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Sweden

A R T I C L E  I N F O

Keywords:
Location diversity
Size diversity
Species diversity
Plant diversity indices
Arithmetic-geometric aggregation
Random weights
Continuous cover forestry (CCF)

A B S T R A C T

In times where biodiversity is globally under much pressure, effective monitoring of ecosystems is of great 
importance. As plants and particularly trees tend to shape the physical environment of ecosystems, indicators 
based on the structural complexity of plant communities are frequently used as surrogates for direct measures of 
biodiversity. A multitude of such quantitative diversity indicators exist and when considering multiple ecosystem 
services there is often the need to aggregate them in a single complexity index. We quantified the effects of four 
statistical techniques of aggregating contributing indices from three overarching tenets of α-diversity, i.e. 
location (or dispersion) diversity, size and species diversity. In addition we experimentally studied the influence 
of four different weights assigned to the contributing diversity measures. Overall the differences between the 
weights and aggregation methods used were comparatively small. Inverse correlation weights combined with 
arithmetic-geometric aggregation turned out to be the best choice for obtaining a clear complexity gradient for 
our study data from the boreal forest in Northern Sweden. In our analysis, it proved useful to rely on a small pool 
of global reference data with a strong structural gradient which served as contrasts and training data in addition 
to the data of our study plots. The application of random weights as statistical references was very helpful for 
understanding how weighting and index aggregation works. Our index-aggregation results suggested that the 
nine Swedish forest plots were at the lower end of global complexity and differed comparatively little in terms of 
forest structure.

1. Introduction

It is now well established that diversity in ecosystems is not an un
necessary ‘luxury’ property but fundamental to their existence (Yachi 
and Loreau, 1999; Begon et al., 2006; Matias et al., 2013; Oliver et al., 
2015; Danet et al., 2024). Ulrich et al. (2023) stated that biodiversity 
also benefits human well-being and particularly human health. There
fore biodiversity is not only an essential notion of ecosystems but also an 
ecosystem good or commodity (Sandifer et al., 2015). Currently biodi
versity is threatened by multiple man-made global changes, among 
which climate change potentially has a particularly detrimental effect 
(McElwee, 2021; Román-Palacios and Wiens, 2020). Worldwide con
servation is therefore concerned with maintaining diversity or at least 
with slowing down the process of losing species (Carvalheiro et al., 
2013). Key to effective conservation is goal-oriented monitoring 
including the application of specialised summary statistics for 
measuring the current state of plant diversity and their aggregation in 

complexity indices (Weiner and Solbrig, 1984; Pommerening and Gra
barnik, 2019).

Biodiversity can be quantified in multiple ways by focussing on a 
wide range of different taxa involving plants, fungi and animals. As 
plants play an important role in shaping the physical structure of many 
environments, the structural complexity of plant communities has 
frequently been used as an indicator of the diversity in other taxa 
(Recher et al., 1996; Moen and Gutierrez, 1997; Beckschäfer et al., 
2013). The habitat heterogeneity hypothesis (Simpson, 1949; MacArthur 
and Wilson, 1967) relates the positive association between species di
versity and structural complexity by suggesting that more complex en
vironments provide increased niche space and thus facilitate 
specialisation and avoidance of competition through spatial segregation 
(Cramer and Willig, 2005; Beckschäfer et al., 2013). When considering 
plant ecosystems, α-diversity or functional diversity at community level 
is often subdivided into various tenets or facets. Carmona et al. (2016)
and Wojcik et al. (2025), for example, focussed on functional diversity 
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and therefore considered the tenets of functional richness, functional 
evenness and functional divergence, which, in their view, together de
fines the trait space used by an ecosystem. In this study, we alternatively 
considered structural diversity and its tenets location (or dispersion) di
versity, size diversity and species diversity (Gadow, 1999; Pommerening, 
2002; cf. Fig. 1). The diversity of plant locations reflects the pattern of 
plant dispersion, e.g. regular, clumped (clustered), random locations or 
some combination of these. Species diversity is concerned with species 
richness, species abundance and the spatial arrangement of species. Size 
diversity involves the distribution and spatial arrangement of, for 
example, tree stem diameters or heights. Size diversity is particularly 
important in ecosystems that involve plants such as trees whose sizes are 
extremely variable. Size-diversity measures can be further subdivided 
into indices of size inequality and size dominance.

Size inequality measures focus on size variability in plant pop
ulations, whilst size dominance measures attempt to address matters of 
competition.

There is consensus that all three tenets location (or dispersion) di
versity, size diversity and species diversity jointly contribute to overall 
structural complexity (Pommerening and Stoyan, 2008; Bäuerle and 
Nothdurft, 2011; Wudel et al., 2023). In monitoring and diversity ana
lyses, it is possible to consider the results relating to the three diversity 
tenets and even the results of individual diversity indices independently. 
However, there is often a need to synthesise all index results into a single 
number to establish overall complexity (Jaehne and Dohrenbusch, 1997; 
Wojcik et al., 2025). There are many definitions of complexity, however, 
the most intuitive describes the level of biological integration and 
interaction in ecosystems. The term ecosystem itself focuses on the 
structure, the complexity of organisation and the functioning of the 
system (Kimmins, 2004). In this study, we mainly focused on structural 
complexity (Ehbrecht et al., 2017, 2021) as created by the dominant life 
forms of an ecosystem, e.g. the trees of a forest ecosystem. Complexity is 
a valuable ecosystem trait that directly relates to ecological resilience 
(Messier et al., 2013). This is typically the case when diversity trends 
over temporal or spatial gradients are examined. Aggregating single 
diversity indices in a comprehensive measure is not trivial and carefully 
examining different methods is often not taken seriously into consider
ation. The general statistical process of constructing complexity mea
sures by aggregation is outlined in Fig. 2, which also indicates the 
corresponding sections of this article. In this process, there are several 
methodological questions involving which diversity measures to choose 
and others relating to the aggregation of indices.

The objective of this study was to identify the most appropriate way 
to derive global structural complexity from individual diversity indices. 
For this we examined different multivariate weighting and aggregation 
techniques and their relative influence on the results. To our knowledge, 
in all previous studies aggregation methods were deterministically 
selected without carrying out sensitivity analyses of alternative 

approaches. In many different ecological contexts, deriving global 
structural complexity is necessary, for example, when assessing biodi
versity as one ecosystem commodity among many others (Ehbrecht et al. 
2017, 2021; Wojcik et al., 2025; Zhao et al., 2022). Nine plots from the 
boreal forest of Northern Sweden were used for that purpose and addi
tionally complemented by well-known contrast or reference forest plots 
from different parts of the world for establishing a meaningful global 
diversity gradient and for ensuring the robustness of both the method
ology and the resulting complexity index. We first applied the unique 
complexity index to the eight reference plots and then used the nine 
plots from Sweden for quantifying their complexity in the global context 
of the reference data. This resulted in a total of 17 forest plots and 
another objective was to identify the position of the nine Swedish plots 
in this global complexity gradient.

Fig. 1. The three major tenets of structural diversity. Modified from Pommerening (2002).

Fig. 2. Flow chart for deriving aggregated complexity indices from individual 
diversity measures. The numbers in brackets give the respective sections in 
this article.
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2. Materials and methods

2.1. Study data

The main focus of this study is on the Svartberget data (Section 2.1.1) 
and contrast or reference data (Section 2.1.2) were added to ensure that 
the complexity scale was not biased by the use of only local data and that 
the final complexity index is universally applicable. Selecting eight plots 
appeared to be reasonable in an attempt to approximately match the 
number of the Svartberget plots. These eight plots were selected for their 
relative differences and merits in other studies which we referred to in 
Section 2.1.2. The contrast data were described in the order of 
complexity as can be inferred from Table 1. Unique identification (ID) 
ranks were assigned to them in the same order and used in the analysis.

2.1.1. Svartberget data (ID ranks 1–9)
Near the SLU Svartberget field station close to Vindeln in Northern 

Sweden three sites were selected in the boreal forest with a structural 
gradient ranging from simple to medium and complex forest structure, 
which was assigned as part of project fieldwork based on the visual 
appearance of vertical forest structure. Simple forest structure was 
defined as a combination of mature overstorey and a comparatively low 
understorey layer stemming from a single regeneration cohort. Ac
cording to our definitions, medium structure includes an additional 
older regeneration cohort whilst complex forest structure has at least 
three canopy layers. One of the objectives of this project was to verify 
the visual assignment of plots to the aforementioned complexity classes 
simple, medium and complex. We established three plot replicates with 
an average size of 50 × 50 m in each of these three sites at approximately 
230 m asl. The main species were Norway spruce (Picea abies L.) and 
Scots pine (Pinus sylvestris L.). They were complemented by broadleaved 
species, mainly birch (Betula spp.), willow (Salix spp.), aspen (Populus 
tremula L.), and grey alder (Alnus incana L.). The dominating soil type is 
moraine of varying thickness.

2.1.2. Contrast/reference data
Clocaenog Forest (Wales, UK) lies on the southern side of the Den

bigh moors, a plateau rising to between 300 m and 500 m asl. The forest 
stands (Tyfiant Coed plots 1 and 2 at 53.07 N, 3.43 W, ID ranks 10 and 
11) included in this study are situated at an altitude of 395 m asl. 
Intergrade iron pan soil predominates on this site. The site was originally 
planted with Sitka spruce (Picea sitchensis (BONG.) CARR. and lodgepole 
pine (Pinus contorta DOUGL. ex LOUD.) in 1951. P. sitchensis now dominates 
the site and plot 2 is structurally slightly more diverse in terms of tree 
dispersion and vertical tree height structure than plot 1 (Pommerening 
et al., 2024).

The Białowieża data (ID rank 12) are from Białowieża Forest (50.43 
N, 23.50 E) in eastern Poland in the border zone between Poland and 
Belorussia. This diverse woodland consists of a pedunculate oak 

(Quercus robur L.) overstorey interspersed with Scots pine (Pinus syl
vestris L.) and an understorey of Norway spruce (Picea abies (L.) KARST.), 
hornbeam (Carpinus betulus L.) and silver birch (Betula pendula ROTH.). 
The data are from outside the strict reserve of Białowieża Forest and the 
forest stand is managed for biodiversity and timber value according to 
the principles of low-impact continuous cover forestry (Pommerening 
and Stoyan, 2008; Pommerening and Uria-Diez, 2017).

The Hidegvizvölgy woodland (ID rank 13) is located in the buffer 
zone of the Hidegvizvölgy Forest Reserve (47.34 N, 17.37 E) in the hills 
around the northwest Hungarian city of Sopron. Before being designated 
as a forest reserve in the early 2000s, the area was part of the restricted 
border zone of the Iron Curtain for almost 50 years and consequently 
remained undisturbed for a comparatively long time (Puttkamer, 2005; 
Pommerening and Uria-Diez, 2017). The main species of this forest 
stand include sessile oak (Quercus petraea MATT.), hornbeam (Carpinus 
betulus L.) and European beech (Fagus sylvatica L.).

Deisenhofener Forst (ID rank 14) is a monitoring plot near Munich 
(Germany, 47.96 N, 11.70 E) located in a forest which is in advanced 
transition to continuous cover forestry (Pommerening, 2023). The forest 
stand is located in the Munich gravel plain which formed during late 
Pleistocene glacial periods. The plot involves several canopy layers. 
Dominant species are Norway spruce (Picea abies (L.) KARST.) and silver 
fir (Abies alba MILL.) with strong contributions of European beech (Fagus 
sylvatica L.) and Scots pine (Pinus sylvestris L.). Minor species include 
Abies grandis (DOUGL.) LINDL., Quercus rubra L., Carpinus betulus L. among 
others which partly resulted from natural regeneration and partly from 
underplanting (Füldner, 1995).

Freyung (ID rank 15) represents a diverse selection forest located in 
the Bavarian Forest (51.68 N, 10.10 E, Germany) not far from the border 
between Germany and the Czech Republic. The forest plot has several 
canopy strata and the main species are Norway spruce (Picea abies (L.) 
KARST.), silver fir (Abies alba MILL.) and European beech (Fagus sylvatica 
L.). Situated at 720 m asl with south-eastern exposition the main soil 
type is a podsolised stony brown earth. The management principles of 
Freyung involved single-tree removals and a continuous long-term 
regeneration (Pommerening et al., 2000).

Xiaolongshan Forest (ID rank 16) is located in the Xiaolongshan 
Nature Reserve, Gansu province, north-west China. The forest is situated 
on the north-facing slopes of the West Qinling Mountain range 
(33.30–34.49 N, 104.22–106.43 E) and constitutes a natural mixed 
pine-oak forest. The soil type is a grey cinnamon soil in the north of 
the Qinling Mountains and yellow cinnamon soil prevails in the south. 
Plot b from the Xiaolongshan Forest was included in this study. This 
stand is a mixed pine-oak population dominated by Quercus aliena var. 
acuteserrata MAXIM., Ulmus glabra HUDS. and Symplocos paniculata 
(THUNB.) WALL. ex D. DON. (H. Wang et al., 2021).

Tazigou Experimental Forest Farm (43◦05′–43◦40′ N, 
129◦56′–131◦04′ E) is located in Jilin Province, China (H. Wang et al., 
2021) and has ID rank 17. This area of secondary forest is situated on 

Table 1 
Main characteristics of 17 experimental woodland data sets: Area in hectare, A, global species richness, i.e. the absolute number of species, S, number of trees per 
hectare, N, basal area, G, minimum stem diameter, dmin, maximum stem diameter, dmax, quadratic mean stem diameter, dg , height of the largest 100 trees per hectare, 
h100. The three replicates of the Svartberget sites (simple, medium and complex structure) were summarised jointly.

Characteristic A [ha] S N [ha-1] G [m2 ha-1] dmin [cm] dmax [cm] dg [cm] h100 [m]

Svartberget (s) 0.26 4 1237.03 27.90 4.0 33.1 16.9 33.04
Svartberget (m) 0.22 4 745.43 11.88 4.0 43.3 13.1 18.93
Svartberget (c) 0.22 3 1222.32 12.48 4.0 35.5 13.7 16.43
Clocaenog 1 1.00 1 291.88 30.30 20.4 55.5 36.4 28.69
Clocaenog 2 1.00 4 330.03 29.85 4.2 59.2 33.9 27.43
Białowieża 1.02 5 748.95 34.92 5.0 79.1 24.4 32.79
Hidegvizvölgy 0.67 7 782.09 24.43 6.2 57.2 26.9 24.68
Deisenhofen 1.13 11 1106.49 45.63 6.5 80.6 22.9 32.94
Freyung 0.50 3 458.75 41.98 6.8 92.1 34.1 36.22
Xialongshan 0.49 35 841.66 25.31 4.4 70.5 19.6 18.98
Tazigou 1.00 13 1202.00 20.19 4.0 55.7 14.6 17.31
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Laoyeling Mountain of the Changbai Mountain range. The area has 
predominantly dark brown soil (humic cambisols) with a high natural 
fertility. The main tree species are Mongolian oak (Quercus mongolica 
FISCH. EX LEDEB.), Asian white birch (Betula platyphylla SUKACZEV), Korean 
pine (Pinus koraiensis SIEBOLD & ZUCC.), Ussuri popular (Populus ussuriensis 
KOMAROV) and Amur lime (Tilia amurensis RUPR.). The mapped forest 
stand included in this research is plot c in Tazigou.

The tree density, size and species characteristics reveal that the nine 
Svartberget plots fit well into the variety of different values of these 
characteristics given by the eight contrast plots (Table 1). The Svart
berget plots have more trees than most contrast plots, but are excep
tionally low in basal area on the medium and complex structure site. The 
same applies to the quadratic mean diameter. The mean of the 100 
dominant trees per hectare is also much lower at Svartberget than in 
most of the contrast plots.

2.2. Individual, contributing diversity indices

The selection of individual diversity indices was carried out so that 
index representatives of all three diversity tenets, i.e. location, species 
and size diversity were included. Dominance indices were deliberately 
excluded, since they are primarily not intended to quantify size diversity 
but competition. Based on a literature review, we selected contributing 
structural indices that had performed well in the past and whose 
indicative power is well documented.

2.2.1. Dispersion (plant location diversity)

2.2.1.1. Horizontal structure. Spatial distribution patterns profoundly 
influence plant growth, habitats and regeneration (Pretzsch, 1995). For 
characterising plant dispersion, aggregation index Rʹ by Clark and Evans 
(1954) compares the mean of observed distances r between any plant of 
a spatial plant pattern with the corresponding mean distance Er of a 
theoretical pattern with complete spatial randomness: 

Rʹ =
r

Er
where Er = 0.5 ×

̅̅̅̅
N
A

√

(1) 

In Eq. (1), A is the plot area and N is the total number of trees. The 
aggregation index has proved to be a very efficient index of plant 
location diversity (Corral-Rivas, 2006).

2.2.1.2. Vertical structure. Vertical structure of plant ecosystems is 
likely to have an even greater influence on overall complexity than 
horizontal structure. According to Falster and Westoby (2003), vertical 
structure is one of the most important notions of ecosystems involving 
trees, since raising their foliage into considerable heights above ground 
is the main evolutionary strategy of these plant types. Zenner and Hibbs 
(2000) defined the structural complexity index (SCI), which synthesises 
vertical structure by means of Delaunay triangulations where tree lo
cations provide x and y coordinates and total tree height serves as z 
coordinate. By a spatial tessellation approach (Delaunay, 1934) each 
tree is connected to its neighbours such that triangles are defined that 
form a continuous faceted surface, i.e. a triangulated irregular network 
(TIN; Beckschäfer et al., 2013). SCI is defined as the ratio of the total 
surface area of this TIN and the projected ground area of the constituent 
triangles: 

V =
Surface area of TIN

Projected area of TIN
(2) 

The ratio given in Eq. (2) tells us how much forest structure varies 
vertically compared to a flat surface made up of individual triangles 
(Zenner and Hibbs, 2000; Beckschäfer et al., 2013) and essentially 
quantifies canopy roughness or rugosity. As such SCI is related to photo
synthesis and resilience. If all trees have the same total height, V equals 
1, which is the lower limit of this index. For structurally more complex 

forests, V > 1. An edge correction method excludes border triangles that 
are affected by spatial edge effects.

2.2.2. Species diversity

2.2.2.1. Species richness and spatial species mingling. Spatial species 
mingling describes the spatial interaction of plant species, i.e. how in
dividual plants of certain species are spatially mixed with those of other 
species (Pommerening et al., 2024). The mingling index is defined as the 
proportion of heterospecific pairs successively formed by a given plant i 
and its k nearest neighbours (Gadow, 1993; Eq. (3)). In the analysis, 
every plant within a given research or sample plot acts once as plant i 
(also referred to as reference or subject plant): 

Mi =
1
k
∑k

j=1
1
(
mi ∕= mj

)
(3) 

Function 1(A) is an indicator function with 1(A) = 1, if A is true, 
otherwise 1(A) = 0. The population mingling index computed for the 
entire plant community in a given plot is calculated as the arithmetic 
mean of all Mi by considering an appropriate edge correction. We 
applied the NN1 edge correction method (Pommerening and Stoyan, 
2006). The species mingling index complements species richness by 
spatial information. However, Pommerening and Särkkä (2025)
demonstrated that the concept of spatial species mingling partially also 
includes local species richness, i.e. species richness in the neighbour
hood of reference plant i.

When constructing our complexity index, we applied the species 
mingling index to Voronoi neighbourhoods. Voronoi neighbours tend to 
better describe interactions from an individual-plant perspective, since 
the neighbourhood covers 360◦ around the reference plant. This prop
erty makes Voronoi neighbours more interesting for ecological studies 
(Pommerening et al., 2024).

2.2.2.2. Vertical species diversity. The fundamental idea of the species 
profile index used in this study is to quantify species diversity in different 
vertical layers or height bands. This concept is also partly motivated by 
the fact that vertical forest structure is of great importance when 
quantifying overall forest diversity. The index gives an idea of the ver
tical extent of species diversity and to some degree also of vertical niche 
partitioning across canopy layers (Pretzsch 1995). Based on the original 
species profile index by Pretzsch (1995), we modified his concept to 
consider c = 4 height bands and the Simpson (1949) species diversity 
index. In this study, species profile index Aʹ is the complement of the sum 
of the Simpson index calculated separately for c relative height bands: 

Aʹ =
∑S

i=1
1 −

∑c

j=1
p2

ij (4) 

In Eq. (4), S is the number of species (global species richness), c is the 
number of height bands, i.e. c = 4 in this case, and pij is the proportion of 
species i in band j. The four height bands are defined by 25 %, 50 %, 75 
% and 100 % tree total height percentiles. The trees of each plot are 
assigned to one of the four height bands [0, 25 %), [25 %, 50 %), [50 %, 
75 %) and [75 %, 100 %) depending on the vertical locations of their 
crown tips. Species profile index Aʹ is higher in plots with more vertical 
height differentiation compared to a single-canopy forest stand 
(Pommerening, 2023).

2.2.3. Size diversity

2.2.3.1. Spatial stem diameter differentiation. Size differentiation index 
Ti focuses on the size contrast between a reference plant and its nearest 
Euclidean neighbour. For each plant i and its first nearest neighbour k, Ti 
is defined as the ratio of smaller-sized and larger-sized variables of 
subject plant and first nearest neighbour subtracted from one (Gadow, 
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1993): 

Ti = 1 − min
(

mi

mk
,
mk

mi

)

(5) 

In Eq. (5), mi and mj are the size variables of the subject plant and its 
first neighbour, respectively. In the construction of the complexity 
index, diameter at breast height (dbh) was used as tree size variable 
when calculating Eq. (5). In forest ecosystems, size differences between 
trees and their first Euclidean neighbours are often larger than between 
trees and subsequent Euclidean neighbours (e.g. 2nd, 3rd or 4th nearest 
neighbours) and give a meaningful description of overall spatial size 
variability.

2.2.3.2. Overall non-spatial size diversity. The Gini coefficient (G’) is a 
well-established measure of inequality adapted from economics (Gini 
1912; Lorenz 1905) for quantifying size diversity. It has proved to 
capture the non-spatial size structure of forest stands well (Damgaard 
and Weiner, 2000; Duduman, 2011). Using individual-tree basal area gi, 
sorted in ascending order, the equation used in this study is: 

Gʹ =
2
∑n

i=1gi × i
n
∑n

i=1gi
−

n + 1
n

(6) 

The Gini coefficient is calculated to account for possible bias in finite 
samples in a standardised manner (Eq. (7)). 

G∗ = Gʹ ×
n

n − 1
(7) 

The sample size adjustment ensures unbiasedness in smaller plots 
with few trees (Pommerening et al. 2016; Pommerening 2023). The 
larger the Gini coefficient the more diverse the size structure of a plant 
ecosystem.

2.2.4. Density and disturbance
Additionally to the three aforementioned tenets of plant diversity 

and six diversity indices, plant density is often considered and important 
structural characteristic (Pretzsch, 2009; Beckschäfer et al., 2013). The 
slenderness or height-diameter ratio of trees is strongly influenced by 
tree density. Disturbances – whether natural or human – typically reduce 
tree density and encourage trees to grow relatively more in stem 
diameter than in total height, which in the long term results in lower 
height-diameter ratios than before the density reduction (Pretzsch, 
2009; Wenk et al., 1990; Pommerening and Grabarnik, 2019). Slen
derness is therefore an indirect indicator of density with a legacy effect, 
since it takes some time for height-diameter ratios to adjust to changing 
environmental conditions. As a contributing index we decided to focus 
on the tree overstorey and thus we calculated the mean of the 20 
%-tallest trees per plot: 

s =
1
n
∑n

i=1

hi

di
for hi > 0.8 × hmax (8) 

hi and di represent tree total height and stem diameter. s is usually 
smaller than 1. Density and tree morphology characteristics are first- 
order measures of forest structure and therefore also indicate struc
tural diversity.

2.3. Complexity index construction

When constructing a global complexity index, the aggregation of 
contributing individual indices includes (1) transformation and stand
ardisation, (2) weighting of constituent diversity indices and (3) the 
actual aggregation method by which the final, overall complexity index 
is calculated from the individual indices (Fig. 2; Mazziotta and Pareto, 
2013; Beliakov et al., 2015).

2.3.1. Transformation and standardisation
Standardisation aims to make the component diversity indices 

operate at the same scale. A common way to ensure this is by requiring 
the indices to lie between 0 and 1. For species mingling (Eq. (3)), stem- 
diameter differentiation (Eq. (5)) and the Gini index (Eq. (7)) stand
ardisations of this kind were not necessary, as these indices by definition 
only take values between 0 and 1. For the remaining diversity indices 
suitable standardisations were identified. In some cases, first trans
formations were necessary so that large standardised index values imply 
high diversity and low index values indicate low diversity. For example, 
in the case of the aggregation index (Eq. (1)), Rʹ was subtracted from 
maximum value 2.1451, as small values of original Rʹ indicate clustering 
or inhomogeneity, which implies high diversity in this case. A similar 
transformation had to be applied to the structural complexity index (Eq. 
(2)) and for the slenderness of dominant trees (Eq. (8)). Details are given 
in Table 2.

2.3.2. Weighting
Weights offer information about the relative importance of individ

ual component indices and their sum usually equals 1. They can be 
chosen according to expert judgement. Although this strategy of 
assigning weights seems plausible and is justifiable, it may appear to be 
somewhat subjective and therefore of limited value.

An alternative, more objective weighting approach is to base the 
component indices on quantitative criteria. Two obvious options are 
random and uniform weights. As often applied in statistics, random 
weights can serve as a reference to compare the results from other 
weights with and can be computed by drawing uniform random 
numbers between 0 and 1 for each contributing index. The results are 
then divided by the sum of these random numbers to ensure that the 
weights sum to 1. We repeated the allocation of random weights 1000 
times and calculated mean weights and standard deviations from the 
1000 results. Uniform weights are computed as the reciprocal of the 
number of contributing indices. This reciprocal (in our case 0.143, cf. 
Table 2) is then the same weight for all indices.

Another strategy for the choice of weights is to balance index rep
resentation by considering the correlation structure of the contributing 
indices. For example, those indices that have a lower absolute correla
tion with other indices are given a larger weight and vice versa. This 
weighting can be achieved by basing the weights on the inverse of the 
mean absolute Pearson correlation coefficients of each component index 

Table 2 
Contributing diversity indices, their standardisation and four of the five index 
weights used in the aggregation process. Standardisation often also includes 
transformation. Clark and Evans (1954) aggregation index, Rʹ (Eq. (1)), struc
tural complexity index (SCI), V (Eq. (2)), mean spatial species mingling, M (Eq. 
(3)), species profile index, Aʹ (Eq. (4)), mean stem-diameter differentiation, T 
(Eq. (5)), Gini coefficient, Gʹ (Eq. (7)), and mean height-diameter ratio of 
dominant trees, s (Eq. (8)). Corr. – inverse correlation, PCA – principal 
component analysis.

Diversity 
index

Standardisation Uniform 
weights

Corr. 
weights

PCA 
weights

Rʹ x − min(x)
2.1451 − min(x)
with x = 2.1451 −

Rʹ

0.143 0.104 0.162

V 1 −
1
V

0.143 0.134 0.160

M - 0.143 0.127 0.162
Aʹ Aʹ

c
0.143 0.112 0.162

T - 0.143 0.170 0.127
Gʹ - 0.143 0.112 0.169
s

{
1 − s for s < 1
0 otherwise

0.143 0.242 0.043
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so that the weights’ total sum again equals 1 as previously mentioned. 
This inverse-correlation method reduces the influence of redundant in
formation and assigns higher weights to indices that potentially 
contribute unique insight and novelty to the aggregated complexity 
index (Mazziatto and Pareto, 2013).

An alternative way of deriving weights is to use principal component 
analysis (PCA; Legendre and Legendre, 2012). The loadings of the first 
principal component accounts for the largest variance in the original 
data and may also serve as objective weights (Wold et al. 1987; Chao and 
Wu, 2017). These loadings can be transformed to weights by limiting 
their sum to 1. PCA tends to assign the highest weights to those diversity 
indices that have the highest mean absolute correlation with other 
indices.

The Pearson correlation coefficient between inverse-correlation and 
PCA weights is − 0.99, thus highlighting that both weighting methods 
pursue quite opposite strategies. A disadvantage of inverse-correlation 
and PCA methods is that they depend on the tree data including 
possible contrast/training data used for constructing the aggregated 
complexity index and the calculated weights may differ from those that 
apply to other data.

We applied all of the objective weighting methods described in this 
section in our experiments.

2.3.3. Index aggregation
The last step in constructing a complexity index is the actual ag

gregation of individual component indices. We assumed that at least to 
some degree large values of some component indices can compensate for 
small values of others, e.g. a lack of species diversity can to some extent 
be compensated for by more size diversity. Classic aggregation methods 
include the mathematical operations of summation and multiplication. 
In all following aggregation approaches, weights are generally assumed 
to be non-negative and to sum to 1.

In the process of summation, all component weights are summed up 
whilst being multiplied by the corresponding weights to result in a 
weighted arithmetic mean: 

C(a) =
∑n

i=1
wixi (9) 

Here xi are standardised component indices and wi are the corre
sponding weights. The number of component indices is denoted by n. 
Weighted arithmetic means such as C(a) have perfect compensatory 
properties.

When aggregating indices in a multiplicative way, each transformed 
and standardised index xi is raised to the power of its weight wi and 
multiplied by other transformed and standardised component indices: 

C(g) =
∏n

i=1
xi

wi (10) 

The result is weighted geometric mean C(g). In general, weighted geo
metric means are less compensatory than arithmetic means.

Finally, a third type of diversity index aggregation can be derived 
from weighted harmonic means, which is the mean of the index 
reciprocals: 

C(h) =
∑n

i=1

wi
1
xi

(11) 

The weighted harmonic mean is the least compensatory of the three 
aggregation methods and is often applied to rates and ratios. Eqs. (9), 
(10) and (11) ensure that the aggregated complexity index lies between 
0 and 1 just like the component indices.

We also considered combined arithmetic-geometric aggregation by 
calculating the arithmetic mean of C(a) (Eq. (9)) and C(g) (Eq. (10)), 
which we notationally referred to as C(ag).

Traditionally in multivariate analysis, radar plots have often been 
used to compare the diversity in different ecosystems by visually 
considering the areas created by the radar charts. Theoretically this area 
can be quantified, however, the result is strongly influenced by the order 
in which the component diversity indices are displayed (ElMaraghy 
et al., 2014). This is a clear deficit of radar plots despite their visual 
appeal. For their traditional importance we used radar plots in this study 
as descriptive statistics.

We organised complexity indices C in bar charts so that each bar 
represented one of the 17 plots and ordered the bars according to C in a 
descending order. For best allocation of complexity indices and ranks we 
were interested in obtaining gradients of C as smooth and linear as 
possible. When comparing many forest ecosystems across subtropical, 
temperate and boreal climate zones as in our study, a linear gradient 
implying a constant rate of decrease in complexity is beneficial because 
this allows to see differences in structural complexity more clearly. As a 
validation characteristic (cf. Fig. 2), we measured how far each sequence 
of ordered C or bars was removed from the linear gradient by linear- 
gradient measure c̃, which is the ratio of squared median of q divided 
by the standard deviation of q. Here, q = Ci

Ci+1 
is the ratio of two succes

sive values of C after arranging them in descending order. Values of q 
usually lie between 1 and 2, q > 2 can be considered as outliers. c̃ is a 
variant of the coefficient of variation where we used the median instead 
of the mean to avoid outliers (leading to sharp drops in the C sequence).

3. Results

3.1. First complexity impression using simple radar charts

Radar charts using the unweighted index values give a first impres
sion of the overall complexity of the 17 woodland data. When depicting 
the seven diversity indices a polygon area is created which seems to 
suggest that it can serve as a measure of overall complexity and areas can 
potentially be compared between woodlands.

As explained in Section 2.3.3,caution needs to be applied when 
interpreting radar charts (ElMaraghy, 2014). Nevertheless, for their 
traditional popularity the radar charts presented in Fig. 3 may serve as 
convenient descriptive statistics to introduce our results.

We can clearly see that there is a complexity trend in the contrast 
data where the polygon area is mostly and gradually increasing from 
Clocaenog (plot 1) to Tazigou. This effect was, of course, intended when 
assembling the contrast data. The gradual differences between plots 
sometimes appear to be difficult to appreciate, as not all characteristics 
increase from plot to plot (cf. Fig. 3). This is, of course, natural and as 
discussed in Section 2.3.3 the idea of complexity indices is that some 
contributing individual diversity indices can to a certain degree 
compensate for others. Considering the anticipated diversity trend, the 
Svartberget plot data appear to fit somewhere between Clocaenog (plot 
3) and Białowieża. Within the nine Svartberget plots we can conclude 
that the first three plots show low overall diversity, although indices V 
and T tend to have comparatively high values. The differences in terms 
of polygon areas between Svartberget plots 4–9 are quite small and it 
seems difficult to identify a clear trend from the radar charts (Fig. 3).

3.2. Different weights and aggregation methods

When comparing the bar charts in Fig. 4 it is evident that the results 
in terms of complexity index C are quite similar in all 16 charts 
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Fig. 3. Radar charts based on the fmsb R package depicting the unweighted values of the seven diversity indices selected in this study for characterising α-diversity 
of 17 study plots after transformation and standardisation. The contributing indices considered are Clark and Evans (1954) aggregation index, Rʹ (Eq. (1)), structural 
complexity index, V (Eq. (2)), mean spatial species mingling, M (Eq. (3)), species profile index, Aʹ (Eq. (4)), mean stem-diameter differentiation, T (Eq. (5)), Gini 
coefficient, Gʹ (Eq. (7)), and mean height-diameter ratio of dominant trees, s (Eq. (8)). The index values were transformed and standardised so that values indicating 
low diversity are near 0 and those implying high diversity are near 1.
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irrespective of weighting and aggregation methods. Even the ranks of 
different plots as derived from the respective C values are similar with 
only minor differences.

Surprisingly, even the use of random weights leads to plausible re
sults that do not differ much from those of other weights. The use of 
uniform weights, a reasonable default choice, does not introduce major 
differences compared to the use of random weights. Slightly larger dif
ferences in terms of absolute values of complexity index C and the 
shapes created by connecting the bar tips occur when inverse correlation 
and PCA weights are applied. From this we can conclude that particu
larly the choice of weights does not matter much and that all methods 
used show a fairly robust behaviour, thus inspiring confidence.

When applying geometric and harmonic means (central two columns 

in Fig. 4), the complexity-index bars of the least diverse plots are often 
near zero. This is due to the lesser compensatory nature of these two 
aggregation methods where values of contributing indices close to zero 
cause resulting measure C to be near zero as well. This effect leads to 
sharp drops in the gradients formed by the bars towards the less diverse 
plots which is avoided when using arithmetic and arithmetic-geometric 
aggregation.

As expected, linear gradients are best achieved when using arith
metic aggregation (Fig. 4, left column). This is visually supported and 
also indicated by linear gradient measure c̃ (Section 2.2.3). For both 
geometric and harmonic aggregation this measure is generally very low. 
However, c̃ is reasonably large when applying arithmetic-geometric 
aggregation, i.e. C(ag) (Fig. 4, right column). This method also has the 

Fig. 4. Bar charts of complexity index C ordered according to complexity and resulting from different weighting methods (from top to bottom: random, uniform, 
inverse correlation and PCA) and different aggregation methods: C(a) – arithmetic mean (Eq. (9)), C(g) – geometric mean (Eq. (10)), C(h) – harmonic mean (Eq. (11)) 
and C(ag) arithmetic mean of arithmetic and harmonic mean. The bars shaded in grey indicate the nine Svartberget plots. ̃c is a linear gradient measure (cf. Section 
2.3.3) and the upper index symbols have the same meaning as for C. The numbers on the abscissa give the number of the plots in the order as presented in Section 2.1. 
The error bars in the first row showing the results for random weighting give plus-minus standard deviation whilst the bar heights represent the means of 1000 
simulations.
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advantage that the aggregation is not fully compensatory (as for C(a), left 
column) and thus, for example, a lack of species diversity cannot be fully 
compensated for by extraordinary size diversity and vice versa. A 
maximum of measure c̃ is achieved in the right column of Fig. 4 when 
applying inverse-correlation weights. In this bar chart, also visually the 
best linear gradient is obtained without any major drops in the height of 
bars. Therefore we concluded that inverse-correlation weighting com
bined with arithmetic-geometric aggregation, i.e. C(ag), is the best choice 
given our data.

3.3. Random weights as references

It makes sense to examine the differences in C between random and 
non-random weights in greater detail for a better understanding of the 
influence of different weights on the aggregated complexity indices 
(Fig. 5).

Looking at general patterns first, it is clear that the differences in 
terms of uniform versus random weights are very small, i.e. mainly 1–2 
% of the maximum of C on average. This is contrasted by the differences 
in complexity index C caused by inverse-correlation and PCA weights 
where the differences are around 5–7 % on average. This is still a 
moderate effect. Another interesting information in Fig. 5 is contributed 
by the signs of ΔC: Signs are mostly negative when considering the 
differences to the application of uniform and inverse-correlation weights 
compared to random weights whilst the signs are largely positive when 
using PCA weights. Negative ΔC imply that C using the indicated 
weights is smaller than corresponding C based on random weights, 
whilst positive ΔC imply the opposite relationship. The opposite trends 

of ΔC based on inverse-correlation weights and ΔC based on PCA is a 
consequence of the aforementioned opposite strategies of the two types 
of weights, cf. Section 2.3.2. Another general trend is that there is often 
an increase in ΔC with decreasing C.

Obviously using uniform weights, although seemingly a reasonable 
choice, only results in small differences in C (Fig. 5, top). This finding 
can also be concluded by comparing the bar charts of the first two rows 
of Fig. 4. Here, for all plots C based on uniform weights is slightly smaller 
than C for random weights. This difference is again largest for plots with 
low diversity. The signs of ΔC clearly highlight the different strategies of 
inverse-correlation and PCA weights: On average inverse correlation 
leads to complexity indices that are smaller than those obtained from 
random weights, whilst PCA on average yields C values that are larger 
than those achieved with random weights. The largest values of ΔC 
across all bar charts in Fig. 5 result from PCA weights and reach 12 % of 
maximum C.

The trend of increasing ΔC with decreasing C is most likely related to 
comparatively high weights assigned to contributing indices with low or 
high values. Since inverse-correlation and PCA weights may for some of 
these indices be much larger than the corresponding random weights, 
exceptionally low or high index values are unproportionally decreased 
or increased in low diversity plots.

3.4. Implications for the Svartberget plots

When accepting C(ag) as the best solution (cf. Section 3.2), the nine 
Svartberget plots fall into the lower half of the total index range (Fig. 6), 
whilst the observed maximum is at C(ag) = 0.60 (Tazigou).

Fig. 5. Bar charts of complexity index difference ΔC, i.e. C ordered according to complexity and resulting from different weighting methods (from top to bottom: 
uniform, inverse correlation and PCA) minus C ordered in the same way but for random weights. The upper index symbols have the same meaning as in Fig. 4.
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Largely it is only the two Clocaenog P. sitchensis plots which are less 
diverse than the nine Svartberget plots. An exception is Svartberget plot 
2 with exceptionally low diversity at C(ag) = 0.19 (Table 3) due to 
comparatively few broadleaved trees. Complexity indices like C(ag) also 
offer the opportunity to check up on personal perceptions and plot/ 
block selection made ad hoc in the field: We can see that based on means 

C(ag) the blocks allocated to medium and complex structure need to be 
reversed or at least to be interpreted as similarly complex (Table 3). This 
is also supported by the lower basal-area density on what is now the 
medium Svartberget site compared to the complex site (cf. Table 2).

The lower basal-area density is, the more light, nutrients and water 
are available for the development of complex forest structure. We also 
understand that the variation of C(ag) is exceptionally high on the simple- 
structure site, i.e. in plots 1–3. This needs to be taken into consideration 
when carrying out follow-on analyses.

4. Discussion

We began this article by arguing that diversity is an important notion 
of ecosystems and even an indicator of resilience and ecosystem health. 
Many different quantitative measures of diversity have been suggested 
including non-spatial and spatial measures (Magurran, 2004; Pommer
ening and Grabarnik, 2019) and measures of functional diversity 
(Wojcik et al., 2025). Since the statistical methodology commonly used 
for the aggregation of several such component diversity indices quan
tified for one ecosystem has to our knowledge not been studied in a 
systematic way (cf. Ehbrecht et al. 2017, 2021; Wojcik et al., 2025; Zhao 
et al., 2022), we examined the available approaches in this study 
(Fig. 2).

Key to the success of the methods applied in this study was a 
balanced selection of contributing diversity indices from the three 
α-diversity tenets of location, size and species diversity. Using balanced 
representations from these three facets of ecosystem structure has also 
proved useful in spatial reconstruction research, where the structure of 
forest ecosystems was successfully reconstructed from diversity in
dicators (Pommerening and Stoyan, 2008; Bäuerle and Nothdurft, 2011; 
Lilleleht et al., 2014; Wudel et al., 2023). A successful reconstruction of 
the structure of an ecosystem is only possible, if the characteristics used 
for the reconstruction are statistically meaningful descriptors (Torquato, 
2002). The same is true for an aggregated complexity index. Naturally it 
is possible to select other indices than those in Section 2.2.1, however, 
based on our research we are certain that a balanced representation of 
the three aforementioned tenets is important.

It has proved useful to consider a pool of known and well docu
mented contrast or reference data in addition to the target data. This has 
not only offered the possibility of plausibility checks by comparing the 
complexity results and ranks of the target data with those of the refer
ence data but also provided training data for deriving inverse- 
correlation and PCA weights, which is not too dissimilar to artificial- 
intelligence applications (cf. Lhoumeau et al., 2025). In contrast to 
artificial intelligence, while carrying out our analyses it seemed, how
ever, less important to assemble a large, extensive data base of reference 
plots. More important was the use of reference data with sufficient 
structural differences so that a meaningful complexity gradient could be 
established. This gradient made it possible to reliably identify the 
complexity ranks of the Svartberget plots. If the reference data are suf
ficiently well diverse, it can be expected that a potential removal or 
addition of one or two reference data sets or contributing diversity 
indices has only a minor effect on the complexity indices and ranks of 
the target plots.

In our study, we considered weight and aggregation method as the 
most influential parameters of the process of deriving a global 
complexity index. In our experiments, we applied random, uniform, 
inverse-correlation and PCA weights. In addition, we used weighted 
arithmetic, geometric, harmonic and arithmetic-geometric aggregation. 
Overall the differences in the results between different weights were 
rather small (Fig. 4). Weights are apparently the weakest of the two 
influence factors. When comparing weights, inverse-correlation and 
PCA weights were clearly more influential than random and uniform 
weights. This is because correlation and PCA weights specifically take 
the correlation structure into account, whilst the other two weights 
ignore this statistical structure in the contributing indices.

Our results also revealed that the choice of aggregation is relatively 
more important than the choice of weights, although both the resulting 
gradient of global complexity index and the complexity ranks did not 
differ much even between aggregation methods (Fig. 4). As explained in 
Section 2.3.3, we were interested in obtaining a complexity gradient as 
linear as possible aiming at an approximately constant rate of decrease 
in complexity. This was particularly important for our Svartberget plots, 
where the structural differences were only small. Linear gradients are 
best achieved when applying weighted arithmetic aggregation, howev
er, in that case the contributing component diversity indices can fully 

Fig. 6. Complexity index C(ag) values and associated ranks for the nine Svart
berget plots and the eight contrast or training plots.

Table 3 
Complexity index C(ag) for the nine Svartberget plots including arithmetic mean 

C(ag) and coefficient of variation ̃v of C(ag) for the three blocks (simple, medium 
and complex structure) that were previously selected in the field.

Svartberget plot Structure type C(ag) C(ag) ṽ

1 simple 0.385 ​ ​
2 0.194 0.311 0.329
3 0.353 ​ ​
4 medium 0.441 ​ ​
5 0.433 0.435 0.013
6 0.431 ​ ​
7 complex 0.449 ​ ​
8 0.384 0.422 0.080
9 0.433 ​ ​
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compensate for each other. For example, a lack of species diversity can 
be compensated for by increased size or vertical forest structure and vice 
versa. Whilst such compensatory effects make sense and can be justified 
to some extent, a full compensation seems unrealistic (Thomsen et al., 
2024; Hiddink and Davies, 2024). Therefore we identified a hybrid ag
gregation technique, the weighted arithmetic-geometric method. This 
method is mostly compensatory but does not allow full compensation. 
Our results showed that by applying this aggregation method the 
envisaged linear gradient of complexity indices was developed second 
best after linear aggregation. A maximum of linearity was achieved with 
the weighted arithmetic-geometric method in combination with 
inverse-correlation weights.

The comparison with random weights yielded interesting insights 
(Fig. 5): Differences between random and non-random weights tended 
to increase with decreasing overall complexity. Here, contributing 
indices with particularly low or high values were assigned larger 
weights than under random conditions. Analysing the differences be
tween random and non-random weights also confirmed the contrasting 
strategies of inverse-correlation and PCA weights. On average inverse 
correlation results in complexity indices are smaller than those obtained 
from random weights, whilst PCA on average yields C values larger than 
those produced by random weights. To our knowledge using random 
weights as references has never been attempted before in constructing 
complexity indices.

The complexity-index values of the Svartberget plots estimated with 
the weighted arithmetic-geometric method in combination with inverse- 
correlation weights are plausible when compared with the reference 
data and field impressions. In comparison with the reference data it is 
realistic that these boreal forest plots were allocated to the lower half of 
the complexity range (Fig. 6). However, the results also highlighted that 
the classification of medium- and complex-structure sites need to be 
swapped. This is valuable information for future studies involving the 
Svartberget plots. A maximum C(ag) of 0.60 could be ascertained in our 
study highlighting that for very large C(ag) near 1 many if not all 
contributing indices would need to approach their maxima.

Our research has provided greater clarity with regard to the meth
odology of aggregating individual measures of diversity which is an 
important precondition for judging on overall biodiversity and for 
comparing structural complexity with other ecosystem goods and ser
vices. Most prominently such comparisons may involve timber and non- 
timber forest products as economic goods in traditional forestry dis
courses (Díaz-Yáñez et al., 2019). In addition, the overall complexity 
index is strongly supported by a number of well-documented individual 
indices, quantifies structural complexity and allows ranking ecosystems. 
Structural complexity indices like C(ag) are also likely to play an 
important role in the transformation of plantations to continuous cover 
forestry (CCF) and in forest restoration, as increasing structural 
complexity is an important indicator of successful transformation 
(Pommerening, 2023).

5. Conclusions

Global structural complexity indices can be successfully derived by 
aggregating multiple contributing diversity indices. When doing this we 
found it is useful to analyse research plot data in the context of a small 
number of reference data that provide sufficient contrast to build a 
global structural gradient. In our study, inverse-correlation weights 
combined with arithmetic-geometric aggregation turned out to be the 
best choice for allowing limited compensatory effects. Generally weights 
have a minor influence on index aggregation, the aggregation technique 
used is of greater importance. In this analysis, random weights have 
turned out to be an important tool for a better understanding of how 
weights and index aggregation work. Our nine forest plots at Svartberget 
in Northern Sweden featured at the lower end of the complexity scale 
and differed comparatively little in structural complexity.
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Ulrich, W., Batáry, P., Baudry, J., Beaumelle, L., Bucher, R., Čerevková, A., de la Riva, E. 
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