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In times where biodiversity is globally under much pressure, effective monitoring of ecosystems is of great
importance. As plants and particularly trees tend to shape the physical environment of ecosystems, indicators
based on the structural complexity of plant communities are frequently used as surrogates for direct measures of
biodiversity. A multitude of such quantitative diversity indicators exist and when considering multiple ecosystem
services there is often the need to aggregate them in a single complexity index. We quantified the effects of four
statistical techniques of aggregating contributing indices from three overarching tenets of a-diversity, i.e.
location (or dispersion) diversity, size and species diversity. In addition we experimentally studied the influence
of four different weights assigned to the contributing diversity measures. Overall the differences between the
weights and aggregation methods used were comparatively small. Inverse correlation weights combined with
arithmetic-geometric aggregation turned out to be the best choice for obtaining a clear complexity gradient for
our study data from the boreal forest in Northern Sweden. In our analysis, it proved useful to rely on a small pool
of global reference data with a strong structural gradient which served as contrasts and training data in addition
to the data of our study plots. The application of random weights as statistical references was very helpful for
understanding how weighting and index aggregation works. Our index-aggregation results suggested that the
nine Swedish forest plots were at the lower end of global complexity and differed comparatively little in terms of
forest structure.

1. Introduction complexity indices (Weiner and Solbrig, 1984; Pommerening and Gra-

barnik, 2019).

It is now well established that diversity in ecosystems is not an un-
necessary ‘luxury’ property but fundamental to their existence (Yachi
and Loreau, 1999; Begon et al., 2006; Matias et al., 2013; Oliver et al.,
2015; Danet et al., 2024). Ulrich et al. (2023) stated that biodiversity
also benefits human well-being and particularly human health. There-
fore biodiversity is not only an essential notion of ecosystems but also an
ecosystem good or commodity (Sandifer et al., 2015). Currently biodi-
versity is threatened by multiple man-made global changes, among
which climate change potentially has a particularly detrimental effect
(McElwee, 2021; Roman-Palacios and Wiens, 2020). Worldwide con-
servation is therefore concerned with maintaining diversity or at least
with slowing down the process of losing species (Carvalheiro et al.,
2013). Key to effective conservation is goal-oriented monitoring
including the application of specialised summary statistics for
measuring the current state of plant diversity and their aggregation in
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Biodiversity can be quantified in multiple ways by focussing on a
wide range of different taxa involving plants, fungi and animals. As
plants play an important role in shaping the physical structure of many
environments, the structural complexity of plant communities has
frequently been used as an indicator of the diversity in other taxa
(Recher et al., 1996; Moen and Gutierrez, 1997; Beckschafer et al.,
2013). The habitat heterogeneity hypothesis (Simpson, 1949; MacArthur
and Wilson, 1967) relates the positive association between species di-
versity and structural complexity by suggesting that more complex en-
vironments provide increased niche space and thus facilitate
specialisation and avoidance of competition through spatial segregation
(Cramer and Willig, 2005; Beckschafer et al., 2013). When considering
plant ecosystems, a-diversity or functional diversity at community level
is often subdivided into various tenets or facets. Carmona et al. (2016)
and Wojcik et al. (2025), for example, focussed on functional diversity
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and therefore considered the tenets of functional richness, functional
evenness and functional divergence, which, in their view, together de-
fines the trait space used by an ecosystem. In this study, we alternatively
considered structural diversity and its tenets location (or dispersion) di-
versity, size diversity and species diversity (Gadow, 1999; Pommerening,
2002; cf. Fig. 1). The diversity of plant locations reflects the pattern of
plant dispersion, e.g. regular, clumped (clustered), random locations or
some combination of these. Species diversity is concerned with species
richness, species abundance and the spatial arrangement of species. Size
diversity involves the distribution and spatial arrangement of, for
example, tree stem diameters or heights. Size diversity is particularly
important in ecosystems that involve plants such as trees whose sizes are
extremely variable. Size-diversity measures can be further subdivided
into indices of size inequality and size dominance.

Size inequality measures focus on size variability in plant pop-
ulations, whilst size dominance measures attempt to address matters of
competition.

There is consensus that all three tenets location (or dispersion) di-
versity, size diversity and species diversity jointly contribute to overall
structural complexity (Pommerening and Stoyan, 2008; Bauerle and
Nothdurft, 2011; Wudel et al., 2023). In monitoring and diversity ana-
lyses, it is possible to consider the results relating to the three diversity
tenets and even the results of individual diversity indices independently.
However, there is often a need to synthesise all index results into a single
number to establish overall complexity (Jachne and Dohrenbusch, 1997;
Wojcik et al., 2025). There are many definitions of complexity, however,
the most intuitive describes the level of biological integration and
interaction in ecosystems. The term ecosystem itself focuses on the
structure, the complexity of organisation and the functioning of the
system (Kimmins, 2004). In this study, we mainly focused on structural
complexity (Ehbrecht et al., 2017, 2021) as created by the dominant life
forms of an ecosystem, e.g. the trees of a forest ecosystem. Complexity is
a valuable ecosystem trait that directly relates to ecological resilience
(Messier et al., 2013). This is typically the case when diversity trends
over temporal or spatial gradients are examined. Aggregating single
diversity indices in a comprehensive measure is not trivial and carefully
examining different methods is often not taken seriously into consider-
ation. The general statistical process of constructing complexity mea-
sures by aggregation is outlined in Fig. 2, which also indicates the
corresponding sections of this article. In this process, there are several
methodological questions involving which diversity measures to choose
and others relating to the aggregation of indices.

The objective of this study was to identify the most appropriate way
to derive global structural complexity from individual diversity indices.
For this we examined different multivariate weighting and aggregation
techniques and their relative influence on the results. To our knowledge,
in all previous studies aggregation methods were deterministically
selected without carrying out sensitivity analyses of alternative
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Selection of contributing
indices (2.2)

!

Transformation and
standardisation (2.3.1)

!

Weighting (2.3.2)

!

Aggregation (including
compensation, 2.3.3)

!

Validation by
linear gradient (3.2)

Fig. 2. Flow chart for deriving aggregated complexity indices from individual
diversity measures. The numbers in brackets give the respective sections in
this article.

approaches. In many different ecological contexts, deriving global
structural complexity is necessary, for example, when assessing biodi-
versity as one ecosystem commodity among many others (Ehbrecht et al.
2017, 2021; Wojcik et al., 2025; Zhao et al., 2022). Nine plots from the
boreal forest of Northern Sweden were used for that purpose and addi-
tionally complemented by well-known contrast or reference forest plots
from different parts of the world for establishing a meaningful global
diversity gradient and for ensuring the robustness of both the method-
ology and the resulting complexity index. We first applied the unique
complexity index to the eight reference plots and then used the nine
plots from Sweden for quantifying their complexity in the global context
of the reference data. This resulted in a total of 17 forest plots and
another objective was to identify the position of the nine Swedish plots
in this global complexity gradient.

Woodland structure (a-diversity)

Location diversity
(Dispersion)

Size diversity
(Quantitative traits)

(Species) diversity
(Qualitative traits)

Size inequality
(true diversity)

Size dominance
(competition)

Fig. 1. The three major tenets of structural diversity. Modified from Pommerening (2002).
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2. Materials and methods
2.1. Study data

The main focus of this study is on the Svartberget data (Section 2.1.1)
and contrast or reference data (Section 2.1.2) were added to ensure that
the complexity scale was not biased by the use of only local data and that
the final complexity index is universally applicable. Selecting eight plots
appeared to be reasonable in an attempt to approximately match the
number of the Svartberget plots. These eight plots were selected for their
relative differences and merits in other studies which we referred to in
Section 2.1.2. The contrast data were described in the order of
complexity as can be inferred from Table 1. Unique identification (ID)
ranks were assigned to them in the same order and used in the analysis.

2.1.1. Svartberget data (ID ranks 1-9)

Near the SLU Svartberget field station close to Vindeln in Northern
Sweden three sites were selected in the boreal forest with a structural
gradient ranging from simple to medium and complex forest structure,
which was assigned as part of project fieldwork based on the visual
appearance of vertical forest structure. Simple forest structure was
defined as a combination of mature overstorey and a comparatively low
understorey layer stemming from a single regeneration cohort. Ac-
cording to our definitions, medium structure includes an additional
older regeneration cohort whilst complex forest structure has at least
three canopy layers. One of the objectives of this project was to verify
the visual assignment of plots to the aforementioned complexity classes
simple, medium and complex. We established three plot replicates with
an average size of 50 x 50 m in each of these three sites at approximately
230 m asl. The main species were Norway spruce (Picea abies L.) and
Scots pine (Pinus sylvestris L.). They were complemented by broadleaved
species, mainly birch (Betula spp.), willow (Salix spp.), aspen (Populus
tremula L.), and grey alder (Alnus incana L.). The dominating soil type is
moraine of varying thickness.

2.1.2. Contrast/reference data

Clocaenog Forest (Wales, UK) lies on the southern side of the Den-
bigh moors, a plateau rising to between 300 m and 500 m asl. The forest
stands (Tyfiant Coed plots 1 and 2 at 53.07 N, 3.43 W, ID ranks 10 and
11) included in this study are situated at an altitude of 395 m asl.
Intergrade iron pan soil predominates on this site. The site was originally
planted with Sitka spruce (Picea sitchensis (Bonc.) Carr. and lodgepole
pine (Pinus contorta Douct. ex Loup.) in 1951. P. sitchensis now dominates
the site and plot 2 is structurally slightly more diverse in terms of tree
dispersion and vertical tree height structure than plot 1 (Pommerening
et al., 2024).

The Biatowieza data (ID rank 12) are from Biatowieza Forest (50.43
N, 23.50 E) in eastern Poland in the border zone between Poland and
Belorussia. This diverse woodland consists of a pedunculate oak

Table 1
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(Quercus robur L.) overstorey interspersed with Scots pine (Pinus syl-
vestris L.) and an understorey of Norway spruce (Picea abies (L.) KarsT.),
hornbeam (Carpinus betulus L.) and silver birch (Betula pendula RotH.).
The data are from outside the strict reserve of Biatowieza Forest and the
forest stand is managed for biodiversity and timber value according to
the principles of low-impact continuous cover forestry (Pommerening
and Stoyan, 2008; Pommerening and Uria-Diez, 2017).

The Hidegvizvolgy woodland (ID rank 13) is located in the buffer
zone of the Hidegvizvolgy Forest Reserve (47.34 N, 17.37 E) in the hills
around the northwest Hungarian city of Sopron. Before being designated
as a forest reserve in the early 2000s, the area was part of the restricted
border zone of the Iron Curtain for almost 50 years and consequently
remained undisturbed for a comparatively long time (Puttkamer, 2005;
Pommerening and Uria-Diez, 2017). The main species of this forest
stand include sessile oak (Quercus petraea Mart.), hornbeam (Carpinus
betulus L.) and European beech (Fagus sylvatica L.).

Deisenhofener Forst (ID rank 14) is a monitoring plot near Munich
(Germany, 47.96 N, 11.70 E) located in a forest which is in advanced
transition to continuous cover forestry (Pommerening, 2023). The forest
stand is located in the Munich gravel plain which formed during late
Pleistocene glacial periods. The plot involves several canopy layers.
Dominant species are Norway spruce (Picea abies (L.) Karsrt.) and silver
fir (Abies alba Mi1.) with strong contributions of European beech (Fagus
sylvatica L.) and Scots pine (Pinus sylvestris L.). Minor species include
Abies grandis (Douct.) LinoL., Quercus rubra L., Carpinus betulus L. among
others which partly resulted from natural regeneration and partly from
underplanting (Fiildner, 1995).

Freyung (ID rank 15) represents a diverse selection forest located in
the Bavarian Forest (51.68 N, 10.10 E, Germany) not far from the border
between Germany and the Czech Republic. The forest plot has several
canopy strata and the main species are Norway spruce (Picea abies (L.)
Karst.), silver fir (Abies alba Mu.) and European beech (Fagus sylvatica
L.). Situated at 720 m asl with south-eastern exposition the main soil
type is a podsolised stony brown earth. The management principles of
Freyung involved single-tree removals and a continuous long-term
regeneration (Pommerening et al., 2000).

Xiaolongshan Forest (ID rank 16) is located in the Xiaolongshan
Nature Reserve, Gansu province, north-west China. The forest is situated
on the north-facing slopes of the West Qinling Mountain range
(33.30-34.49 N, 104.22-106.43 E) and constitutes a natural mixed
pine-oak forest. The soil type is a grey cinnamon soil in the north of
the Qinling Mountains and yellow cinnamon soil prevails in the south.
Plot b from the Xiaolongshan Forest was included in this study. This
stand is a mixed pine-oak population dominated by Quercus aliena var.
acuteserrata Maxmv., Ulmus glabra Hups. and Symplocos paniculata
(THunB.) WaLL. ex D. Don. (H. Wang et al., 2021).

Tazigou Experimental Forest Farm  (43°05-43°40" N,
129°56'-131°04' E) is located in Jilin Province, China (H. Wang et al.,
2021) and has ID rank 17. This area of secondary forest is situated on

Main characteristics of 17 experimental woodland data sets: Area in hectare, A, global species richness, i.e. the absolute number of species, S, number of trees per
hectare, N, basal area, G, minimum stem diameter, dp;,, maximum stem diameter, dyax, quadratic mean stem diameter, d,, height of the largest 100 trees per hectare,
hyo0. The three replicates of the Svartberget sites (simple, medium and complex structure) were summarised jointly.

Characteristic A [ha] S N [hal] G [m? hal] diin [cm] dimax [cm] dy [em] 100 [m]
Svartberget (s) 0.26 4 1237.03 27.90 4.0 33.1 16.9 33.04
Svartberget (m) 0.22 4 745.43 11.88 4.0 43.3 13.1 18.93
Svartberget (c) 0.22 3 1222.32 12.48 4.0 35.5 13.7 16.43
Clocaenog 1 1.00 1 291.88 30.30 20.4 55.5 36.4 28.69
Clocaenog 2 1.00 4 330.03 29.85 4.2 59.2 33.9 27.43
Bialowieza 1.02 5 748.95 34.92 5.0 79.1 24.4 32.79
Hidegvizvolgy 0.67 7 782.09 24.43 6.2 57.2 26.9 24.68
Deisenhofen 1.13 11 1106.49 45.63 6.5 80.6 22.9 32.94
Freyung 0.50 3 458.75 41.98 6.8 92.1 34.1 36.22
Xialongshan 0.49 35 841.66 25.31 4.4 70.5 19.6 18.98
Tazigou 1.00 13 1202.00 20.19 4.0 55.7 14.6 17.31
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Laoyeling Mountain of the Changbai Mountain range. The area has
predominantly dark brown soil (humic cambisols) with a high natural
fertility. The main tree species are Mongolian oak (Quercus mongolica
FiscH. Ex LeDEB.), Asian white birch (Betula platyphylla Sukaczev), Korean
pine (Pinus koraiensis SieoLb & Zucc.), Ussuri popular (Populus ussuriensis
Komarov) and Amur lime (Tilia amurensis Rurr.). The mapped forest
stand included in this research is plot ¢ in Tazigou.

The tree density, size and species characteristics reveal that the nine
Svartberget plots fit well into the variety of different values of these
characteristics given by the eight contrast plots (Table 1). The Svart-
berget plots have more trees than most contrast plots, but are excep-
tionally low in basal area on the medium and complex structure site. The
same applies to the quadratic mean diameter. The mean of the 100
dominant trees per hectare is also much lower at Svartberget than in
most of the contrast plots.

2.2. Individual, contributing diversity indices

The selection of individual diversity indices was carried out so that
index representatives of all three diversity tenets, i.e. location, species
and size diversity were included. Dominance indices were deliberately
excluded, since they are primarily not intended to quantify size diversity
but competition. Based on a literature review, we selected contributing
structural indices that had performed well in the past and whose
indicative power is well documented.

2.2.1. Dispersion (plant location diversity)

2.2.1.1. Horizontal structure. Spatial distribution patterns profoundly
influence plant growth, habitats and regeneration (Pretzsch, 1995). For
characterising plant dispersion, aggregation index R’ by Clark and Evans
(1954) compares the mean of observed distances r between any plant of
a spatial plant pattern with the corresponding mean distance Er of a
theoretical pattern with complete spatial randomness:

, T N
R =& where Er = 0.5 x \/% (€D)

In Eq. (1), A is the plot area and N is the total number of trees. The
aggregation index has proved to be a very efficient index of plant
location diversity (Corral-Rivas, 2006).

2.2.1.2. Vertical structure. Vertical structure of plant ecosystems is
likely to have an even greater influence on overall complexity than
horizontal structure. According to Falster and Westoby (2003), vertical
structure is one of the most important notions of ecosystems involving
trees, since raising their foliage into considerable heights above ground
is the main evolutionary strategy of these plant types. Zenner and Hibbs
(2000) defined the structural complexity index (SCI), which synthesises
vertical structure by means of Delaunay triangulations where tree lo-
cations provide x and y coordinates and total tree height serves as z
coordinate. By a spatial tessellation approach (Delaunay, 1934) each
tree is connected to its neighbours such that triangles are defined that
form a continuous faceted surface, i.e. a triangulated irregular network
(TIN; Beckschafer et al., 2013). SCI is defined as the ratio of the total
surface area of this TIN and the projected ground area of the constituent
triangles:

_ Surface area of TIN
~ Projected area of TIN

(2)

The ratio given in Eq. (2) tells us how much forest structure varies
vertically compared to a flat surface made up of individual triangles
(Zenner and Hibbs, 2000; Beckschafer et al., 2013) and essentially
quantifies canopy roughness or rugosity. As such SCI is related to photo-
synthesis and resilience. If all trees have the same total height, V equals
1, which is the lower limit of this index. For structurally more complex
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forests, V > 1. An edge correction method excludes border triangles that
are affected by spatial edge effects.

2.2.2. Species diversity

2.2.2.1. Species richness and spatial species mingling. Spatial species
mingling describes the spatial interaction of plant species, i.e. how in-
dividual plants of certain species are spatially mixed with those of other
species (Pommerening et al., 2024). The mingling index is defined as the
proportion of heterospecific pairs successively formed by a given plant i
and its k nearest neighbours (Gadow, 1993; Eq. (3)). In the analysis,
every plant within a given research or sample plot acts once as plant i
(also referred to as reference or subject plant):

k
=1

| =

Function 1(A) is an indicator function with 1(A) = 1, if A is true,
otherwise 1(A) = 0. The population mingling index computed for the
entire plant community in a given plot is calculated as the arithmetic
mean of all M; by considering an appropriate edge correction. We
applied the NN1 edge correction method (Pommerening and Stoyan,
2006). The species mingling index complements species richness by
spatial information. However, Pommerening and Sarkka (2025)
demonstrated that the concept of spatial species mingling partially also
includes local species richness, i.e. species richness in the neighbour-
hood of reference plant i.

When constructing our complexity index, we applied the species
mingling index to Voronoi neighbourhoods. Voronoi neighbours tend to
better describe interactions from an individual-plant perspective, since
the neighbourhood covers 360° around the reference plant. This prop-
erty makes Voronoi neighbours more interesting for ecological studies
(Pommerening et al., 2024).

2.2.2.2. Vertical species diversity. The fundamental idea of the species
profile index used in this study is to quantify species diversity in different
vertical layers or height bands. This concept is also partly motivated by
the fact that vertical forest structure is of great importance when
quantifying overall forest diversity. The index gives an idea of the ver-
tical extent of species diversity and to some degree also of vertical niche
partitioning across canopy layers (Pretzsch 1995). Based on the original
species profile index by Pretzsch (1995), we modified his concept to
consider ¢ = 4 height bands and the Simpson (1949) species diversity
index. In this study, species profile index A’ is the complement of the sum
of the Simpson index calculated separately for c relative height bands:
S c
A=3"1->p; 4)
i=1 j=1

In Eq. (4), S is the number of species (global species richness), c is the
number of height bands, i.e. ¢ = 4 in this case, and p; is the proportion of
species i in band j. The four height bands are defined by 25 %, 50 %, 75
% and 100 % tree total height percentiles. The trees of each plot are
assigned to one of the four height bands [0, 25 %), [25 %, 50 %), [50 %,
75 %) and [75 %, 100 %) depending on the vertical locations of their
crown tips. Species profile index A’ is higher in plots with more vertical
height differentiation compared to a single-canopy forest stand
(Pommerening, 2023).

2.2.3. Size diversity

2.2.3.1. Spatial stem diameter differentiation. Size differentiation index
T; focuses on the size contrast between a reference plant and its nearest
Euclidean neighbour. For each plant i and its first nearest neighbour k, T;
is defined as the ratio of smaller-sized and larger-sized variables of
subject plant and first nearest neighbour subtracted from one (Gadow,
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1993):

T, =1 — min (ﬂ ﬂ) )
me m;

In Eq. (5), m; and m; are the size variables of the subject plant and its
first neighbour, respectively. In the construction of the complexity
index, diameter at breast height (dbh) was used as tree size variable
when calculating Eq. (5). In forest ecosystems, size differences between
trees and their first Euclidean neighbours are often larger than between
trees and subsequent Euclidean neighbours (e.g. 2nd, 3rd or 4th nearest
neighbours) and give a meaningful description of overall spatial size
variability.

2.2.3.2. Overall non-spatial size diversity. The Gini coefficient (G’) is a
well-established measure of inequality adapted from economics (Gini
1912; Lorenz 1905) for quantifying size diversity. It has proved to
capture the non-spatial size structure of forest stands well (Damgaard
and Weiner, 2000; Duduman, 2011). Using individual-tree basal area g,
sorted in ascending order, the equation used in this study is:

, 2> hexi on+1l
G = ——n -
ny 8 n

The Gini coefficient is calculated to account for possible bias in finite
samples in a standardised manner (Eq. (7)).

©

n

G :Gxnfl

)

The sample size adjustment ensures unbiasedness in smaller plots
with few trees (Pommerening et al. 2016; Pommerening 2023). The
larger the Gini coefficient the more diverse the size structure of a plant
ecosystem.

2.2.4. Density and disturbance

Additionally to the three aforementioned tenets of plant diversity
and six diversity indices, plant density is often considered and important
structural characteristic (Pretzsch, 2009; Beckschéafer et al., 2013). The
slenderness or height-diameter ratio of trees is strongly influenced by
tree density. Disturbances — whether natural or human - typically reduce
tree density and encourage trees to grow relatively more in stem
diameter than in total height, which in the long term results in lower
height-diameter ratios than before the density reduction (Pretzsch,
2009; Wenk et al., 1990; Pommerening and Grabarnik, 2019). Slen-
derness is therefore an indirect indicator of density with a legacy effect,
since it takes some time for height-diameter ratios to adjust to changing
environmental conditions. As a contributing index we decided to focus
on the tree overstorey and thus we calculated the mean of the 20
%-tallest trees per plot:

1 Ay
s = H Z}dﬁ for hi > 0.8 x hmax (8)
i=1 1

h; and d; represent tree total height and stem diameter. 5 is usually
smaller than 1. Density and tree morphology characteristics are first-
order measures of forest structure and therefore also indicate struc-
tural diversity.

2.3. Complexity index construction

When constructing a global complexity index, the aggregation of
contributing individual indices includes (1) transformation and stand-
ardisation, (2) weighting of constituent diversity indices and (3) the
actual aggregation method by which the final, overall complexity index
is calculated from the individual indices (Fig. 2; Mazziotta and Pareto,
2013; Beliakov et al., 2015).
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2.3.1. Transformation and standardisation

Standardisation aims to make the component diversity indices
operate at the same scale. A common way to ensure this is by requiring
the indices to lie between 0 and 1. For species mingling (Eq. (3)), stem-
diameter differentiation (Eq. (5)) and the Gini index (Eq. (7)) stand-
ardisations of this kind were not necessary, as these indices by definition
only take values between 0 and 1. For the remaining diversity indices
suitable standardisations were identified. In some cases, first trans-
formations were necessary so that large standardised index values imply
high diversity and low index values indicate low diversity. For example,
in the case of the aggregation index (Eq. (1)), R' was subtracted from
maximum value 2.1451, as small values of original R indicate clustering
or inhomogeneity, which implies high diversity in this case. A similar
transformation had to be applied to the structural complexity index (Eq.
(2)) and for the slenderness of dominant trees (Eq. (8)). Details are given
in Table 2.

2.3.2. Weighting

Weights offer information about the relative importance of individ-
ual component indices and their sum usually equals 1. They can be
chosen according to expert judgement. Although this strategy of
assigning weights seems plausible and is justifiable, it may appear to be
somewhat subjective and therefore of limited value.

An alternative, more objective weighting approach is to base the
component indices on quantitative criteria. Two obvious options are
random and uniform weights. As often applied in statistics, random
weights can serve as a reference to compare the results from other
weights with and can be computed by drawing uniform random
numbers between 0 and 1 for each contributing index. The results are
then divided by the sum of these random numbers to ensure that the
weights sum to 1. We repeated the allocation of random weights 1000
times and calculated mean weights and standard deviations from the
1000 results. Uniform weights are computed as the reciprocal of the
number of contributing indices. This reciprocal (in our case 0.143, cf.
Table 2) is then the same weight for all indices.

Another strategy for the choice of weights is to balance index rep-
resentation by considering the correlation structure of the contributing
indices. For example, those indices that have a lower absolute correla-
tion with other indices are given a larger weight and vice versa. This
weighting can be achieved by basing the weights on the inverse of the
mean absolute Pearson correlation coefficients of each component index

Table 2

Contributing diversity indices, their standardisation and four of the five index
weights used in the aggregation process. Standardisation often also includes
transformation. Clark and Evans (1954) aggregation index, R’ (Eq. (1)), struc-
tural complexity index (SCI), V (Eq. (2)), mean spatial species mingling, M (Eq.
(3)), species profile index, A’ (Eq. (4)), mean stem-diameter differentiation, T
(Eq. (5)), Gini coefficient, G (Eq. (7)), and mean height-diameter ratio of
dominant trees, s (Eq. (8)). Corr. — inverse correlation, PCA — principal
component analysis.

Diversity Standardisation Uniform Corr. PCA
index weights weights weights
R x — min(x) 0.143 0.104 0.162
2.1451 — min(x)
with x = 2.1451 —
R
v 1 1 0.143 0.134 0.160
v
M - 0.143 0.127 0.162
A A 0.143 0.112 0.162
c
T - 0.143 0.170 0.127
G 0.143 0.112 0.169
s

1-sfors<1 0.143 0.242 0.043
0 otherwise
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so that the weights’ total sum again equals 1 as previously mentioned.
This inverse-correlation method reduces the influence of redundant in-
formation and assigns higher weights to indices that potentially
contribute unique insight and novelty to the aggregated complexity
index (Mazziatto and Pareto, 2013).

An alternative way of deriving weights is to use principal component
analysis (PCA; Legendre and Legendre, 2012). The loadings of the first
principal component accounts for the largest variance in the original
data and may also serve as objective weights (Wold et al. 1987; Chao and
Wu, 2017). These loadings can be transformed to weights by limiting
their sum to 1. PCA tends to assign the highest weights to those diversity
indices that have the highest mean absolute correlation with other
indices.

The Pearson correlation coefficient between inverse-correlation and
PCA weights is —0.99, thus highlighting that both weighting methods
pursue quite opposite strategies. A disadvantage of inverse-correlation
and PCA methods is that they depend on the tree data including
possible contrast/training data used for constructing the aggregated
complexity index and the calculated weights may differ from those that
apply to other data.

We applied all of the objective weighting methods described in this
section in our experiments.

2.3.3. Index aggregation

The last step in constructing a complexity index is the actual ag-
gregation of individual component indices. We assumed that at least to
some degree large values of some component indices can compensate for
small values of others, e.g. a lack of species diversity can to some extent
be compensated for by more size diversity. Classic aggregation methods
include the mathematical operations of summation and multiplication.
In all following aggregation approaches, weights are generally assumed
to be non-negative and to sum to 1.

In the process of summation, all component weights are summed up
whilst being multiplied by the corresponding weights to result in a
weighted arithmetic mean:

c@ — Zwixi ©)
i—1

Here x; are standardised component indices and w; are the corre-
sponding weights. The number of component indices is denoted by n.
Weighted arithmetic means such as C® have perfect compensatory
properties.

When aggregating indices in a multiplicative way, each transformed
and standardised index x; is raised to the power of its weight w; and
multiplied by other transformed and standardised component indices:

n
ce — Hxiw‘ 10)
i1

The result is weighted geometric mean C®. In general, weighted geo-
metric means are less compensatory than arithmetic means.

Finally, a third type of diversity index aggregation can be derived
from weighted harmonic means, which is the mean of the index
reciprocals:

n

=3 Wj an
=1 X
The weighted harmonic mean is the least compensatory of the three
aggregation methods and is often applied to rates and ratios. Egs. (9),
(10) and (11) ensure that the aggregated complexity index lies between
0 and 1 just like the component indices.
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We also considered combined arithmetic-geometric aggregation by
calculating the arithmetic mean of C® (Eq. (9)) and C® (Eq. (10)),
which we notationally referred to as C®8).

Traditionally in multivariate analysis, radar plots have often been
used to compare the diversity in different ecosystems by visually
considering the areas created by the radar charts. Theoretically this area
can be quantified, however, the result is strongly influenced by the order
in which the component diversity indices are displayed (ElMaraghy
et al.,, 2014). This is a clear deficit of radar plots despite their visual
appeal. For their traditional importance we used radar plots in this study
as descriptive statistics.

We organised complexity indices C in bar charts so that each bar
represented one of the 17 plots and ordered the bars according to C in a
descending order. For best allocation of complexity indices and ranks we
were interested in obtaining gradients of C as smooth and linear as
possible. When comparing many forest ecosystems across subtropical,
temperate and boreal climate zones as in our study, a linear gradient
implying a constant rate of decrease in complexity is beneficial because
this allows to see differences in structural complexity more clearly. As a
validation characteristic (cf. Fig. 2), we measured how far each sequence
of ordered C or bars was removed from the linear gradient by linear-
gradient measure ¢, which is the ratio of squared median of ¢ divided
by the standard deviation of q. Here, ¢ = C,»CL
sive values of C after arranging them in descending order. Values of q
usually lie between 1 and 2, ¢ > 2 can be considered as outliers. ¢ is a
variant of the coefficient of variation where we used the median instead
of the mean to avoid outliers (leading to sharp drops in the C sequence).

is the ratio of two succes-

3. Results
3.1. First complexity impression using simple radar charts

Radar charts using the unweighted index values give a first impres-
sion of the overall complexity of the 17 woodland data. When depicting
the seven diversity indices a polygon area is created which seems to
suggest that it can serve as a measure of overall complexity and areas can
potentially be compared between woodlands.

As explained in Section 2.3.3,caution needs to be applied when
interpreting radar charts (ElMaraghy, 2014). Nevertheless, for their
traditional popularity the radar charts presented in Fig. 3 may serve as
convenient descriptive statistics to introduce our results.

We can clearly see that there is a complexity trend in the contrast
data where the polygon area is mostly and gradually increasing from
Clocaenog (plot 1) to Tazigou. This effect was, of course, intended when
assembling the contrast data. The gradual differences between plots
sometimes appear to be difficult to appreciate, as not all characteristics
increase from plot to plot (cf. Fig. 3). This is, of course, natural and as
discussed in Section 2.3.3 the idea of complexity indices is that some
contributing individual diversity indices can to a certain degree
compensate for others. Considering the anticipated diversity trend, the
Svartberget plot data appear to fit somewhere between Clocaenog (plot
3) and Biatowieza. Within the nine Svartberget plots we can conclude
that the first three plots show low overall diversity, although indices V
and T tend to have comparatively high values. The differences in terms
of polygon areas between Svartberget plots 4-9 are quite small and it
seems difficult to identify a clear trend from the radar charts (Fig. 3).

3.2. Different weights and aggregation methods

When comparing the bar charts in Fig. 4 it is evident that the results
in terms of complexity index C are quite similar in all 16 charts
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Fig. 3. Radar charts based on the fmsb R package depicting the unweighted values of the seven diversity indices selected in this study for characterising a-diversity
of 17 study plots after transformation and standardisation. The contributing indices considered are Clark and Evans (1954) aggregation index, R’ (Eq. (1)), structural
complexity index, V (Eq. (2)), mean spatial species mingling, M (Eq. (3)), species profile index, A’ (Eq. (4)), mean stem-diameter differentiation, T (Eq. (5)), Gini
coefficient, G’ (Eq. (7)), and mean height-diameter ratio of dominant trees, s (Eq. (8)). The index values were transformed and standardised so that values indicating

low diversity are near 0 and those implying high diversity are near 1.



S. de Smedt et al.

Trees, Forests and People 23 (2026) 101165

1.0 1.0 1.0 1.0
c@ & =455 c® &® = 0.82 c® & = 0.00 c@® % =221  Random
08 08 08 08
06 0.6 0.6 0.6
04 04 04 04
02 02 ﬁ 02 02
00—+ ﬁ 00— T ’—T_‘ 00—+ e T 00— T T ’—ﬁ
171612141513 4 7 1 9 5 6 3 8 2 1110 171612151413 7 4 5 9 6 8 1 3 11 2 10 171612151413 7 4 5 6 9 8 1 11 3 2 10 171612141513 4 7 9 5 6 1 8 3 11 2 10
10 1.0 1.0 1.0
c® & =4.59 c® &® =0.69 c® & = 0.00 c@® @ =236  Uniform
0.8 08 0.8 08
06 0.6 0.6 0.6
04 04 04 04
02 02 02 H 02 HH
L s S S S s S s S s e S S L s St S s S s S S e S s L s s S s s S s S s s S S S L e St s s S s s e S S ’\_‘
171614121513 4 7 1 9 5 6 3 8 2 1110 171612151413 7 4 5 9 6 8 1 3 11 2 10 171615121413 7 4 5 6 9 8 1 11 3 2 10 171612141513 4 7 9 5 6 1 8 3 11 2 10
1.0 1.0 1.0 1.0
c@ & =5.36 c® &® = 0.55 c® & = 0.00 c@® @) —3.81 Correlation
08 0.8 0.8 0.8
06 06 0.6 0.6
04 04 04 04
0.2 0.2 H 0.2 H 0.2 H
00 AL AL L L IR L 0o AL AL L [Acm oo AL AL I H — oo AL L L IR Hﬂ
171614151213 7 4 9 5 6 1 3 8 2 1110 171615121413 7 4 5 6 9 8 1 3 11 2 10 171512161413 7 6 5 4 9 8 11 1 3 10 2 171615121413 7 4 9 5 6 1 8 3 11 2 10
1.0 1.0 1.0 1.0
c@ & =3.93 c® é® =0.14 c® & = 0.00 c@® &8 =155 PCA
0.8 0.8 0.8+ 08
06 06 0.6+ 06
04 04 04 04
02 02 HH 024 H 0.2 H
0.0 H 0.0 0.0 ’_‘

17161412151 4 137 9 3 5 8 6 2 1110 171612141513 4 7 9 5 1 6 8 3 11 2 10

171612151413 4 7 9 5 6 8 1 3 11 2 10 171612141513 4 7 1 9 5 8 3 6 2 1110

Fig. 4. Bar charts of complexity index C ordered according to complexity and resulting from different weighting methods (from top to bottom: random, uniform,
inverse correlation and PCA) and different aggregation methods: C@ _ arithmetic mean (Eq. (9)), C®) — geometric mean (Eq. (10)), ¢ _ harmonic mean (Eq. (11))
and C®®) arithmetic mean of arithmetic and harmonic mean. The bars shaded in grey indicate the nine Svartberget plots. ¢ is a linear gradient measure (cf. Section
2.3.3) and the upper index symbols have the same meaning as for C. The numbers on the abscissa give the number of the plots in the order as presented in Section 2.1.
The error bars in the first row showing the results for random weighting give plus-minus standard deviation whilst the bar heights represent the means of 1000

simulations.

irrespective of weighting and aggregation methods. Even the ranks of
different plots as derived from the respective C values are similar with
only minor differences.

Surprisingly, even the use of random weights leads to plausible re-
sults that do not differ much from those of other weights. The use of
uniform weights, a reasonable default choice, does not introduce major
differences compared to the use of random weights. Slightly larger dif-
ferences in terms of absolute values of complexity index C and the
shapes created by connecting the bar tips occur when inverse correlation
and PCA weights are applied. From this we can conclude that particu-
larly the choice of weights does not matter much and that all methods
used show a fairly robust behaviour, thus inspiring confidence.

When applying geometric and harmonic means (central two columns

in Fig. 4), the complexity-index bars of the least diverse plots are often
near zero. This is due to the lesser compensatory nature of these two
aggregation methods where values of contributing indices close to zero
cause resulting measure C to be near zero as well. This effect leads to
sharp drops in the gradients formed by the bars towards the less diverse
plots which is avoided when using arithmetic and arithmetic-geometric
aggregation.

As expected, linear gradients are best achieved when using arith-
metic aggregation (Fig. 4, left column). This is visually supported and
also indicated by linear gradient measure ¢ (Section 2.2.3). For both
geometric and harmonic aggregation this measure is generally very low.
However, ¢ is reasonably large when applying arithmetic-geometric
aggregation, i.e. C(®® (Fig. 4, right column). This method also has the
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advantage that the aggregation is not fully compensatory (as for C@, left
column) and thus, for example, a lack of species diversity cannot be fully
compensated for by extraordinary size diversity and vice versa. A
maximum of measure ¢ is achieved in the right column of Fig. 4 when
applying inverse-correlation weights. In this bar chart, also visually the
best linear gradient is obtained without any major drops in the height of
bars. Therefore we concluded that inverse-correlation weighting com-
bined with arithmetic-geometric aggregation, i.e. C(8), is the best choice
given our data.

3.3. Random weights as references

It makes sense to examine the differences in C between random and
non-random weights in greater detail for a better understanding of the
influence of different weights on the aggregated complexity indices
(Fig. 5).

Looking at general patterns first, it is clear that the differences in
terms of uniform versus random weights are very small, i.e. mainly 1-2
% of the maximum of C on average. This is contrasted by the differences
in complexity index C caused by inverse-correlation and PCA weights
where the differences are around 5-7 % on average. This is still a
moderate effect. Another interesting information in Fig. 5 is contributed
by the signs of AC: Signs are mostly negative when considering the
differences to the application of uniform and inverse-correlation weights
compared to random weights whilst the signs are largely positive when
using PCA weights. Negative AC imply that C using the indicated
weights is smaller than corresponding C based on random weights,
whilst positive AC imply the opposite relationship. The opposite trends

=TT U\_I

171612151413 7 4 5 9 6 8 1 3 11 2 10

171614121513 4 7 1 9 5 6 3 8 2 1110
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[P | T
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of AC based on inverse-correlation weights and AC based on PCA is a
consequence of the aforementioned opposite strategies of the two types
of weights, cf. Section 2.3.2. Another general trend is that there is often
an increase in AC with decreasing C.

Obviously using uniform weights, although seemingly a reasonable
choice, only results in small differences in C (Fig. 5, top). This finding
can also be concluded by comparing the bar charts of the first two rows
of Fig. 4. Here, for all plots C based on uniform weights is slightly smaller
than C for random weights. This difference is again largest for plots with
low diversity. The signs of AC clearly highlight the different strategies of
inverse-correlation and PCA weights: On average inverse correlation
leads to complexity indices that are smaller than those obtained from
random weights, whilst PCA on average yields C values that are larger
than those achieved with random weights. The largest values of AC
across all bar charts in Fig. 5 result from PCA weights and reach 12 % of
maximum C.

The trend of increasing AC with decreasing C is most likely related to
comparatively high weights assigned to contributing indices with low or
high values. Since inverse-correlation and PCA weights may for some of
these indices be much larger than the corresponding random weights,
exceptionally low or high index values are unproportionally decreased
or increased in low diversity plots.

3.4. Implications for the Svartberget plots

When accepting C(®®) as the best solution (cf. Section 3.2), the nine
Svartberget plots fall into the lower half of the total index range (Fig. 6),
whilst the observed maximum is at C?®) = 0.60 (Tazigou).
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0.05 0.05
0.00 T = L_Auu u 0.00 =TT u\_A
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Fig. 5. Bar charts of complexity index difference AC, i.e. C ordered according to complexity and resulting from different weighting methods (from top to bottom:
uniform, inverse correlation and PCA) minus C ordered in the same way but for random weights. The upper index symbols have the same meaning as in Fig. 4.
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Fig. 6. Complexity index C®) values and associated ranks for the nine Svart-
berget plots and the eight contrast or training plots.

Largely it is only the two Clocaenog P. sitchensis plots which are less
diverse than the nine Svartberget plots. An exception is Svartberget plot
2 with exceptionally low diversity at C(® =0.19 (Table 3) due to
comparatively few broadleaved trees. Complexity indices like C®8) also
offer the opportunity to check up on personal perceptions and plot/
block selection made ad hoc in the field: We can see that based on means

€ the blocks allocated to medium and complex structure need to be
reversed or at least to be interpreted as similarly complex (Table 3). This
is also supported by the lower basal-area density on what is now the
medium Svartberget site compared to the complex site (cf. Table 2).

The lower basal-area density is, the more light, nutrients and water
are available for the development of complex forest structure. We also
understand that the variation of C(®) is exceptionally high on the simple-
structure site, i.e. in plots 1-3. This needs to be taken into consideration
when carrying out follow-on analyses.

Table 3
Complexity index C®®) for the nine Svartberget plots including arithmetic mean

€ and coefficient of variation 7 of C®) for the three blocks (simple, medium
and complex structure) that were previously selected in the field.

Svartberget plot Structure type Clag) s v

0.385
0.194
0.353
0.441
0.433
0.431
0.449
0.384
0.433

simple
0.311 0.329
medium
0.435 0.013
complex

0.422 0.080
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4. Discussion

We began this article by arguing that diversity is an important notion
of ecosystems and even an indicator of resilience and ecosystem health.
Many different quantitative measures of diversity have been suggested
including non-spatial and spatial measures (Magurran, 2004; Pommer-
ening and Grabarnik, 2019) and measures of functional diversity
(Wojcik et al., 2025). Since the statistical methodology commonly used
for the aggregation of several such component diversity indices quan-
tified for one ecosystem has to our knowledge not been studied in a
systematic way (cf. Ehbrecht et al. 2017, 2021; Wojcik et al., 2025; Zhao
et al.,, 2022), we examined the available approaches in this study
(Fig. 2).

Key to the success of the methods applied in this study was a
balanced selection of contributing diversity indices from the three
a-diversity tenets of location, size and species diversity. Using balanced
representations from these three facets of ecosystem structure has also
proved useful in spatial reconstruction research, where the structure of
forest ecosystems was successfully reconstructed from diversity in-
dicators (Pommerening and Stoyan, 2008; Bauerle and Nothdurft, 2011;
Lilleleht et al., 2014; Wudel et al., 2023). A successful reconstruction of
the structure of an ecosystem is only possible, if the characteristics used
for the reconstruction are statistically meaningful descriptors (Torquato,
2002). The same is true for an aggregated complexity index. Naturally it
is possible to select other indices than those in Section 2.2.1, however,
based on our research we are certain that a balanced representation of
the three aforementioned tenets is important.

It has proved useful to consider a pool of known and well docu-
mented contrast or reference data in addition to the target data. This has
not only offered the possibility of plausibility checks by comparing the
complexity results and ranks of the target data with those of the refer-
ence data but also provided training data for deriving inverse-
correlation and PCA weights, which is not too dissimilar to artificial-
intelligence applications (cf. Lhoumeau et al., 2025). In contrast to
artificial intelligence, while carrying out our analyses it seemed, how-
ever, less important to assemble a large, extensive data base of reference
plots. More important was the use of reference data with sufficient
structural differences so that a meaningful complexity gradient could be
established. This gradient made it possible to reliably identify the
complexity ranks of the Svartberget plots. If the reference data are suf-
ficiently well diverse, it can be expected that a potential removal or
addition of one or two reference data sets or contributing diversity
indices has only a minor effect on the complexity indices and ranks of
the target plots.

In our study, we considered weight and aggregation method as the
most influential parameters of the process of deriving a global
complexity index. In our experiments, we applied random, uniform,
inverse-correlation and PCA weights. In addition, we used weighted
arithmetic, geometric, harmonic and arithmetic-geometric aggregation.
Overall the differences in the results between different weights were
rather small (Fig. 4). Weights are apparently the weakest of the two
influence factors. When comparing weights, inverse-correlation and
PCA weights were clearly more influential than random and uniform
weights. This is because correlation and PCA weights specifically take
the correlation structure into account, whilst the other two weights
ignore this statistical structure in the contributing indices.

Our results also revealed that the choice of aggregation is relatively
more important than the choice of weights, although both the resulting
gradient of global complexity index and the complexity ranks did not
differ much even between aggregation methods (Fig. 4). As explained in
Section 2.3.3, we were interested in obtaining a complexity gradient as
linear as possible aiming at an approximately constant rate of decrease
in complexity. This was particularly important for our Svartberget plots,
where the structural differences were only small. Linear gradients are
best achieved when applying weighted arithmetic aggregation, howev-
er, in that case the contributing component diversity indices can fully



S. de Smedt et al.

compensate for each other. For example, a lack of species diversity can
be compensated for by increased size or vertical forest structure and vice
versa. Whilst such compensatory effects make sense and can be justified
to some extent, a full compensation seems unrealistic (Thomsen et al.,
2024; Hiddink and Davies, 2024). Therefore we identified a hybrid ag-
gregation technique, the weighted arithmetic-geometric method. This
method is mostly compensatory but does not allow full compensation.
Our results showed that by applying this aggregation method the
envisaged linear gradient of complexity indices was developed second
best after linear aggregation. A maximum of linearity was achieved with
the weighted arithmetic-geometric method in combination with
inverse-correlation weights.

The comparison with random weights yielded interesting insights
(Fig. 5): Differences between random and non-random weights tended
to increase with decreasing overall complexity. Here, contributing
indices with particularly low or high values were assigned larger
weights than under random conditions. Analysing the differences be-
tween random and non-random weights also confirmed the contrasting
strategies of inverse-correlation and PCA weights. On average inverse
correlation results in complexity indices are smaller than those obtained
from random weights, whilst PCA on average yields C values larger than
those produced by random weights. To our knowledge using random
weights as references has never been attempted before in constructing
complexity indices.

The complexity-index values of the Svartberget plots estimated with
the weighted arithmetic-geometric method in combination with inverse-
correlation weights are plausible when compared with the reference
data and field impressions. In comparison with the reference data it is
realistic that these boreal forest plots were allocated to the lower half of
the complexity range (Fig. 6). However, the results also highlighted that
the classification of medium- and complex-structure sites need to be
swapped. This is valuable information for future studies involving the
Svartberget plots. A maximum C®@8) of 0.60 could be ascertained in our
study highlighting that for very large C® near 1 many if not all
contributing indices would need to approach their maxima.

Our research has provided greater clarity with regard to the meth-
odology of aggregating individual measures of diversity which is an
important precondition for judging on overall biodiversity and for
comparing structural complexity with other ecosystem goods and ser-
vices. Most prominently such comparisons may involve timber and non-
timber forest products as economic goods in traditional forestry dis-
courses (Diaz-Yanez et al., 2019). In addition, the overall complexity
index is strongly supported by a number of well-documented individual
indices, quantifies structural complexity and allows ranking ecosystems.
Structural complexity indices like C® are also likely to play an
important role in the transformation of plantations to continuous cover
forestry (CCF) and in forest restoration, as increasing structural
complexity is an important indicator of successful transformation
(Pommerening, 2023).

5. Conclusions

Global structural complexity indices can be successfully derived by
aggregating multiple contributing diversity indices. When doing this we
found it is useful to analyse research plot data in the context of a small
number of reference data that provide sufficient contrast to build a
global structural gradient. In our study, inverse-correlation weights
combined with arithmetic-geometric aggregation turned out to be the
best choice for allowing limited compensatory effects. Generally weights
have a minor influence on index aggregation, the aggregation technique
used is of greater importance. In this analysis, random weights have
turned out to be an important tool for a better understanding of how
weights and index aggregation work. Our nine forest plots at Svartberget
in Northern Sweden featured at the lower end of the complexity scale
and differed comparatively little in structural complexity.
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