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Key message
The box-counting method is sensitive to tree positions in the coordinate system, and based on this method, assuming self-
similarity of beech tree models derived from mobile laser scanning was difficult.

Abstract

The repetitive branching architectures of trees lead us to think that trees exhibit self-similarity and fractal properties.
Therefore, applying fractal analysis to assess tree structures may seem natural. This study aimed to evaluate the box-
counting method (BCM), a simple and commonly used fractal analysis, for describing 3D biological trees, using a wide
range of structural models of European beech trees (Fagus sylvatica L.) derived from mobile laser scanning. We spe-
cifically investigated the method’s sensitivity to the arbitrary placement of a tree within the coordinate system and the
validity of the tree’s self-similarity based on the BCM. The BCM was sensitive to the tree position in the coordinate
system, with observed minimum and maximum variations in the box-counting dimension (D,) values of 0.18 and 0.52,
respectively, when translating the trees in the XYZ directions. The analysis of the local slopes of the BCM, which are the
slopes between neighboring data point pairs, revealed a large variation of slope values across scales with a clear pattern,
indicating that the structural patterns of the sampled trees were inconsistent and locally dependent. Thus, it is difficult to
assume self-similarity of the beech tree models based on the BCM. Our results demonstrate the need to standardize the
computation of the D, for single trees with respect to the coordinate system and caution in interpreting the D,. These
findings contribute to a deeper understanding of the Dy to assess tree structures and functions.

Keywords LiDAR - Box-dimension - Fractal analysis - Tree architecture - Sensitivity - Self-similarity

Introduction

Approximately 73,000 tree species are estimated to exist
globally (Cazzolla Gatti et al. 2022). Thus, we can naturally
expect a large aboveground structural diversity between
species. At the same time, there are large structural differ-
ences within species due to ontogenetic variation, pheno-
54 Tatsuro Kikuchi typic plasticity, and genetic variation (Laurans et al. 2024).

tatsuro.kikuchi@stud.uni-goettingen.de Therefore, the observation of tree branching and growth
patterns tends to suggest different architectural models of
trees; however, it also suggests a tendency to reiteration

Communicated by H. Roaki Ishii

Department of Spatial Structures and Digitization of Forests,
University of Gottingen, Biisgenweg 1, 37077 Gottingen,

Germany of architectural units as a general characteristic (Barthé-
2 Centre of Biodiversity and Sustainable Land Use (CBL), lémy and Caragh? 2007). The rel.ter.atlon may mdlcate.that
University of Géttingen, Biisgenweg 1, 37077 Gottingen, trees can be considered as self-similar and fractal objects
Germany (Malhi et al. 2018). Thus, the application of fractal analysis
3 Division of Forest Remote Sensing, Swedish University of was anticipated to facilitate the analysis of complex tree-
Agricultural Sciences, Skogsmarksgrénd 17, 907 36 Ume, branching architectures. The recent advancement of remote
Sweden

Published online: 30 January 2026 €\ Springer


https://doi.org/10.1007/s00468-026-02727-0
http://orcid.org/0009-0004-8844-1608
http://orcid.org/0009-0009-3897-180X
http://orcid.org/0009-0008-2657-0737
http://orcid.org/0000-0003-4131-9424
http://crossmark.crossref.org/dialog/?doi=10.1007/s00468-026-02727-0&domain=pdf&date_stamp=2026-1-28

20 Page 2 of 11

Trees (2026) 40:20

sensing technologies, especially ground-based laser mea-
surements (i.e., terrestrial and mobile laser scanning), facili-
tated and increased the accuracy of capturing the detailed
three-dimensional (3D) structures of natural trees (Malhi et
al. 2018; Dorji et al. 2021), which opened up the potential
for applying fractal analysis. Among the many available
fractal analyses, the box-counting method (BCM) has been
commonly used due to its straightforward calculation pro-
cedure for measuring tree structural complexity (e.g., Seidel
2018; Guzman et al. 2020).

What is the BCM?

The BCM counts the number of grids or boxes in a grid
system that intersect the object of interest with varying box
edge lengths. When the object tends to be self-similar, which
means when magnified, the magnified portion resembles the
whole, the relationship between the number of boxes and
the inverse of the box edge length approximately follows a
power law. This is because the amount of detail that appears
at different scales is constant for a self-similar object (Fal-
coner 2003, 2013). In such a case, taking the logarithm of
both the number of boxes and the inverse of the box edge
length and doing a linear regression gives us a straight line.
The slope of the regression line (i.e., the scaling exponent
of the power law) is the box-counting dimension (D) and
the estimated fractal dimension of the object (Bouda et al.
2016). Thus, the Dy, can also be interpreted as the constant
logarithmic rate of the increase of the box number with
respect to the logarithmic decrease of scale. The R? value
from the linear regression is often used to assess the con-
sistency of the scaling properties (i.e., self-similarity) of the
object.

The D, is equal to one when the object is a perfect pole
(one dimension) because when the box size halves, the
number of boxes becomes two to the power of “one,” and
the Dy is three when the object is a homogeneously filled
cube because when the box size halves, the number of boxes
becomes two to the power of “three.” Tree growth leads to
filling up of the 3D space, but the amount of volume occu-
pied is modulated by competition and self-shading, result-
ing in individual trees having a D, value between 1 and
3 (Seidel 2018). In an applied sense, Dy, is considered the
structural complexity index that simultaneously accounts
for the density and distribution of the object’s elements and
has been used as a space-filling character (Seidel 2018).

What does the D, tell us about the tree structure?
Trees are complex, ramified objects, and describing their

structure is complicated. In particular, the branching pattern is
difficult to characterize because using single measurements,
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such as mean branch diameter, mean branch angle, or mean
number of branches, reduces information about the spatial
distribution of these elements (Seidel 2018). Moreover, dif-
ferences in branching patterns, including the degree of rami-
fication and branching order, can complicate comparisons
across trees. Thus, although the D, is linked to structural
metrics such as the mean crown radius, crown surface area
(the convex hull of the tree crown) or branch angles (Seidel
et al. 2019b), it captures more information about their distri-
bution in space, which is an essential feature that determines
and indicates the biological functions of the tree, including
its capacity to intercept light.

Correlative studies between the Dy, and tree functioning
found positive relationships with productivity (Seidel 2018;
Seidel et al. 2019a; Dorji et al. 2021), positive relationships
with branch hydraulic efficiency, and negative relationships
with hydraulic safety (Dorji et al. 2024). Moreover, in a
deciduous forest, vital trees tended to show a larger differ-
ence in Dy, between summer and winter than less vital trees,
due to the differences in foliage development (Heidenreich
and Seidel 2022). These accumulating results suggest that
the D, can be a helpful index in tree structure-function
research.

Potential issues of the D,

Although the BCM can be easily applied, the D, value can
be sensitive to the arbitrary placement of an object in the 3D
grid system. This is because the number of boxes intersect-
ing the object at each scale depends on the object’s position
and orientation within the grid system (Da Silva et al. 2006;
Bouda et al. 2016). Currently, the BCM is often applied to
the point clouds of trees obtained from terrestrial or mobile
laser scanning (e.g., Saarinen et al. 2021; Dorji et al. 2021,
2024), and the box-counting procedure is likely done based
on the coordinates of the point clouds, which depend on
how the laser scanning was conducted. Therefore, even
if we have ideal occlusion-free point clouds, applying the
BCM to the tree point clouds may produce the D, specific to
the tree’s position and orientation in the coordinate system.
In this study, we define the placement effect as the sensitiv-
ity of Dy, to tree positions and orientations in the coordinate
system. In literature, a similar but different term, quanti-
zation error, is used to describe the deviation between the
empirical and the minimum box counts required to cover
the object (Bouda et al. 2016). A large placement effect may
potentially decrease the association between the Dy, and the
tree’s physical functions (Loke and Chisholm 2022). How-
ever, the placement effect is usually neglected in the litera-
ture. Thus, characterizing the placement effect is crucial for
the further application of the D, to reliably describe natural
tree structures.
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It is expected that trees with higher architectural self-
similarity with repeated branching produce higher R? val-
ues of the regression lines than those with less architectural
self-similarity (Seidel 2018), as R? values are supposed to
measure the consistency of a scaling exponent or the degree
of self-similarity. For 3D trees based on point clouds, R?
values are usually very high (>0.96) (e.g., Guzman et al.
2020), and we might be tempted to conclude that trees are
indeed self-similar. However, a high R? value may not be a
sufficient measure of self-similarity, as the data points used
in the linear regression are correlated and violate the sta-
tistical assumption of independence, leading to inflated R?
values (Reeve 1992). To determine how much a tree’s struc-
tural scaling pattern may actually change across different
scales, we can additionally compare local slopes, which are
the slopes between neighboring data point pairs. If a tree
is approximately self-similar within the interested scales,
we expect local slope values to be reasonably stable across
scales (Halley et al. 2004; Bouda et al. 2016). Some studies
demonstrate that local slopes vary across scales with a clear
pattern when objects’ structural patterns depend on specific
scales (Panico and Sterling 1995; Bouda et al. 2016; Chee-
seman and Vrscay 2022). To improve the interpretation of
the D, it is important to examine R? values as well as local
slope patterns under different levels of branch reiteration. If
trees are approximately self-similar, reducing the branching
repetition should disrupt their self-similarity, which will be
reflected in R? values and local slope patterns.

The present study aimed to investigate (1) the BCM’s
sensitivity to arbitrary tree placement in the coordinate sys-
tem, and (2) R? values and local slope patterns of the BCM
under different levels of branch reiteration.

Methods

We used 100 Quantitative Structure Models (QSMs) of
European beech (Fagus sylvatica L.) as reference tree
objects. We chose European beech because it is a productive
and ecologically important species that dominates a wide
range of European forests and provides valuable wood for
many purposes (Durrant et al. 2016). Thus, efficiently quan-
tifying their structural complexity would help forest man-
agement. We used QSMs because they can be used to create
(1) occlusion-free point clouds by converting the QSMs to
point clouds and (2) different levels of branch reiteration by
artificially pruning the trees using the QSM branch order
information.

Study site

The present study was conducted on two 50 m x 50 m plots
of pure European beech stands located in Nienover and
Unterluess, Lower Saxony, Germany. The Nienover plot in
southern Lower Saxony is at 320 m.a.s.l., while the Unter-
luess plot lies further north at 162 m.a.s.l. Both sites share
a temperate climate with similar mean annual air tempera-
tures of 8.8 °C and 9.0 °C, while mean annual precipitation
is slightly higher in Nienover (895 mm) compared to Unter-
luess (747 mm). The stands are approximately 85 years old
and have been managed until 2018. Although trees of the
genera Picea, Larix, Quercus, Pseudotsuga, and Pinus were
present, European beech was the main stock for both plots,
accounting for at least 70% of the trees.

Mobile laser scanning and point cloud processing

In March 2021, both plots were scanned during leafless con-
ditions using a mobile laser scanner (ZEB-Horizon, Geoslam
Ltd., Nottingham, UK). Utilizing a 903 nm laser, the device
emits 300,000 points per second, reaching a maximum dis-
tance of 100 m and detecting the traversed environment
with a 3 cm range of noise. Point clouds and the respective
trajectories were generated using the Simultaneous Local-
ization and Mapping (SLAM) algorithm in GeoSLAM Hub
6.0 (GeoSLAM Ltd., Nottingham, UK). Individual tree
segmentation was achieved using LIDAR360 (GreenValley
International Ltd., California, USA). The preceding density
homogenization to a 0.5 cm resolution, manual correction,
and final noise filtering were carried out in CloudCompare
(version 2.13.0; https://www.danielgm.net/cc/). The respec
tive noise filtering function was set to a sphere radius of
0.2 m and a relative maximum error of 1.0.

QSMs

QSMs were obtained using the SimpleTree plugin (Hack-
enberg et al. 2015) in CompuTree 5.0 (Piboule et al. 2013).
QSMs reconstruct a tree’s branching structure using hierar-
chically fitted cylinders, which are set by a non-linear least
squares fitting routine around a tree point cloud (Hacken-
berg et al. 2014, 2015). Since the whole branching architec-
ture was of interest, all cylinders up to the highest available
order of each tree were included. Upon visual inspection,
the 100 best-fitting QSMs were chosen for further analysis.

Pruning
First, we improved the QSMs using the Real Twig method

(Morales and MacFarlane 2024), which corrected the over-
estimation of small branch and twig cylinder sizes based
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on the species-specific twig diameter information using
the function run_rtwig from the R package rTwig (Morales
and MacFarlane 2024). Then, we removed specific orders
of branches (4th or more, 3rd, and 2nd orders; Oth order is
the main stem) sequentially from the QSMs in R version
4.4.2 (R Core Team 2024) (Fig. 1), resulting in 399 QSMs
(one tree has the maximum branch order of three), includ-
ing without pruning. Thereafter, the QSMs were exported as
mesh files using the function export _mesh from the R pack-
age rTwig. Then, using the command-line mode of Cloud-
Compare (version 2.14.alpha; https://www.danielgm.net/cc
/), we simulated point clouds with a precision of 1 cm and
a density of 5000 points per m* based on the mesh files for
the following D, computation. Lastly, in R, we updated the
coordinate origin (0, 0, 0) to the point’s coordinate with the
lowest Z coordinate of a tree (i.e., the tree base) and con-
sidered the tree’s position and orientation as the reference.
When there were multiple points with the lowest Z coordi-
nate, we averaged the X and Y coordinates of those points.
This standardization of tree position within the coordinate
system was necessary for the following processes related to
the placement effect.

Computing D,

Using the function box_dimension from the R package rTwig
(Morales and MacFarlane 2024), we computed the D,. The

codes are written based on previous studies investigating
the Dy, in tree structural complexity (Seidel 2018; Seidel
et al. 2019a; Arseniou et al. 2021a). First, the largest edge
length of the box (more precisely, voxel) was determined
as the maximum of the ranges of the X, Y, and Z coordi-
nates in the point clouds. Then, the largest edge length was
subsequently halved until it reached the lower cutoff point
(Fig. 2A). A box size with each edge length was used for
the following box-counting process. We set the lower cutoff
to 20 cm as a conservative estimate of the minimum point-
cloud resolution in our mobile laser-scanning data.
Voxelization was done to count the number of boxes of
each edge length. First, the original point coordinates (in m)
were scaled by the respective box edge lengths, and then the
scaled coordinates were floored to assign the points to the
boxes to which they belong. Lastly, the number of unique
coordinates was counted as the number of boxes. To com-
pute the D,, ordinary least squares regressions were used
with log(N) being the response and log(1/r) being the pre-
dictor (log: natural logarithm; N: the number of boxes; r:
relative box edge length with respect to the largest box edge
length) (Fig. 2B). We removed the data point related to the
initial box from the D, computation since including the larg-
est box size is expected to increase the placement effect due
to the small box counts (Panico and Sterling 1995; Loke and
Chisholm 2022), setting the argument rm_int box=TRUE
in the function box_dimension. R? values from the regression

Max Max
branch branch
order: 1 order: 2

Max Max
branch branch
order: 3 order: 4+

Fig. 1 An example of pruning. From left to right, the maximum number of branch orders is one, two, three, and four or more (no pruning). The
Oth branch order is the main stem. The images are based on point clouds of a tree with a height of 27.35 m and a maximum branch order of seven
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Fig. 2 Illustrations of the BCM. (A) Different box sizes with point
clouds of a tree with a height of 27.35 m. (B) Derivation of D, from a
linear regression (solid line) and local slopes (dashed line). The illus-

lines and local slopes were also computed (Fig. 2B). Local
slopes are defined as the slopes between neighboring data
point pairs.

Placement effect

In practice, trees’ positions and orientations in the coordi-
nate system depend on the laser scanning campaign (e.g.,
position of terrestrial laser scanner, start position of mobile
laser scanner) (Fig. 3). It is possible to understand these
effects by changing the trees’ positions by translation and
their orientations by Z-axis rotation in the coordinate sys-
tem. In this study, we assessed the effects of position and
orientation separately. The initial box count is ignored in
the Dy computation, and counting from the second box
size affects the Dy,. Therefore, we can examine the effect of
position by translating trees from the reference within the
second box side length in XYZ directions. Specifically, we
first determined half the length of the initial box edge and
created a sequence of 11equidistant points along that length.
Then, using the first ten points, we created 1000 translation
patterns (10(X)*10(Y)*10(Z)=1000 translations for each
non-pruned and pruned tree; 399,000 translations in total),
including the reference position (i.e., no translation). In this
way, we assumed that it is possible to assess the effect of
position equally for trees of different sizes. To understand
the effect of orientation, we rotated each tree at the reference
around the Z-axis from 0° to 350° by 10° (i.e., 36 rotations
for each non-pruned and pruned tree; 14,364 rotations in
total). Lastly, the maximum difference of D, (the difference
between the maximum and minimum Dy values, hereafter

y = 1.789x + 0.6303
R? =0.9927
D, =1.79

1 2 3 4
Log(1 / (box edge length / initial box edge length))

T T

)]

trations were produced using the function box_dimension from the R
package rTwig (Morales and MacFarlane 2024) and modified

denoted as Dy, gq) was calculated separately for translated
and rotated point clouds. We decided on the procedures
mentioned above due to their computational feasibility, and
our investigations are by no means exhaustive. In this study,
we investigated the potential effects of arbitrary tree place-
ments related to laser scanning campaigns.

Statistical analysis

All statistical analyses were conducted in R version 4.4.2
(R Core Team 2024). To test the effect of branch reiteration
on R? values, we fitted a linear mixed-effects model using
the package glmmTMB (Brooks et al. 2017), with R? as the
response and the maximum branch order (ranging from one
to four or more) as the predictor. Tree ID (a unique identi-
fier for each tree) was included as a random intercept. We
chose the beta distribution as the response distribution fam-
ily because R? values are bounded between 0 and 1.

By visually inspecting the distributions of Dy, from trans-
lations and Z-rotations, we found that the ranges of D, val-
ues were greatly larger for translations (Fig. 4). The ranges
of Dy values from Z-rotations were around Dys at the refer-
ences and always within the ranges of D, values from trans-
lations. The distribution of D, from translations, in general,
appeared unimodal and bell-shaped, with some differences
in right- or left-skewness and spread. These observations
suggest that the effect of positions strongly affects the D,
Thus, to minimize the placement effect, we used the median
R? values from translations for the model response. To visu-
ally inspect local slope patterns under different levels of
branch reiteration for each tree, we visualized the median
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Fig. 3 Illustrations of the
placement effect. (A) Numbers

(A)

(B)

indicate the coordinate origins,
and the arrows indicate the X
and Y axes directions, depend- Y
ing on the specific laser scanning
campaigns. A green object near
the center is a tree’s top canopy.
Note that this is a top view, and
the Z-axis coordinate origin can
also differ. In (B), (C), & (D), the
positions and/or the orientations
of the tree differ in the coordinate
systems according to (A). In (B)
& (C), the positions are different. Y

In (D), the position and orienta- X
tion of the tree are different from
those in (B) & (C)

(D)

' reference || rotation [| translation

78— 5 . -
€ 50 ||
(o] 1
o [}
25=
0- [CIC]] :
I m I I
1.5 1:6 |87 1.8
Dy

Fig. 4 An example of the D, distribution. The blue and yellow shad-
ings indicate translation and Z-rotation, respectively. The dashed line
is the Dy value at the reference
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and standard deviation (SD) of local slopes from transla-
tions against each interval of the scales. The median local
slope was used to minimize the placement effect, and the
SD of local slopes was used to show how local slope varies
at each scale due to the placement effect.

We referred to Santon et al. (2023) for exploratory data
analysis for the regression model. For model diagnostics,
we used the packages DHARMa (Hartig 2024) (to assess
model residuals using randomized quantile residuals) and
performance (Lidecke et al. 2021) (to assess the normal-
ity of random effects and perform a posterior predictive
check). For model interpretation, we computed marginal
and conditional R? values based on Nakagawa et al. (2017)
using performance (Liidecke et al. 2021). For data handling
and visualization, we used the packages from tidyverse
(Wickham et al. 2019) (e.g., dplyr, tidyr, ggplot2). Pack-
age dependencies for the R project used in this study were
managed with the package renv (Ushey and Wickham 2024)
for reproducibility. The R code and the lockfile containing
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Table 1 Summary statistics of the maximum branch order, the D, and the Dy g

Min. Ist Qu. Median Mean 3rd Qu. Max. SD
Max branch order 3.000 5.000 5.000 5.180 6.000 7.000 0.833
D, (median) 1.331 1.606 1.689 1.674 1.765 1.872 0.113
D, gigr (translation) 0.183 0.285 0.337 0.341 0.379 0.523 0.066
Dy gig (Z-rotation) 0.004 0.011 0.017 0.022 0.026 0.090 0.016

D, (median) is the median of D values calculated from translations to account for the placement effect

0.9975 —
‘&
< 0.9950
8 1
i ‘ *
= e g
09925 & i 5
0.9900 - I :
| | | |
1 2 3 4+

Maximum branch order

Fig. 5 Plot of median R? values against the maximum branch order.
A maximum branch order of 4+indicates four or more (no pruning).
The white points indicate model-estimated means with the correspond-
ing 95% confidence intervals above and below (conditional R?: 1.000;
marginal R%: 0.014). The black points indicate observed values and are
jittered for clarity. Points belonging to the same individuals are con-
nected by lines. The median of R? values from translations was used to
account for the placement effect

metadata about the packages used for this study are avail-
able in GRO.data at https://doi.org/10.25625/6IRTQM.

Results

In the dataset, the maximum branch order ranged from three
to seven, with a mean of 5.180, and the D, ranged from
1.331 to 1.872, with a mean of 1.674 (Table 1). The Dy, ¢
from translations ranged from 0.183 to 0.523, and the mean
was 0.341, while the D, gy from Z-rotations was smaller.
The range was 0.004—0.090, with a mean of 0.022 (Table 1).
Comparing the Dy, 4 from translations and the Dy, ;¢ from
Z-rotations of the same individuals, the Dy, g from Z-rota-
tions was 93.4% lower on average.

Regardless of the maximum branch order, the model esti-
mated means of R? values were over 0.995 (Fig. 5), and
we did not observe an increasing trend in R? values as the
maximum branch order increased, which is supported by the
very low marginal R? (0.014) of the model. The observed

minimum R? values were rounded to 0.990 for all the maxi-
mum branch orders.

Regardless of the maximum branch order, the local
slope patterns in general showed an upward convex curve
(Fig. 6A, C), which was less evident when the scale was
limited due to the lower cutoff (Fig. 6E). Local slope val-
ues tended to be larger and more varied across scales as
the maximum branch order increased (Fig. 6A, C), which
was less evident when a tree’s Dy was small (Fig. 6E). The
local slope values among different maximum branch orders
tended to converge at the beginning and the end of the scales
(Fig. 6A, C, E). Regardless of the maximum branch order,
the SD of the local slopes from translations at each interval
of the scales, in general, showed an exponentially decreas-
ing pattern as the scales became finer (Fig. 6B, D, F).

Discussion

We investigated the BCM’s sensitivity to arbitrary tree
placement in the coordinate system, as well as the BCM’s
R? values and local slope patterns under different levels of
branch reiteration, using 100 European beech trees. Over-
all, we found that the D, was sensitive to positions in the
coordinate system (Dy, 4 (translation)>0.18) and less so to
orientations (Dy, 4 (Z-rotation) <0.09). Also, we found that
the R? values of the regression lines of the BCM were con-
sistently high (=0.990), regardless of the maximum branch
order, even though the local slopes generally varied across
scales with a systematic convex pattern.

BCM'’s sensitivity to arbitrary placement

Given that Dy values ranged from 1.33 to 1.87, even the
low Dy, 4ir values (0.2-0.3) from translations in the samples
should be considered substantial (Table 1). On the other
hand, D, g values from Z-rotations in the samples were
considerably lower, with a maximum of 0.09 and a mini-
mum of 0.004 (Table 1). The greater effect of position is
likely because changing a tree’s position in the coordinate
system has a larger influence on the box counts at coarser
scales than changing the orientation of the tree (Panico and
Sterling 1995). The box count differences at coarser scales
have a larger impact on local slopes compared to those at

@ Springer


https://doi.org/10.25625/6IRTQM

20 Page 8 of 11 Trees (2026) 40:20

Maximum branch order ¢ 1 A 2 5 3 @ 4+

(A) (B)

o
o
l

Median Dy, (4+) = 1.87

[}]
& =0 o 0.4
7 Bl e I i . A o
E % 0.3
3 16— E
202+
3 7
0.0
l I T I | T I T I T | T
12 1/4 1/8 1/16 1/32 1/64 172 1/4 1/8 1/16 1/32 1/64
(C)
Median Dy, (4+) = 1.59 0.5
[}]
_8-2 0 3.0'4_
n o
E (0.3
3 16— 5
g 2 0.2
3 ?
E 1.2_ 0-1 —
0.0
I I | | T T T T T T T I
172 1/4 1/8 1/16 1/32 1/64 172 1/4 1/8 1/16 1/32 1/64
(E) (F)
Median Dy, (4+) = 1.33 0.5
[}]
§-2'0_ 304_ 4
”n o
© (0.3
3 16— 5
g 2 0.2
3 7
E 1.2_ 0.1 —
0.0
| I | T T T | T T T T I
12 1/4 1/8 1/16 1/32 1/64 172 1/4 1/8 1/16 1/32 1/64
Box size Box size

@ Springer



Trees (2026) 40:20

Page 9 of 11 20

{ Fig.6 Three examples of local slope patterns under different maximum
branch orders. A maximum branch order of 4+indicates four or more
(no pruning). (A), (C), & (E): Median local slope from translations
against box size (relative box edge length with respect to the initial
box edge length). The box size is the starting point of the local slope.
For example, the local slope value at a box size of 1/2 was calculated
on the scale between 1/2 and 1/4. The dashed line is the median Dy
from translations corresponding to the non-pruned trees (4+). (B), (D),
& (F): SD of local slopes from translations against box size. Note that
there is no data point at a box size of 1/64 in (E) & (F) due to the lower
cutoff of 20 cm. (A) & (B): a tree with a median Dy of 1.87, a height of
27.99 m, and a maximum branch order of six; (C) & (D): a tree with a
median Dy of 1.59, a height of 26.53 m, and a maximum branch order
of five; (E) & (F): a tree with a median Dy of 1.33, a height of 18.33 m,
and a maximum branch order of four; the corresponding images of the
trees in (B), (D), & (F) are based on point clouds

finer scales due to the larger relative box count differences
at coarser scales. For example, let’s assume that due to the
placement effect, at a coarse scale the box count increases
from 10 to 12 (a 20% increase), and at a finer scale the
box count increases from 1000 to 1020 (a 2% increase).
When taking the logarithm of these values, the difference
between log(10) and log(12) (ca. 0.18) is larger than the
difference between log(1000) and log(1020) (ca. 0.020).
This also explained why we observed larger SDs of local
slope at coarser scales (Fig. 6B, D, F). These results sug-
gest that when correlating the D, with the tree’s physical
functions, the placement effect, especially due to position,
reduces associations between the D, and the tree’s physical
functions (Loke and Chisholm 2022), thereby reducing the
predictive power of the D,

One quick fix for this issue is to standardize the trees’
positions in the coordinate system, as we did when creat-
ing the reference (i.e., by setting the coordinate origin to
the tree base). Although this does not address the placement
effect due to orientation and the D, value would be specific
to how the positions of trees are standardized (Fig. 4), the
Dy, i of our samples was reduced by 93.4%, on average.
A more precise but computationally intensive approach to
this issue is to find the minimum number of boxes necessary
to cover a tree at each box size by implementing a pattern
search algorithm, as in Bouda et al. (2016). Another simple
way to address the issue is to remove the coarser scales from
the D, computation, as the largest variations in local slopes
due to the placement effect occur at coarser scales (Fig. 6B,
D, F) (Panico and Sterling 1995; Bouda et al. 2016). How-
ever, we already excluded the coarsest scale (i.e., the initial
box) from the computation, and removing further scales will
diminish the BCM’s ability to capture the detailed distribu-
tion of tree structural elements in 3D space (Seidel 2018).
Thus, applying an algorithm to find the minimum box counts
at coarse scales could be another feasible remediation. Fur-
ther research is needed to address the placement effect when
using the BCM to measure tree structural complexity.

R? values and local slope patterns of the BCM

Trees tend to look self-similar and fractal due to their
branch reiteration (Barthélémy and Caraglio 2007; Malhi et
al. 2018). Thus, decreasing the branching repetition would
reduce the self-similarity of trees, which should be reflected
in the R? values of the BCM (Seidel 2018). Also, when R?
values are high, we expect the objects to be self-similar, and
local slope patterns tend to be more or less flat (Panico and
Sterling 1995; Bouda et al. 2016). However, we found no
practical differences in R? values among tree models with
different maximum branch orders (Fig. 5). The R? values
were consistently very high (>0.990). Moreover, by inves-
tigating local slope patterns, we found that, in general, the
patterns were upward convex curves, and local slopes varied
more across scales as the maximum branch order increased
(Fig. 6A, C, E). These findings suggest that it is difficult to
assume constant scaling properties (i.e., self-similarity) of
the beech tree models based on the BCM, and the R? value
of the BCM’s regression is insensitive to local scaling pat-
tern changes. Thus, the R? value is unlikely to be helpful for
assessing self-similarity, as pointed out in some literature
(e.g., Halley et al. 2004; Bouda et al. 2016).

The local slopes at the beginning of the scales seem to
indicate the overall tree crown spread in space, which is
likely determined by the first-order branches. This can be
observed in the convergence of local slope values at the
beginning of the scales among different maximum branch
orders (Fig. 6A, C, E). On the other hand, the local slopes
at the intermediate scales seem to indicate the density of
branches present in the crown (Panico and Sterling 1995).
This can be observed in the increased local slopes for higher
maximum branch orders, which was less apparent when
the D, was smaller. Trees with a small D, are structurally
simple and have a pole-like structure (i.e., 1D) and created
fewer variations in local slopes across scales (Fig. 6E). This
does not mean they have reiterated architecture and are more
fractal, but rather that they are close to 1D. The observed
local slope convergence among different maximum branch
orders at the end of the scale (Fig. 6A, C) seems to indicate
that the box size was too small to observe any scaling dif-
ferences. In other words, at this scale, boxes start to align
with the tree, and the BCM does not meaningfully evaluate
the distribution of tree elements in space. These observa-
tions suggest that investigating local slope patterns is more
helpful for assessing the consistency of the scaling exponent
of the BCM than relying on an R? value (Panico and Ster-
ling 1995; Bouda et al. 2016; Cheeseman and Vrscay 2022).
Also, the observed clear local scaling patterns suggest that
the Dy, is likely sensitive to the scales used for the computa-
tion, and standardizing scales may be necessary.
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A tree crown is the result of genetics and environmen-
tal conditions; thus, the architecture of a tree growing in
optimal conditions might correspond to the model of self-
similarity. However, episodic stresses can alter the growth
pattern of a tree, and damage can alter the already estab-
lished architecture (Malhi et al. 2018). Our results indicate
that the Dy, of the sampled beech trees appears to depend
on the scales used for computation, and it is hard to assume
consistent scaling properties across scales. Thus, in the case
of the sampled trees, referring the Dy, to the fractal dimen-
sion is better to be avoided since there is not enough evi-
dence from the BCM to claim self-similarity (Loke and
Chisholm 2022). Based on our observations, the D, of the
sampled trees could instead be interpreted as a metric that
quantifies the average spatial distribution and density of the
tree’s elements (i.e., stems, branches, twigs) (Panico and
Sterling 1995; Cheeseman and Vrscay 2022), which still
conforms with the intended use of the BCM to measure tree
structural complexity (Seidel 2018). The strong relation
between the D, and important tree functions such as produc-
tivity and hydraulic processes proves that the D, is a useful
metric for tree structure-function research (e.g., Seidel et al.
2019a; Arseniou et al. 2021b; Saarinen et al. 2021; Dorji
et al. 2021, 2024; Heidenreich and Seidel 2022). However,
its interpretation in terms of tree structure should still be
investigated, as our beech tree models are based on QSMs
derived from point clouds obtained by mobile laser scan-
ning and are not a perfect representation of the actual trees.
We cannot exclude the possibility that our results contain
methodological artifacts.

Conclusion

Using a wide range of European beech tree models derived
from mobile laser scanning, the present study investigated
the BCM’s sensitivity to the arbitrary placement of a tree
and R? values and local slope patterns of the BCM under
different levels of branch reiteration. Our results indicate
that the BCM is sensitive to the tree positions in the 3D
coordinate system. Thus, the discovered placement effect,
if not corrected for, reduces the robustness of D, estimates
for single trees. This could weaken the structure-function
relationships under investigation, thereby reducing the Dy’s
predictive power. Thus, we suggest a simple remediation:
standardizing the tree position with respect to the coordi-
nate system, which reduced the variation in D, values of the
tree samples by an average of 93.4%. Our results also indi-
cated that local slopes of the BCM varied across scales with
a clear pattern, regardless of the maximum branch order,
and R? values were insensitive to these local scaling pattern
changes. Thus, it is recommended to use local slopes rather

@ Springer

than R? to assess the consistent scaling properties of trees
(i.e., self-similarity).
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