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Abstract

A method is proposed for designing nonlinear univariate calibration
of measuring instruments. The problem addressed is how to select a
set of design points (standards or calibrators) to minimize the errors
in the inverse predictions. The curve parameters are assumed to vary
randomly between calibrations, with known expected value and known
covariance matrix. A design criterion is suggested for analytical pro-
cedures, according to which the coefficient of variation and the area
under the precision profile are minimized.
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1 Introduction

Calibration curves are used in measuring instruments for determining physi-
cal quantities and in analytical procedures for determining concentrations of
analytes in biological samples. Mathematically the calibration curve, estab-
lished by the calibration, is a function from a physical quantity to a response.
The calibration curve is fitted to measurements of calibrators (standards)
with known physical quantities. By inverse prediction, responses are trans-
lated into estimates of physical quantities through the calibration curve.
The problem discussed in this article is how to select the design points (i.e.,
the physical quantities of the calibrators) in such a way that the inverse
predictions are optimized with respect to a design criterion.

Consider, for example, the calibration curve shown in Figure 1a, which
illustrates a relationship between response and concentration in a measuring
range [2, 200] µg/L. Responses of calibrators with concentrations of 2, 10, 50,
100, and 200 µg/L have been measured. A four-parameter logistic function
has been fitted by the method of weighted least squares. The fitted cali-
bration can be used for estimating concentrations of samples with unknown
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Figure 1: (a) Use of calibration curve for inverse prediction, (b) True relationships between
response and concentration, under varying conditions.

concentrations, as indicated by the arrows. In Section 3.2 we investigate
whether ξ = (2, 10, 50, 100, 200)′ is an optimal design.

New batches of reagents could alter the relationship between response
and concentration. Figure 1b illustrates possible true relationships at five
days with different batches of reagents. This variation between the curves,
caused by changes in reagents or in other influential factors, such as temper-
ature or humidity of the air, could be considered random.

It is a common concern in nonlinear regression that the optimal design
is dependent on the curve parameter values, which are not known. De-
signs are often optimized locally, that is, conditioned on some previously
determined fixed curve parameter vector β. For example, an optimal design
could be obtained for one of the curves in Figure 1b, ignoring the random
variation between the curves. Locally optimal designs for the Michaelis–
Menten model were studied by Dette and Wong (1999) and Boer, Rasch,
and Hendrix (2000). A class of models including the three-parameter lo-
gistic function was studied by Melas (2004). Gauchi and Pázman (2006)
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contributed to the theory of locally optimal designs by developing a method
for stochastic optimization.

A second approach is to look for a Bayesian optimal design. According
to this approach, the curve parameters belong to a prespecified multivari-
ate distribution. The researcher is required to give a full specification of
the multivariate distribution for the curve parameters. Bayesian methods
could be used not only for design, but also for calibration and inverse pre-
diction by including a prior probability density for the curve parameters
and the unknown samples (Osborne 1991). Bayesian optimal designs were
reviewed by Chaloner and Verdinelli (1995) and Müller (1999). Clyde and
Chaloner (2002) proposed a Bayesian method that could be used to find
an optimal design for a given number of design points. Bayesian optimal
design for the Michaelis–Menten model has been described by Song and
Wong (1998) and Matthews and Allcock (2004).

In this article we suggest a third approach that falls between the two stan-
dard approaches. The theory for locally optimal designs, which is reviewed in
Section 2.2, is extended in Section 2.3 by assuming that the curve parameters
are random with expected value β0 and covariance matrix Σ. The distribu-
tion of the curve parameters is not specified, and Bayesian methods are not
used for calibration and inverse prediction. Calibrations by the method of
least squares are presumed, without assumptions about randomness in the
curve parameters. The new design method requires prior specification of the
covariance matrix Σ, with information about how much the curve parame-
ters are likely to vary, (as a result of, e.g., changes in temperature), and to
what extent the parameters are correlated. The variances and covariances
of Σ must be specified based on previous experience of the measuring in-
strument or the analytical procedure, perhaps obtained in validation studies.
Locally optimal designs are obtained as a special case when Σ = 0. The
priors are expressed by means and covariances, as in Bayes linear statistics
(Goldstein and Wooff 2007), but the theory is not build on the concept of
adjusted expectations.

Dette, and Biedermann (2003), Dette, Melas, and Pepelyshev (2003),
Dette, Melas, Pepelyshev, and Strigul (2003, 2005) and Dette, Melas, and
Wong (2005) have suggested maximin D- and E-optimal designs for the
Michaelis–Menten and Monod models. In the context of generalized linear
models, Dror and Steinberg (2006) and Woods, Lewis, Eccleston, and Rus-
sell (2006) have proposed methods for constructing robust designs based on
the criterion for D-optimality. Mathew and Sinha (2001) have considered D-,
E-, and A-optimal designs for logistic regression, and Vila and Gauchi (2007)
have proposed designs that minimize exact parameter confidence ellipsoids.
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In Section 2.4 it is suggested that the errors in the inverse predictions
are minimized over the measuring range. Similar criteria were proposed for
linear calibration by Ott and Myers (1968) and Buonaccorsi (1986) and for
nonlinear calibration by Rocke and Jones (1997) and François, Govaerts,
and Boulanger (2004). For analytical procedures the coefficient of variation,
recommended by for example De Silva et al. (2003), and the precision profile
(Dudley et al. 1985) are suggested as design criterion.

2 Method Theory

2.1 Model for Calibration

Assume that the expected response is a strictly monotonic continuous func-
tion, f(ξ, β), of the physical quantity ξ, with parameter vector β = (β1, β2,
. . . , βp)′ as in any of the curves in Figure 1b. Let ξ = (ξ1, ξ2, . . . , ξm)
be a vector of design points, for example, ξ = (2, 10, 50, 100, 200)′. Let
fi(β) = f(ξi, β) and f(β) = (f1(β), f2(β),. . .,fm(β))′, so that f(β) includes
expected responses at the design points. Let y = f(β) + ε, where the error
vector ε has expected value 0 and diagonal covariance matrix D. Thus y is
the vector of responses obtained in the calibration, indicated by circles in Fig-
ure 1a. Let F(β) denote the m×p matrix of partial derivatives ∂fi( β)/∂βj .
Assume that the rank of F(β) is p and that all required derivatives and
moments exist. Let ξ, without index, denote the unknown parameter to be
estimated by inverse prediction (e.g., the concentration of a sample). We
observe a response y = µ + e, where µ = f(ξ, β), and assume that e varies
independently of ε, with expected value 0 and variance σ2.

The weighted least squares estimate of β is the b that minimizes the
generalized least squares criterion, so that

(y − f(b))′D−1(y − f(b)) = min
β

(y − f(β))′D−1(y − f(β)). (1)

It is well known that b is the ordinary least squares estimate in a trans-
formed model C−1y = C−1f(β) + C−1ε, where C is such that D = CC′.
Jennrich (1969) showed that b exists under mild regularity conditions. If the
number of distinct design points is finite, then b is consistent as the num-
ber of replicates per design point increases (Malinvaud 1970; Gallant 1975).
Given some further regularity conditions (Seber and Wild 1989), b is asymp-
totically normally distributed with expected value β and covariance matrix

V(β) = (F(β)′D−1F(β))−1, (2)
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where we write V(β) to indicate that the covariance matrix V of b is de-
pendent on β. Provided that b is close to β,

f(b) ≈ f(β) + F(β)(b− β). (3)

Substituting (3) in (1) yields (ε−F(β)(b−β))′D−1(ε−F(β)(b−β)), which
is minimized when b = β + (F′(β)D−1F(β))−1F′(β)D−1ε. Thus, when b
varies near β, the variance in b approximately equals (2) even if the number
of design points is small.

The physical quantity ξ is estimated, as illustrated in Figure 1a, by
x = f−1(y,b), where f−1 denotes the inverse of f as a function of ξ. In a
neighborhood of (µ,β),

x = ξ + k(β)(y − µ) + g′(β)(b− β) + O(δ2), (4)

where δ is the radius of the neighborhood and

k(β) =
∂f−1

∂y

∣∣∣∣
(y,b)=(µ,β)

, g(β) =
∂f−1

∂b

∣∣∣∣
(y,b)=(µ,β)

. (5)

Note, as is important in Section 2.3, that k(β) and g(β), as defined by (5),
can be calculated for a given ξ by

k(β) =
(

∂f

∂x

)−1∣∣∣∣
(x,b)=(ξ,β)

, (6)

g(β) = −∂f

∂b

(
∂f

∂x

)−1∣∣∣∣
(x,b)=(ξ,β)

. (7)

2.2 Fixed Curve Parameters

In this section we study the variance and expected value of the inverse pre-
diction x of ξ, conditioned on β. For example, we consider the errors in
the inverse prediction given one of the five true relationships between re-
sponse and concentration shown in Figure 1b. We assume that we know the
parameters β for this specific curve.

Under the assumption that the variance of the last term in (4) is small,

var(x|β) ≈ k2(β)σ2 + g′(β)V(β)g(β), (8)

because y and b are independent. The first term in (8) is the variance, σ2,
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of the observation in response transformed through linear approximation
into the variance in inverse prediction. The second term is the asymptotic
covariance matrix, V(β), of the curve parameter estimators transformed
through linear approximation into the variance in inverse prediction. Thus
the approximate conditional variance in x is composed of two parts, one part
caused by the variation in the measurement of the sample with unknown ξ
and the other caused by the variation in the p measurements of the design
points.

The bias in nonlinear regression is known to be an order of magnitude
smaller than the standard errors of the parameter estimators (Box 1971).
Let Ai(β) denote the p × p matrix with elements ∂2fi( β)/(∂βr∂βs), i =
1, 2, . . . , m. Box (1971) showed that, with the additional assumption of nor-
mally distributed measurements, E[b−β] ≈ V(β)F′(β)D−1z(β), where the
elements of the vector z(β) are zi(β) = −tr{V(β)Ai(β)}/2, i = 1, 2, . . . , m.
Thus, by (4),

E(x|β) ≈ ξ + g′(β)V(β)F′(β)D−1z(β), (9)

and the bias is approximately equal to c(β) = g′(β)V(β)F′(β)D−1z(β).

2.3 Random Curve Parameters

In Section 2.2, we assumed that β was a fixed known parameter vector,
corresponding to, for example, a single curve in Figure 1b. We now extend
the theory by assuming that β is a random parameter vector with expected
value β0 and covariance matrix Σ. We thus assume that the true relationship
can vary randomly, due to, for example, random variation between batches
of reagents, as illustrated by the five curves in Figure 1b. We study the
variance and the expected value of the inverse prediction given known β0

and Σ.
The unconditional variance includes two terms: the mean of the con-

ditional variance and the variance in the conditional mean. Thus, by (8)
and (9), the variance in the inverse prediction is

var(x) = E(var(x|β)) + var(E(x|β))
≈ σ2E(k2(β)) + E(g′(β)V(β)g(β))

+ var(g′(β)V(β)F−1(β)D−1z(β)), (10)

where calculation of k(β) and g(β) for a given ξ is made possible by (6) and
(7). The last term in (10) is the variance in the bias, which often is very
small. For this reason, we focus on σ2E(k2(β)) and E(g′(β)V(β)g(β)) and
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expand k2(β) and g′(β)V(β)g(β), as functions of β, about β = β0. To make
notation easier, we write g′Vg(β) instead of g′(β)V(β)g(β). Following
Kollo and von Rosen (2005, p. 152), we have

k2(β) = k2(β0) + (β − β0)
′ dk2

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2k2

dβ2

)′∣∣∣∣
β=β0

+ r, (11)

where in a neighborhood of β0, for some ρ in the neighborhood,

r =
1
6
((β − β0)

′)⊗3vec
(

d3k2

dβ3

)′∣∣∣∣
β=ρ

.

The vec operator stacks the columns of the matrix one under the other, and
A⊗k is the Kronecker product of k matrices A. Similarly,

g′Vg(β) = g′Vg(β0) + (β − β0)
′ d(g′Vg)

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

+ s, (12)

where in a neighborhood of β0, for some ς in the neighborhood,

s =
1
6
((β − β0)

′)⊗3vec
(

d3(g′Vg)
dβ3

)′∣∣∣∣
β=ς

.

By (10), (11), and (12),

var(x) ≈ σ2k2(β0) + g′Vg(β0) +
σ2

2
vec′Σ vec

(
d2k2

dβ2

)′∣∣∣∣
β=β0

+
1
2

vec′Σ vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

, (13)

provided that the variance in the bias, (i.e. the last term in (10)), can be
neglected. The p×p matrix d2(g′Vg)/dβ2 in (13) can be calculated through
the first and second-order derivatives of g(β) and F(β). The formulas are
given in the Appendix.
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By (9), the unconditional expectation is

E(x) = E(E(x|β)) ≈ E(ξ + g′(β)V(β)F′(β)D−1z(β)).

By expansion of the bias c(β) = g′(β)V(β)F′(β)D−1z(β) about β = β0,

c(β) = c(β0) + (β − β0)
′ dc

dβ

∣∣∣∣
β=β0

+
1
2
((β − β0)

′)⊗2vec
(

d2c

dβ2

)′∣∣∣∣
β=β0

+ t, (14)

where in a neighborhood of β0, for some τ , the error term t is

t =
1
6
((β − β0)

′)⊗3vec
(

d3c

dβ3

)′∣∣∣∣
β=τ

.

Because E(β − β0) = 0, and because the last two terms in (14) are often
small, we have

E(x) ≈ ξ + g′(β0)V(β0)F
′(β0)D

−1z(β0). (15)

2.4 Design Criterion

In Section 2.2 and 2.3 we showed how to calculate the variance and the
expected value of the inverse prediction of the unknown quantity ξ. We now
want to find an optimal set of m design points that minimizes the variance
and the bias in the inverse prediction. Generally, we want to minimize a
function hξ of the variance and the expected value. This function can be
the variance or the mean squared error, but it also can be the coefficient of
variation γ as defined by

γ =
√

var(x)/E(x). (16)

If β is considered fixed and the search for a locally optimal design is
made given a known β, then (8) and (9) can be used for calculating hξ. In
this article we propose that β is instead modeled as a random variable, and
that hξ is calculated by (13) and (15).

Because ξ is unknown, we want to minimize the function hξ for all ξ’s
that belong to the measuring range. Consequently, the design criterion that
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we want to minimize over ξ is
∫

hξπξ dξ, (17)

where πξ is a prior probability density function of ξ. Typically, we assume
that ξ belongs to a measuring range [α, ω]. We then want to minimize the
function hξ for all ξ, with weights defined by the prior distribution πξ, which
takes the value 0 outside [α, ω].

Table 1: Notation

Ai ∂2fi( β)/(∂βr∂βs) x inverse prediction of ξ
b GLS estimate of β y sample response
D covariance matrix of y y design point responses
e y − µ z vector of −tr{VAi}/2
f calibration curve function β curve parameters
f E(y) β0 E(β)
F Matrix of ∂fi( β)/∂βj ε y − f
g ∂f−1/∂b µ E(y)
hξ function to be minimized ξ unknown sample value
k ∂f−1/∂y ξ vector of m design points
m number of design points πξ prior density of ξ
p number of curve parameters σ2 variance in y
V asymptotic cov. matrix of b Σ covariance matrix of β

3 Examples

All calculations in the following examples were done using MATLAB 6.5
(Mathworks, Natick, MA). The integrals were calculated by the trapezoidal
rule based on 1,000 equally spaced points, on the scale considered.

3.1 The Michaelis–Menten Function

The Michaelis–Menten function,

f(ξ, β) =
β2ξ

β1 + ξ
, (18)
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is used in kinetics to describe the reaction rate as a function of substrate con-
centration ξ. The parameter β2, often called Vmax, is the maximum velocity,
(i.e. the asymptotic reaction rate when the enzyme becomes saturated with
substrate), and β1 is the Michaelis constant Km, which is the concentration
at which the rate of the enzyme reaction is half-maximal. We consider cali-
bration for enzymatic determination of substrate concentration. Calibration
curves described by (18) are shown in Figures 2a and 2b, with the measuring
range [10, 100] displayed on a logarithmic scale.

One reasonable design criterion is the average variance over the mea-
suring range in the inverse predictions. The variances can be approximately
calculated by (8) for a locally optimal design or by (13) for an optimal design
when the curve parameters vary. But only the second term on the right side
of (8) and the second and fourth terms of the right side of (13) are dependent
on the design. Thus, the average variation in the inverse predictions also is
minimized if we use

1
100− 10

∫ 100

10

(
g′Vg(β0) +

1
2

vec′Σ vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

)
dξ (19)

as design criterion, where Σ = 0 for a locally optimal design.
We look for an integer-valued two-point design that minimizes (19),

given that the expected calibration curve is the solid line in Figure 2, with
β0 = (15, 100)′. We assume that the variance in the measurements of the
velocity is constant. Because this variance is a diagonal element of D, it
is a multiplicative factor in (19), and we can assume without loss of gener-
ality that it equals 1. A full investigation of all 91 · 90/2 = 4, 095 possible
designs with two distinct integers in [10, 100] reveals that ξ = (39, 100)′ mini-
mizes (19) when Σ = 0. Thus (39, 100)′ is the locally optimal integer-valued
design, with design criterion (19). The average variance with this design
is 15.373. In comparison, the D-optimal design (150/13, 100)′ (Matthews
and Allcock 2004) gives an average variance of 16.973.

The slope of the calibration curve is small in the upper part of the mea-
suring range, making the variances in the inverse predictions larger in the
upper part than in the lower part. But substrate concentrations may be
high only rarely; in this case, it may be sensible to use a design criterion
that minimizes the variance on the logarithmic scale. Thus we consider

1
log 10

∫ log 100

log 10

(
g′Vg(β0) +

1
2

vec′Σ vec
(

d2(g′Vg)
dβ2

)′∣∣∣∣
β=β0

)
d(log ξ)

(20)
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Figure 2: Michaelis–Menten functions with β = (15, 100)′ (solid), (a) (19.5, 130)′ (dotted),
(10.5, 70)′ (dashed), (b) (10.5, 130)′ (dotted), (19.5, 70)′ (dashed).

as a design criterion. An investigation of all 4,095 possible designs reveals
that (29, 100)′ minimizes (20) when Σ = 0, and the minimum is 7.942.

Even if we know from experience that a typical curve has parameters
(15, 100)′, we may wonder whether the locally optimal design (29, 100)′ is
optimal when the variation in the parameters also is taken into account. To
answer this question, we need to assume that

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
,

with σ1 > 0 and σ2 > 0. We may have reason to believe, based on theory
or experience, that the standard deviation σ1 in the Michaelis constant β1

is approximately 4.5, and that the standard deviation σ2 in the maximum
velocity β2 is approximately 30. Temperature variation could be the main
cause of these variances. Assume that we know that high temperatures usu-
ally give high maximum velocities as well as high Michaelis constants, so that
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β1 and β2 are positively correlated. If ρ = .5, then a full investigation of all
possible integer-valued designs reveals that (30, 100)′ is optimal, with design
criterion (20) equal to 12.379. Further investigations show that (30, 100)′ is
optimal also when ρ is 0 or .9, but (29, 100)′ is optimal when ρ is −.5 or −.9.
Thus the optimal design does not differ from the locally optimal design if
the parameters are negatively correlated (ρ = .5 or ρ = .9). This could be
understood by comparing Figures 2a and 2b. In Figure 2a, with positively
correlated parameters, the derivatives change greatly, but in Figure 2b, with
negatively correlated parameters, the curves have similar derivatives. It is
the changes in the derivatives of the calibration curves that result in changes
in the variances in the inverse predictions.

3.2 The Four-Parameter Logistic Function

ImmunoCAP ECP (Phadia AB, Uppsala, Sweden) is an immunoassay method
for detecting eosiniphil catonic protein in human sera. The measuring range
is 2 – 200 µg/L. Calibration is made with the four-parameter logistic function

f(ξ, β) = β2 +
β1 − β2

1 + (ξ/β3)β4
. (21)

The parameter β1 is the expected response at concentration ξ = 0 µg/L, and
β2 is the limit of f when ξ →∞. When ξ equals β3, the expected response
equals (β1 + β2)/2. The slope of the curve is controlled by β4. By (21), the
inverse of the four-parameter logistic function is

f−1(y, β) = β3

(
y − β1

β2 − y

) 1
β4

.

An experiment can be performed to study the parameters of calibra-
tion curves established at varying temperatures and with varying batches
of reagents. This study may indicate that the middle curve in Figure 1b,
given by the parameter vector β0 = (40, 34000, 150, 1.4)′, is typical for Im-
munoCAP ECP. The study also may show that different batches of reagents
produce different calibration curves, as in Figure 1b. Clearly, the analyst
needs to calibrate the method, (i.e., estimate the current parameter values),
when new batches of reagents are used. The variation in the curve parame-
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ters estimated in the study may suggest that

Σ =




100 −7, 680 −80 2.4
−7, 680 10, 240, 000 12, 800 −900
−80 12, 800 400 −.64
2.4 −900 −.64 .16


 (22)

is a covariance matrix that reasonably describes the variation in the calibra-
tion curves. We look for an optimal set of design points for calibration given
that β is a random vector with expected value β0 = (40, 34000, 150, 1.4)′

and covariance matrix (22).
To avoid extrapolation, we decide beforehand that the lowest design point

should be 2 and the highest 200 µg/L. Thus, if we want to use only five
positions in the instrument for calibrators, then we search for an optimal
set of three additional design points in the measuring range [2, 200]. Let γ̂
be an approximate value of the coefficient of variation (16), defined as the
square root of the right side of (13) divided by the right side of (15). As
design criterion, we use

∫ 200

2
hξπξ dξ =

1
log 100

∫ log 200

log 2
γ̂ d(log ξ), (23)

where hξ = γ̂ and πξ = (ξ log 100)−1. With this criterion, the coefficient of
variation is averaged over the measuring range on logarithmic scale, and the
area under the precision profile is minimized. It makes sense to display the
measuring range on the logarithmic scale because subjects are more evenly
distributed on the logarithmic scale than on the original scale and because
the logistic function (21) represents a logistic regression of the proportion
(µ−β1)/(β2−β1) on log ξ. The calibration curve (21) in ImmunoCAP ECP
is fitted by the method of weighted least squares. The response variance is a
power function of the mean. We let σ2 = φµθ, and let the diagonal elements
of D be φ(fi(β0))θ, i = 1, 2, . . . , 5, where φ = .00067 and θ = 1.88.

The function fminsearch in MATLAB makes use of the simplex search
method by Nelder and Mead (1965) and algorithms given by Lagarias, Reeds,
Wright, and Wright (1998). With starting value (2.00, 10.0, 50.0, 100, 200)′,
this search algorithm converges after 93 iterations at ξ =(2.00, 6.66, 18.0,
82.3, 200)′, where the integral (23) equals 2.8389%. Rounded to (2.00, 7.00,
18.0, 80.0, 200)′, the average coefficient of variation (23) is only slightly
larger: 2.8392%. Figure 3 provides the precision profile for this design. For
comparison, (23) equals 5.7813% with the equidistant design (2.00, 51.5,
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Figure 3: Precision profile for the set of design points (2.00, 7.00, 18.0, 80.0, 200)′. The integral
of the coefficient of variation (solid line) is minimized over the measuring range on logarithmic
scale. The bias (dotted line), illustrated as a percentage of concentration, is small compared with
the standard deviation.

101, 150.5, 200)′ and equals 2.8582% with the equidistant design on the
logarithmic scale (2.00, 6.32, 20.0, 63.2, 200)′.

If we instead consider β = (40, 34000, 150, 1.4)′ to be a fixed parameter
vector and calculate γ̂ as the square root of the right side of (8), divided
by the right side of (9), the algorithm converges after 98 iterations at the
locally optimal design (2.00, 5.70, 13.2, 60.2, 200)′, where the integral (23)
equals 1.9727%. In comparison, if γ̂ is calculated by (13) and (15), then the
integral (23) equals 2.8512% at the locally optimal design.

4 Method Summary

1. Determine, based on pre-studies and theoretical knowledge, the ex-
pected curve parameter values β0 and their variances and covariances
Σ. For a locally optimal design, set Σ = 0.
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2. Determine, based on pre-studies and theoretical knowledge, the vari-
ance σ in response of a sample with concentration ξ. This could be
a constant or a function of ξ. Also determine the diagonal matrix D,
with the variances of the design points in response. These variances
can be equal and constant or a function of the design points.

3. Determine the function hξ, which should be as small as possible for
every concentration ξ. This function can be, for example, the variance,
the mean squared error or the coefficient of variation.

4. Determine weights for the summation of hξ over the measuring range
by setting the probability density function πξ included in the design
criterion (17). If all parts of the measuring range [α, ω] are equally
important, then set πξ = 1/(ω − α).

5. Differentiate the calibration curve function f with respect to β to
obtain F(β). If the bias is included in the design criterion, then find
the second-order derivatives of f with respect to β to obtain Ai(β),
i = 1, 2, . . . , m. Differentiate the inverse calibration function f−1 with
respect to y and b to obtain k(β) and g(β). For an optimal design
based on random parameters, (i.e., if Σ 6= 0), determine the first-order
and second-order derivatives of g(β) and F(β).

6. For a given design ξ, the function hξ can be calculated by (13) and (15),
and the design criterion (17) can be evaluated numerically. Compare
different designs by (17). If necessary, use a search algorithm, (e.g.,
the simplex method), to find the optimal design.

5 Discussion

A locally optimal design is optimized only for a given fixed parameter vector.
This is a problem, because the parameters are likely to change. Otherwise, it
would not be necessary to calibrate the instrument. A good design performs
well under varying curve parameters. Thus we need to consider not only the
expected parameter values, but also the variances and covariances. These
can be estimated from a data set of measurements performed under vary-
ing conditions. An instrument manufacturer can perform precision studies
in countries with different climatic conditions and estimate the variation in
calibration curves established with different batches of reagents. It is more
difficult to make the assumptions required by Bayesian optimization about
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the exact mathematical form of the multivariate distribution of the parame-
ters. Bayesian optimization requires a multidimensional integration over the
parameter space or the use of Monte Carlo based methods. This is especially
challenging in the calibration context when (17) is used as a design criterion,
because this criterion involves additional integration.

Using the method suggested in this article it is possible to investigate the
effect of varying parameters. The design often is more sensitive to changes
in the expected value β0 than to changes in the covariance matrix Σ. As
shown in the example of Section 3.1, the design also is sensitive to the choice
of scale in the design criterion (17), that is, the choice of the function πξ.

We have assumed that the measuring range and the number of design
points are determined in advance. In analytical procedures, the measuring
range should begin at the quantitation limit, that is, the concentration at
which samples can be quantitatively determined with stated acceptable pre-
cision and trueness (Clinical and Laboratory Standards Institute 2004), and
end before the errors in the inverse predictions become too large (Gottschalk
and Dunn 2005). In practice, the number of design points m often is deter-
mined by the design of the measuring instrument. Only m positions may
be available for calibrators, because the other positions in the instrument
should be used for samples with unknown concentrations. When m is large,
the optimal design often consists of less than m distinct design points. It is
desirable to have as many design points as possible to minimize the errors
in the inverse predictions. We also may wish to have at least p + 1 distinct
design points, where p is the number of curve parameters, so that the model
fit can be checked (Lupinacci and Raghavarao 2000). Designs with different
numbers of design points can be compared by the design criterion (17). To
find the optimal design for m measurements in v replicates, the diagonal
covariance matrix D should be divided by v. When D includes variance
parameters, as in the example in Section 3.2, these must be determined in
advance by, for example, the method proposed by Raab (1981).

Many authors have studied the design of nonlinear regression under the
assumption of normally distributed measurements. In this article normality
is only needed for the estimation of the bias. As illustrated by the example
in Section 3.2, the bias in the inverse prediction often is small compared
with the standard deviation. It could thus be acceptable to neglect the bias
and build the design criterion on a function of the variance alone, as in the
example in Section 3.1. Rocke and Jones (1997) noted that only the second
term in the variance (8) is dependent on the design. If the integral of (8)
is to be minimized, then it suffices to minimize the integral of the second
term of (8). Rocke and Jones (1997) suggested maximizing the integral of
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the inverse variance. In this case, it might be better to include the first term
of (8).

It is usually assumed (e.g. François et al. 2004) that the inverse cali-
bration function has an analytical form. According to Schwenke and Mil-
liken (1991), a confidence interval based on V(β) requires a closed form for
the inverse function; however, (7) can be used to differentiate the inverse
function when no closed form exists.

A software package for symbolic mathematics facilitates calculation of
derivatives. Because the design criterion (17) is not necessarily a convex
function of the design points, search algorithms may stop at local minima.
It could be wise to begin with a grid search over the design space.

Acknowledgments

I thank the reviewers for useful suggestions and Lars Söderström, Phadia AB,
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Appendix: Matrix Derivatives

Following Kollo and von Rosen (2005), define the matrix derivative of order k
of Y by X as

dkY
dXk

=
d

dX

(
dk−1Y
dXk−1

)
,

dY
dX

=
dvec′Y
dvecX

,

so that F(β) = (df/dβ)′. Let Ip denote the p×p identity matrix, and let the
partitioned matrix Kp,q denote the pq × pq commutation matrix, in which
the (j, i)th element in block (i, j) equals 1, and all of the other elements in
that block equal 0. By the rules of matrix differentiation,

d2(g′Vg)
dβ2 = 2

(
d2g
dβ2 (Vg ⊗ Ip) +

d(Vg)
dβ

(
dg
dβ

)′ )

− d2(F′D−1F)
dβ2

(
(Vg)⊗2 ⊗ Ip

)

−
((

d(Vg)
dβ

⊗ vec′(Vg)
)

+
(

vec′(Vg) ⊗ d(Vg)
dβ

))(
d(F′D−1F)

dβ

)′
,

17



where
d(Vg)

dβ
=

dg
dβ

V − d(F′D−1F)
dβ

V⊗2 (g ⊗ Ip),

d(F′D−1F)
dβ

=
dF
dβ

Kp,m((D−1F)⊗ Ip) +
dF
dβ

(Ip ⊗ (D−1F)),

and

d2(F′D−1F)
dβ2 =

d2F
dβ2 (Kp,m ⊗ Ip)((D−1F)⊗ Ip2)

+
((

dF
dβ

(Ip ⊗ D−1)
)
⊗ vec′Ip

)

(
Ip ⊗Km,p ⊗ Ip

)(
Ip2 ⊗

(
dF
dβ

Kp,m

)′ )

+
d2F
dβ2 (Ip ⊗ (D−1F)⊗ Ip)

+
((

dF
dβ

(Ip ⊗D−1)
)
⊗ vec′Ip

)
Kmp,p2

(
Ip ⊗Kp,p ⊗ Im

)(
Ip2 ⊗

(
dF
dβ

)′ )
.
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