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Introduction

Approximately 73,000 tree species are estimated to exist 
globally (Cazzolla Gatti et al. 2022). Thus, we can naturally 
expect a large aboveground structural diversity between 
species. At the same time, there are large structural differ-
ences within species due to ontogenetic variation, pheno-
typic plasticity, and genetic variation (Laurans et al. 2024). 
Therefore, the observation of tree branching and growth 
patterns tends to suggest different architectural models of 
trees; however, it also suggests a tendency to reiteration 
of architectural units as a general characteristic (Barthé-
lémy and Caraglio 2007). The reiteration may indicate that 
trees can be considered as self-similar and fractal objects 
(Malhi et al. 2018). Thus, the application of fractal analysis 
was anticipated to facilitate the analysis of complex tree-
branching architectures. The recent advancement of remote 
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Abstract
The repetitive branching architectures of trees lead us to think that trees exhibit self-similarity and fractal properties. 
Therefore, applying fractal analysis to assess tree structures may seem natural. This study aimed to evaluate the box-
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cifically investigated the method’s sensitivity to the arbitrary placement of a tree within the coordinate system and the 
validity of the tree’s self-similarity based on the BCM. The BCM was sensitive to the tree position in the coordinate 
system, with observed minimum and maximum variations in the box-counting dimension (Db) values of 0.18 and 0.52, 
respectively, when translating the trees in the XYZ directions. The analysis of the local slopes of the BCM, which are the 
slopes between neighboring data point pairs, revealed a large variation of slope values across scales with a clear pattern, 
indicating that the structural patterns of the sampled trees were inconsistent and locally dependent. Thus, it is difficult to 
assume self-similarity of the beech tree models based on the BCM. Our results demonstrate the need to standardize the 
computation of the Db for single trees with respect to the coordinate system and caution in interpreting the Db. These 
findings contribute to a deeper understanding of the Db to assess tree structures and functions.
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sensing technologies, especially ground-based laser mea-
surements (i.e., terrestrial and mobile laser scanning), facili-
tated and increased the accuracy of capturing the detailed 
three-dimensional (3D) structures of natural trees (Malhi et 
al. 2018; Dorji et al. 2021), which opened up the potential 
for applying fractal analysis. Among the many available 
fractal analyses, the box-counting method (BCM) has been 
commonly used due to its straightforward calculation pro-
cedure for measuring tree structural complexity (e.g., Seidel 
2018; Guzmán et al. 2020).

What is the BCM?

The BCM counts the number of grids or boxes in a grid 
system that intersect the object of interest with varying box 
edge lengths. When the object tends to be self-similar, which 
means when magnified, the magnified portion resembles the 
whole, the relationship between the number of boxes and 
the inverse of the box edge length approximately follows a 
power law. This is because the amount of detail that appears 
at different scales is constant for a self-similar object (Fal-
coner 2003, 2013). In such a case, taking the logarithm of 
both the number of boxes and the inverse of the box edge 
length and doing a linear regression gives us a straight line. 
The slope of the regression line (i.e., the scaling exponent 
of the power law) is the box-counting dimension (Db) and 
the estimated fractal dimension of the object (Bouda et al. 
2016). Thus, the Db can also be interpreted as the constant 
logarithmic rate of the increase of the box number with 
respect to the logarithmic decrease of scale. The R2 value 
from the linear regression is often used to assess the con-
sistency of the scaling properties (i.e., self-similarity) of the 
object.

The Db is equal to one when the object is a perfect pole 
(one dimension) because when the box size halves, the 
number of boxes becomes two to the power of “one,” and 
the Db is three when the object is a homogeneously filled 
cube because when the box size halves, the number of boxes 
becomes two to the power of “three.” Tree growth leads to 
filling up of the 3D space, but the amount of volume occu-
pied is modulated by competition and self-shading, result-
ing in individual trees having a Db value between 1 and 
3 (Seidel 2018). In an applied sense, Db is considered the 
structural complexity index that simultaneously accounts 
for the density and distribution of the object’s elements and 
has been used as a space-filling character (Seidel 2018).

What does the Db tell us about the tree structure?

Trees are complex, ramified objects, and describing their 
structure is complicated. In particular, the branching pattern is 
difficult to characterize because using single measurements, 

such as mean branch diameter, mean branch angle, or mean 
number of branches, reduces information about the spatial 
distribution of these elements (Seidel 2018). Moreover, dif-
ferences in branching patterns, including the degree of rami-
fication and branching order, can complicate comparisons 
across trees. Thus, although the Db is linked to structural 
metrics such as the mean crown radius, crown surface area 
(the convex hull of the tree crown) or branch angles (Seidel 
et al. 2019b), it captures more information about their distri-
bution in space, which is an essential feature that determines 
and indicates the biological functions of the tree, including 
its capacity to intercept light.

Correlative studies between the Db and tree functioning 
found positive relationships with productivity (Seidel 2018; 
Seidel et al. 2019a; Dorji et al. 2021), positive relationships 
with branch hydraulic efficiency, and negative relationships 
with hydraulic safety (Dorji et al. 2024). Moreover, in a 
deciduous forest, vital trees tended to show a larger differ-
ence in Db between summer and winter than less vital trees, 
due to the differences in foliage development (Heidenreich 
and Seidel 2022). These accumulating results suggest that 
the Db can be a helpful index in tree structure-function 
research.

Potential issues of the Db

Although the BCM can be easily applied, the Db value can 
be sensitive to the arbitrary placement of an object in the 3D 
grid system. This is because the number of boxes intersect-
ing the object at each scale depends on the object’s position 
and orientation within the grid system (Da Silva et al. 2006; 
Bouda et al. 2016). Currently, the BCM is often applied to 
the point clouds of trees obtained from terrestrial or mobile 
laser scanning (e.g., Saarinen et al. 2021; Dorji et al. 2021, 
2024), and the box-counting procedure is likely done based 
on the coordinates of the point clouds, which depend on 
how the laser scanning was conducted. Therefore, even 
if we have ideal occlusion-free point clouds, applying the 
BCM to the tree point clouds may produce the Db specific to 
the tree’s position and orientation in the coordinate system. 
In this study, we define the placement effect as the sensitiv-
ity of Db to tree positions and orientations in the coordinate 
system. In literature, a similar but different term, quanti-
zation error, is used to describe the deviation between the 
empirical and the minimum box counts required to cover 
the object (Bouda et al. 2016). A large placement effect may 
potentially decrease the association between the Db and the 
tree’s physical functions (Loke and Chisholm 2022). How-
ever, the placement effect is usually neglected in the litera-
ture. Thus, characterizing the placement effect is crucial for 
the further application of the Db to reliably describe natural 
tree structures.
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It is expected that trees with higher architectural self-
similarity with repeated branching produce higher R2 val-
ues of the regression lines than those with less architectural 
self-similarity (Seidel 2018), as R2 values are supposed to 
measure the consistency of a scaling exponent or the degree 
of self-similarity. For 3D trees based on point clouds, R2 
values are usually very high (> 0.96) (e.g., Guzmán et al. 
2020), and we might be tempted to conclude that trees are 
indeed self-similar. However, a high R2 value may not be a 
sufficient measure of self-similarity, as the data points used 
in the linear regression are correlated and violate the sta-
tistical assumption of independence, leading to inflated R2 
values (Reeve 1992). To determine how much a tree’s struc-
tural scaling pattern may actually change across different 
scales, we can additionally compare local slopes, which are 
the slopes between neighboring data point pairs. If a tree 
is approximately self-similar within the interested scales, 
we expect local slope values to be reasonably stable across 
scales (Halley et al. 2004; Bouda et al. 2016). Some studies 
demonstrate that local slopes vary across scales with a clear 
pattern when objects’ structural patterns depend on specific 
scales (Panico and Sterling 1995; Bouda et al. 2016; Chee-
seman and Vrscay 2022). To improve the interpretation of 
the Db, it is important to examine R2 values as well as local 
slope patterns under different levels of branch reiteration. If 
trees are approximately self-similar, reducing the branching 
repetition should disrupt their self-similarity, which will be 
reflected in R2 values and local slope patterns.

The present study aimed to investigate (1) the BCM’s 
sensitivity to arbitrary tree placement in the coordinate sys-
tem, and (2) R2 values and local slope patterns of the BCM 
under different levels of branch reiteration.

Methods

We used 100 Quantitative Structure Models (QSMs) of 
European beech (Fagus sylvatica L.) as reference tree 
objects. We chose European beech because it is a productive 
and ecologically important species that dominates a wide 
range of European forests and provides valuable wood for 
many purposes (Durrant et al. 2016). Thus, efficiently quan-
tifying their structural complexity would help forest man-
agement. We used QSMs because they can be used to create 
(1) occlusion-free point clouds by converting the QSMs to 
point clouds and (2) different levels of branch reiteration by 
artificially pruning the trees using the QSM branch order 
information.

Study site

The present study was conducted on two 50 m x 50 m plots 
of pure European beech stands located in Nienover and 
Unterluess, Lower Saxony, Germany. The Nienover plot in 
southern Lower Saxony is at 320 m.a.s.l., while the Unter-
luess plot lies further north at 162 m.a.s.l. Both sites share 
a temperate climate with similar mean annual air tempera-
tures of 8.8 °C and 9.0 °C, while mean annual precipitation 
is slightly higher in Nienover (895 mm) compared to Unter-
luess (747 mm). The stands are approximately 85 years old 
and have been managed until 2018. Although trees of the 
genera Picea, Larix, Quercus, Pseudotsuga, and Pinus were 
present, European beech was the main stock for both plots, 
accounting for at least 70% of the trees.

Mobile laser scanning and point cloud processing

In March 2021, both plots were scanned during leafless con-
ditions using a mobile laser scanner (ZEB-Horizon, Geoslam 
Ltd., Nottingham, UK). Utilizing a 903 nm laser, the device 
emits 300,000 points per second, reaching a maximum dis-
tance of 100  m and detecting the traversed environment 
with a 3 cm range of noise. Point clouds and the respective 
trajectories were generated using the Simultaneous Local-
ization and Mapping (SLAM) algorithm in GeoSLAM Hub 
6.0 (GeoSLAM Ltd., Nottingham, UK). Individual tree 
segmentation was achieved using LiDAR360 (GreenValley 
International Ltd., California, USA). The preceding density 
homogenization to a 0.5 cm resolution, manual correction, 
and final noise filtering were carried out in CloudCompare 
(version 2.13.0; https://www.danielgm.net/cc/). The ​r​e​s​p​e​c​
t​i​v​e noise filtering function was set to a sphere radius of 
0.2 m and a relative maximum error of 1.0.

QSMs

QSMs were obtained using the SimpleTree plugin (Hack-
enberg et al. 2015) in CompuTree 5.0 (Piboule et al. 2013). 
QSMs reconstruct a tree’s branching structure using hierar-
chically fitted cylinders, which are set by a non-linear least 
squares fitting routine around a tree point cloud (Hacken-
berg et al. 2014, 2015). Since the whole branching architec-
ture was of interest, all cylinders up to the highest available 
order of each tree were included. Upon visual inspection, 
the 100 best-fitting QSMs were chosen for further analysis.

Pruning

First, we improved the QSMs using the Real Twig method 
(Morales and MacFarlane 2024), which corrected the over-
estimation of small branch and twig cylinder sizes based 
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codes are written based on previous studies investigating 
the Db in tree structural complexity (Seidel 2018; Seidel 
et al. 2019a; Arseniou et al. 2021a). First, the largest edge 
length of the box (more precisely, voxel) was determined 
as the maximum of the ranges of the X, Y, and Z coordi-
nates in the point clouds. Then, the largest edge length was 
subsequently halved until it reached the lower cutoff point 
(Fig. 2A). A box size with each edge length was used for 
the following box-counting process. We set the lower cutoff 
to 20 cm as a conservative estimate of the minimum point-
cloud resolution in our mobile laser-scanning data.

Voxelization was done to count the number of boxes of 
each edge length. First, the original point coordinates (in m) 
were scaled by the respective box edge lengths, and then the 
scaled coordinates were floored to assign the points to the 
boxes to which they belong. Lastly, the number of unique 
coordinates was counted as the number of boxes. To com-
pute the Db, ordinary least squares regressions were used 
with log(N) being the response and log(1/r) being the pre-
dictor (log: natural logarithm; N: the number of boxes; r: 
relative box edge length with respect to the largest box edge 
length) (Fig. 2B). We removed the data point related to the 
initial box from the Db computation since including the larg-
est box size is expected to increase the placement effect due 
to the small box counts (Panico and Sterling 1995; Loke and 
Chisholm 2022), setting the argument rm_int_box = TRUE 
in the function box_dimension. R2 values from the regression 

on the species-specific twig diameter information using 
the function run_rtwig from the R package rTwig (Morales 
and MacFarlane 2024). Then, we removed specific orders 
of branches (4th or more, 3rd, and 2nd orders; 0th order is 
the main stem) sequentially from the QSMs in R version 
4.4.2 (R Core Team 2024) (Fig. 1), resulting in 399 QSMs 
(one tree has the maximum branch order of three), includ-
ing without pruning. Thereafter, the QSMs were exported as 
mesh files using the function export_mesh from the R pack-
age rTwig. Then, using the command-line mode of Cloud-
Compare (version 2.14.alpha; ​h​t​t​p​s​:​/​/​w​w​w​.​d​a​n​i​e​l​g​m​.​n​e​t​/​c​c​
/​​​​​)​, we simulated point clouds with a precision of 1 cm and 
a density of 5000 points per m2 based on the mesh files for 
the following Db computation. Lastly, in R, we updated the 
coordinate origin (0, 0, 0) to the point’s coordinate with the 
lowest Z coordinate of a tree (i.e., the tree base) and con-
sidered the tree’s position and orientation as the reference. 
When there were multiple points with the lowest Z coordi-
nate, we averaged the X and Y coordinates of those points. 
This standardization of tree position within the coordinate 
system was necessary for the following processes related to 
the placement effect.

Computing Db

Using the function box_dimension from the R package rTwig 
(Morales and MacFarlane 2024), we computed the Db. The 

Fig. 1  An example of pruning. From left to right, the maximum number of branch orders is one, two, three, and four or more (no pruning). The 
0th branch order is the main stem. The images are based on point clouds of a tree with a height of 27.35 m and a maximum branch order of seven
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denoted as Db, diff) was calculated separately for translated 
and rotated point clouds. We decided on the procedures 
mentioned above due to their computational feasibility, and 
our investigations are by no means exhaustive. In this study, 
we investigated the potential effects of arbitrary tree place-
ments related to laser scanning campaigns.

Statistical analysis

All statistical analyses were conducted in R version 4.4.2 
(R Core Team 2024). To test the effect of branch reiteration 
on R2 values, we fitted a linear mixed-effects model using 
the package glmmTMB (Brooks et al. 2017), with R2 as the 
response and the maximum branch order (ranging from one 
to four or more) as the predictor. Tree ID (a unique identi-
fier for each tree) was included as a random intercept. We 
chose the beta distribution as the response distribution fam-
ily because R2 values are bounded between 0 and 1.

By visually inspecting the distributions of Db from trans-
lations and Z-rotations, we found that the ranges of Db val-
ues were greatly larger for translations (Fig. 4). The ranges 
of Db values from Z-rotations were around Dbs at the refer-
ences and always within the ranges of Db values from trans-
lations. The distribution of Db from translations, in general, 
appeared unimodal and bell-shaped, with some differences 
in right- or left-skewness and spread. These observations 
suggest that the effect of positions strongly affects the Db. 
Thus, to minimize the placement effect, we used the median 
R2 values from translations for the model response. To visu-
ally inspect local slope patterns under different levels of 
branch reiteration for each tree, we visualized the median 

lines and local slopes were also computed (Fig. 2B). Local 
slopes are defined as the slopes between neighboring data 
point pairs.

Placement effect

In practice, trees’ positions and orientations in the coordi-
nate system depend on the laser scanning campaign (e.g., 
position of terrestrial laser scanner, start position of mobile 
laser scanner) (Fig.  3). It is possible to understand these 
effects by changing the trees’ positions by translation and 
their orientations by Z-axis rotation in the coordinate sys-
tem. In this study, we assessed the effects of position and 
orientation separately. The initial box count is ignored in 
the Db computation, and counting from the second box 
size affects the Db. Therefore, we can examine the effect of 
position by translating trees from the reference within the 
second box side length in XYZ directions. Specifically, we 
first determined half the length of the initial box edge and 
created a sequence of 11equidistant points along that length. 
Then, using the first ten points, we created 1000 translation 
patterns (10(X)*10(Y)*10(Z) = 1000 translations for each 
non-pruned and pruned tree; 399,000 translations in total), 
including the reference position (i.e., no translation). In this 
way, we assumed that it is possible to assess the effect of 
position equally for trees of different sizes. To understand 
the effect of orientation, we rotated each tree at the reference 
around the Z-axis from 0° to 350° by 10° (i.e., 36 rotations 
for each non-pruned and pruned tree; 14,364 rotations in 
total). Lastly, the maximum difference of Db (the difference 
between the maximum and minimum Db values, hereafter 

Fig. 2  Illustrations of the BCM. (A) Different box sizes with point 
clouds of a tree with a height of 27.35 m. (B) Derivation of Db from a 
linear regression (solid line) and local slopes (dashed line). The illus-

trations were produced using the function box_dimension from the R 
package rTwig (Morales and MacFarlane 2024) and modified
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and standard deviation (SD) of local slopes from transla-
tions against each interval of the scales. The median local 
slope was used to minimize the placement effect, and the 
SD of local slopes was used to show how local slope varies 
at each scale due to the placement effect.

We referred to Santon et al. (2023) for exploratory data 
analysis for the regression model. For model diagnostics, 
we used the packages DHARMa (Hartig 2024) (to assess 
model residuals using randomized quantile residuals) and 
performance (Lüdecke et al. 2021) (to assess the normal-
ity of random effects and perform a posterior predictive 
check). For model interpretation, we computed marginal 
and conditional R2 values based on Nakagawa et al. (2017) 
using performance (Lüdecke et al. 2021). For data handling 
and visualization, we used the packages from tidyverse 
(Wickham et al. 2019) (e.g., dplyr, tidyr, ggplot2). Pack-
age dependencies for the R project used in this study were 
managed with the package renv (Ushey and Wickham 2024) 
for reproducibility. The R code and the lockfile containing 

Fig. 4  An example of the Db distribution. The blue and yellow shad-
ings indicate translation and Z-rotation, respectively. The dashed line 
is the Db value at the reference

 

Fig. 3  Illustrations of the 
placement effect. (A) Numbers 
indicate the coordinate origins, 
and the arrows indicate the X 
and Y axes directions, depend-
ing on the specific laser scanning 
campaigns. A green object near 
the center is a tree’s top canopy. 
Note that this is a top view, and 
the Z-axis coordinate origin can 
also differ. In (B), (C), & (D), the 
positions and/or the orientations 
of the tree differ in the coordinate 
systems according to (A). In (B) 
& (C), the positions are different. 
In (D), the position and orienta-
tion of the tree are different from 
those in (B) & (C)
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minimum R2 values were rounded to 0.990 for all the maxi-
mum branch orders.

Regardless of the maximum branch order, the local 
slope patterns in general showed an upward convex curve 
(Fig.  6A, C), which was less evident when the scale was 
limited due to the lower cutoff (Fig. 6E). Local slope val-
ues tended to be larger and more varied across scales as 
the maximum branch order increased (Fig. 6A, C), which 
was less evident when a tree’s Db was small (Fig. 6E). The 
local slope values among different maximum branch orders 
tended to converge at the beginning and the end of the scales 
(Fig. 6A, C, E). Regardless of the maximum branch order, 
the SD of the local slopes from translations at each interval 
of the scales, in general, showed an exponentially decreas-
ing pattern as the scales became finer (Fig. 6B, D, F).

Discussion

We investigated the BCM’s sensitivity to arbitrary tree 
placement in the coordinate system, as well as the BCM’s 
R2 values and local slope patterns under different levels of 
branch reiteration, using 100 European beech trees. Over-
all, we found that the Db was sensitive to positions in the 
coordinate system (Db, diff (translation) ≥ 0.18) and less so to 
orientations (Db, diff (Z-rotation) ≤ 0.09). Also, we found that 
the R2 values of the regression lines of the BCM were con-
sistently high (≥ 0.990), regardless of the maximum branch 
order, even though the local slopes generally varied across 
scales with a systematic convex pattern.

BCM’s sensitivity to arbitrary placement

Given that Db values ranged from 1.33 to 1.87, even the 
low Db, diff values (0.2–0.3) from translations in the samples 
should be considered substantial (Table  1). On the other 
hand, Db, diff values from Z-rotations in the samples were 
considerably lower, with a maximum of 0.09 and a mini-
mum of 0.004 (Table  1). The greater effect of position is 
likely because changing a tree’s position in the coordinate 
system has a larger influence on the box counts at coarser 
scales than changing the orientation of the tree (Panico and 
Sterling 1995). The box count differences at coarser scales 
have a larger impact on local slopes compared to those at 

metadata about the packages used for this study are avail-
able in GRO.data at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​2​​5​6​2​​5​/​6​​I​R​T​Q​M.

Results

In the dataset, the maximum branch order ranged from three 
to seven, with a mean of 5.180, and the Db ranged from 
1.331 to 1.872, with a mean of 1.674 (Table 1). The Db, diff 
from translations ranged from 0.183 to 0.523, and the mean 
was 0.341, while the Db, diff from Z-rotations was smaller. 
The range was 0.004–0.090, with a mean of 0.022 (Table 1). 
Comparing the Db, diff from translations and the Db, diff from 
Z-rotations of the same individuals, the Db, diff from Z-rota-
tions was 93.4% lower on average.

Regardless of the maximum branch order, the model esti-
mated means of R2 values were over 0.995 (Fig.  5), and 
we did not observe an increasing trend in R2 values as the 
maximum branch order increased, which is supported by the 
very low marginal R2 (0.014) of the model. The observed 

Table 1  Summary statistics of the maximum branch order, the Db, and the Db, diff
Min. 1st Qu. Median Mean 3rd Qu. Max. SD

Max branch order 3.000 5.000 5.000 5.180 6.000 7.000 0.833
Db (median) 1.331 1.606 1.689 1.674 1.765 1.872 0.113
Db, diff (translation) 0.183 0.285 0.337 0.341 0.379 0.523 0.066
Db, diff (Z-rotation) 0.004 0.011 0.017 0.022 0.026 0.090 0.016
Db (median) is the median of Db values calculated from translations to account for the placement effect

Fig. 5  Plot of median R2 values against the maximum branch order. 
A maximum branch order of 4 + indicates four or more (no pruning). 
The white points indicate model-estimated means with the correspond-
ing 95% confidence intervals above and below (conditional R2: 1.000; 
marginal R2: 0.014). The black points indicate observed values and are 
jittered for clarity. Points belonging to the same individuals are con-
nected by lines. The median of R2 values from translations was used to 
account for the placement effect
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R2 values and local slope patterns of the BCM

Trees tend to look self-similar and fractal due to their 
branch reiteration (Barthélémy and Caraglio 2007; Malhi et 
al. 2018). Thus, decreasing the branching repetition would 
reduce the self-similarity of trees, which should be reflected 
in the R2 values of the BCM (Seidel 2018). Also, when R2 
values are high, we expect the objects to be self-similar, and 
local slope patterns tend to be more or less flat (Panico and 
Sterling 1995; Bouda et al. 2016). However, we found no 
practical differences in R2 values among tree models with 
different maximum branch orders (Fig.  5). The R2 values 
were consistently very high (≥ 0.990). Moreover, by inves-
tigating local slope patterns, we found that, in general, the 
patterns were upward convex curves, and local slopes varied 
more across scales as the maximum branch order increased 
(Fig. 6A, C, E). These findings suggest that it is difficult to 
assume constant scaling properties (i.e., self-similarity) of 
the beech tree models based on the BCM, and the R2 value 
of the BCM’s regression is insensitive to local scaling pat-
tern changes. Thus, the R2 value is unlikely to be helpful for 
assessing self-similarity, as pointed out in some literature 
(e.g., Halley et al. 2004; Bouda et al. 2016).

The local slopes at the beginning of the scales seem to 
indicate the overall tree crown spread in space, which is 
likely determined by the first-order branches. This can be 
observed in the convergence of local slope values at the 
beginning of the scales among different maximum branch 
orders (Fig. 6A, C, E). On the other hand, the local slopes 
at the intermediate scales seem to indicate the density of 
branches present in the crown (Panico and Sterling 1995). 
This can be observed in the increased local slopes for higher 
maximum branch orders, which was less apparent when 
the Db was smaller. Trees with a small Db are structurally 
simple and have a pole-like structure (i.e., 1D) and created 
fewer variations in local slopes across scales (Fig. 6E). This 
does not mean they have reiterated architecture and are more 
fractal, but rather that they are close to 1D. The observed 
local slope convergence among different maximum branch 
orders at the end of the scale (Fig. 6A, C) seems to indicate 
that the box size was too small to observe any scaling dif-
ferences. In other words, at this scale, boxes start to align 
with the tree, and the BCM does not meaningfully evaluate 
the distribution of tree elements in space. These observa-
tions suggest that investigating local slope patterns is more 
helpful for assessing the consistency of the scaling exponent 
of the BCM than relying on an R2 value (Panico and Ster-
ling 1995; Bouda et al. 2016; Cheeseman and Vrscay 2022). 
Also, the observed clear local scaling patterns suggest that 
the Db is likely sensitive to the scales used for the computa-
tion, and standardizing scales may be necessary.

finer scales due to the larger relative box count differences 
at coarser scales. For example, let’s assume that due to the 
placement effect, at a coarse scale the box count increases 
from 10 to 12 (a 20% increase), and at a finer scale the 
box count increases from 1000 to 1020 (a 2% increase). 
When taking the logarithm of these values, the difference 
between log(10) and log(12) (ca. 0.18) is larger than the 
difference between log(1000) and log(1020) (ca. 0.020). 
This also explained why we observed larger SDs of local 
slope at coarser scales (Fig. 6B, D, F). These results sug-
gest that when correlating the Db with the tree’s physical 
functions, the placement effect, especially due to position, 
reduces associations between the Db and the tree’s physical 
functions (Loke and Chisholm 2022), thereby reducing the 
predictive power of the Db.

One quick fix for this issue is to standardize the trees’ 
positions in the coordinate system, as we did when creat-
ing the reference (i.e., by setting the coordinate origin to 
the tree base). Although this does not address the placement 
effect due to orientation and the Db value would be specific 
to how the positions of trees are standardized (Fig. 4), the 
Db, diff of our samples was reduced by 93.4%, on average. 
A more precise but computationally intensive approach to 
this issue is to find the minimum number of boxes necessary 
to cover a tree at each box size by implementing a pattern 
search algorithm, as in Bouda et al. (2016). Another simple 
way to address the issue is to remove the coarser scales from 
the Db computation, as the largest variations in local slopes 
due to the placement effect occur at coarser scales (Fig. 6B, 
D, F) (Panico and Sterling 1995; Bouda et al. 2016). How-
ever, we already excluded the coarsest scale (i.e., the initial 
box) from the computation, and removing further scales will 
diminish the BCM’s ability to capture the detailed distribu-
tion of tree structural elements in 3D space (Seidel 2018). 
Thus, applying an algorithm to find the minimum box counts 
at coarse scales could be another feasible remediation. Fur-
ther research is needed to address the placement effect when 
using the BCM to measure tree structural complexity.

Fig. 6  Three examples of local slope patterns under different maximum 
branch orders. A maximum branch order of 4 + indicates four or more 
(no pruning). (A), (C), & (E): Median local slope from translations 
against box size (relative box edge length with respect to the initial 
box edge length). The box size is the starting point of the local slope. 
For example, the local slope value at a box size of 1/2 was calculated 
on the scale between 1/2 and 1/4. The dashed line is the median Db 
from translations corresponding to the non-pruned trees (4+). (B), (D), 
& (F): SD of local slopes from translations against box size. Note that 
there is no data point at a box size of 1/64 in (E) & (F) due to the lower 
cutoff of 20 cm. (A) & (B): a tree with a median Db of 1.87, a height of 
27.99 m, and a maximum branch order of six; (C) & (D): a tree with a 
median Db of 1.59, a height of 26.53 m, and a maximum branch order 
of five; (E) & (F): a tree with a median Db of 1.33, a height of 18.33 m, 
and a maximum branch order of four; the corresponding images of the 
trees in (B), (D), & (F) are based on point clouds
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than R2 to assess the consistent scaling properties of trees 
(i.e., self-similarity).
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