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ARTICLE INFO ABSTRACT

Keywords: Plant protection products are integral to European agriculture but can cause unwanted environmental impacts.

Pesticides Before authorisation, predicted concentrations in environmental compartments are compared with effect

Eate models thresholds in a regulatory risk assessment. This study evaluates the agreement between predicted and measured
Xposure

concentrations for the established FOCUS surface water models (Steps 1-3) and the recently published PEC-CKB
model. Model results were compared with monitoring data from lowland streams in Germany, and particular
attention was paid to the models’ conservatism. The conservative character of FOCUS Step 1 can be confirmed,
but underestimations were observed for FOCUS Step 2 and 3 models. PEC-CKB results are similar to those of the
higher-tier FOCUS models, while having lower model complexity and requiring less input data. Using real
application rates and landscape information generally improved model predictions by nearly halving the bias,
but led to increased underestimations of measured concentrations. Linking prospective and retrospective envi-
ronmental risk assessment (ERA) by incorporating real data can make prospective ERA more realistic and
identify opportunities for simplification. Finally, we discuss the challenges in evaluating prediction models for
pesticide concentrations in surface waters, particularly with regard to the environmental variability of measured
concentrations.

Environmental risk assessment
Surface water
Model evaluation

1. Introduction are subject to a prospective regulatory assessment, where pesticides are

evaluated concerning their potential for environmental exposure and

The use of plant protection products (PPPs) is integral to European
agriculture (Alix and Capri, 2018) and contributes to food security by
preventing pest-related crop losses (Carvalho, 2006; Tudi et al., 2021).
However, PPP application in agricultural areas is associated with their
transport into adjacent ecosystems such as surface water bodies via
spray drift, drainage or runoff (Boye et al., 2012; de Souza et al., 2020;
Schwarzenbach et al., 2006; Reichenberger et al., 2007). There, they
may affect aquatic organisms, such as invertebrates or fish, and in turn
threaten biodiversity and the ecological integrity of ecosystems (de
Souza et al., 2020; Liess et al., 2021a; Schafer et al., 2011; Stehle and
Schulz, 2015a). For market authorisation, environmental risks of PPPs

effects. Due to the lack of field data, exposure models with various levels
of complexity that predict the occurrence and magnitude of pesticides in
ecosystems have developed into an essential element within the Euro-
pean regulatory environmental risk assessment (ERA) (Di Guardo et al.,
2018; MacLeod et al., 2010, FOCUS, 2001; Centanni et al., 2023; Fox
etal., 2021). The ERA relies on the comparison of model-based estimates
to effect thresholds (Forbes et al., 2009; Rico et al., 2021; Schmolke
et al., 2010) and follows a tiered approach, starting from conservative
and simple estimations and advancing to more realistic and complex
approaches in higher tiers (FOCUS, 2001). The FOrum for the Co-
ordination of pesticide fate models and their Use (FOCUS) agreed some

* This article is part of a special issue entitled: ‘B-SAFE: Science for ERA’ published in Environment International.

* Corresponding author.
E-mail address: andreas.focks@uni-osnabrueck.de (A. Focks).

https://doi.org/10.1016/j.envint.2026.110057

Received 12 March 2025; Received in revised form 8 January 2026; Accepted 8 January 2026

Available online 9 January 2026

0160-4120/© 2026 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0009-0005-9314-9916
https://orcid.org/0009-0005-9314-9916
https://orcid.org/0000-0002-6763-3860
https://orcid.org/0000-0002-6763-3860
https://orcid.org/0000-0002-9031-0808
https://orcid.org/0000-0002-9031-0808
mailto:andreas.focks@uni-osnabrueck.de
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2026.110057
https://doi.org/10.1016/j.envint.2026.110057
http://creativecommons.org/licenses/by/4.0/

P. Scharlach et al.

decades ago upon different models and scenarios for predicting pesticide
concentrations in surface waters (FOCUS, 2001). FOCUS surface water
Step 1 uses basic assumptions to estimate extreme worst-case pesticide
loadings. FOCUS surface water Step 2 refines transport processes,
including degradation and differentiation by region, application season,
and cultivated crop. FOCUS surface water Step 3 and Step 4 use a time-
dynamic differential equations-based model and consider ten realistic
worst-case scenarios representing European agricultural areas (FOCUS,
2001). If a PPP fails the risk assessment at lower tiers, it may be
authorised if acceptable risk ratios are reached at higher tiers.

Several studies have claimed that the actual regulatory ERA does not
protect the aquatic environment (Knabel et al., 2012, 2014; Fulda et al.,
2015; Stehle and Schulz, 2015b) because measured environmental
concentrations (MECs) of PPPs exceed exposure predictions of the
FOUCS models. Such underestimations of MECs challenge the use of
exposure models and the effectiveness of a protective ERA for pesticides
(Knabel et al., 2012, 2014).

Recently, a new model for predicting environmental pesticide con-
centrations in surface waters, called PEC-CKB, has been introduced
(Bostrom et al., 2019). It relies on a single equation and omits scenario
assumptions, which simplifies its application compared to FOCUS
models (Bostrom et al., 2019). PEC-CKB predictions matched observa-
tions from Swedish monitoring data similarly well as complex FOCUS
Step 3 predictions (Bostrom et al., 2019). It remains open whether this
performance applies to other European regions with different climate
and topography.

The desired status of models for predicting environmental pesticide
concentrations in a regulatory context is to avoid underestimation
without overestimating too much. Models should account for the pri-
mary drivers of exposure, and complexity should be kept to a minimum,
adhering to the principle of parsimony. In this sense, alternative
methods with varying degrees of complexity for use in prospective ERA
can benefit from comparisons with monitoring data, while addressing
aspects such as accuracy, protectiveness, realism, complexity, and
relevance of the methods (Axelman et al., 2024).

In this study, we evaluated FOCUS surface water models for tiers 1 to
3, and the PEC-CKB model for 36 PPPs against MECs from an event-
driven pesticide monitoring in small German streams (Liess et al.,
2021b). We focus on event-driven samples because they represent high
but realistic entries (Halbach et al., 2021). Special attention was paid to
the agreement between MECs and model predictions and the number of
underestimations. In addition, we conducted supplementary analyses
restricted to grab water samples, which reflect the approach of most
governmental monitoring. Furthermore, we investigated how the simple
PEC-CKB model relates to the established tiered exposure assessment
methods. We also assessed the impact of landscape-specific information,
in particular the quality of application data, on the comparisons with
MECs using the PEC-CKB model for an extended set of 59 active sub-
stances. Finally, we discuss the relationship between model performance
and complexity in regulatory risk assessment, as well as the possible
consequences for an improved European ERA.

2. Materials and methods

Predicted environmental concentrations (PECs) were calculated
using the FOCUS surface water Step 1, 2, and 3 models and the PEC-CKB
model (Section 2.1) with realistic application rates for Germany
extracted from the PAPA database (Section 2.2). The 90th percentile
MECs from a German monitoring study (Section 2.4) were compared to
PECs per substance for each model (Section 2.5). In addition, PEC-CKB
values were calculated considering crop-specific application data and
refined assumptions about the treated area in the catchments based on
landscape analyses (Section 2.3).
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2.1. Calculating PEC values with different models

2.1.1. Performing FOCUS calculations

European ERA follows a tiered model approach, with simplifying and
conservative assumptions in the lowest tier and increasing realism and
complexity for every higher tier. In the FOCUS surface water models,
Step 1 results in ‘worst-case’ water and sediment concentrations based
on summarised transport processes and crop-specific spray-drift rates.
Step 2 refines the model predictions by considering a series of individual
loads, discharge events occurring four days after the last application and
simple degradation mechanisms (FOCUS, 2001). Both steps align with
the Tier 1 and Tier 2 risk assessment guidelines outlined in Council
Directive 91/414/ECC, now superseded by Regulation (EC) No. 1107/
2009. We performed model calculations with the Steps-1-2 model
(version 3.2) (FOCUS, 2001). Here, we selected the Northern Europe
scenario and the application season from March to May for all Step 1 and
2 calculations because this period appeared most suitable for the rele-
vant monitoring period (see SI, Section D).

The third Tier of FOCUS surface water modelling comprises a dy-
namic model with ordinary differential equations. It can be seen as a ‘[d]
eterministic estimate of aquatic exposure across [the defined] scenarios’
(FOCUS, 2001, p. 17, Fig. 1.3-1) and is supposed to deliver ‘realistic
worst-case’ concentrations. The inclusion of ten scenarios for Europe
aims to represent different European environmental conditions and to
yield at least the 90th percentile of the highest pesticide loads in the EU
(FOCUS, 2001). Additional mechanistic models are employed to facili-
tate more realistic predictions for pesticide input to surface waters via
drainage, surface runoff and spray drift. We performed model calcula-
tions for FOCUS Step 3 with the software shell SWASH 5.3, which
included TOXSWA 5.5.3, PRZM 4.3.1, and MACRO 5.5.4. Because MECs
were derived from streams in Germany, we selected three of the ten
FOCUS surface water scenarios as the most representative for Germany:
two drainage scenarios (D3 and D4) and one run-off scenario (R1). The
selection was made based on comparisons with environmental condi-
tions in Germany and after consultation with FOCUS surface water
model developers. Although the monitoring study does not provide
precise information on the contribution of drainage at the different
monitoring sites, we included D3 and D4 to cover drainage and run-off.
Both fast transport mechanisms can be important depending on local
conditions in the catchments (Leu et al., 2004). If defined for the cor-
responding crops, PECs were calculated for all three scenarios, but we
excluded pond scenarios because monitoring data was available only for
small and medium-sized streams. FOCUS Step 4 can be performed with
the same software and additionally includes mitigation options, but will
not be considered in the present study due to lacking data on mitigation
strategies during monitoring. A more detailed comparison of the models
can be found in SI, Table G.1.

2.1.2. PEC-CKB model and parameter assumptions
The PEC-CKB model consists of a single equation that estimates PECs
for PPPs in surface water, briefly defined as (Bostrom et al., 2019):

PECcks = (f/(Nseq))eDeMeF, 1)

PECs are obtained by multiplying the annual application rate D [mg/m?]
with a dilution factor, which is built by the proportion of the catchment
area that is annually sprayed f[—| divided by the duration of the
spraying period N; [weeks] and the weekly runoff factor q[m/week].
Transport processes are combined into a generic factor M| -], repre-
senting the proportion of the applied dose that ends up in surface water
via different pathways, such as drainage or runoff. To account for the
specific sorption behaviour of the substance, the factor F,, [—] calculates
the fraction of the substance mass which partitions to water rather than
sediment, assuming an adsorption equilibrium by

F, = w/(Zw + (Zs o Y’Koc.foc)) (2)
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where Z,, represents the water depth [m], Z the thickness of adsorbing
sediments [m], y the bulk density [g/cm?], f,. the organic carbon content
[kg/kg] and K, the substance-specific partitioning constant between
organic carbon and water [L/kg]. Based on the FOCUS assumptions Z,, =
0.3m, Z; =1cm, y =0.8g/cm® and f,. = 0.05kg/kg and further
parameter assumptions f = 20%, N; = 4weeks, ¢ = 0.001 m/week and
M = 1% from Bostrom et al., the PEC-CKB Eq. (1) can be simplified to

PEC=05eDeF, 3

PECs from this simplified model equation matched well with monitoring
data from freshwater samplings in four small Swedish agricultural
catchments (Bostrom et al., 2019). We used Eq. (3) for comparison with
German monitoring data and refined calculations based on land-use
analysis, specifically by using more realistic f-values.

2.1.3. Model comparisons and input parameters

FOCUS Step 1 and PEC-CKB models share a similar structure but
differ in the parametrisation of transport and dilution. PEC-CKB uses a
generic loss rate of 1%, while FOCUS Step 1 includes crop-specific spray
drift rates (FOCUS, 2001) and a higher loss rate of 10% through runoff
and drainage. This results in PECs from Step 1 being approximately one
order of magnitude higher than those of PEC-CKB (for details see SI,
Section G).

FOCUS Step 2 requires degradation and crop-specific data, while
FOCUS Step 3 needs additional substance properties. This information
was taken from the EFSA conclusions to follow the standard assumptions
in the prospective ERA (input parameters are provided in SI, Section D).
If the required information was not available from these reports, default
parameters were used instead. A substance database that can be added
directly to SWASH is attached to this study. Aggregated German appli-
cation data from the PAPA database (see Section 2.2) was used for model
calculations. Other settings were kept as the default.

2.1.4. Aggregation of PEC values

From all four models, crop-specific PEC values were calculated using
crop-specific application rates and, in the case of FOCUS models, crop-
specific transport parameters (especially spray drift). As the concentra-
tions measured in the monitoring study cannot be assigned to individual,
crop-specific applications, we calculated average PEC values for each
substance by averaging all the crop-specific PEC values. This is because
we aim to cover single PPP applications for different crops in Germany in
order to compare the resulting PECs to monitoring data. We also
extracted maximum and minimum PEC values for each substance to
account for the extremes of crop-specific application rates and risk of
PPP transport to surface waters. For Step 3, the combination of the
selected scenarios with varying crop-specific application rates across
substances yielded a set of PECs for each substance. To calculate the
quality metrics, we used the maximum PEC values across the three
scenarios D3, D4 and R1 for each crop-specific application rate, as
common in regulatory ERA.

2.2. Application data

Application data from the monitoring study was not available at the
time of our study, so application rates were derived from average
German substance- and crop-specific application data from various
example farms across the country. This average German application data
is provided in the PAPA database (JKI, 2023; cf. RoBberg et al., 2017).
Based on the EU pesticide review reports from the EU Pesticides Data-
base (EU, 2023) and available application data, the crops were cat-
egorised into different groups (see SI, Table B.1). We calculated average
crop-specific application data (according to the defined groups) for each
substance from the PAPA database for the years 2018 and 2019 and used
them for the PEC calculations (see SI, Table B.2). The application sea-
sons, e.g. BBCH codes, were taken from EFSA conclusions for the
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corresponding crop groups (see SI, Section D). We only used single ap-
plications, as the aggregation of data from different farmers hampers to
infer the number of applications.

2.3. Land-use analysis of catchments

PPPs are approved and applied to specific crops. Because the moni-
toring catchments have different crop compositions, we used a
geographic information system (GIS) analysis to estimate the percent-
ages of each catchment area sprayed with pesticides. To derive such
more realistic f-values, we determined the sizes of the different catch-
ments based on a freely available watercourse network (DLM 250)
(Bundesamt fiir Kartographie und Geodasie, 2023). The catchment areas
were intersected with land-use data provided by Blickensdorfer et al.
(2021), and the agricultural crop cover of the defined crop groups (SI,
Table B.1) was derived for each catchment (see detailed information in
SI, Section H). Next, average proportions of land use across the different
catchments were calculated by averaging all generated, individual f-
values for each crop group. In a worst-case scenario, it is assumed that
crops are treated with the same pesticide, but in general, the use of
different PPPs is expected in one catchment, so average values provide a
good approximation. The resulting f-values were used to calculate crop-
specific PEC-CKB values, which now incorporate crop-specific applica-
tion rates and f-values:

PECCKB,crup = (fcrop/(Ns L4 q)) hd Dcrop eMeF, 4)

We also calculated an additional overall average f-value by averaging all
crop-specific f-values to adapt the simplified PEC-CKB equation (Eq. (3))
to German conditions, accounting for crop coverage within catchments.

2.4. German monitoring dataset (KgM)

We compared PECs with MECs from a lowland stream monitoring
campaign (Kleingewassermonitoring, KgM) encompassing 124 different
stream sections in Germany (Liess et al., 2021b). Samples were collected
from April to July 2018 and 2019, through regular grab samples taken
every three weeks, and event-driven samples, triggered by a water level
rise of at least 5 cm (Liess et al., 2021a). We assume that substances
detected in very low concentrations might not have been applied in the
corresponding catchment in the monitoring period but might result from
earlier applications, so we decided to exclude values below the limit of
quantification (LOQ) from our analysis.

To assess the models’ ability to avoid underestimating high MECs,
we selected event-driven concentration measurements for the model
comparisons, as increased pesticide concentrations in streams after
rainfall have been reported previously (Halbach et al., 2021). Pooling of
data from both sampling methods was inappropriate because the dis-
tribution of concentrations differed. We also performed the whole
analysis with grab samples to check whether the sampling method or
scenario definition influences the results (see SI, Table E.2). We used the
90th percentile and maximum values above the LOQ to represent higher
MEGs.

Of the 75 detected active substances, we selected 36 for which we
had all the required input parameters for the PEC calculations (see
Section 2.1; SI, Section A). These substances have different degradation
rates and K, values (see SI, Fig. A.1), which ensures that our analyses
include substances with different fate, accumulation and transport be-
haviours in the environment. 23 additional substances from the KgM
study were added for further comparisons with the PEC-CKB model.

2.5. Quality measures for comparison of MECs and PECs

We compared maximum and 90th percentile MECs to average PECs
derived from the different models and crop-specific application rates for
each substance to evaluate model performance with respect to over- and
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underestimations. Good agreement between predicted and measured
values is indicated by data points smoothing around the 1:1 line in a
MEC-PEC plot and is quantitatively assessed by a small bias and root
mean square error (RMSE). Bias reveals systematic over- or underesti-
mation of MECs, while RMSE measures the overall model performance
and the typical error magnitude. We also compare the PEC/MEC ratios,
with values closer to 1 indicating better concordance between PECs and
MEC s, to better understand heteroscedasticity. If predictions are correct
on average, typical quality measures such as bias or RMSE tend to be
low, indicating good average agreement between PECs and MECs
because overestimates and underestimates equalise. Additionally, the
coefficient of determination R?, calculated from the Pearson correlation
between PECs and MEGCs, is used to assess how well PECs explain MEC
variability. Unlike RMSE, R? does not require a 1:1 agreement, but a low
R? could indicate an inappropriate model approach (e.g. incomplete
process descriptions) or inadequate input data.

However, from a risk assessment perspective, PECs should not be
lower than MECs, particularly those exceeding effect thresholds. In
consequence, relying solely on measures like bias, RMSE or similar is
inappropriate for the assessment of model quality in isolation, and the
number and magnitude of underestimations are also relevant. We
evaluate the conservative character of the models by counting the un-
derestimations of MECs by PECs. This evaluation is independent of any
regulatory framework or protection goal, where effect values should be
considered. We define four safety groups to identify models that avoid
both underestimation and excessive conservatism: (1) underestimations
- PEC is lower than MEC; (2) “safety margin 10” — PEC exceeds MEC by
one order of magnitude; (3) “safety margin 100” — PEC exceeds MEC by
one to two orders of magnitude and (4) all further overestimations. In
this context, the heteroscedasticity and the model's capacity to explain
variability in MECs also matter, so results from the ratio and correlation
analyses can be considered here as well.

Model quality measures were calculated using the decadic logarithm
of all concentration values to facilitate comparison to the calculations
reported in Bostrom et al. (2019). To account for varying application
rates, we assessed model performance using bias and RMSE with
average, minimum and maximum PEC values. We focused on 90th
percentile MECs and average PECs for MEC-PEC agreement, and also
considered the maximum MECs to assess conservatism. Furthermore, we
benchmarked the PEC-CKB models against the FOCUS models by
comparing Pearson correlation coefficients and examining the influence
of input parameters on the results.

3. Results

First, we focused on the overall model performance of the three
FOCUS models and the PEC-CKB model by MEC-PEC comparisons. Next,
we directly compared the PEC-CKB predictions to the FOCUS models in
order to group the PEC-CKB into the tiered system of exposure models in
ERA. Finally, we adapted the PEC-CKB assumptions based on landscape-
specific information and assessed the impact on MEC-PEC agreements.

3.1. Evaluation of the model performance

3.1.1. PEC-CKB predictions range between FOCUS Step 2 and Step 3

Predictions of environmental concentrations for 36 substances
deviated considerably from 90th percentile MECs for all four tested
models. The PEC-CKB performed better than the FOCUS Step 1 and Step
2, while the more complex FOCUS Step 3 showed the best MEC-PEC
agreement with the lowest bias and RMSE, but also revealed one un-
derestimation (see Table 1, Fig. 1). The positive bias across all cases
indicates that the models systematically overestimate the measured
concentrations (Table 1).

Overestimation was most pronounced for low MECs, whereas the
MEC-PEC agreement improved as MEC values increased (Fig. 1 and SI,
Fig. E.1). The distribution of ratios between average PECs and 90th
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percentile MECs for the four models confirms this pattern (Fig. 2). The
median ratio decreases progressively from Step 1 to Step 3. For PEC-
CKB, the median ratio ranges between FOCUS Step 2 and 3, while the
variability of ratios is lower than the ratios of FOCUS Step 3 (Fig. 2 and
SI, Fig. E.1).

Based on the bias and RMSE reductions achieved with each subse-
quent FOCUS step and with PEC-CKB in between Step 2 and Step 3, we
conclude that MEC-PEC agreement improves in the tiered ERA. How-
ever, the correlation coefficients and corresponding R? values contradict
this order. PEC-CKB showed the highest correlation (r = 0.31, p = 0.07)
compared with the FOCUS models (Step 1: r = 0.27; Step 2: r = 0.22;
Step 3: r = 0.16). Still, none of these correlations were statistically sig-
nificant (Table 2). This changes when comparing maximum MECs with
average PECs. Here, R values increase, indicating a better explanation
of maximum MECs by PECs (see Table 2).

3.1.2. Only FOCUS Step 3 reveals underestimations of 90th percentile
MECs

For both FOCUS Step 1 and Step 2, all average PECs, as well as each
individual PEC (derived from different application rates), exceed the
corresponding 90th percentile MECs (Fig. 1). In FOCUS Step 1, the PECs
exceed MECs by more than two orders of magnitude, so none of the
results entered the ‘Safety margin 10’ group (Table 1). FOCUS Step 2 and
PEC-CKB values also exceed the 90th percentile MECs for all 36 sub-
stances, and the MEC-PEC tuples are distributed almost evenly across the
defined overestimation safety groups (Fig. 1, Table 1). By contrast,
FOCUS Step 3 shows a single underestimation for florasulam, and crop-
specific PECs underestimate MECs for two substances (dichlorprop-P
and florasulam) (Fig. 1). When the three FOCUS surface-water scenarios
are examined separately, up to five underestimations become apparent
(Table 1 and SI, Table E.1).

To examine the conservative character for particularly high con-
centrations, we also compared the maximum MECs to the maximum
PECs (SI, Table E.1). Taking this view, only the FOCUS Step 1 model
results consistently exceed MECs, while Step 2 underestimates four of 36
maximum MEC values and Step 3 underestimates six MEC values. The
PEC-CKB results underestimate the maximum MECs for only three of the
36 substances (SI, Table E.1).

Similar results were obtained when we considered only grab samples
for MEC-PEC comparisons. The 90th percentile MECs decrease slightly,
which modestly worsens the agreement between MECs and PECs.
FOCUS Step 3 also shows a single underestimation, but the drainage
scenarios show fewer underestimations compared to analyses with
event-driven samples (see SI, Table E.2).

3.1.3. PEC-CKB shows best overall model performance

Taking all results into account, the PEC-CKB model shows the best
overall performance among the prediction models. It aligns more closely
with measured concentrations than the lower-tier FOCUS models and
does not produce any underestimation of the 90th percentile MECs. Only
FOCUS Step 3 shows a single underestimation of the 90th percentile
MECs for 36 substances.

3.2. Comparing PEC-CKB predictions with FOCUS models

The previous results on model performance according to MECs show
that the results of PEC-CKB lie between those of FOCUS Step 2 and Step
3, but PEC-CKB results correlate strongest with FOCUS Step 1 values
while being at least one order of magnitude lower (Fig. 3). The high
correlation coefficient indicates a strong linear association between
PEC-CKB and FOCUS Step 1 (Fig. 3). This can be explained by both
models' similar equation structure, while the difference in magnitude is
due to the different parameterisation (see Section 2.1.3; SI, Section G).
The minimal reduction of the correlation coefficient is caused by the
additional crop-specific spray-drift input in FOCUS Step 1. The deviation
between PEC-CKB and FOCUS Step 1 of about one order of magnitude



Table 1

Quality measures of MEC-PEC comparisons. We calculated the bias and RMSE as quality measures for different models (and adaptations) and representative MEC values (90th percentiles and maximum). Substances that
over- or underestimate the MEC values by a certain amount (up to one, two or more orders of magnitude) are counted as a benchmark for MEC-PEC agreement and conservatism. Attention should be paid to different

substance numbers (n) included in this analysis.

model (and scenario) n PEC 90th percentile MEC Max. MEC
selection bias RMSE Under- Overestimations... bias RMSE Under- Overestimations...
fis;:;la_ up to one order of up to two orders of by more than two ;s;zla_ up to one order of up to two orders of by more than two
magnitude “Safety magnitude “Safety orders of magnitude “Safety magnitude “Safety orders of
margin 10” margin 100" magnitude margin 10” margin 100" magnitude
PEC-CKB standard f = 20% 36 average 1.6 178 0 10 (27.8%) 14 (38.9%) 12 (33.3%) 0.88 1.18 3(8.3%) 20 (55.6%) 10 (27.8%) 3 (8.3%)
FOCUS Step 1 36 average 252 263 0 0 10 (27.8%) 26 (72.2%) 1.79 196 0 7 (19.4%) 17 (47.2%) 12 (33.3%)
FOCUS Step 2 36 average 1.78 196 0 9 (25.0%) 12 (33.3%) 15 (41.7%) 1.06 1.35 4(11.1%) 16 (44.4%) 10 (27.8%) 6 (16.7%)
FOCUS Step 3 36 average 1.41 1.65 1(1.7%) 10 (27.8%) 15 (41.7%) 10 (27.8%) 0.68 1.12 7(19.4%) 15 (41.7%) 10 (28.6%) 4 (11.4%)
FOCUS Step 3 D3 35* max 1.34 1.69 5(14.3%) 9 (25.7%) 11 (31.4%) 10 (28.6%) 0.63 1.21 11 10 (28.6%) 10 (28.6%) 4 (11.4%)
(31.4%)
FOCUS Step 3 D4 35* max 1.28 1.65 5(14.3%) 10 (28.6%) 10 (28.6%) 10 (28.6%) 0.57 1.19 11 10 (28.6%) 12 (34.3%) 2 (5.7%)
(31.4%)
FOCUS Step 3 R1 36 max 1.54 1.78 0 12 (33.3%) 11 (30.6%) 13 (36.1%) 0.82 1.21 7(19.4%) 12(33.3%) 13 (36.1%) 4 (11.1%)
PEC-CKB standard f = 20% 59 average 1.47 1.66 1(1.7%) 17 (28.8%) 26 (44.1%) 15 (25.4%) 0.67 1.04 13 27 (45.8%) 16 (27.1%) 3 (5.1%)
(22.0%)
PEC-CKB average f = 4.4% 59  average 081 112 10 26 (44.1%) 17 (28.8%) 6 (10.2%) 0.01 0.80 32 19 (32.2.9%) 8 (13.6%) 0
(16.9%) (54.2%)
PEC-CKB crop-specific f 59 average 0.95 1.30 10 25 (42.4%) 14 (23.7%) 10 (16.9%) 0.15 094 25 25 (42.4%) 6 (10.2%) 3 (5.1%)
(16.9%) (42.4%)

" Imidacloprid has only been calculated for hops, and in FOCUS Step 3, scenarios D3 and D4 are not defined for hops.
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Fig. 1. Comparison of measured environmental concentrations (MECs) and predicted environmental concentrations (PECs) for the FOCUS Step 1, 2 and 3 models and
PEC-CKB for 36 pesticides. We compared average PEC values based on different crop-specific application rates and scenarios (see chapter 2.1 and 2.2) with the 90th
percentiles of the monitoring data. The FOCUS model calculations were adapted to German environmental conditions and Step 3 was only calculated for the R1, D3
and D4 stream scenarios (more information on the scenarios can be found in chapter 2.1.1). The range of PEC values is shown by the coloured vertical lines
(minimum to maximum PEC), and the MEC values are shown by a solid, horizontal line for the 10th to 90th percentile and by a dashed line for the 90th percentile to
the maximum measured concentration. The safety margins represent overestimation of a factor of 10 and 100, respectively.

can be mainly explained by the factor that summarises all transport
processes (M in Eq. (1); see also Section 2.1.3).

3.3. Refinement of PEC-CKB parameters and impact on prediction quality

A comparison of the original PEC-CKB model predictions based on
Eq. (3) with German monitoring data (Liess et al., 2021b) shows a wide
range of PEC values (Fig. 4) driven by varying crop-specific application
rates. Considering 59 substances, only isopyrazam is underestimated,
but this is one of the substances with less than ten concentration mea-
surements above LOQ, implying that the 90th percentile value may be
less reliable (Fig. 4a; SI, Table A.1). The majority of substances exceed
MECs by factors between one and two orders of magnitude (Table 1).

As model parameterisation mainly relies on former analyses based on
Swedish monitoring data, we aim to account for the differences between
the German and Swedish monitoring catchments (see also SI, Section A)
and possibly improve PEC-CKB predictions. For this, we refined the
model parameters with a GIS analysis of landscape data (see Section
2.3). The results indicate a lower degree of agricultural land use than in
the Swedish study, supporting a lower f-value than 20% (see SI,
Table H.1). Averaging all crop-specific f-values yields an average crop
cover of 4.4%, approximately one-fourth of the treatment proportion of
20% proposed by the FOCUS surface water working group and set in the
original PEC-CKB definition. Using the refined f-value in the PEC-CKB
model improved MEC-PEC agreement (bias: 0.81, RMSE: 1.12)
(Table 1), while maintaining similar variability in PECs, visible as a
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Fig. 2. Distribution of residuals from the three FOCUS models Step 1-3 and
PEC-CKB, illustrating the range and central tendency of prediction errors (dif-
ferences between PEC and MEC values). Boxplots show the median (line within
the box), interquartile range (box boundaries) and 10th and 90th percen-
tiles (whiskers).

Table 2

Linear correlation analysis results and coefficients of determination R2 R? is
determined by squaring the correlation coefficient r. We used Pearson correla-
tion coefficients, accounting for significance. The null hypothesis of no linear
correlation is rejected if p < 0.05. We differentiated between comparing 90th
percentile MECs and maximum MECs to average PECs.

model 90th percentile MEC maximum MEC
Pearson’sr  p- R? Pearson’sr  p- R?
value value

PEC-CKB 0.31 0.07* 0.096  0.44 0.01 0.194

FOCUS Step 0.27 0.11* 0.073  0.42 0.01 0.176
1

FOCUS Step 0.22 0.20* 0.048 0.34 0.04 0.116
2

FOCUS Step 0.16 0.36* 0.026  0.27 0.11* 0.073
3

" No statistically significant correlation.

“shift down” of PEC-CKB predictions (Fig. 4b). Of course, using such an
overall average f-value is a simplification of the reality of land use in
Germany, and the high standard deviation and coefficient of variation
(200%) of this f-value relative to the mean value represent the wide
range of different crop-specific f-values. In the refined PEC-CKB calcu-
lations, we have ten underestimations when compared with 90th
percentile MECs and 32 underestimations when compared with the
maximum MECs. In the latter, maximum MECs were underestimated by
up to two orders of magnitude.

To fully exploit the GIS analyses, we also investigated the influence
of using crop-specific f-values (SI, Table H.1) in combination with crop-
specific application rates on PEC-CKB model predictions (Eq. (4)). Using
such crop-specific f-values resulted in increased variability of PECs,
which spanned one to two orders of magnitude (Fig. 4c). The agreement
between PECs and MECs improved in comparison to the standard
assumption off = 0.2 for all substances and crops, but got worse
compared with the use of the average f-value of 4.4% (Table 1). The
90th percentile MECs for ten substances and the maximum MECs for 25
of the 59 substances were underestimated by the average PEC-CKB
predictions with crop-specific f-values, yielding similar results to those
obtained with the average f-value of 4.4%.

We also tested whether basic physico-chemical substance properties
could explain the agreement of PEC-CKB predictions with monitoring
data. Former analyses of the MACRO model showed that the distribution
coefficient between water and organic carbon (K,.) and the degradation
rate (DTso) of the substance in soil can strongly impact the model results
(Dubus and Brown, 2002). The PEC-CKB model directly incorporates
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Koc, but does not include the degradation rate. Generally, larger de-
viations between MECs and PECs occur with smaller K,. and DTsg. The
model performs better for persistent substances while substances with
fast degradation rates exhibit larger discrepancies (see SI, Figs. C.1-C.4),
highlighting the importance of temporal resolution in the models.
However, detecting substances with small DTsg values in water samples
is more difficult, because the application periods are often unknown.

4. Discussion

The preceding analyses depend on model assumptions and decisions
made during the evaluation process. Nevertheless, some general con-
clusions can be drawn from the results for a prospective ERA. In the
following, we discuss several methodological uncertainties and chal-
lenges in model evaluation and outline potential implications for a
future ERA. In doing so, we will also take a closer look at the position of
the PEC-CKB model in comparison to the established FOCUS models.

4.1. Challenges in model evaluation

Assessing model performance is particularly challenging under
highly variable environmental conditions. In addition to selecting suit-
able monitoring data, information on the emissions and model as-
sumptions plays a decisive role in the final assessment. Furthermore, we
discuss model extensions and national requirements that were not
considered for this study.

4.1.1. Handling of monitoring data

4.1.1.1. Monitoring can only deliver a snapshot of reality. Monitoring
campaigns provide only a snapshot of the actual environmental situation
(la Cecilia et al., 2021), and MECs can vary strongly (Fig. 1, range be-
tween 10th percentile and maximum MEC). Model evaluation requires
the aggregation of MEC values into single statistical descriptors, which
simplify the variability and describe only one point in time and space
across all measurements.

In this study, we focus on using 90th percentile MECs for model
evaluation because they represent high measured concentrations
without focusing on extreme values. Using the 90th percentile provides
greater robustness against statistical outliers, but it also ignores up to
10% of measured values during evaluation. While higher percentiles
would generally be preferable, they were not suitable in this context due
to, in parts, too small sample sizes (SI, Table A.1).

4.1.1.2. Sampling type does not strongly influence the results. The deci-
sion to consider only MECs from event-driven samples to capture
potentially higher concentrations could have influenced the analyses,
since rain events are known to transport PPPs to adjacent surface waters
via runoff. Depending on factors such as the amount and intensity of
rainfall, the size of the water body and the sorption behaviour (Kqc), the
PPP concentration in samples can be correspondingly higher or lower
due to dilution. Nevertheless, similar analyses on grab samples revealed
only minor differences and confirmed the conservative character of all
models, with a few exceptions in FOCUS Step 3 (see SI, Section E-b).

4.1.1.3. Limited measurability of concentrations influences results. We
only considered measured concentrations above the LOQ. Due to the
lack of application data, we assume that very low concentrations below
LOQ are not attributable to an application during the monitoring period.
Including non-detections and values below the LOQ resulted in lower
90th percentiles MECs, increased overestimations and thus worse
agreement with monitoring data, but without underestimations (see
additional analyses in SI, Section F). This latter approach can also be
criticised, as 1) non-detections may simply originate from non-
application of a PPP and 2) values < LOQ are highly uncertain.
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Fig. 3. Comparison of PEC-CKB to FOCUS model calculations based on the model results from previous analyses. We compared average PEC values based on different
application doses and scenario calculations (FOCUS). Correlation analysis (Pearson correlation coefficient r) shows the highest value for FOCUS Step 1, but visual
representation indicates that Step 2 matches PEC-CKB calculations best, as it is closer to the 1:1 line.

4.1.1.4. Extreme conditions could influence maximum MECs. Using the
maximum MECs helps avoid underestimation, but they can be skewed
by extreme climatic and geographical conditions or PPP misuse
(Kreuger, 1998; Schriever et al., 2025; Wittmer et al., 2010). Situations
that are not accounted for in the authorisation process (e.g. cleaning of
PPP application machinery, incorrect PPP application, extreme hydro-
logical conditions) can strongly affect MEC-PEC comparisons, calling
into question the use of maximum MECs as a benchmark for model
evaluation (Schriever et al., 2025). Nevertheless, it is unlikely that high
MECs are mainly driven by malpractices or urban sources (Schriever
et al., 2025; Wittmer et al., 2010), because that would require wide-
spread farmer misuse. Multiple fields in the catchment, the repeated use
of the same active ingredient across several products and crops, as well
as spray series, can also raise MEC values. For this reason, we further
assessed conservatism by examining maximum MECs and found that in
this case, only FOCUS Step 1 showed no underestimations (see Section
3.1; SI, Table E.1).

4.1.2. Model assumptions and their impact on the results

Models are based on assumptions that simplify reality. The selection
of assumptions significantly influences the results and needs to be re-
ported transparently in the context of ERA.

4.1.2.1. Generic application data. The lack of specific application data
led us to use generic German application rates and assume single ap-
plications in our study. We have no information about the representa-
tiveness of this data for our catchments from the monitoring study. By
averaging the application data in the PAPA database, we could generate
application rates for crop-specific single applications. From Tier 2

onwards, multiple applications play an important role, and degradation
becomes more relevant. Especially for substances with high DTs( values
relative to the period between two applications, multiple applications
may result in higher PECs, because concentrations from previous ap-
plications persist.

4.1.2.2. Scenario selection. Selecting scenarios from a retrospective
perspective for a prospective ERA introduces limitations. By selecting
some and omitting other scenarios in the PEC calculation, we accept that
we only incompletely represent the distribution of real conditions. The
quality of the FOCUS model predictions could have been improved by
using more specific and appropriate scenarios.

However, this study aimed to link the retrospective and prospective
ERA perspectives, so that we selected application regions, time periods,
and pre-defined drainage and runoff scenarios that match the moni-
toring data best from a theoretical point of view. Although the event-
driven measurements in the KgM study have been attributed to runoff
by the authors, input via drainage may also have influenced the mea-
surements (see 2.4 and 3.1). The results confirm that models cannot
generate accurate predictions if the best-matching environmental sce-
narios at the corresponding sites are not known.

4.1.2.3. Incorporation of landscape-specific information. One step to-
wards better-matching environmental scenarios is the consideration of
the crop distribution in the different monitoring catchments. Using
landscape information in our analyses has improved model perfor-
mance. The model predictions were more consistent with the measured
concentrations when crop-specific f-values were utilised, particularly
the reduced, aggregated f-value of 4.4%. But averaging f-values from the
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Fig. 4. Comparison of MECs from a comprehensive pesticide monitoring in small German streams (Liess et al., 2021b) (represented by lines from 10th to 90th
percentiles as well as median and maximum) with PECs resulting from the PEC-CKB. The 90th percentile of MECs are marked with red dots. Figure a) represents the
PEC calculations using the crop-specific average application doses in combination with the standard f-value of 0.2. Figure b) and c) represent PEC calculation using
crop-specific average f-values based on a GIS analysis. Figure b) shows PEC values calculated with an average crop-specific f-value of 0.044 and Figure c) shows the
use of individual crop-specific f-values. MEC data is plotted against the average PEC value, whereas the range of different PEC values due to different input pa-
rameters (D and f) is represented by vertical lines. 59 substances are included in this analysis. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

GIS analysis introduces bias, particularly for crops with uneven distri-
bution. While some crops, such as grassland, winter cereals or oilseed
rape, are consistently present, others, such as vines, sunflowers or or-
chards, vary significantly between catchments. This variability, indi-
cated by high coefficients of variation (SI, Table H.1), shows that an
average f-value does not accurately reflect conditions in regions where
these crops dominate, nor regions where they are absent (e.g. wine re-
gions in Germany). Also, monocultures cannot be meaningfully
described using averaged treatment proportions. Nevertheless, the re-
sults of the analyses are helpful for testing the standard assumption of a
treated area of 20% (FOCUS, 2001). This value is indeed nearly a worst-
case assumption; only winter cereals resulted in an average proportion
of more than 20% of the catchments in our analyses, while all other
crops ranged below 10%.

4.1.3. Dismissed model extensions

4.1.3.1. FOCUS repair scenarios. In the last few years, efforts have been
made to revise the FOCUS scenarios, resulting in the so-called ‘FOCUS
repair’ scenarios, with prolonged time periods and adapted application
dates based on corresponding weather data (EFSA, 2020). Here, a
moving 3-day average air temperature represents the daily water tem-
perature. Crop interception values based on the actual developmental
state allow a better comparison of model predictions to other exposure
models. The FOCUS repair actions will most likely result in similar PECs
with reduced variability. In particular, the annual maximum PECs are
expected to fall within the range of previous results (EFSA, 2020). We do
not expect major changes when using the ‘repaired’ scenarios, but their
use might positively influence overall model performance. For future
analyses, the revised FOCUS version should be utilised.

4.1.3.2. Potential mitigation strategies. In addition, some of the analysed
substances will require mitigation strategies such as drift-reducing
technologies, e.g. nozzles and runoff buffers, which are not relevant in
FOCUS Steps 1 to 3 simulations or the PEC-CKB model. In general, the

consideration of mitigation strategies for PEC calculations, for example
by using FOCUS Step 4, would decrease PECs and consequently most
likely lead to worse MEC-PEC-agreement.

4.1.3.3. National registration requirements. Further on, we ignored in
our analyses that national registration procedures might be based on
other models, for example, the models EXPOSIT 3.02 and EVA3 are used
in Germany. Nevertheless, models used in national registration pro-
cesses could be evaluated in a similar manner. For the German surface
water PEC model EXPOSIT, predictions showed a tendency to underes-
timate MEC values (Liess et al., 2021a; Weisner, 2022, p. 215).

4.2. The tiered model approaches

Using a tiered approach in ERA intends to stay with simple, but safe
assessments for uncritical chemicals, and to increase complexity and
computational effort step-by-step in higher tiers. However, previous
studies have indicated that models at higher tiers are not necessarily
more precise and can lead to underestimations. The latter is particularly
concerning in ERA and requires a closer examination.

4.2.1. Comparing results to previous analyses

In general, comparing PECs with the 90th percentile MECs is
consistent with the FOCUS philosophy. Our study confirms that PECs are
generally higher than the 90th percentile MECs that the FOCUS models
should represent. Comparing these findings with those from the studies
by Knabel et al. (2012, 2014), we can confirm, based on our MEC-PEC
comparisons, that Steps 1 and 2 produce conservative model results.
Our analyses also show two underestimations of 90th percentile MECs in
Step 3 when considering different crop-specific PECs. However, the
FOCUS Step 3 model performs clearly better in our comparisons con-
cerning the overall model performance (based on MEC/PEC ratios) and
the number of underestimations. One possible reason is that Knabel and
colleagues included fewer substances in their comparisons but consid-
ered more studies and, therefore, more individual MEC values (2012: 17
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substances, 77 MECs and 2014: 38 substances, 417 MECs). The MECs
from the German KgM study (Liess et al., 2021b) suggest a high degree of
applicability for FOCUS models and scenarios designed for EU countries.
In contrast, Knabel and colleagues included data from multiple inter-
national studies, which increases variability due to differing measure-
ment methods, different PPP usages or agricultural practices. While
FOCUS scenarios partially accounted for environmental variability,
another main difference is that Knabel and colleagues compared MECs
directly to PECs, whereas we compared statistical MEC values with
corresponding PEC values.

4.2.2. Targets of tiered ERA only partially achieved

The estimation of PECs for regulatory ERA in the EU is performed in a
tiered system, with increasing complexity and the ambition to deliver
more accurate predictions at higher tiers. Our findings align with the
original conservative design of FOCUS, as Step 1 yields worst-case es-
timates (FOCUS, 2001), while FOCUS Step 2 produces less conservative,
more realistic PECs and shows no underestimation of 90th percentile
MECs. FOCUS Step 3 is considered a realistic worst-case model, as it was
developed to account for local conditions more specifically and includes
a number of scenarios that should represent environmental conditions
for one-third of the total area of the EU (FOCUS, 2001). However, our
analysis of the KgM dataset does not consistently show worst-case
estimates.

Generally, regulatory exposure models aim to predict exposure in
generic scenarios rather than specific site conditions. Also, FOCUS Step 3
was not designed for MEC-PEC comparisons on a regional scale, as it was
done in this study (Bach et al., 2016), and part of the deviation of model
predictions and MECs may arise from a mismatch between environ-
mental site conditions and their representation in the scenarios.

Model refinement in higher tiers follows the scientific ambition to be
more accurate on average, meaning that over- and underestimations
equalise. This can be in direct conflict with the regulatory aim of always
producing conservative predictions, so that PPPs can be released to the
market in a safe and cost-effective way, while allowing for under-
standing the model results (Enquist et al., 2024). Ideally, from a regu-
latory perspective, PEC models should generate values higher than
MECs with only small deviations from them. This could be reached, for
example, by applying safety factors to scientifically accurate models.

4.3. Complexity of models: PEC-CKB instead of FOCUS models?

One of the principal challenges of regulatory ERA for pesticides and
other chemicals is the development of exposure prediction models that
deliver realistic but conservative predictions of pesticide concentrations
at the same time, ideally at low to moderate model and scenario
complexity. The complexity of the model calculations and the related
scenarios is also relevant because the capacity for model evaluation is
often constrained for practical work in environmental authorities.
Complex models tend to cause high efforts in maintenance and evalua-
tion and are not useful from a regulatory perspective because they entail
the risk of overfitting singular environmental situations but lack gen-
erality. The complexity of models need to be assessed conserving the
principle of parsimony, a basic concept that is also often used in
ecological studies (Coelho et al., 2019), and that considers simpler
models being preferable when having an incomplete understanding of
complex processes, to avoid a false impression of risk understanding and
growing modelling effort (Etterson, 2022; Hill et al., 2000).

The PEC-CKB is a simple PEC modelling approach that performs
better than FOCUS Step 2 while being less complex than FOCUS Step 1,
as transport processes are summarised in a single generic factor
(Sections 3.1 and 3.2). FOCUS Step 3 shows slightly better agreement
between PEC and MEC values, but more underestimations. Compared to
FOCUS Step 3, the PEC-CKB is much simpler, consisting of a single
formula rather than a set of differential equations, and the difference in
the required input is even more evident. Here, the FOCUS Step 3 model
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requires input from several complex models, such as PRZM and MACRO,
and considers 10 scenarios. In contrast, PEC-CKB has a smaller param-
eter set, and we improved its performance in our study by incorporating
landscape information.

However, we cannot exclude that the agreement between PEC-CKB
predictions and MECs is good for the wrong reason. Parameter as-
sumptions for PEC-CKB are based on Swedish monitoring data (Bostrom
et al., 2019) but do not represent environmental conditions in the KgM
study. The runoff is defined as a dilution in a water column with a height
of 4 mm (see Eq. (1)). This would mean that almost no rain falls during
the monitoring period. The KgM event-driven data was collected at a
water-level rise of 5 cm, corresponding to a deviating dilution factor of
12.5.

Nevertheless, it is difficult to sort PEC-CKB into the tiers of the
FOCUS models: The similarity of the model with FOCUS Step 1 and the
high correlation would support considering PEC-CKB as a Tier 1 method,
but concerning the absolute PEC values, PEC-CKB would range between
Tier 2 and 3 (see Sections 3.1 and 3.2).

In the context of the regulatory risk assessment system, the results of
the PEC-CKB model lack information that is provided by the FOCUS
surface water models, most importantly, predictions of sediment con-
centrations and temporal profiles. The PEC-CKB model produces only
point estimates after one week, whereas it should be easy to adapt PEC-
CKB by incorporating time-dependency, since the equation is very
similar to the time-explicit FOCUS Step 1 (FOCUS, 2001; SI, Section G).
Having time-explicit PECs is very relevant, for example, in the context of
mixture toxicity assessment, which is not yet part of regulatory ERA, but
that is often discussed to improve ERA realism. Furthermore, the dose
addition used in PEC-CKB appears similar to FOCUS Step 1. However, it
does not reflect the reality of multiple exposures to the same substance
over time, where transport and loss processes may occur between ap-
plications (Reinert et al., 2002). The model also does not capture spatial
and temporal exposure patterns or the complexity of agricultural land-
scapes, which could offer options to combine risk assessment with risk
management in a future ERA (Focks et al., 2014). Taking all this into
account when considering PEC-CKB as an alternative to the currently
used FOCUS models, it appears to be a viable option only for isolated use
in predicting point estimates of surface water concentrations.

5. Conclusions

The use of predictive models in connection with regulatory risk
assessment requires that the models meet three criteria, which are very
difficult to fulfil simultaneously: realism, conservatism, and low effort.
In our analyses of the FOCUS models, we found a general trade-off be-
tween realism and conservatism that is closely linked to the modelling
effort. At low modelling efforts, low accuracy is tolerated as long as the
predictions remain conservative. The principle in the tiered regulatory
approach that lower tiers show higher conservatism was confirmed by
our analyses. While increasing model complexity generally enhanced
model accuracy, it also increased the risk of underestimating MECs. In
fact, the agreement between model predictions and measured values
improved at higher MEC values, but this was accompanied by an
increased risk of underestimation, which is particularly important for
risk assessment purposes.

Given our findings of trade-offs between realism and conservatism,
risk assessors should be clear about their main priorities: Is it most
important to estimate realistic or conservative estimates of MECs? Are
low modelling efforts more important than accuracy and realism?

In that context, the PEC-CKB model achieved good performance
through appropriate assumptions despite its simple structure and sce-
nario. We could show that incorporating more precise land-use infor-
mation improved the agreement between PEC-CKB results and MECs,
but at the same time led to more underestimations, again indicating a
trade-off. Overall, the study highlights several strengths of the PEC-CKB
model that could be refined further and made country- or even site-
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specific, and appeared as the best-balanced considering all three cate-
gories. Nevertheless, the PEC-CKB would not allow for the analysis of co-
occurrences of concentration peaks of different substances, and there-
fore would not be suitable for risk assessments that consider chemical
mixtures (Brock, 2013; Posthuma et al., 2019).

In general, knowledge of crop-specific application rates and infor-
mation on catchment crop composition appears more beneficial for
improving model predictions than increasing the complexity of process
descriptions. We conclude that better knowledge of actual PPP appli-
cations and improved access to high-resolution data on agricultural
practices could help to close the gap between prospective and retro-
spective exposure assessment in ERA for PPPs and improve the under-
standing of variabilities in MEC values.

Future work should focus on essential process descriptions without
getting lost in details, emphasising robust parameters such as agronomic
PPP application, physico-chemical properties and spatio-temporal
exposure patterns.
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