall associated kinase like (WAKL) -

MD02G1246600 RND-QTL2 4.0 2.4 Wall associated kinase like (WAKL) -

MD02G1274600 RND-QTL2 N.S −2.0 Wall associated kinase like (WAKL) -

MD02G1246700 RND-QTL2 2.8 2.2 Wall associated kinase like (WAKL) -

MD02G1249500 RND-QTL2 N.S −1.2 Wall associated kinase like (WAKL) -

MD02G1273500 RND-QTL2 N.S −1.3 Wall associated kinase like (WAKL) Up

MD02G1273700 RND-QTL2 N.S −1.8 Wall associated kinase like (WAKL) Up

MD02G1249700 RND-QTL2 N.S −1.4 Wall associated kinase like (WAKL) -

MD02G1254300 RND-QTL2 N.S −2.0 Wall associated kinase like (WAKL) Down

MD02G1267000 RND-QTL2 −4.0 N.S Zinc induced facilitator Up

MD06G1099100 RND-QTL6 N.S −1.1 ABC transporter -

MD06G1069800 RND-QTL6 N.S 2.3 RNA-polymerase Down

MD06G1103300 RND-QTL6 N.S −3.8 UDP-Glycosyltransferase Up

MD08G1042700 RND-QTL8 N.S −2.5 Disease resistance protein (NB-ARC domain) -

MD08G1019600 RND-QTL8 N.S −1.2 Disease resistance protein (TIR-NBS-LRR class) -

MD08G1020000 RND-QTL8 N.S −1.8 Disease resistance protein (TIR-NBS-LRR class) -

MD08G1055100 RND-QTL8 N.S −1.2 Glutathione peroxidase Up

MD08G1064100 RND-QTL8 N.S 1.5 Heat shock factor protein Down

MD08G1026800 RND-QTL8 N.S 1.6 Heavy metal associated isoprenylated plant protein (HIPP) Down

MD10G1238200 RND-QTL10 N.S −2.5 NAC transcription factor Up

MD10G1250000 RND-QTL10 −5.6 −3.4 Wall associated kinase (WAK) -

MD10G1250500 RND-QTL10 −2.9 N.S Wall associated kinase (WAK) -

MD10G1251200 RND-QTL10 −4.9 −2.2 Wall associated kinase (WAK) -

MD15G1102100 RND-QTL15 −1.3 N.S ABC transporter Up

MD15G1090400 RND-QTL15 2.8 3.6 Disease resistance protein (CC NBS LRR class) -

MD15G1090100 RND-QTL15 2.7 2.9 Disease resistance protein (LRR and NB-ARC domains) -

MD15G1090000 RND-QTL15 3.2 3.5 Disease resistance protein (NB-ARC domain) -

MD15G1090300 RND-QTL15 3.5 4.2 Disease resistance protein (NB-ARC domain) -

MD15G1179700 RND-QTL15 N.S −2.0 Disease resistance protein (TIR NBS LRR class) -

MD15G1073400 RND-QTL15 N.S 2.3 Epimerase -

MD15G1073500 RND-QTL15 4.1 3.5 Epimerase Down

MD15G1103500 RND-QTL15 −3.1 −2.1 LisH-domain Down

MD15G1061900 RND-QTL15 −3.0 −3.5 PITH domain-containing protein Up

MD15G1077600 RND-QTL15 1.4 N.S Transcription factor Down

MD15G1103400 RND-QTL15 −1.6 −1.4 Transcriptional co-repressor/LisH domain -

MD16G1112900 RND-QTL16 N.S −2.1 AMP dependent synthetase and ligase Up

MD16G1113000 RND-QTL16 −2.3 −2.4 AMP-dependent synthetase and ligase -

MD16G1104200 RND-QTL16 2.0 N.S Cytochrome P450 -

MD16G1104300 RND-QTL16 2.0 N.S Cytochrome P450 -

Continued
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(MD08G1027300), H₂O₂ production (MD13G1087700), calcium signaling (MD03G1005600), and ribosomal 
function (MD02G1015900, MD02G1001700).

Discussion
This study utilized transcriptomes from 25 full-sibling apple progeny and their two parents, ‘Gala’ and EM-
Selection-4, to investigate gene expression during infection by the canker pathogen N. ditissima. The progeny, part 
of a multi-parental population aimed at identifying canker resistance QTL, segregated for six out of seven QTL 
associated with partial resistance to this pathogen5, Through RNA-Seq, key DEGs and pathways contributing 
to resistance mechanisms were identified. The results from Random Forest classification, functional annotation, 
KEGG pathway enrichment, and PFAM domain analysis have highlighted candidate genes and pathways linked 
to host defence responses.

DE and functional enrichment analyses revealed that genes in the phenylpropanoid pathway were 
differentially regulated during canker infection in both bulk-R and bulk-S, with over 63% showing increased 
abundance post-infection. Protein domains related to peroxidases and laccases (Cu-oxidases) were enriched, 
which is notable as both enzymes contribute to lignin polymerization38. Two PAL genes on chromosome 3, 
MD03G1121500 and MD03G1121400, were identified from the analysis. The former was one of the stable 
predictors of resistance, while the latter was DE in comparisons of RND-QTL16+/-. PAL, a key enzyme in the 
phenylpropanoid pathway, converts phenylalanine into trans-cinnamic acid, a precursor for lignin and flavonoid 
biosynthesis. Both PAL genes showed higher expression in bulk-R, indicating increased activity in the partially 

Fig. 4.  QTL interaction network showing differentially expressed transcripts from a comparative analysis of 
gene expression in infected trees based on presence/absence of SNP-haplotypes associated with quantitative 
disease resistance to N. ditissima. Purple indicates higher expression in QTL+ and green indicates higher 
expression QTL-. A) All DEGs from the analysis of six QTL, B) Subset of DEGs identified in more than one 
comparative analysis of QTL-haplotype.

 

Gene ID GDDH13_v1.1 Resistance QTL LFC Control LFC Infected Putative gene function DE in ‘GD’

MD16G1116300 RND-QTL16 −3.2 N.S Cytochrome P450 Up

MD16G1055500 RND-QTL16 N.S 2.6 D-aminoacyl tRNA deacylases Up

MD16G1082200 RND-QTL16 N.S 3.0 Disease resistance protein (TIR NBS LRR class) -

MD16G1125800 RND-QTL16 N.S −1.2 NAC transcription factor Up

MD16G1072500 RND-QTL16 −4.1 −4.0 Transmembrane amino-acid transporter Down

Table 4.  DEGs of interest from QTL+ vs. QTL- comparison. This table displays differentially expressed genes 
(DEGs) that meet the following criteria: validated genes, genes with the same predicted function as a validated 
gene at the same QTL, or genes predicted to function as NLR or RLK. A negative log2 fold-change (LFC) 
indicates higher expression in QTL+ genotypes, while a positive LogFC indicates higher expression in QTL- 
genotypes.
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resistant apple genotypes, particularly in those with RND-QTL8 + and RND-QTL16 + haplotypes, suggesting 
regulation downstream of genetic variations conferring resistance.

Further evidence for the role of the phenylpropanoid pathway in partial resistance to N. ditissima includes 
two putative 4CL genes (MD16G1112900 and MD16G1113000) located within the QTL interval on chromosome 
16. Both genes were significantly more expressed in apple progeny with the RND-QTL16 + haplotype, and one 
also DE in GD. 4CL is a key enzyme that catalyzes the conversion of hydroxycinnamates into CoA esters for 
lignin and flavonoid biosynthesis39, and its activity has been linked to pathogen resistance in multiple crops40–42. 
Additionally, three putative CYP genes were identified within RND-QTL16, involved in secondary metabolite 
synthesis43. These findings suggest a shift in phenylpropanoid gene expression and altered lignin accumulation 
via peroxidase and laccase activity in response to N. ditissima infection. However, further studies are needed to 
assess the relative contributions of lignin biosynthesis and phenylpropanoids to quantitative disease resistance 
to European canker. Higher lignin levels generally correlate with increased resistance, especially against vascular 
pathogens such as Fusarium, Xanthomonas, and Verticillium that spread through the xylem44.

 N. ditissima infection triggered differential expression of genes involved in pathogen recognition, including 
pathogenesis-related proteins, NLRs, and RLKs. Our findings suggest that apple recognises N. ditissima through 
a combination of basal immunity and specialised NLRs. However, it remains unclear whether NLRs contribute to 
QDR or if the pathogen exploits them as susceptibility factors8. One NLR on chromosome 10, MD10G1137400, 
were among the top predictors of canker resistance. MD10G1137400 showed significant expression differences 
between bulk-R and bulk-S, regardless of infection and exhibited lower expression in resistant progeny, suggesting 
that downregulation may be a defense strategy to prevent pathogen exploitation of the immune response.

G-type LecRLKs emerged as potentially having an important role in the apple defense to European canker. 
G-type LecRLKs play key roles in plant immunity, growth, and development45. As a subgroup of RLKs with 
a lectin domain for carbohydrate recognition, they are crucial in cell signaling, but also in plant defense45. 
Two of these genes, both located on chromosome 5, showed higher expression in bulk-R genotypes following 
infection and were among those with stable predictive ability for canker resistance. G-type LecRLKs have been 
shown to positively regulate chitin signalling in the interaction between Nicotiana benthamiana and Sclerotinia 
sclerotiorum46 as well as regulating immunity activated by the recognition of nlp20 (Necrosis and ethylene-
inducing peptide 1-like proteins), a group of proteins derived from certain pathogen and especially important in 
the pathogenesis of necrotrophic pathogens47.

In addition to above mentioned groups of genes there was also an enrichment of protein domains like 
malectin, COPI_C, Coatomer_WDAD, and ECH_2 in differentially expressed genes from bulk-R vs. bulk-S 
infected trees, suggesting roles in intracellular signaling and metabolic adaptation during pathogen attack. 
Malectin supports stress responses and protein quality control48, while COPI_C and Coatomer_WDAD are 
involved in vesicle trafficking for defense molecule secretion49. Additionally, ECH_2 enzymes are involved in 
auxin metabolism, and their role in peroxisomal fatty acid β-oxidation affects the generation of jasmonic acid 
precursors and can contributes to reactive oxygen species (ROS) production50.

Seven out of the 26 genes most predictive of canker resistance were genes or transcripts with a putative role 
in epigenetic regulation and gene expression, including roles in RNA splicing, translation initiation, and non-
coding RNA regulation. Interestingly several putative ncRNA were found in this group. An increasing number of 
ncRNAs have been identified as key players in plant immunity, though the mechanistic details are still limited51. 
These ncRNAs regulate various aspects of immunity, including pathogen perception, signal transduction, and 
immune responses, through strategies such as modulating gene expression, interacting with proteins, and 
working in concert with other ncRNAs. A single ncRNA can target multiple genes, potentially influencing not 
only immunity but also plant development and responses to abiotic stresses.

We identified several candidate genes involved in pathogen interactions within QTLs associated with partial 
resistance to N. ditissima in apple5. Clusters of putative WAKs and WAKLs were found on chromosomes 10 and 2, 
respectively. WAKs typically contain serine/threonine kinase, epidermal growth factor (EGF), and galacturonan-
binding (GUB) domains, while WAKLs generally lack the EGF domain9. These RLKs regulate plant growth 
and stress responses, often enhancing immunity but occasionally suppressing resistance9,52,53. In apple, WAKs 
show both positive and negative regulation in response to pathogens54. Among candidate genes in QTL10, three 
WAKs had lower expression in QDR-allele trees, with two showing upregulation under both control and infected 
conditions. A cluster of 14 WAKLs in QTL2 included two (MD02G1273500 and MD02G1273700) with higher 
expression in QTL2-R trees and significant upregulation in ‘GD’ upon infection.

A putative HIPP gene within the QTL on chr 8 showed lower expression in QTL-R trees and was downregulated 
in ‘GD’. HIPPs are susceptibility targets of necrotrophic pathogens55 and nematodes56. Oryza sativa HIPP05 
(Pi21) is a well-known susceptibility factor for Magnaporthe oryzae, where loss-of-function mutations confer 
resistance, while overexpression in Arabidopsis increases pathogenicity57,58.

The transcript of a putative ncRNA, MD10G1176800, was linked to both QTLs on chromosomes 2 and 10, 
with higher abundance in individuals carrying the QTL + genotype. It was located on chromosome 10, 57 kbp 
from the predicted QTL region.

This study used a transcriptome approach to identify candidate genes linked to multiple resistance QTL 
for European canker in apple. However, only a subset of DE genes between QTL-R and QTL-S plants could be 
validated in ‘GD’, despite its QDR alleles. This may be due to differences in infection stage at sampling, which 
significantly influences gene expression, or the validation focusing only on infection-induced genes, excluding 
constitutively expressed ones.

Some resistance QTL genes may have gone undetected due to the DE analysis focusing on single alleles and 
ignoring background QTL effects, especially if the QTL has a minor impact on disease progression. Differences 
in haplotype alleles for QTL 8 suggest potential genetic variation in resistance, and the low representation of 
genotypes lacking QDR alleles for QTL6 and QTL8 may have reduced detection power. Despite these limitations, 
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this study identified candidate genes that, with further functional validation, could aid in breeding canker-
resistant apple varieties.

Our results suggest that the partial resistance QTLs may act additively at the transcriptional level. Several 
genes, including PAL, 4CL, and multiple immune receptors, were differentially expressed in association with 
more than one QDR haplotype. In total, 147 transcripts showed expression differences linked to multiple QTLs, 
indicating shared regulatory effects across loci.

While we did not model expression relative to allele dosage, the overlap in DEGs across QTL contrasts, and 
the increased expression of defense-related genes in individuals carrying multiple QTL + haplotypes, supports 
additive modulation of resistance pathways. However, we also observed opposing expression patterns between 
certain QTLs, suggesting potential complexity in their interactions. Overall, these findings point to cumulative, 
and in some cases interactive, effects of QTLs on defense gene expression.

We used a Random Forest variable selection approach to reduce complexity and highlight gene expression 
patterns that differ between resistant and susceptibe responses to N. ditissima infection in apple. ML techniques 
help address challenges such as handling large datasets, recognizing patterns, and optimizing models, improving 
the efficiency and accessibility of analyzing complex biological systems59. In human transcriptomics ML is 
commonly used for RNA-seq data to predict disease states, identify key transcripts, discover disease biomarkers, 
determine differentially expressed genes and deconvolve single-cell data59. However, there are only limited 
examples of ML being used as a tool to understand and predict host-pathogen interactions in plants. Sia et 
al.19 used ML to predict Arabidopsis transcriptomic responses to multiple pathogens and identified key gene 
sets predictive of disease development through feature selection. Similarily to our study Panahi et al.20 used 
a combination of RNA-Seq and ML to rank differentially expressed genes associated with Rhizoctonia solani 
resistance in sugar beet in order to identify key biomarkers of resistance.

Feature selection in RF can be unreliable for identifying candidate genes due to variability in selected features, 
bias toward strong predictors, and the exclusion of correlated genes, potentially missing biologically significant 
candidates. To address this, we applied a cross-validated stability selection approach based on repeated estimation 
of variable importance across genotype-blocked folds. This method identified a consistent subset of genes with 
stable predictive ability for canker resistance. The resulting gene set was highly predictive of disease resistance 
in the ‘Golden Delicious’ and ‘M9’ varieties. However, further testing in a broader range of cultivars is needed to 
assess whether these genes are specific to certain genetic backgrounds. Additionally, it is important to note that 
canker resistance is a complex trait, not a binary response, with many cultivars exhibiting moderate resistance.

This study provides valuable insights into the genetic and molecular basis of partial resistance to N. ditissima 
in apple, offering potential targets for breeding canker-resistant varieties. By integrating transcriptomic analysis 
with QTL mapping and machine learning-based feature selection, we identified candidate genes and pathways 
that contribute to host defense. Notably, the phenylpropanoid pathway, immune receptors, and epigenetic 
regulators emerged as key components of the resistance response.

The identification of putative resistance-associated genes within QTL regions highlights opportunities for 
marker-assisted selection, potentially accelerating the development of resistant cultivars. In particular, PAL and 
4CL genes linked to lignin biosynthesis may serve as biomarkers for enhanced structural defense, while NLRs 
and RLKs could be further explored for their roles in pathogen recognition and signaling.

Despite challenges such as the complex genetic architecture of resistance and variability in gene expression, 
this study underscores the power of transcriptomics and machine learning in dissecting quantitative disease 
resistance. Future work should focus on functional validation of candidate genes and their integration into 
breeding programs, ensuring their effectiveness across diverse genetic backgrounds. By refining selection 
strategies, these findings can contribute to the development of apple varieties with improved resilience against 
European canker, ultimately supporting sustainable apple production.

Data availability
The raw sequence data underlying this article is available in NCBI (BioProject accession number: PRJNA1055417) 
at [https://www.ncbi.nlm.nih.gov/sra/PRJNA1055417].
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