
Full length article

Confronting pesticide exposure predictions from different models to 
observations from a monitoring study in small freshwater streams 
in Germany☆

Paula Scharlach a , Gustaf Boström b,c, Jörg Klasmeier a , Amelie Leonardi a,  
Andreas Focks a,*

a Institute of Mathematics and Institute of Environmental Systems Research, Osnabrück University, Barbarastraße 12, 49076 Osnabrück, Germany
b Department of Aquatic Sciences and Assessment, Division of Environmental Organic Chemistry and Ecotoxicology, Swedish University of Agricultural Sciences, P.O. Box 
7050, SE-750-07 Uppsala, Sweden
c SLU Centre for Pesticides in the Environment, Swedish University of Agricultural Sciences, P.O. Box 7066, SE-750 07 Uppsala, Sweden

A R T I C L E  I N F O

Keywords:
Pesticides
Fate models
Exposure
Environmental risk assessment
Surface water
Model evaluation

A B S T R A C T

Plant protection products are integral to European agriculture but can cause unwanted environmental impacts. 
Before authorisation, predicted concentrations in environmental compartments are compared with effect 
thresholds in a regulatory risk assessment. This study evaluates the agreement between predicted and measured 
concentrations for the established FOCUS surface water models (Steps 1–3) and the recently published PEC-CKB 
model. Model results were compared with monitoring data from lowland streams in Germany, and particular 
attention was paid to the models’ conservatism. The conservative character of FOCUS Step 1 can be confirmed, 
but underestimations were observed for FOCUS Step 2 and 3 models. PEC-CKB results are similar to those of the 
higher-tier FOCUS models, while having lower model complexity and requiring less input data. Using real 
application rates and landscape information generally improved model predictions by nearly halving the bias, 
but led to increased underestimations of measured concentrations. Linking prospective and retrospective envi
ronmental risk assessment (ERA) by incorporating real data can make prospective ERA more realistic and 
identify opportunities for simplification. Finally, we discuss the challenges in evaluating prediction models for 
pesticide concentrations in surface waters, particularly with regard to the environmental variability of measured 
concentrations.

1. Introduction

The use of plant protection products (PPPs) is integral to European 
agriculture (Alix and Capri, 2018) and contributes to food security by 
preventing pest-related crop losses (Carvalho, 2006; Tudi et al., 2021). 
However, PPP application in agricultural areas is associated with their 
transport into adjacent ecosystems such as surface water bodies via 
spray drift, drainage or runoff (Boye et al., 2012; de Souza et al., 2020; 
Schwarzenbach et al., 2006; Reichenberger et al., 2007). There, they 
may affect aquatic organisms, such as invertebrates or fish, and in turn 
threaten biodiversity and the ecological integrity of ecosystems (de 
Souza et al., 2020; Liess et al., 2021a; Schäfer et al., 2011; Stehle and 
Schulz, 2015a). For market authorisation, environmental risks of PPPs 

are subject to a prospective regulatory assessment, where pesticides are 
evaluated concerning their potential for environmental exposure and 
effects. Due to the lack of field data, exposure models with various levels 
of complexity that predict the occurrence and magnitude of pesticides in 
ecosystems have developed into an essential element within the Euro
pean regulatory environmental risk assessment (ERA) (Di Guardo et al., 
2018; MacLeod et al., 2010, FOCUS, 2001; Centanni et al., 2023; Fox 
et al., 2021). The ERA relies on the comparison of model-based estimates 
to effect thresholds (Forbes et al., 2009; Rico et al., 2021; Schmolke 
et al., 2010) and follows a tiered approach, starting from conservative 
and simple estimations and advancing to more realistic and complex 
approaches in higher tiers (FOCUS, 2001). The FOrum for the Co- 
ordination of pesticide fate models and their Use (FOCUS) agreed some 
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decades ago upon different models and scenarios for predicting pesticide 
concentrations in surface waters (FOCUS, 2001). FOCUS surface water 
Step 1 uses basic assumptions to estimate extreme worst-case pesticide 
loadings. FOCUS surface water Step 2 refines transport processes, 
including degradation and differentiation by region, application season, 
and cultivated crop. FOCUS surface water Step 3 and Step 4 use a time- 
dynamic differential equations-based model and consider ten realistic 
worst-case scenarios representing European agricultural areas (FOCUS, 
2001). If a PPP fails the risk assessment at lower tiers, it may be 
authorised if acceptable risk ratios are reached at higher tiers.

Several studies have claimed that the actual regulatory ERA does not 
protect the aquatic environment (Knäbel et al., 2012, 2014; Fulda et al., 
2015; Stehle and Schulz, 2015b) because measured environmental 
concentrations (MECs) of PPPs exceed exposure predictions of the 
FOUCS models. Such underestimations of MECs challenge the use of 
exposure models and the effectiveness of a protective ERA for pesticides 
(Knäbel et al., 2012, 2014).

Recently, a new model for predicting environmental pesticide con
centrations in surface waters, called PEC-CKB, has been introduced 
(Boström et al., 2019). It relies on a single equation and omits scenario 
assumptions, which simplifies its application compared to FOCUS 
models (Boström et al., 2019). PEC-CKB predictions matched observa
tions from Swedish monitoring data similarly well as complex FOCUS 
Step 3 predictions (Boström et al., 2019). It remains open whether this 
performance applies to other European regions with different climate 
and topography.

The desired status of models for predicting environmental pesticide 
concentrations in a regulatory context is to avoid underestimation 
without overestimating too much. Models should account for the pri
mary drivers of exposure, and complexity should be kept to a minimum, 
adhering to the principle of parsimony. In this sense, alternative 
methods with varying degrees of complexity for use in prospective ERA 
can benefit from comparisons with monitoring data, while addressing 
aspects such as accuracy, protectiveness, realism, complexity, and 
relevance of the methods (Axelman et al., 2024).

In this study, we evaluated FOCUS surface water models for tiers 1 to 
3, and the PEC-CKB model for 36 PPPs against MECs from an event- 
driven pesticide monitoring in small German streams (Liess et al., 
2021b). We focus on event-driven samples because they represent high 
but realistic entries (Halbach et al., 2021). Special attention was paid to 
the agreement between MECs and model predictions and the number of 
underestimations. In addition, we conducted supplementary analyses 
restricted to grab water samples, which reflect the approach of most 
governmental monitoring. Furthermore, we investigated how the simple 
PEC-CKB model relates to the established tiered exposure assessment 
methods. We also assessed the impact of landscape-specific information, 
in particular the quality of application data, on the comparisons with 
MECs using the PEC-CKB model for an extended set of 59 active sub
stances. Finally, we discuss the relationship between model performance 
and complexity in regulatory risk assessment, as well as the possible 
consequences for an improved European ERA.

2. Materials and methods

Predicted environmental concentrations (PECs) were calculated 
using the FOCUS surface water Step 1, 2, and 3 models and the PEC-CKB 
model (Section 2.1) with realistic application rates for Germany 
extracted from the PAPA database (Section 2.2). The 90th percentile 
MECs from a German monitoring study (Section 2.4) were compared to 
PECs per substance for each model (Section 2.5). In addition, PEC-CKB 
values were calculated considering crop-specific application data and 
refined assumptions about the treated area in the catchments based on 
landscape analyses (Section 2.3).

2.1. Calculating PEC values with different models

2.1.1. Performing FOCUS calculations
European ERA follows a tiered model approach, with simplifying and 

conservative assumptions in the lowest tier and increasing realism and 
complexity for every higher tier. In the FOCUS surface water models, 
Step 1 results in ‘worst-case’ water and sediment concentrations based 
on summarised transport processes and crop-specific spray-drift rates. 
Step 2 refines the model predictions by considering a series of individual 
loads, discharge events occurring four days after the last application and 
simple degradation mechanisms (FOCUS, 2001). Both steps align with 
the Tier 1 and Tier 2 risk assessment guidelines outlined in Council 
Directive 91/414/ECC, now superseded by Regulation (EC) No. 1107/ 
2009. We performed model calculations with the Steps-1–2 model 
(version 3.2) (FOCUS, 2001). Here, we selected the Northern Europe 
scenario and the application season from March to May for all Step 1 and 
2 calculations because this period appeared most suitable for the rele
vant monitoring period (see SI, Section D).

The third Tier of FOCUS surface water modelling comprises a dy
namic model with ordinary differential equations. It can be seen as a ‘[d] 
eterministic estimate of aquatic exposure across [the defined] scenarios’ 
(FOCUS, 2001, p. 17, Fig. 1.3-1) and is supposed to deliver ‘realistic 
worst-case’ concentrations. The inclusion of ten scenarios for Europe 
aims to represent different European environmental conditions and to 
yield at least the 90th percentile of the highest pesticide loads in the EU 
(FOCUS, 2001). Additional mechanistic models are employed to facili
tate more realistic predictions for pesticide input to surface waters via 
drainage, surface runoff and spray drift. We performed model calcula
tions for FOCUS Step 3 with the software shell SWASH 5.3, which 
included TOXSWA 5.5.3, PRZM 4.3.1, and MACRO 5.5.4. Because MECs 
were derived from streams in Germany, we selected three of the ten 
FOCUS surface water scenarios as the most representative for Germany: 
two drainage scenarios (D3 and D4) and one run-off scenario (R1). The 
selection was made based on comparisons with environmental condi
tions in Germany and after consultation with FOCUS surface water 
model developers. Although the monitoring study does not provide 
precise information on the contribution of drainage at the different 
monitoring sites, we included D3 and D4 to cover drainage and run-off. 
Both fast transport mechanisms can be important depending on local 
conditions in the catchments (Leu et al., 2004). If defined for the cor
responding crops, PECs were calculated for all three scenarios, but we 
excluded pond scenarios because monitoring data was available only for 
small and medium-sized streams. FOCUS Step 4 can be performed with 
the same software and additionally includes mitigation options, but will 
not be considered in the present study due to lacking data on mitigation 
strategies during monitoring. A more detailed comparison of the models 
can be found in SI, Table G.1.

2.1.2. PEC-CKB model and parameter assumptions
The PEC-CKB model consists of a single equation that estimates PECs 

for PPPs in surface water, briefly defined as (Boström et al., 2019): 

PECCKB = ( f/(Ns • q)) • D • M • Fw (1) 

PECs are obtained by multiplying the annual application rate D [mg/m2]

with a dilution factor, which is built by the proportion of the catchment 
area that is annually sprayed f [ − ] divided by the duration of the 
spraying period Ns [weeks] and the weekly runoff factor q [m/week ]. 
Transport processes are combined into a generic factor M [ − ], repre
senting the proportion of the applied dose that ends up in surface water 
via different pathways, such as drainage or runoff. To account for the 
specific sorption behaviour of the substance, the factor Fw [− ] calculates 
the fraction of the substance mass which partitions to water rather than 
sediment, assuming an adsorption equilibrium by 

Fw = Zw/(Zw + (Zs • γ•Koc•foc)) (2) 
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where Zw represents the water depth [m], Zs the thickness of adsorbing 
sediments [m], γ the bulk density [g/cm3], foc the organic carbon content 
[kg/kg] and Koc the substance-specific partitioning constant between 
organic carbon and water [L/kg]. Based on the FOCUS assumptions Zw =

0.3 m, Zs = 1cm, γ = 0.8 g/cm3 and foc = 0.05 kg/kg and further 
parameter assumptions f = 20%, Ns = 4 weeks, q = 0.001 m/week and 
M = 1 % from Boström et al., the PEC-CKB Eq. (1) can be simplified to 

PEC = 0.5 • D • Fw (3) 

PECs from this simplified model equation matched well with monitoring 
data from freshwater samplings in four small Swedish agricultural 
catchments (Boström et al., 2019). We used Eq. (3) for comparison with 
German monitoring data and refined calculations based on land-use 
analysis, specifically by using more realistic f-values.

2.1.3. Model comparisons and input parameters
FOCUS Step 1 and PEC-CKB models share a similar structure but 

differ in the parametrisation of transport and dilution. PEC-CKB uses a 
generic loss rate of 1%, while FOCUS Step 1 includes crop-specific spray 
drift rates (FOCUS, 2001) and a higher loss rate of 10% through runoff 
and drainage. This results in PECs from Step 1 being approximately one 
order of magnitude higher than those of PEC-CKB (for details see SI, 
Section G).

FOCUS Step 2 requires degradation and crop-specific data, while 
FOCUS Step 3 needs additional substance properties. This information 
was taken from the EFSA conclusions to follow the standard assumptions 
in the prospective ERA (input parameters are provided in SI, Section D). 
If the required information was not available from these reports, default 
parameters were used instead. A substance database that can be added 
directly to SWASH is attached to this study. Aggregated German appli
cation data from the PAPA database (see Section 2.2) was used for model 
calculations. Other settings were kept as the default.

2.1.4. Aggregation of PEC values
From all four models, crop-specific PEC values were calculated using 

crop-specific application rates and, in the case of FOCUS models, crop- 
specific transport parameters (especially spray drift). As the concentra
tions measured in the monitoring study cannot be assigned to individual, 
crop-specific applications, we calculated average PEC values for each 
substance by averaging all the crop-specific PEC values. This is because 
we aim to cover single PPP applications for different crops in Germany in 
order to compare the resulting PECs to monitoring data. We also 
extracted maximum and minimum PEC values for each substance to 
account for the extremes of crop-specific application rates and risk of 
PPP transport to surface waters. For Step 3, the combination of the 
selected scenarios with varying crop-specific application rates across 
substances yielded a set of PECs for each substance. To calculate the 
quality metrics, we used the maximum PEC values across the three 
scenarios D3, D4 and R1 for each crop-specific application rate, as 
common in regulatory ERA.

2.2. Application data

Application data from the monitoring study was not available at the 
time of our study, so application rates were derived from average 
German substance- and crop-specific application data from various 
example farms across the country. This average German application data 
is provided in the PAPA database (JKI, 2023; cf. Roßberg et al., 2017). 
Based on the EU pesticide review reports from the EU Pesticides Data
base (EU, 2023) and available application data, the crops were cat
egorised into different groups (see SI, Table B.1). We calculated average 
crop-specific application data (according to the defined groups) for each 
substance from the PAPA database for the years 2018 and 2019 and used 
them for the PEC calculations (see SI, Table B.2). The application sea
sons, e.g. BBCH codes, were taken from EFSA conclusions for the 

corresponding crop groups (see SI, Section D). We only used single ap
plications, as the aggregation of data from different farmers hampers to 
infer the number of applications.

2.3. Land-use analysis of catchments

PPPs are approved and applied to specific crops. Because the moni
toring catchments have different crop compositions, we used a 
geographic information system (GIS) analysis to estimate the percent
ages of each catchment area sprayed with pesticides. To derive such 
more realistic f-values, we determined the sizes of the different catch
ments based on a freely available watercourse network (DLM 250) 
(Bundesamt für Kartographie und Geodäsie, 2023). The catchment areas 
were intersected with land-use data provided by Blickensdörfer et al. 
(2021), and the agricultural crop cover of the defined crop groups (SI, 
Table B.1) was derived for each catchment (see detailed information in 
SI, Section H). Next, average proportions of land use across the different 
catchments were calculated by averaging all generated, individual f- 
values for each crop group. In a worst-case scenario, it is assumed that 
crops are treated with the same pesticide, but in general, the use of 
different PPPs is expected in one catchment, so average values provide a 
good approximation. The resulting f-values were used to calculate crop- 
specific PEC-CKB values, which now incorporate crop-specific applica
tion rates and f -values: 

PECCKB,crop = (fcrop/(Ns • q)) • Dcrop • M • Fw (4) 

We also calculated an additional overall average f-value by averaging all 
crop-specific f-values to adapt the simplified PEC-CKB equation (Eq. (3)) 
to German conditions, accounting for crop coverage within catchments.

2.4. German monitoring dataset (KgM)

We compared PECs with MECs from a lowland stream monitoring 
campaign (Kleingewässermonitoring, KgM) encompassing 124 different 
stream sections in Germany (Liess et al., 2021b). Samples were collected 
from April to July 2018 and 2019, through regular grab samples taken 
every three weeks, and event-driven samples, triggered by a water level 
rise of at least 5 cm (Liess et al., 2021a). We assume that substances 
detected in very low concentrations might not have been applied in the 
corresponding catchment in the monitoring period but might result from 
earlier applications, so we decided to exclude values below the limit of 
quantification (LOQ) from our analysis.

To assess the models’ ability to avoid underestimating high MECs, 
we selected event-driven concentration measurements for the model 
comparisons, as increased pesticide concentrations in streams after 
rainfall have been reported previously (Halbach et al., 2021). Pooling of 
data from both sampling methods was inappropriate because the dis
tribution of concentrations differed. We also performed the whole 
analysis with grab samples to check whether the sampling method or 
scenario definition influences the results (see SI, Table E.2). We used the 
90th percentile and maximum values above the LOQ to represent higher 
MECs.

Of the 75 detected active substances, we selected 36 for which we 
had all the required input parameters for the PEC calculations (see 
Section 2.1; SI, Section A). These substances have different degradation 
rates and Koc values (see SI, Fig. A.1), which ensures that our analyses 
include substances with different fate, accumulation and transport be
haviours in the environment. 23 additional substances from the KgM 
study were added for further comparisons with the PEC-CKB model.

2.5. Quality measures for comparison of MECs and PECs

We compared maximum and 90th percentile MECs to average PECs 
derived from the different models and crop-specific application rates for 
each substance to evaluate model performance with respect to over- and 
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underestimations. Good agreement between predicted and measured 
values is indicated by data points smoothing around the 1:1 line in a 
MEC-PEC plot and is quantitatively assessed by a small bias and root 
mean square error (RMSE). Bias reveals systematic over- or underesti
mation of MECs, while RMSE measures the overall model performance 
and the typical error magnitude. We also compare the PEC/MEC ratios, 
with values closer to 1 indicating better concordance between PECs and 
MECs, to better understand heteroscedasticity. If predictions are correct 
on average, typical quality measures such as bias or RMSE tend to be 
low, indicating good average agreement between PECs and MECs 
because overestimates and underestimates equalise. Additionally, the 
coefficient of determination R2, calculated from the Pearson correlation 
between PECs and MECs, is used to assess how well PECs explain MEC 
variability. Unlike RMSE, R2 does not require a 1:1 agreement, but a low 
R2 could indicate an inappropriate model approach (e.g. incomplete 
process descriptions) or inadequate input data.

However, from a risk assessment perspective, PECs should not be 
lower than MECs, particularly those exceeding effect thresholds. In 
consequence, relying solely on measures like bias, RMSE or similar is 
inappropriate for the assessment of model quality in isolation, and the 
number and magnitude of underestimations are also relevant. We 
evaluate the conservative character of the models by counting the un
derestimations of MECs by PECs. This evaluation is independent of any 
regulatory framework or protection goal, where effect values should be 
considered. We define four safety groups to identify models that avoid 
both underestimation and excessive conservatism: (1) underestimations 
– PEC is lower than MEC; (2) “safety margin 10” − PEC exceeds MEC by 
one order of magnitude; (3) “safety margin 100” − PEC exceeds MEC by 
one to two orders of magnitude and (4) all further overestimations. In 
this context, the heteroscedasticity and the model's capacity to explain 
variability in MECs also matter, so results from the ratio and correlation 
analyses can be considered here as well.

Model quality measures were calculated using the decadic logarithm 
of all concentration values to facilitate comparison to the calculations 
reported in Boström et al. (2019). To account for varying application 
rates, we assessed model performance using bias and RMSE with 
average, minimum and maximum PEC values. We focused on 90th 
percentile MECs and average PECs for MEC-PEC agreement, and also 
considered the maximum MECs to assess conservatism. Furthermore, we 
benchmarked the PEC-CKB models against the FOCUS models by 
comparing Pearson correlation coefficients and examining the influence 
of input parameters on the results.

3. Results

First, we focused on the overall model performance of the three 
FOCUS models and the PEC-CKB model by MEC-PEC comparisons. Next, 
we directly compared the PEC-CKB predictions to the FOCUS models in 
order to group the PEC-CKB into the tiered system of exposure models in 
ERA. Finally, we adapted the PEC-CKB assumptions based on landscape- 
specific information and assessed the impact on MEC-PEC agreements.

3.1. Evaluation of the model performance

3.1.1. PEC-CKB predictions range between FOCUS Step 2 and Step 3
Predictions of environmental concentrations for 36 substances 

deviated considerably from 90th percentile MECs for all four tested 
models. The PEC-CKB performed better than the FOCUS Step 1 and Step 
2, while the more complex FOCUS Step 3 showed the best MEC-PEC 
agreement with the lowest bias and RMSE, but also revealed one un
derestimation (see Table 1, Fig. 1). The positive bias across all cases 
indicates that the models systematically overestimate the measured 
concentrations (Table 1).

Overestimation was most pronounced for low MECs, whereas the 
MEC-PEC agreement improved as MEC values increased (Fig. 1 and SI, 
Fig. E.1). The distribution of ratios between average PECs and 90th 

percentile MECs for the four models confirms this pattern (Fig. 2). The 
median ratio decreases progressively from Step 1 to Step 3. For PEC- 
CKB, the median ratio ranges between FOCUS Step 2 and 3, while the 
variability of ratios is lower than the ratios of FOCUS Step 3 (Fig. 2 and 
SI, Fig. E.1).

Based on the bias and RMSE reductions achieved with each subse
quent FOCUS step and with PEC-CKB in between Step 2 and Step 3, we 
conclude that MEC-PEC agreement improves in the tiered ERA. How
ever, the correlation coefficients and corresponding R2 values contradict 
this order. PEC-CKB showed the highest correlation (r = 0.31, p = 0.07) 
compared with the FOCUS models (Step 1: r = 0.27; Step 2: r = 0.22; 
Step 3: r = 0.16). Still, none of these correlations were statistically sig
nificant (Table 2). This changes when comparing maximum MECs with 
average PECs. Here, R2 values increase, indicating a better explanation 
of maximum MECs by PECs (see Table 2).

3.1.2. Only FOCUS Step 3 reveals underestimations of 90th percentile 
MECs

For both FOCUS Step 1 and Step 2, all average PECs, as well as each 
individual PEC (derived from different application rates), exceed the 
corresponding 90th percentile MECs (Fig. 1). In FOCUS Step 1, the PECs 
exceed MECs by more than two orders of magnitude, so none of the 
results entered the ‘Safety margin 10′ group (Table 1). FOCUS Step 2 and 
PEC-CKB values also exceed the 90th percentile MECs for all 36 sub
stances, and the MEC-PEC tuples are distributed almost evenly across the 
defined overestimation safety groups (Fig. 1, Table 1). By contrast, 
FOCUS Step 3 shows a single underestimation for florasulam, and crop- 
specific PECs underestimate MECs for two substances (dichlorprop-P 
and florasulam) (Fig. 1). When the three FOCUS surface-water scenarios 
are examined separately, up to five underestimations become apparent 
(Table 1 and SI, Table E.1).

To examine the conservative character for particularly high con
centrations, we also compared the maximum MECs to the maximum 
PECs (SI, Table E.1). Taking this view, only the FOCUS Step 1 model 
results consistently exceed MECs, while Step 2 underestimates four of 36 
maximum MEC values and Step 3 underestimates six MEC values. The 
PEC-CKB results underestimate the maximum MECs for only three of the 
36 substances (SI, Table E.1).

Similar results were obtained when we considered only grab samples 
for MEC-PEC comparisons. The 90th percentile MECs decrease slightly, 
which modestly worsens the agreement between MECs and PECs. 
FOCUS Step 3 also shows a single underestimation, but the drainage 
scenarios show fewer underestimations compared to analyses with 
event-driven samples (see SI, Table E.2).

3.1.3. PEC-CKB shows best overall model performance
Taking all results into account, the PEC-CKB model shows the best 

overall performance among the prediction models. It aligns more closely 
with measured concentrations than the lower-tier FOCUS models and 
does not produce any underestimation of the 90th percentile MECs. Only 
FOCUS Step 3 shows a single underestimation of the 90th percentile 
MECs for 36 substances.

3.2. Comparing PEC-CKB predictions with FOCUS models

The previous results on model performance according to MECs show 
that the results of PEC-CKB lie between those of FOCUS Step 2 and Step 
3, but PEC-CKB results correlate strongest with FOCUS Step 1 values 
while being at least one order of magnitude lower (Fig. 3). The high 
correlation coefficient indicates a strong linear association between 
PEC-CKB and FOCUS Step 1 (Fig. 3). This can be explained by both 
models' similar equation structure, while the difference in magnitude is 
due to the different parameterisation (see Section 2.1.3; SI, Section G). 
The minimal reduction of the correlation coefficient is caused by the 
additional crop-specific spray-drift input in FOCUS Step 1. The deviation 
between PEC-CKB and FOCUS Step 1 of about one order of magnitude 

P. Scharlach et al.                                                                                                                                                                                                                              Environment International 208 (2026) 110057 

4 



Table 1 
Quality measures of MEC-PEC comparisons. We calculated the bias and RMSE as quality measures for different models (and adaptations) and representative MEC values (90th percentiles and maximum). Substances that 
over- or underestimate the MEC values by a certain amount (up to one, two or more orders of magnitude) are counted as a benchmark for MEC-PEC agreement and conservatism. Attention should be paid to different 
substance numbers (n) included in this analysis.

model (and scenario) n PEC 
selection

90th percentile MEC Max. MEC

bias RMSE Under- 
estima- 
tions

Overestimations… bias RMSE Under- 
estima- 
tions

Overestimations…

up to one order of 
magnitude “Safety 
margin 10”

up to two orders of 
magnitude “Safety 
margin 100”

by more than two 
orders of 
magnitude

up to one order of 
magnitude “Safety 
margin 10”

up to two orders of 
magnitude “Safety 
margin 100”

by more than two 
orders of 
magnitude

PEC-CKB standard f ¼ 20% 36 average 1.6 1.78 0 10 (27.8%) 14 (38.9%) 12 (33.3%) 0.88 1.18 3 (8.3%) 20 (55.6%) 10 (27.8%) 3 (8.3%)
FOCUS Step 1 36 average 2.52 2.63 0 0 10 (27.8%) 26 (72.2%) 1.79 1.96 0 7 (19.4%) 17 (47.2%) 12 (33.3%)
FOCUS Step 2 36 average 1.78 1.96 0 9 (25.0%) 12 (33.3%) 15 (41.7%) 1.06 1.35 4 (11.1%) 16 (44.4%) 10 (27.8%) 6 (16.7%)
FOCUS Step 3 36 average 1.41 1.65 1 (1.7%) 10 (27.8%) 15 (41.7%) 10 (27.8%) 0.68 1.12 7 (19.4%) 15 (41.7%) 10 (28.6%) 4 (11.4%)
FOCUS Step 3 D3 35* max 1.34 1.69 5 (14.3%) 9 (25.7%) 11 (31.4%) 10 (28.6%) 0.63 1.21 11 

(31.4%)
10 (28.6%) 10 (28.6%) 4 (11.4%)

FOCUS Step 3 D4 35* max 1.28 1.65 5 (14.3%) 10 (28.6%) 10 (28.6%) 10 (28.6%) 0.57 1.19 11 
(31.4%)

10 (28.6%) 12 (34.3%) 2 (5.7%)

FOCUS Step 3 R1 36 max 1.54 1.78 0 12 (33.3%) 11 (30.6%) 13 (36.1%) 0.82 1.21 7 (19.4%) 12 (33.3%) 13 (36.1%) 4 (11.1%)
PEC-CKB standard f ¼ 20% 59 average 1.47 1.66 1 (1.7%) 17 (28.8%) 26 (44.1%) 15 (25.4%) 0.67 1.04 13 

(22.0%)
27 (45.8%) 16 (27.1%) 3 (5.1%)

PEC-CKB average f ¼ 4.4% 59 average 0.81 1.12 10 
(16.9%)

26 (44.1%) 17 (28.8%) 6 (10.2%) 0.01 0.80 32 
(54.2%)

19 (32.2.9%) 8 (13.6%) 0

PEC-CKB crop-specific f 59 average 0.95 1.30 10 
(16.9%)

25 (42.4%) 14 (23.7%) 10 (16.9%) 0.15 0.94 25 
(42.4%)

25 (42.4%) 6 (10.2%) 3 (5.1%)

* Imidacloprid has only been calculated for hops, and in FOCUS Step 3, scenarios D3 and D4 are not defined for hops.

P. Scharlach et al.                                                                                                                                                                                                                              
Environment International 208 (2026) 110057 

5 



can be mainly explained by the factor that summarises all transport 
processes (M in Eq. (1); see also Section 2.1.3).

3.3. Refinement of PEC-CKB parameters and impact on prediction quality

A comparison of the original PEC-CKB model predictions based on 
Eq. (3) with German monitoring data (Liess et al., 2021b) shows a wide 
range of PEC values (Fig. 4) driven by varying crop-specific application 
rates. Considering 59 substances, only isopyrazam is underestimated, 
but this is one of the substances with less than ten concentration mea
surements above LOQ, implying that the 90th percentile value may be 
less reliable (Fig. 4a; SI, Table A.1). The majority of substances exceed 
MECs by factors between one and two orders of magnitude (Table 1).

As model parameterisation mainly relies on former analyses based on 
Swedish monitoring data, we aim to account for the differences between 
the German and Swedish monitoring catchments (see also SI, Section A) 
and possibly improve PEC-CKB predictions. For this, we refined the 
model parameters with a GIS analysis of landscape data (see Section 
2.3). The results indicate a lower degree of agricultural land use than in 
the Swedish study, supporting a lower f -value than 20% (see SI, 
Table H.1). Averaging all crop-specific f -values yields an average crop 
cover of 4.4%, approximately one-fourth of the treatment proportion of 
20% proposed by the FOCUS surface water working group and set in the 
original PEC-CKB definition. Using the refined f -value in the PEC-CKB 
model improved MEC-PEC agreement (bias: 0.81, RMSE: 1.12) 
(Table 1), while maintaining similar variability in PECs, visible as a 

Fig. 1. Comparison of measured environmental concentrations (MECs) and predicted environmental concentrations (PECs) for the FOCUS Step 1, 2 and 3 models and 
PEC-CKB for 36 pesticides. We compared average PEC values based on different crop-specific application rates and scenarios (see chapter 2.1 and 2.2) with the 90th 
percentiles of the monitoring data. The FOCUS model calculations were adapted to German environmental conditions and Step 3 was only calculated for the R1, D3 
and D4 stream scenarios (more information on the scenarios can be found in chapter 2.1.1). The range of PEC values is shown by the coloured vertical lines 
(minimum to maximum PEC), and the MEC values are shown by a solid, horizontal line for the 10th to 90th percentile and by a dashed line for the 90th percentile to 
the maximum measured concentration. The safety margins represent overestimation of a factor of 10 and 100, respectively.
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“shift down” of PEC-CKB predictions (Fig. 4b). Of course, using such an 
overall average f -value is a simplification of the reality of land use in 
Germany, and the high standard deviation and coefficient of variation 
(200%) of this f -value relative to the mean value represent the wide 
range of different crop-specific f-values. In the refined PEC-CKB calcu
lations, we have ten underestimations when compared with 90th 
percentile MECs and 32 underestimations when compared with the 
maximum MECs. In the latter, maximum MECs were underestimated by 
up to two orders of magnitude.

To fully exploit the GIS analyses, we also investigated the influence 
of using crop-specific f-values (SI, Table H.1) in combination with crop- 
specific application rates on PEC-CKB model predictions (Eq. (4)). Using 
such crop-specific f -values resulted in increased variability of PECs, 
which spanned one to two orders of magnitude (Fig. 4c). The agreement 
between PECs and MECs improved in comparison to the standard 
assumption off = 0.2 for all substances and crops, but got worse 
compared with the use of the average f -value of 4.4% (Table 1). The 
90th percentile MECs for ten substances and the maximum MECs for 25 
of the 59 substances were underestimated by the average PEC-CKB 
predictions with crop-specific f -values, yielding similar results to those 
obtained with the average f -value of 4.4%.

We also tested whether basic physico-chemical substance properties 
could explain the agreement of PEC-CKB predictions with monitoring 
data. Former analyses of the MACRO model showed that the distribution 
coefficient between water and organic carbon (Koc) and the degradation 
rate (DT50) of the substance in soil can strongly impact the model results 
(Dubus and Brown, 2002). The PEC-CKB model directly incorporates 

Koc, but does not include the degradation rate. Generally, larger de
viations between MECs and PECs occur with smaller Koc and DT50. The 
model performs better for persistent substances while substances with 
fast degradation rates exhibit larger discrepancies (see SI, Figs. C.1–C.4), 
highlighting the importance of temporal resolution in the models. 
However, detecting substances with small DT50 values in water samples 
is more difficult, because the application periods are often unknown.

4. Discussion

The preceding analyses depend on model assumptions and decisions 
made during the evaluation process. Nevertheless, some general con
clusions can be drawn from the results for a prospective ERA. In the 
following, we discuss several methodological uncertainties and chal
lenges in model evaluation and outline potential implications for a 
future ERA. In doing so, we will also take a closer look at the position of 
the PEC-CKB model in comparison to the established FOCUS models.

4.1. Challenges in model evaluation

Assessing model performance is particularly challenging under 
highly variable environmental conditions. In addition to selecting suit
able monitoring data, information on the emissions and model as
sumptions plays a decisive role in the final assessment. Furthermore, we 
discuss model extensions and national requirements that were not 
considered for this study.

4.1.1. Handling of monitoring data

4.1.1.1. Monitoring can only deliver a snapshot of reality. Monitoring 
campaigns provide only a snapshot of the actual environmental situation 
(la Cecilia et al., 2021), and MECs can vary strongly (Fig. 1, range be
tween 10th percentile and maximum MEC). Model evaluation requires 
the aggregation of MEC values into single statistical descriptors, which 
simplify the variability and describe only one point in time and space 
across all measurements.

In this study, we focus on using 90th percentile MECs for model 
evaluation because they represent high measured concentrations 
without focusing on extreme values. Using the 90th percentile provides 
greater robustness against statistical outliers, but it also ignores up to 
10% of measured values during evaluation. While higher percentiles 
would generally be preferable, they were not suitable in this context due 
to, in parts, too small sample sizes (SI, Table A.1).

4.1.1.2. Sampling type does not strongly influence the results. The deci
sion to consider only MECs from event-driven samples to capture 
potentially higher concentrations could have influenced the analyses, 
since rain events are known to transport PPPs to adjacent surface waters 
via runoff. Depending on factors such as the amount and intensity of 
rainfall, the size of the water body and the sorption behaviour (Koc), the 
PPP concentration in samples can be correspondingly higher or lower 
due to dilution. Nevertheless, similar analyses on grab samples revealed 
only minor differences and confirmed the conservative character of all 
models, with a few exceptions in FOCUS Step 3 (see SI, Section E-b).

4.1.1.3. Limited measurability of concentrations influences results. We 
only considered measured concentrations above the LOQ. Due to the 
lack of application data, we assume that very low concentrations below 
LOQ are not attributable to an application during the monitoring period. 
Including non-detections and values below the LOQ resulted in lower 
90th percentiles MECs, increased overestimations and thus worse 
agreement with monitoring data, but without underestimations (see 
additional analyses in SI, Section F). This latter approach can also be 
criticised, as 1) non-detections may simply originate from non- 
application of a PPP and 2) values < LOQ are highly uncertain.

Fig. 2. Distribution of residuals from the three FOCUS models Step 1–3 and 
PEC-CKB, illustrating the range and central tendency of prediction errors (dif
ferences between PEC and MEC values). Boxplots show the median (line within 
the box), interquartile range (box boundaries) and 10th and 90th percen
tiles (whiskers).

Table 2 
Linear correlation analysis results and coefficients of determination R2. R2 is 
determined by squaring the correlation coefficient r. We used Pearson correla
tion coefficients, accounting for significance. The null hypothesis of no linear 
correlation is rejected if p < 0.05. We differentiated between comparing 90th 
percentile MECs and maximum MECs to average PECs.

model 90th percentile MEC maximum MEC

Pearson’s r p- 
value

R2 Pearson’s r p- 
value

R2

PEC-CKB 0.31 0.07* 0.096 0.44 0.01 0.194
FOCUS Step 

1
0.27 0.11* 0.073 0.42 0.01 0.176

FOCUS Step 
2

0.22 0.20* 0.048 0.34 0.04 0.116

FOCUS Step 
3

0.16 0.36* 0.026 0.27 0.11* 0.073

* No statistically significant correlation.
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4.1.1.4. Extreme conditions could influence maximum MECs. Using the 
maximum MECs helps avoid underestimation, but they can be skewed 
by extreme climatic and geographical conditions or PPP misuse 
(Kreuger, 1998; Schriever et al., 2025; Wittmer et al., 2010). Situations 
that are not accounted for in the authorisation process (e.g. cleaning of 
PPP application machinery, incorrect PPP application, extreme hydro
logical conditions) can strongly affect MEC-PEC comparisons, calling 
into question the use of maximum MECs as a benchmark for model 
evaluation (Schriever et al., 2025). Nevertheless, it is unlikely that high 
MECs are mainly driven by malpractices or urban sources (Schriever 
et al., 2025; Wittmer et al., 2010), because that would require wide
spread farmer misuse. Multiple fields in the catchment, the repeated use 
of the same active ingredient across several products and crops, as well 
as spray series, can also raise MEC values. For this reason, we further 
assessed conservatism by examining maximum MECs and found that in 
this case, only FOCUS Step 1 showed no underestimations (see Section 
3.1; SI, Table E.1).

4.1.2. Model assumptions and their impact on the results
Models are based on assumptions that simplify reality. The selection 

of assumptions significantly influences the results and needs to be re
ported transparently in the context of ERA.

4.1.2.1. Generic application data. The lack of specific application data 
led us to use generic German application rates and assume single ap
plications in our study. We have no information about the representa
tiveness of this data for our catchments from the monitoring study. By 
averaging the application data in the PAPA database, we could generate 
application rates for crop-specific single applications. From Tier 2 

onwards, multiple applications play an important role, and degradation 
becomes more relevant. Especially for substances with high DT50 values 
relative to the period between two applications, multiple applications 
may result in higher PECs, because concentrations from previous ap
plications persist.

4.1.2.2. Scenario selection. Selecting scenarios from a retrospective 
perspective for a prospective ERA introduces limitations. By selecting 
some and omitting other scenarios in the PEC calculation, we accept that 
we only incompletely represent the distribution of real conditions. The 
quality of the FOCUS model predictions could have been improved by 
using more specific and appropriate scenarios.

However, this study aimed to link the retrospective and prospective 
ERA perspectives, so that we selected application regions, time periods, 
and pre-defined drainage and runoff scenarios that match the moni
toring data best from a theoretical point of view. Although the event- 
driven measurements in the KgM study have been attributed to runoff 
by the authors, input via drainage may also have influenced the mea
surements (see 2.4 and 3.1). The results confirm that models cannot 
generate accurate predictions if the best-matching environmental sce
narios at the corresponding sites are not known.

4.1.2.3. Incorporation of landscape-specific information. One step to
wards better-matching environmental scenarios is the consideration of 
the crop distribution in the different monitoring catchments. Using 
landscape information in our analyses has improved model perfor
mance. The model predictions were more consistent with the measured 
concentrations when crop-specific f-values were utilised, particularly 
the reduced, aggregated f-value of 4.4%. But averaging f-values from the 

Fig. 3. Comparison of PEC-CKB to FOCUS model calculations based on the model results from previous analyses. We compared average PEC values based on different 
application doses and scenario calculations (FOCUS). Correlation analysis (Pearson correlation coefficient r) shows the highest value for FOCUS Step 1, but visual 
representation indicates that Step 2 matches PEC-CKB calculations best, as it is closer to the 1:1 line.
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GIS analysis introduces bias, particularly for crops with uneven distri
bution. While some crops, such as grassland, winter cereals or oilseed 
rape, are consistently present, others, such as vines, sunflowers or or
chards, vary significantly between catchments. This variability, indi
cated by high coefficients of variation (SI, Table H.1), shows that an 
average f-value does not accurately reflect conditions in regions where 
these crops dominate, nor regions where they are absent (e.g. wine re
gions in Germany). Also, monocultures cannot be meaningfully 
described using averaged treatment proportions. Nevertheless, the re
sults of the analyses are helpful for testing the standard assumption of a 
treated area of 20% (FOCUS, 2001). This value is indeed nearly a worst- 
case assumption; only winter cereals resulted in an average proportion 
of more than 20% of the catchments in our analyses, while all other 
crops ranged below 10%.

4.1.3. Dismissed model extensions

4.1.3.1. FOCUS repair scenarios. In the last few years, efforts have been 
made to revise the FOCUS scenarios, resulting in the so-called ‘FOCUS 
repair’ scenarios, with prolonged time periods and adapted application 
dates based on corresponding weather data (EFSA, 2020). Here, a 
moving 3-day average air temperature represents the daily water tem
perature. Crop interception values based on the actual developmental 
state allow a better comparison of model predictions to other exposure 
models. The FOCUS repair actions will most likely result in similar PECs 
with reduced variability. In particular, the annual maximum PECs are 
expected to fall within the range of previous results (EFSA, 2020). We do 
not expect major changes when using the ‘repaired’ scenarios, but their 
use might positively influence overall model performance. For future 
analyses, the revised FOCUS version should be utilised.

4.1.3.2. Potential mitigation strategies. In addition, some of the analysed 
substances will require mitigation strategies such as drift-reducing 
technologies, e.g. nozzles and runoff buffers, which are not relevant in 
FOCUS Steps 1 to 3 simulations or the PEC-CKB model. In general, the 

consideration of mitigation strategies for PEC calculations, for example 
by using FOCUS Step 4, would decrease PECs and consequently most 
likely lead to worse MEC-PEC-agreement.

4.1.3.3. National registration requirements. Further on, we ignored in 
our analyses that national registration procedures might be based on 
other models, for example, the models EXPOSIT 3.02 and EVA3 are used 
in Germany. Nevertheless, models used in national registration pro
cesses could be evaluated in a similar manner. For the German surface 
water PEC model EXPOSIT, predictions showed a tendency to underes
timate MEC values (Liess et al., 2021a; Weisner, 2022, p. 215).

4.2. The tiered model approaches

Using a tiered approach in ERA intends to stay with simple, but safe 
assessments for uncritical chemicals, and to increase complexity and 
computational effort step-by-step in higher tiers. However, previous 
studies have indicated that models at higher tiers are not necessarily 
more precise and can lead to underestimations. The latter is particularly 
concerning in ERA and requires a closer examination.

4.2.1. Comparing results to previous analyses
In general, comparing PECs with the 90th percentile MECs is 

consistent with the FOCUS philosophy. Our study confirms that PECs are 
generally higher than the 90th percentile MECs that the FOCUS models 
should represent. Comparing these findings with those from the studies 
by Knäbel et al. (2012, 2014), we can confirm, based on our MEC-PEC 
comparisons, that Steps 1 and 2 produce conservative model results. 
Our analyses also show two underestimations of 90th percentile MECs in 
Step 3 when considering different crop-specific PECs. However, the 
FOCUS Step 3 model performs clearly better in our comparisons con
cerning the overall model performance (based on MEC/PEC ratios) and 
the number of underestimations. One possible reason is that Knäbel and 
colleagues included fewer substances in their comparisons but consid
ered more studies and, therefore, more individual MEC values (2012: 17 

Fig. 4. Comparison of MECs from a comprehensive pesticide monitoring in small German streams (Liess et al., 2021b) (represented by lines from 10th to 90th 
percentiles as well as median and maximum) with PECs resulting from the PEC-CKB. The 90th percentile of MECs are marked with red dots. Figure a) represents the 
PEC calculations using the crop-specific average application doses in combination with the standard f-value of 0.2. Figure b) and c) represent PEC calculation using 
crop-specific average f-values based on a GIS analysis. Figure b) shows PEC values calculated with an average crop-specific f-value of 0.044 and Figure c) shows the 
use of individual crop-specific f-values. MEC data is plotted against the average PEC value, whereas the range of different PEC values due to different input pa
rameters (D and f) is represented by vertical lines. 59 substances are included in this analysis. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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substances, 77 MECs and 2014: 38 substances, 417 MECs). The MECs 
from the German KgM study (Liess et al., 2021b) suggest a high degree of 
applicability for FOCUS models and scenarios designed for EU countries. 
In contrast, Knäbel and colleagues included data from multiple inter
national studies, which increases variability due to differing measure
ment methods, different PPP usages or agricultural practices. While 
FOCUS scenarios partially accounted for environmental variability, 
another main difference is that Knäbel and colleagues compared MECs 
directly to PECs, whereas we compared statistical MEC values with 
corresponding PEC values.

4.2.2. Targets of tiered ERA only partially achieved
The estimation of PECs for regulatory ERA in the EU is performed in a 

tiered system, with increasing complexity and the ambition to deliver 
more accurate predictions at higher tiers. Our findings align with the 
original conservative design of FOCUS, as Step 1 yields worst-case es
timates (FOCUS, 2001), while FOCUS Step 2 produces less conservative, 
more realistic PECs and shows no underestimation of 90th percentile 
MECs. FOCUS Step 3 is considered a realistic worst-case model, as it was 
developed to account for local conditions more specifically and includes 
a number of scenarios that should represent environmental conditions 
for one-third of the total area of the EU (FOCUS, 2001). However, our 
analysis of the KgM dataset does not consistently show worst-case 
estimates.

Generally, regulatory exposure models aim to predict exposure in 
generic scenarios rather than specific site conditions. Also, FOCUS Step 3 
was not designed for MEC-PEC comparisons on a regional scale, as it was 
done in this study (Bach et al., 2016), and part of the deviation of model 
predictions and MECs may arise from a mismatch between environ
mental site conditions and their representation in the scenarios.

Model refinement in higher tiers follows the scientific ambition to be 
more accurate on average, meaning that over- and underestimations 
equalise. This can be in direct conflict with the regulatory aim of always 
producing conservative predictions, so that PPPs can be released to the 
market in a safe and cost-effective way, while allowing for under
standing the model results (Enquist et al., 2024). Ideally, from a regu
latory perspective, PEC models should generate values higher than 
MECs with only small deviations from them. This could be reached, for 
example, by applying safety factors to scientifically accurate models.

4.3. Complexity of models: PEC-CKB instead of FOCUS models?

One of the principal challenges of regulatory ERA for pesticides and 
other chemicals is the development of exposure prediction models that 
deliver realistic but conservative predictions of pesticide concentrations 
at the same time, ideally at low to moderate model and scenario 
complexity. The complexity of the model calculations and the related 
scenarios is also relevant because the capacity for model evaluation is 
often constrained for practical work in environmental authorities. 
Complex models tend to cause high efforts in maintenance and evalua
tion and are not useful from a regulatory perspective because they entail 
the risk of overfitting singular environmental situations but lack gen
erality. The complexity of models need to be assessed conserving the 
principle of parsimony, a basic concept that is also often used in 
ecological studies (Coelho et al., 2019), and that considers simpler 
models being preferable when having an incomplete understanding of 
complex processes, to avoid a false impression of risk understanding and 
growing modelling effort (Etterson, 2022; Hill et al., 2000).

The PEC-CKB is a simple PEC modelling approach that performs 
better than FOCUS Step 2 while being less complex than FOCUS Step 1, 
as transport processes are summarised in a single generic factor 
(Sections 3.1 and 3.2). FOCUS Step 3 shows slightly better agreement 
between PEC and MEC values, but more underestimations. Compared to 
FOCUS Step 3, the PEC-CKB is much simpler, consisting of a single 
formula rather than a set of differential equations, and the difference in 
the required input is even more evident. Here, the FOCUS Step 3 model 

requires input from several complex models, such as PRZM and MACRO, 
and considers 10 scenarios. In contrast, PEC-CKB has a smaller param
eter set, and we improved its performance in our study by incorporating 
landscape information.

However, we cannot exclude that the agreement between PEC-CKB 
predictions and MECs is good for the wrong reason. Parameter as
sumptions for PEC-CKB are based on Swedish monitoring data (Boström 
et al., 2019) but do not represent environmental conditions in the KgM 
study. The runoff is defined as a dilution in a water column with a height 
of 4 mm (see Eq. (1)). This would mean that almost no rain falls during 
the monitoring period. The KgM event-driven data was collected at a 
water-level rise of 5 cm, corresponding to a deviating dilution factor of 
12.5.

Nevertheless, it is difficult to sort PEC-CKB into the tiers of the 
FOCUS models: The similarity of the model with FOCUS Step 1 and the 
high correlation would support considering PEC-CKB as a Tier 1 method, 
but concerning the absolute PEC values, PEC-CKB would range between 
Tier 2 and 3 (see Sections 3.1 and 3.2).

In the context of the regulatory risk assessment system, the results of 
the PEC-CKB model lack information that is provided by the FOCUS 
surface water models, most importantly, predictions of sediment con
centrations and temporal profiles. The PEC-CKB model produces only 
point estimates after one week, whereas it should be easy to adapt PEC- 
CKB by incorporating time-dependency, since the equation is very 
similar to the time-explicit FOCUS Step 1 (FOCUS, 2001; SI, Section G). 
Having time-explicit PECs is very relevant, for example, in the context of 
mixture toxicity assessment, which is not yet part of regulatory ERA, but 
that is often discussed to improve ERA realism. Furthermore, the dose 
addition used in PEC-CKB appears similar to FOCUS Step 1. However, it 
does not reflect the reality of multiple exposures to the same substance 
over time, where transport and loss processes may occur between ap
plications (Reinert et al., 2002). The model also does not capture spatial 
and temporal exposure patterns or the complexity of agricultural land
scapes, which could offer options to combine risk assessment with risk 
management in a future ERA (Focks et al., 2014). Taking all this into 
account when considering PEC-CKB as an alternative to the currently 
used FOCUS models, it appears to be a viable option only for isolated use 
in predicting point estimates of surface water concentrations.

5. Conclusions

The use of predictive models in connection with regulatory risk 
assessment requires that the models meet three criteria, which are very 
difficult to fulfil simultaneously: realism, conservatism, and low effort. 
In our analyses of the FOCUS models, we found a general trade-off be
tween realism and conservatism that is closely linked to the modelling 
effort. At low modelling efforts, low accuracy is tolerated as long as the 
predictions remain conservative. The principle in the tiered regulatory 
approach that lower tiers show higher conservatism was confirmed by 
our analyses. While increasing model complexity generally enhanced 
model accuracy, it also increased the risk of underestimating MECs. In 
fact, the agreement between model predictions and measured values 
improved at higher MEC values, but this was accompanied by an 
increased risk of underestimation, which is particularly important for 
risk assessment purposes.

Given our findings of trade-offs between realism and conservatism, 
risk assessors should be clear about their main priorities: Is it most 
important to estimate realistic or conservative estimates of MECs? Are 
low modelling efforts more important than accuracy and realism?

In that context, the PEC-CKB model achieved good performance 
through appropriate assumptions despite its simple structure and sce
nario. We could show that incorporating more precise land-use infor
mation improved the agreement between PEC-CKB results and MECs, 
but at the same time led to more underestimations, again indicating a 
trade-off. Overall, the study highlights several strengths of the PEC-CKB 
model that could be refined further and made country- or even site- 
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specific, and appeared as the best-balanced considering all three cate
gories. Nevertheless, the PEC-CKB would not allow for the analysis of co- 
occurrences of concentration peaks of different substances, and there
fore would not be suitable for risk assessments that consider chemical 
mixtures (Brock, 2013; Posthuma et al., 2019).

In general, knowledge of crop-specific application rates and infor
mation on catchment crop composition appears more beneficial for 
improving model predictions than increasing the complexity of process 
descriptions. We conclude that better knowledge of actual PPP appli
cations and improved access to high-resolution data on agricultural 
practices could help to close the gap between prospective and retro
spective exposure assessment in ERA for PPPs and improve the under
standing of variabilities in MEC values.

Future work should focus on essential process descriptions without 
getting lost in details, emphasising robust parameters such as agronomic 
PPP application, physico-chemical properties and spatio-temporal 
exposure patterns.

Funding sources

This work was carried out in the framework of the European Part
nership for the Assessment of Risks from Chemicals (PARC) and has 
received funding from the European Union’s Horizon Europe research 
and innovation programme under Grant Agreement No 101057014. 
Views and opinions expressed are however those of the authors only and 
do not necessarily reflect those of the European Union or the Health and 
Digital Executive Agency. Neither the European Union nor the granting 
authority can be held responsible for them.

CRediT authorship contribution statement

Paula Scharlach: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Project administration, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Gustaf Boström: Writing – review & editing, Visualization, 
Methodology, Funding acquisition, Formal analysis, Conceptualization. 
Jörg Klasmeier: Writing – review & editing, Visualization, Methodol
ogy, Conceptualization. Amelie Leonardi: Software, Investigation, 
Formal analysis. Andreas Focks: Writing – review & editing, Visuali
zation, Validation, Supervision, Resources, Project administration, 
Methodology, Funding acquisition, Formal analysis, Data curation, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could appear to have influenced 
the work reported in this publication.

Acknowledgements

We would like to thank the whole Exposure subproject group of 
PARC 6.4.4 (Grand Agreement No 101057014) for many internal dis
cussions that have contributed to these results. In particular, we would 
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Boström, G., Jarvis, N., Gönczi, M., & Kreuger, J. (2019). A proposed new method for 
calculating predicted environmental concentrations (PEC) for plant protection 
products in surface water. https://www.slu.se/globalassets/ew/org/centrb/ckb/ 
publikationer/mo-rapporter/a-proposed-new-method-for-pec-2019.pdf.

Boye, K., Jarvis, N., Moeys, J., Gönczi, M., Kreuger, J., 2012. Pesticide run-off to Swedish 
surface waters and appropriate mitigation strategies: a review of the knowledge focusing on 
vegetated buffer strips [Elektronisk resurs]. Swedish University of Agricultural 
Sciences, Centre for Chemical Pesticides. 

Brock, T.C., 2013. Priorities to improve the ecological risk assessment and management 
for pesticides in surface water. Integr. Environ. Assess. Manag. 9 (3). https://doi. 
org/10.1002/ieam.1429.

Bundesamt für Kartographie und Geodäsie. (2023, June 20). Digitales Landschaftsmodell 
1:250000 (Ebenen) (DLM250). https://gdz.bkg.bund.de/index.php/default/digitale 
s-landschaftsmodell-1-250-000-ebenen-dlm250-ebenen.html.

Carvalho, F.P., 2006. Agriculture, pesticides, food security and food safety. Environ. Sci. 
Policy 9 (7–8), 685–692. https://doi.org/10.1016/j.envsci.2006.08.002.

Centanni, M., Ricci, G.F., De Girolamo, A.M., Romano, G., Gentile, F., 2023. A review of 
modeling pesticides in freshwaters: current status, progress achieved and desirable 
improvements. Environ. Poll. 316, 120553. https://doi.org/10.1016/j. 
envpol.2022.120553.

Coelho, M.T.P., Diniz-Filho, J.A., Rangel, T.F., 2019. A parsimonious view of the 
parsimony principle in ecology and evolution. Ecography 42 (5), 968–976. https:// 
doi.org/10.1111/ecog.04228.

de Souza, R.M., Seibert, D., Quesada, H.B., de Jesus Bassetti, F., Fagundes-Klen, M.R., 
Bergamasco, R., 2020. Occurrence, impacts and general aspects of pesticides in 
surface water: a review. Process Safety Environ. Protect. 135, 22–37. https://doi. 
org/10.1016/j.psep.2019.12.035.

Di Guardo, A., Gouin, T., MacLeod, M., Scheringer, M., 2018. Environmental fate and 
exposure models: advances and challenges in 21st century chemical risk assessment. 
Environ. Sci.: Process. Impacts 20 (1), 58–71. https://doi.org/10.1039/ 
C7EM00568G.

Dubus, I.G., Brown, C.D., 2002. Sensitivity and first-step uncertainty analyses for the 
preferential flow model MACRO. J. Environ. Quality 31 (1), 227–240. https://doi. 
org/10.2134/jeq2002.2270.

Enquist, B.J., Kempes, C.P., West, G.B., 2024. Developing a predictive science of the 
biosphere requires the integration of scientific cultures. Proceed. Natl. Acad. Sci. 121 
(19), e2209196121. https://doi.org/10.1073/pnas.2209196121.

Etterson, M.A., 2022. Realism, conservatism, and tiered ecological risk assessment. 
Ecologies 3 (2), 131–144. https://doi.org/10.3390/ecologies3020011.

EU. (2023). EU Pesticide Database. https://food.ec.europa.eu/plants/pesticides/eu-pestici 
des-database_en.

European Food Safety Authority (EFSA), Adriaanse, P., Boivin, A., Klein, M., Jarvis, N., 
Stemmer, M., Fait, G., & Egsmose, M. (2020). Scientific report of EFSA on the ‘repair 
action’ of the FOCUS surface water scenarios. EFSA Journal, 18(6). doi: 10.2903/j. 
efsa.2020.6119.

Focks, A., ter Horst, M., van den Berg, E., Baveco, H., van den Brink, P.J., 2014. 
Integrating chemical fate and population-level effect models for pesticides at 
landscape scale: new options for risk assessment. Ecol. Model. 280, 102–116. 
https://doi.org/10.1016/j.ecolmodel.2013.09.023.

FOCUS. (2001). FOCUS surface water scenarios in the EU evaluation process under 91/ 
414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC 
Document Reference SANCO/4802/2001-rev.2. 245 pp.

Forbes, V.E., Hommen, U., Thorbek, P., Heimbach, F., Van den Brink, P.J., Wogram, J., 
Thulke, H., Grimm, V., 2009. Ecological models in support of regulatory risk 
assessments of pesticides: developing a strategy for the future. Integr. Environ. 
Assess. Manag. 5 (1), 167–172. https://doi.org/10.1897/IEAM_2008-029.1.

P. Scharlach et al.                                                                                                                                                                                                                              Environment International 208 (2026) 110057 

11 

https://doi.org/10.1016/j.envint.2026.110057
https://doi.org/10.1016/j.envint.2026.110057
https://doi.org/10.1016/bs.apmp.2018.04.001
https://doi.org/10.1016/j.scitotenv.2024.174526
https://doi.org/10.1002/ps.4281
https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/a-proposed-new-method-for-pec-2019.pdf
https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/mo-rapporter/a-proposed-new-method-for-pec-2019.pdf
http://refhub.elsevier.com/S0160-4120(26)00015-2/h0025
http://refhub.elsevier.com/S0160-4120(26)00015-2/h0025
http://refhub.elsevier.com/S0160-4120(26)00015-2/h0025
http://refhub.elsevier.com/S0160-4120(26)00015-2/h0025
https://doi.org/10.1002/ieam.1429
https://doi.org/10.1002/ieam.1429
https://gdz.bkg.bund.de/index.php/default/digitales-landschaftsmodell-1-250-000-ebenen-dlm250-ebenen.html
https://gdz.bkg.bund.de/index.php/default/digitales-landschaftsmodell-1-250-000-ebenen-dlm250-ebenen.html
https://doi.org/10.1016/j.envsci.2006.08.002
https://doi.org/10.1016/j.envpol.2022.120553
https://doi.org/10.1016/j.envpol.2022.120553
https://doi.org/10.1111/ecog.04228
https://doi.org/10.1111/ecog.04228
https://doi.org/10.1016/j.psep.2019.12.035
https://doi.org/10.1016/j.psep.2019.12.035
https://doi.org/10.1039/C7EM00568G
https://doi.org/10.1039/C7EM00568G
https://doi.org/10.2134/jeq2002.2270
https://doi.org/10.2134/jeq2002.2270
https://doi.org/10.1073/pnas.2209196121
https://doi.org/10.3390/ecologies3020011
https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en
https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en
https://doi.org/10.1016/j.ecolmodel.2013.09.023
https://doi.org/10.1897/IEAM_2008-029.1
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