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Abstract

Lindberg, A. 2002. Epidemiology and eradication of bovine viral diarrhoea virus
infections. Studies on transmission and prenatal diagnosis of persistent infection.
Doctor’s dissertation.

ISSN 1401-6257, ISBN 91-576-6384-X

This thesis describes the principles for eradication of bovine viral diarrhoea (BVDV) from
cattle populations without the use of vaccines, as they have been applied in the
Scandinavian countries since 1993-94. It also presents five studies concerning
transmission of BVDV and prenatal diagnosis of persistent BVDV infection. The studies
relate to large-scale eradication by addressing issues of importance for elimination of
virus in infected herds, for management of recently infected herds and for prevention of
BVDV transmission through livestock trade.

Transmission of primary type | BVDV infections in the absence of persistently infected
(PI) animals was studied. Calves undergoing acute infection with BVDV were brought in
contact with healthy, non-immune calves. Also, calves inoculated with BVDV were
housed with non-immune calves, while they all underwent a concurrent infection with
bovine coronavirus. In both studies, none of the in-contact calves seroconverted. This
suggests that primary infections are of low infectivity and that virus circulation will cease
after PI animals have been removed.

The ability to identify dams pregnant with PI foetuses (PI carriers) before parturition was
investigated. Using an indirect antibody ELISA on samples taken in late gestation, it was
possible to discriminate PI carriers from other antibody positive pregnant cows in herds
with ongoing infection. It was also possible to detect viral antigen in foetal fluids from PI
carriers by an RT-PCR assay and by virus isolation (VI). RT-PCR was superior to VI in
this respect. Serology can be used to prevent PI carriers from being traded, and both
methods can be used to delimit outbreaks of BVDV in infected herds.

The infectivity associated with foetal fluids and uterine lochia was tested by exposing
non-immune calves to such samples. It was shown that foetal fluids can be infectious, but
to a low extent. Uterine lochias are not likely to be infectious. Also, the infectivity
associated with dams delivering PI calves, and their calving environment, was studied by
putting susceptible calves in repeated contact with such dams after removal of the PI
offspring. It was shown that rapid removal of newborn PI calves does not prevent further
spread of BVDV infection to susceptible animals.

Keywords: cattle, pestivirus, BVDV, experimental study, test validation, foetal fluid,
indirect transmission, control, risk factor.

Author’s address: Ann Lindberg, Swedish Dairy Association, P.O. Box 7019, SE-750 07
UPPSALA, Sweden.



On BVDYV eradication...

The ubiquity, ease of transmission, frequent inapparent infection, and presence of
nonbovine hosts make eradication of BVD an unreasonable consideration.
— Robert. F. Kahrs

It's kind of fun to do the impossible.
— Walt Disney

On PhD studies....

My goal is simple. It is complete understanding of the universe, why it is as it is
and why it exists at all.
— Stephen Hawking

It is more important to know where you are going than to get there quickly.
— Mabel Newcomber

To all other fools, sane or not
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Background

The clinical manifestations of infection with bovine viral diarrhoea virus (BVDV)
was first described by Olafson and colleagues (1946) who reported about an
apparently new disease in cattle characterised by acute gastroenteritis and
erosions in the digestive tract. During the 55 years that have followed, the virus
has been identified and its epidemiology successively better understood.

Today the causal association between infection in the first trimester of pregnancy,
establishment of persistent infection (Malmquist, 1968, Coria & McClurkin,
1978b) and the subsequent death from mucosal disease in immunotolerant
animals (Brownlie et al., 1984, Roeder & Drew, 1984) is clear. The wish to
control the negative effects of the virus has lead to the development of numerous
vaccines, but also of eradication schemes. These schemes are based on
identification of infected herds and subsequent removal of persistently infected
(PI) animals (Bitsch & Rensholt, 1995). In connection with improved methods for
herd and individual diagnosis (Niskanen et al., 1991, Houe, 1992, Niskanen,
1993), the test and cull approach has proven successful, whereas non-systematic
approaches involving vaccination are still struggling with safety and efficiency
issues (Levings & Wessman, 1991, Thomson & Vickers, 1991, van Campen &
Woodard, 1997, van Campen et al., 2000, Barkema et al., 2001).

In Sweden, a scheme with the objective to eradicate BVDV without vaccination
was launched in April 1993, close in time to the implementation of similar
measures in the other Scandinavian countries (Husu & Kulkas, 1993, Olsson et
al., 1993, Bitsch et al., 1994, Waage et al., 1994). The scheme has lead to a
reduction in the prevalence of BVDV infected herds in Sweden from
approximately 50% in 1993 to 3% today (May 2002). The present study is aimed
at answering some of the questions that have arisen during the implementation of
the scheme.



Introduction

Structure and management of cattle herds in Sweden

In June 2000, there were over 77,000 agricultural holdings with over 2 acres of
land. Cattle, the target species for eradication of BVDV, were present on 42% of
these holdings (SBA, 2002).

Dairy herds

Like in many other countries, the structural trend in the Swedish dairy industry is
towards fewer, but larger units. In 1993, when the national BVDV scheme was
launched, there were approximately 18,500 dairy herds. Today, the corresponding
figure is 10,800. Approximately 75% of the dairy herds are affiliated to the milk
recording scheme and 95% use artificial insemination. The number of cattle has
also decreased, but not at the same pace. Consequently, the average dairy herd
size has increased from 32 to 41 during this period (for herds affiliated to the milk
recording scheme). There is a distinct regional trend in herd size, currently
ranging from 31 cows in the north to 51 in the south. In 1993/94, the average
Swedish dairy cow produced 8,000 kg of milk per year. Today the average annual
milk yield is 8,800 kg (SHS, 1994, SDA, 2002b). Dairy cattle are housed during
the winter. In the southern parts of the country, the housing season lasts from
October-November to April-May whereas in the north, cattle are housed from
August to June.

Beef herds

The trend within the beef industry is the same as for dairy. Between 1993 and
2001, the number of beef breeding herds has decreased from 17,800 to 13,500.
During the same period, the average herd size increased from 6 to 12 (SBA,
2002). In addition to the beef breeding herds, there are also approximately 5,500
rearing enterprises employing market purchased calves of 6-8 weeks age.
Approximately 50% of the animals slaughtered are bull calves that originate from
dairy herds. A majority of the cattle slaughtered for beef production are 16-18
months of age, at a mean weight of 322 kg (L. Lindell, personal communication).
Like dairy cattle, beef cattle are also housed during the winter, but the housing
season often starts later.

National disease control

In addition to the BVDV scheme, national eradication schemes have been
launched in Sweden for enzootic bovine leucosis (EBL) and infectious bovine
rhinotracheitis (IBR), in 1990 and 1994 respectively. IBR was present only to a
low degree, but for EBL, the situation was different. In 1990, the prevalence of
infection in dairy herds was estimated to be 25-30%, which was high in an
international perspective. However, after 10 years, Sweden was officially declared
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to be free from the infection by the European Union in December 2000 (SDA,
2002a). To a large extent, the organisation of the BVDV scheme has built on the
practical experiences gained from the EBL scheme. Vaccination against viral
infections is not performed in Swedish cattle herds.

Bovine viral diarrhoea virus

BVDV is a relatively small (40-60 nm) enveloped, spherical virus (Thiel et al.,
1993, Donis, 1995). The genome is a single-stranded, positive sense ribonucleic
acid (RNA) molecule, consisting of approximately 12,500 base pairs. It has a
single open reading frame that is translated to a polyprotein of about 4000 amino
acids, which is then further processed by viral and cellular enzymes into the final
components (Grassmann et al., 2001). Extensive taxonomy studies based on the
conserved 5’ region has resulted in the (current) classification which places the
virus among the pestiviruses within the family Flaviviridae, which also contains
the genera Flavivirus and Hepacivirus (Shukla et al., 1995, Neyts et al., 1999).
Among the pestiviruses, two other important animal pathogens can be found;
classical swine fever virus and border disease virus in sheep (Neyts et al., 1999).
BVDV is able to infect a wide range of ungulate species, both domesticated and
wild (Paton et al., 1992, Soine et al., 1992, Leken, 1995, Taylor et al., 1997b,
Anderson & Rowe, 1998, Sausker & Dyer, 2002). Although cases of spread from
sheep to cattle have been described , the most common direction of transmission
is believed to be from cattle to other species (Vilcek et al., 2000, Graham et al.,
2001a). It is not known if the virus can persist in wildlife populations.

BVDV can exhibit two different biotypes; non-cytopathogenic (ncp) and
cytopathogenic (cp) (Corapi et al., 1988). Despite their denomination, the name of
the biotypes does not correspond to the pathogenicity of the virus in the field, but
rather to the effect the virus has when grown in cell culture. Ncp strains are
adapted to persist. By avoiding the induction of a type I interferon response in the
foetus, they can establish persistent infections, whereas cp strains can not
(Brownlie et al., 1989, Charleston et al., 2001). Cytopathogenicity occurs as a
result of genetic alterations (insertions, duplications and/or rearrangements),
within the region encoding the non-structural NS2/3 protein (Kummerer et al.,
2000). Such mutations are associated with the development of mucosal disease, a
terminal condition which is further described below.

The virus can also be classified according to genotype. Two distinct types, type I
and I, have been identified (Pellerin et al., 1994, Ridpath et al., 1994). In general,
the two genotypes exhibit the same range of pathogenicity (Ridpath et al., 2000).
However, type 1l strains have also been associated with severe outbreaks of acute
BVDYV with high morbidity and mortality (Ellis et al., 1998, Odeon et al., 1999).
In Sweden, only type I has been detected (Vilcek et al., 1997, Vilcek et al., 1999,
Vilcek et al., 2001).
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Despite a high degree of heterogeneity within genotype, it has been shown that
BVDV strains are, in general, herd-specific (Paton et al., 1995, Hamers et al.,
1998, Vilcek et al., 1999, Luzzago et al., 2001). This means that any viruses
isolated within a herd will be more or less identical unless new virus strains are
actively introduced. This could be by vaccination with modified live vaccines,
with any vaccine containing adventitious virus, or by introduction of infected
animals from other herds.

Clinical manifestation

The outcome of an infection with BVDV depends mainly on whether the infected
animal is pregnant, or not, and if it has been previously infected with the virus.
Generally speaking, previous infection in cattle with a normal immune response
results in life long immunity and foetal protection during future pregnancies
(Moerman et al., 1993, Fredriksen et al., 1999b). However, the degree of foetal
protection against heterologous challenge may be genotype-dependent. In ewes,
natural immunity to type I strains can provide a good cross protection whereas
immunity raised against type Il strains may not (Paton et al., 1999).

Infection in non-pregnant non-immune animals

In susceptible, non-pregnant animals the infection is in most cases subclinical
(Houe, 1995) but can, depending on genotype and strain also produce severe
disease where animals succumb to the infection (David et al., 1994, Pellerin et al.,
1994, Hamers et al., 1999). The virus causes leukopenia and thrombocytopenia
and the degree and persistence of these haematological findings are also
associated with the severity of the infection (Corapi et al., 1989, Bolin & Ridpath,
1992, Ridpath et al., 2000), as is the degree of viremia (Walz et al., 2001b).
Typically, virus can be detected in most secretions for 4 to 10 days post infection,
but intermittently and at low levels (Brownlie et al., 1987). Clinical symptoms
frequently seen are fever around day 6-9 post infection, inappetence and mucosal
lesions. In calves, the infection is often associated with respiratory and
gastrointestinal symptoms such as coughing and diarrhoea (Tréven et al., 1991,
Baker, 1995, Potgieter, 1997). Such symptoms can also be a result of secondary,
or concurrent infections (Brodersen & Kelling, 1998, Elvander et al., 1998, de
Verdier Klingenberg et al., 1999, de Verdier Klingenberg, 2000, Fulton et al.,
2000a) since BVDV acts as an immunosuppressive agent by impairing immune
functions mainly associated with the cellular response (Potgieter, 1995, Adler et
al., 1996, Bruschke et al., 1997).

In adult bulls, an acute infection may be associated with a transient impairment of
semen quality (Paton et al., 1989, Kommisrud et al., 1996, Kirkland et al., 1997).
There are indications that virus may persist and replicate in testicular tissue for
more than 6 months although it can not be isolated from semen (Givens et al.,
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2002). One case has also been reported where virus was constantly shed in semen
from a bull with otherwise normal immunity (Voges et al., 1998).

Infection in pregnant non-immune animals

The virus shows affinity to rapidly dividing cells and a growing foetus is
therefore a favoured site of replication. In non-immune pregnant animals, the
virus infects the conceptus, irrespective of the time of gestation, with effectively
100% probability (Duffell & Harkness, 1985). However, the exact route by which
the virus reaches the foetus is unclear, as is the time sequence for infection of
different tissues. Using intramuscularly inoculated heifers, Fredriksen and
colleagues (1999a) noted that the earliest stage of infection at which BVDV
antigen could be detected in the foetuses was 14 days post infection and 4 days
later in the intercotyledonary foetal membranes. Swasdipan and colleagues (2002)
detected virus in the allantoic and amniotic membranes already 72 h post
infection, in the foetus 4 days later and in the endometrium first at 10 days after
infection in intranasally challenged ewes. The specific outcome of the foetal
infection depends on the stage of gestation and therefore a wide range of
reproductive failures can be seen in infected herds (Roeder et al., 1986). They
include e.g. failure to conceive, the birth of immunotolerant, persistently infected
(PI) calves, malformations, foetal death and abortion or mummification,
intrauterine growth retardation and weak or stillborn calves (Carlsson et al., 1989,
Oberst, 1993, McGowan & Kirkland, 1995, Fray et al., 2000). Abortions may
appear at any time during pregnancy and are not necessarily associated with the
time of infection.

Infection in the first trimester, before the foetus becomes immunocompetent, can
result in a persistent infection in the foetus (Done et al., 1980). PI animals are the
key transmitters of the infection since they shed virus continuously, in large
amounts and in all bodily fluids (Coria & McClurkin, 1978b, Meyling & Jensen,
1988, Brock et al., 1991, Kirkland et al., 1991). Typically, they do not develop a
detectable antibody response to the persisting virus but if exposed to heterologous
strains of BVDV they will produce neutralising antibodies (Bolin et al., 1985,
Bruschke et al., 1998). The presence of specific neutralising antibodies may affect
the ability to isolate virus from such animals (Brock et al., 1998). PI animals have
impaired immune functions and they tend to be more susceptible to other
infections (Potgieter, 1995). It is therefore quite common that they die or are
culled before they reach adult age (Barber et al., 1985, Taylor et al., 1997a, Houe,
1999). However, they may also be clinically healthy. PI cows that reach adult age
can conceive (McClurkin et al., 1979). If so, the infection will be transmitted to
the foetus, and thus, the offspring will always be PI (Baker, 1987).

If the foetus is infected after it has become immunocompetent, it will develop

antibodies (Howard, 1990). However, despite the ability to mount an immune
response, the growing foetus is negatively affected and these animals can be weak
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at birth, ill-thrifty and therefore more susceptible to other infections (Larsson et
al., 1994, Moennig & Liess, 1995).

The pregnant dam, if non-PI, develops antibodies in response to the infection. If a
persistent infection is established in the foetus, her immune response will be
further triggered and antibody levels will continue to rise until the production of
colostrum starts, shortly before parturition (Meyling & Jensen, 1988, Brownlie et
al., 1998).

Infection in animals with passive immunity

Calves that receive colostrum containing antibodies to BVDV achieve a passive
immunity that protects them from infection during their first months in life
(Howard et al., 1989, Bolin & Ridpath, 1995). Usually, maternal antibodies will
be detectable a few hours after the first meal and decline at a rate of one half their
remaining antibody titre every 21 days (Brar et al., 1978). The duration of this
protection depends on the concentration of neutralising antibodies in colostrum,
the amount ingested and possibly also of the challenge experienced by the calf. In
general, passive antibodies are detectable for 4-6 months (Coria & McClurkin,
1978a). In PI animals, maternal antibodies will decline at a higher rate (Palfi et
al., 1993, Brock et al., 1998). Passive immunity interferes with vaccination. Ellis
and colleagues (2001) showed that vaccination before sufficient decline of
maternal antibodies did not protect against infection with a virulent type Il BVDV
strain. In another study, calves did not respond serologically to BVD vaccine until
their maternal antibody titres were below 1:96 to 1:20 (Brar et al., 1978).

Mucosal disease

A sequel to persistent infection is mucosal disease (MD) which is a lethal
condition that usually involves cattle aged 6 months to 2 years of age. The course
of the disease can be either acute, with a duration of 2 days to 3 weeks, or chronic
with animals surviving up to 18 months of age. Typically, cases exhibit fever,
anorexia, massive mucosal erosions throughout the gastrointestinal canal and
profuse diarrhoea leading to progressive wastage and death (Baker, 1995). In
chronic cases, the animals show similar symptoms, but in a more protracted form.
Also, apart from gastrointestinal symptoms like intermittent diarrhoea and chronic
bloat, dermatological symptoms like erosive lesions on the skin and laminitis may
develop.

MD develops as a result of a mutation in the non-structural part of the genome
(Tautz et al., 1998, Kummerer et al., 2000), resulting in a change in biotype from
ncp to cp. If the cp strain is homologous to the ncp strain, the PI animal does not
produce neutralising antibodies to it. Consequently, where a herd-specific strain is
established, the cp strain can spread from the index case to other PI animals in the
herd, resulting in an outbreak-type appearance of the condition. In these
situations, homologous ncp and cp strains can be isolated from clinical cases
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(McClurkin et al., 1985). MD can also develop as a result of recombination
between the persisting ncp strain and an exogenous c¢p strain. This can occur, for
example, if vaccines containing cp strains are used (Baker, 1995).
Recombinations with heterologous cp strains and/or mutations in the exogenous
cp strain have been suggested as possible reasons for development of late-onset
type of MD (Ridpath & Bolin, 1995, Fritzemeier et al., 1997, Sentsui et al., 2001).
However, the degree of homology between the persistent and superinfecting strain
does not seem to be the only predictor of the outcome of the disease (Bruschke et
al., 1998, Loehr et al., 1998).

Herd level effects of BVDV infection

At the herd level, BVDYV infections typically results in an increased incidence of
reproductive disorders and in impaired calf health (Houe & Meyling, 1991a,
Larsson et al., 1994, Moerman et al., 1994, Fray et al., 2000). Examples of
reproduction parameters in which the effect of BVDV infection has been shown
are conception rates, pregnancy rates, abortion rates and time to first calving
(Houe et al., 1993a, McGowan et al., 1993, Rufenacht et al., 2001, Valle et al.,
2001). Increases in the incidence of treatments of retained placenta and silent heat
have also been reported, as well as an increase in the risk of infectious diseases in
adult animals, such as masitis (Niskanen et al., 1995). Also, a negative association
between milk yield and BVDYV infection has been reported (Barber et al., 1985,
Moerman et al., 1994, Lindberg & Emanuelson, 1997). In herds relying on the
production of animals for slaughter, important causes of production losses are e.g.
immunosuppression with subsequent increase in the prevalence of infectious
diseases and growth retardation in sick non-PI and PI animals (Kelling et al.,
1990, de Verdier Klingenberg et al., 1999, Taylor & Rodwell, 2001).

Prevalence and incidence of BYDYV infection

Antibodies to BVDV have been detected in non-vaccinated cattle in all countries
where prevalence studies have been made (Littlejohns & Horner, 1990,
Rweyemamu et al., 1990, Shimizu, 1990, Zhidkov & Khalenev, 1990). Assuming
that the presence of antibodies reflects exposure to the virus it can be concluded
that it is present worldwide. However, the prevalence of herds with signs of recent
exposure shows a wide variation between countries and between regions within
countries (Alenius et al., 1986, Bitsch & Rensholt, 1995, Paton et al., 1998,
Rossmanith & Deinhofer, 1998, Nuotio et al., 1999, Graham et al., 2001b,
Mainar-Jaime et al., 2001). Within herds, the prevalence of antibody positive
animals will usually be high if there are PI animals present. (See Houe, 1999 for a
review). In non-vaccinated herds that do not have the infection, the prevalence
and age distribution of seropositive animals will reflect the time that has passed
since the last PI animal left the herd (Houe, 1992). Animals born “post-PI”” will be
seronegative (unless they still have maternal antibodies) whereas those exposed
and infected prior to this date will usually remain seropositive for the rest of their
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life. The prevalence of seropositive animals will decrease with the replacement
rate. This picture will be distorted to some degree if seropositive animals are
purchased and to a high degree if vaccines are used (Houe et al., 1995a, Houe et
al., 1995b, van Campen et al., 1998).

In most surveys performed, the prevalence of PI animals within the entire cattle
population (including both infected and non-infected herds) seems to be
consistently around 1-2% under endemic conditions (Depner et al., 1991, Houe &
Meyling, 1991b, Braun et al., 1997, Schreiber et al., 1999). Considering the fact
that a certain proportion of PI animals die prior to the time when they can be
tested, the prevalence of PI animals born is likely to be higher. Consequently,
differences in PI mortality rates may be a source of bias in prevalence studies as a
higher rate will result in a lower apparent prevalence. This may be one reason as
to why lower prevalences have been reported in some regions/countries with
endemic BVDV infection (Houe et al., 1995b, Taylor et al., 1995). The estimated
incidence of infection in the first trimester has been estimated to be 3.3 % in the
entire population (Houe & Meyling, 1991b). In paper III, the prevalence of PI
carriers among antibody positive cows and pregnant heifers in Swedish dairy
herds subjected to elimination of virus was 13%.

At the herd level, the annual incidence risk will also vary between countries and
regions, and has consequently been estimated to range from 0.08 and 0.48 under
endemic conditions (Niskanen et al., 1995, Houe, 1999, Graham et al., 2001b). In
areas with systematic control of the infection, reports show a decreasing risk trend
and levels around 0.02-0.03 after 4-5 years implementation (Alenius et al., 1997,
Valle et al., 2000a, Alban et al., 2001).

Transmission of BVDV

BVDV can be transmitted both by direct contact between an infected and a
susceptible animal, and indirectly through different types of vehicles. Direct
contact with a PI animal is by far the most efficient route of transmission. PI
animals can also transmit the infection efficiently to other animals within the
same housing unit without being in direct contact with them (Houe & Meyling,
1991b, Wentink et al., 1991). Indirect transmission has only been shown
experimentally, and only where the initial contact was PI (Gunn, 1993, Lang-Ree
et al.,, 1994, Mars et al., 1999, Niskanen & Lindberg, 2002). The probability of
transmission by indirect means is dependent on time, temperature and dose. If the
virus is preserved within the vehicle, e.g. in semen from acutely or PI bulls,
contaminated embryos or contaminated injectables, the potential for spread is
increased (Schlafer et al., 1990, Kirkland et al., 1991, Givens et al., 2000,
Niskanen & Lindberg, 2002).

Different routes of transmission, their relative importance for within- and between
herd spread and how they can be controlled are further elaborated on in paper VI.
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Diagnosis of BYDV infection

Assays for BVDV are either aimed at detecting the virus itself (including traces of
viral RNA), or antibodies to it. The diagnostic tools mentioned below are all
developed for individual diagnosis, but some of them have also been validated for
use at the herd level.

Diagnostic methods

Virus detection

The presence of BVDV in a sample can be demonstrated by isolation and
detection in cell culture, by detection of viral antigens, or by detection of viral
nucleic acid (See Sandvik, 1999 for a review).

Virus isolation (VI) is made by incubating samples on low-passage cultures of
primary bovine kidney, turbinate or testis cells after which fluorochrome or
enzyme labelled BVDV-specific antibodies are used to detect the presence of
virus. VI is regarded as the reference test for virological diagnosis (Brock, 1995)
and is a good indicator of the presence of live (and infectious) virus. However, the
presence of toxic substances and/or antibodies in a sample can yield a false
negative test result (Palfi et al., 1993, Brinkhof et al., 1996).

Several methods for detection of viral antigen by enzyme-linked immunosorbent
assays (ELISAs) have been published (Fenton et al., 1991, Mignon et al., 1992,
Crevat et al., 1993, Entrican et al., 1995, Foucras et al., 1996, Graham et al., 1998,
Kramps et al., 1999). Such tests have the advantage of being rapid, sensitive and
independent of cell culture facilities, and have therefore become widely popular.
Most of them are of the sandwich type, with a capture antibody bound to the solid
phase, and a detector antibody conjugated to a signal system, such as peroxidase.
Some rely on extraction of viral antigen from the buffy coat of whole blood
samples and small sample volumes can therefore be a practical problem.
However, new antigen ELISAs are being developed that do not rely on extraction
of antigen (Holmquist et al., 2002).

Immunohistochemistry is a method for detection of intracellular viral antigen and
is the test of choice for demonstration of virus in tissues (Hewicker et al., 1990,
Haines et al., 1992). Using ear notches as specimen, this method can be used to
screen for PI animals (Njaa et al., 2000).

For detection of viral RNA, reverse transcriptase-polymerase chain reaction (RT-
PCR) techniques are employed. They have the advantage of being insensitive to
toxic substances in the specimen and to the presence of interfering antibodies, but
are extremely sensitive to sample contamination which can lead to false positive
results (Belak & Ballagi-Pordany, 1993). The development of closed analysis
systems, where BVDV nucleic acid amplification and detection is made in the
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same tube, has reduced this problem (Mahlum et al., 2002). Today, the
development is towards quantitative and multiplex assays where virus can be
quantified and where both genotypes, or additional viral agents can be assayed
within the same sample (Gilbert et al., 1999, Onodera et al., 2002).

Antibody detection

ELISAs are also used for BVDV antibody detection. There are two principal
types; indirect and competitive. In indirect ELISAs, antibodies are trapped by
immobilised antigen, and detected using enzyme-conjugated species-specific
antiglobulins and a chromogenic substrate. The optical density (OD) is then
measured, which will be higher in a positive sample than in a negative. In
competitive ELISAs (also called blocking ELISAs), virus-specific antibodies in
the sample block the binding of conjugated virus-specific antibodies to fixed viral
antigen. In contrast to the indirect ELISA, a positive sample in a blocking ELISA
will yield a weaker signal than a negative sample (See Sandvik, 1997 for a
review).

The gold standard for antibody detection is the virus neutralisation test (Edwards,
1990). 1t is sensitive and specific but cell culture dependent and labour demanding
in relation to the ELISAs. Therefore, the latter are regularly used when a large
sample throughput is required.

Objective of BVDV diagnosis

From a BVDV control perspective, the objective of BVDV diagnosis should be to
differentiate between infected and non-infected herds respectively, and within
infected herds, to differentiate between PI animals, immune animals and animals
that are susceptible to infection. PI animals also have to be differentiated from
acutely infected animals.

Herd level tests are aimed at differentiating between herds with ongoing infection
and herds likely to be free. This can be done either by antibody tests, or by virus
detection. Antibody tests indirectly detect the recent or current presence of PI
animals through the serological response in surrounding animals. Antibody tests
are performed either on pooled milk (e.g. bulk tank milk), or on spot samples
from expectedly seronegative animals (Niskanen et al., 1991, Houe, 1992,
Beaudeau et al., 2001). Bulk milk tests can not be used in herds that vaccinate, but
spot tests seem to work well (Pillars & Grooms, 2002). Virus can be detected
either in pooled serum or in pooled milk (usually bulk milk). However, pooling
means that it is highly likely that any virus positive samples are mixed with
samples from antibody positive animals. Therefore VI can be difficult and RT-
PCR is often the method of choice (Radwan et al., 1995, Drew et al., 1999), or a
combination of the two (Renshaw et al., 2000). Because PI animals are in general
more prevalent among young animals, bulk milk virus tests are principally used to
exclude the presence of PI animals among lactating cows. To find all PI animals,
those not included in the bulk also have to be tested (Drew et al., 1999).
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At the individual level, BVDV infection can be diagnosed either by detection of
the virus itself, or by demonstration of seroconversion in paired samples. A PI
animal is typically virus positive and antibody negative unless it has been exposed
to and infected with a heterologous strain. Persistent infection is then confirmed
by repeated detection of virus in samples taken 2-3 weeks apart. Virus can
sometimes be isolated also from acutely infected animals but such animals will be
virus negative and antibody positive if they are retested (Sandvik, 1999).

Economic importance of BVDYV infections

As indicated above, BVDV has got the potential to cause considerable damage in
infected herds due to its broad effect on health and production, including reduced
milk production, reduced reproductive performance, growth retardation, increased
occurrence of other diseases, unthriftiness, early culling and increased mortality
especially among young stock. In conjunction with the high prevalence and
incidence of new infections it is obvious that this is a source of substantial
economic losses to the cattle industry.

Important factors that affect the magnitude of the losses in any single case are the
initial herd immunity, the number of animals in different stages of gestation at the
time of the infection and the virulence of the virus. Consequently, the calculated
losses in individual herd outbreaks have varied from a few thousand up to US$
100,000 (Duffell et al., 1986, Wentink & Dijkhuizen, 1990, Alves et al., 1996,
Stelwagen & Dijkhuizen, 1998). Since losses at the herd level show such a wide
range of variation, the losses for the industry as a whole is perhaps better reflected
in calculations of national losses. These have been estimated to lie within the
range of US$ 10-40 million per million calvings (Bennett & Done, 1986,
Harkness, 1987, Houe et al., 1993b).

New infections in naive herds can be associated with extreme, but transient,
reproductive losses. As a large proportion of the adult animals become immunised
the losses will change in nature, from mainly reproductive losses to losses due to
impaired calf health. To the author’s knowledge, the long-term losses associated
with BVDV infection, e.g. loss of genetic material and effect on the longevity of
cattle infected as calves, have not been characterised, nor quantified.

In a French study, it was estimated that an eradication program would not be cost
efficient until after approximately 15 years following implementation (Dufour et
al.,, 1999). However, cost-benefit assessments of implemented control schemes
have shown that control of the virus without vaccination can give a good pay-oft.
For example, the net benefit of the Danish eradication programme has been
estimated to be over US$ 24 million after 4 years (V. Bitsch, personal
communication). A similar study of the Norwegian control and eradication
program from 1993 to 1997 showed that the program was already cost-effective
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from the second year (Valle et al., 2000b). A major contributor to the cost-
efficiency of the Scandinavian schemes is the use of cheap methods for initial
screening and subsequent monitoring, e.g. by testing bulk milk for antibodies.
Another fact is the instant reduction in the risk of new infections, which is
achieved as soon as PI animals are prevented from being marketed.

Vaccination and BYDYV control

In many countries, vaccines are used to control BVDV. Classical BVDV vaccines
are of two different types; modified live and inactivated (killed). Modified live
vaccines contain a live but attenuated strain of the virus, and generally give a
better immunological response than killed vaccines. The latter consist of virus that
has been inactivated, together with an immuno-stimulating additive (See van
Oirschot, 2001 for a review). There is a tendency to move towards the
development of non-replicating vaccines (similar to classical killed vaccines),
because of safety issues. New types of non-replicating vaccines are e.g. subunit
vaccines, recombinant subunit vaccines, peptide vaccines, DNA vaccines and
some vector vaccines.

The main objective with vaccination against BVDV is to prevent transplacental
infection and thus the establishment of new persistent infections (van Oirschot,
2001). In countries where virulent type II strains are present, prevention of
postnatal infections is also a concern as the clinical manifestations may be severe.
However, there is clear evidence that all products on the market do not
sufficiently fulfil those objectives (Kelling et al., 1990, Holland et al., 1993, van
Campen & Woodard, 1997, Cortese et al., 1998, van Campen et al., 2000,
Thurmond et al., 2001, Wittum et al., 2001). The problem with current BVDV
vaccines and vaccination schemes is complex, and includes both epidemiological,
technical, sociological, political and economic considerations that will be
discussed later in this thesis. Currently, the only approaches that have been
successful in reducing the impact of BVDV infections are those that put emphasis
on biosecurity in general, and control of direct animal contacts in particular — with
or without the complementary use of vaccines. In paper VI, a review of current
control options is given, including the principles for eradication of BVDV that
have been applied in Scandinavia and now also in Austria (Rossmanith et al.,
2001).

Epidemiological aspects on transmission and eradication

The potential for an infectious disease to spread between units (animals, pens,
herds, regions, countries) within a population can be expressed in terms of its
reproductive rate, R. The reproductive rate describes the average number of
secondary cases an infected individual gives raise to during its infectious period.
It is a function of the risk of transmission per contact, the number of infectious
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contacts per time unit, the duration of the infection and the proportion immune (or
infectious) already in the population. A special case is the basic reproductive rate
(Ro) which corresponds to the case when one infected individual enters a totally
susceptible population. Ro has to exceed 1 in order for an infection to be able to
cause any major outbreaks. If Ro is less than 1, the infection will, theoretically,
fade out. (For an extensive reference, see Anderson & May, 1991, for an applied
text book , Giesecke, 1994).

The general formula for calculating Ro is
B*k*D
where

B = the probability of transmission per contact type
k = frequency of (different types of) potentially infectious contacts per time unit
D = duration of infectious period

The value of these parameters, and thus Ro, will differ depending on contact type.
Theoretically, for BVDV the contact types are direct or indirect contact with a PI,
and direct or indirect contact with an acutely infected animal. In addition, indirect
contacts can be further divided upon type of vehicle. However, what we can
observe in the field is the net force of infection, that is, the average Ro for all
routes by which the infection can be transmitted.

For a situation when the population is no longer fully susceptible (e.g. during an
epidemic or under endemic conditions) it is more correct to consider the net
reproductive rate. If the number of susceptible individuals changes as a result of
immunisation, Ro will be reduced. This is particularly obvious if the population is
small. For an immunogenic infection with a high Ro, like postnatal BVDV
infection transmitted from a PI animal, the net reproductive rate R within a herd
will rapidly decrease to <1. This is why so many small herds spontaneously
eliminate BVDYV infection without intervention. The concept of Ro can be applied
both to transmission between individuals and to transmission between herds. To
clear a herd from BVDYV infection Rowinin hersy has to be below 1; for eradication at
a larger scale Rogetween herasy Will have to be <1.

Putting this into the BVD context and looking at transmission between herds, the
probability of transmission (f in the formula above) will be higher if PI animals
or PI carriers are moved from infected to susceptible herds than if the animals
introduced are only transiently infected. 3 is believed to be even less for a contact
involving a commodity or a person carrying BVDV. For each contact type,
however, a low probability of transmission can be counter-weighed by a high
frequency of contacts.
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In the BVDV scheme, there are a number of measures in place to control different
routes of transmission and consequently reduce Ropemween news. Control of the
livestock trade, only allowing free herds to have pasture contacts and
recommending double fences towards neighbouring herds are all aimed at
changing the contact structure and reduce the frequency of contacts (k) that are
with PI animals, PI carriers and acutely infected animals. Other biosecurity
recommendations, like the use of protective clothing and not allowing
transportation staff to enter cow houses, are aimed at reducing the probability of
transmission associated with that particular type of contact (B). Finally, the
scheme is aimed at shortening the duration of the infectious period for any herd
(D) by monitoring for rapid detection of new infections, and by using a robust and
efficient protocol for clearing herds from the infection (further described in paper
VD).

The theory behind vaccination is to reduce the average number of susceptible
individuals that an infectious individual meets during its infectious period, and
thereby reduce R. As described above, if R becomes less than 1, the infection
should fade out, or at least — there should be no major outbreaks. The higher R is,
then the higher will be the proportion that has to be immunised. In this context,
immunisation (i.e. “true” protection) is a function of the efficacy of the vaccine
and the extent to which it is used in the population. The phenomenon that
immunity in a proportion of individuals can be protective for others is often
referred to as herd immunity. Vaccines give raise both to individual immunity and
herd immunity, and the combined effect is referred to as vaccine efficiency
(Anderson & May, 1991).

Epidemiological aspects on test validation

The epidemiological performance of a test, i.e. its ability to discriminate between
truly diseased and non-diseased individuals can be expressed in terms of two
operational parameters, namely sensitivity (Se) and specificity (Sp). Se is the
proportion of test positives among those truly diseased, and Sp corresponds to the
proportion of test negatives among those truly healthy. In any given situation, an
increase in Se will produce fewer false negative test results, and an increase in Sp
leads to fewer false positive results (Martin et al., 1987). Note that Se and Sp is a
different concept than the analytical sensitivity and specificity, which concerns
the ability of a test to detect small amounts and specific substances.

Strictly speaking, Se and Sp should be regarded as inherent characteristics of a
test, given that the test is used in a population that is comparable to the one in
which it has been evaluated. However, also within a given population, Se and Sp
may differ depending on the “strength” of the biological signal. One example is
the increased sensitivity of antigen tests for canine heartworm with increasing
worm burdens (Courtney & Cornell, 1990). Ideally, test validation studies should
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identify variables that interact with test performance and provide estimates of Se
and Sp for each level of those variables (Greiner & Gardner, 2000).

Typically, the performance of a test should be validated against the true disease
status, a gold standard. Unfortunately, the “true” disease status often has to be
assessed by another test, which by definition is not perfect. However, today there
are methods available that provide a way to make simultaneous inferences about
Se and Sp without imposing constraints on any of the parameters (e.g. assuming
one of the tests have perfect Se and/or Sp) (Hui & Walter, 1980, Joseph et al.,
1995). The idea is to allocate individuals from each population into a truly
diseased or a truly non-diseased, but unobservable (latent) class. In general, these
methods require that two or more populations with different apparent prevalence
are sampled, or that the data can be subdivided in such a way. The two tests
compared should have the same Se and Sp in both populations and be
conditionally independent. This implies that given an animal is diseased (or not),
the probability of positive/negative outcomes for one test is the same, regardless
of a known outcome of the other test. This assumption is met to some extent if it
can be shown that the tests measure different aspects of the same condition (Enoe
et al., 2000).

Receiver-operating characteristic (ROC) analysis can be used to assess and
visualise test performance (Greiner et al., 2000). Typically, in the ROC analysis
curves will be constructed with the true positive fraction (Se) on the Y axis, and
the false positive fraction (1-Sp) on the X axis, giving an image of test
performance over the whole range of possible cut-off levels. ROC analysis can be
used e.g. to evaluate the discriminatory power of a test, to compare different tests
and to select an optimal cut-off value (Greiner et al., 2000). For tests measured on
a continuous scale, the choice of the cut-off level is a trade-off between sensitivity
and specificity. In general, this choice will depend on the cost of the error, from
an economic and/or ethical point of view (Vizard et al., 1990, Hilden, 1991).
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Aims of the study

The overall aim of this work has been to address questions arising in connection
with the ongoing Swedish BVDV eradication scheme. These are related to the
preconditions for successful elimination of virus in infected herds, to the efficient
management of recently infected herds and to prevention of transmission of the
infection through the livestock trade.

More specifically, the following aims were set:
1) To investigate whether acute type I BVDV infection can be perpetuated to
susceptible animals in the absence of persistently infected animals, with and

without a co-infection with bovine corona virus (I and II),

2) To evaluate serology and foetal fluid sampling as methods for prenatal
diagnosis of persistent infection (III and 1V),

3) To investigate whether BVDYV infection can be perpetuated by indirect means
despite rapid removal of suspected PI calves directly after they are born (V),

and

4) To describe the epidemiological principles for large-scale eradication of
BVDYV without the use of vaccines (VI).
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Materials and methods

In this section, the materials and methods applied in studies related to aim 1-3 are
summarised. A more detailed description is given in each paper. Also, some
methodological considerations are given.

Transmission of primary BVDYV infections in the absence of
persistently infected animals (I, IT)

In paper I, secondary transmission of acute BVDV infection was studied. Primary
BVDV infection was initiated in a group of 5 calves by exposing them to direct
contact for 6 hours with a calf that was PI with a type I BVDV strain. After the
contact they were put in a 5.7 m’ pen. On days 4, 7, 14, 21, 28, 35 and 42 after
this initial infectious contact, new calves seronegative to BVDV, were introduced
(2 per occasion) and kept with the group of 5 for 48 hours. The stocking density
during this period was 1.2 calves/ m’. At every introduction and removal, direct
nose-to-nose contact between the calves was ascertained. The 5 primarily infected
calves were followed serologically and virologically for 6 weeks post infection,
and the in-contact calves were followed in the same manner for 4 weeks after they
were removed from the group.

In paper 1I, a co-infection with bovine corona virus (BCV) was added to the
picture. Ten calves were infected by intranasal inoculation with type I BVDV on
day 0, and were thereafter randomly allocated to one of two groups — A and B —
into which they were introduced on day 1. In addition to the BVDV infected
calves, the two groups consisted of four calves susceptible to BVDV so that each
group consisted of 9 calves — 5 infectious and 4 susceptible. Also on day 1, BCV
infection was introduced into group A by letting a BCV infected calf stay with the
group for 2 hours. A control group (group C) with two susceptible calves was also
kept on the premises, in a pen adjacent to group B but separated by a floor-to-roof
solid wall. The stocking density in pens A, B and C was 0.75, 1.6 and 0.33 m’,
respectively. BCV was rapidly transmitted to all groups despite the biosecurity
routines in place. Thus, the study came to be on transmission of BVDV from
calves with concurrent BCV infection to other calves infected with BCV. From
day —1 up to and including day 35 post infection the calves were clinically
examined and blood and faecal samples as well as nasal swabs were collected for
analysis of the presence of BVDV, BCV and antibodies to the viruses.
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Evaluation of two different methods for prenatal diagnosis of
persistent infection (III-1V)

Validation of the performance of an indirect ELISA when used for prenatal
diagnosis

The performance of an antibody test used in routine diagnostics, namely an
indirect ELISA, was evaluated with respect to its ability to detect cattle pregnant
with PI foetuses (III). This was done by analysing a data set including records on
2,162 cow-calf pairs where the cow had been tested antibody positive to BVDV
during pregnancy (while clearing the herd from the infection) and where also her
calf had been tested for antibodies and virus. The sensitivity and specificity of the
test was modelled at 12 different decision thresholds (corresponding to OD values
from 0.5 to 1.6 with increments of 0.1) using a generalised linear mixed models
approach (binomial error, logit link). The dependent variable was the test result
(+/-) at each decision threshold and the gold standard (the calf’s BVDV status)
was included in the model as one of the covariates. Other covariates included in
the models were month of gestation, specimen (blood/milk) and lactation number.
To account for dependence between observations (within herds), a random effect
of herd was included.

Evaluation of the ability to use foetal fluid as a specimen for prenatal
diagnosis

The study described in paper IV was aimed at investigating whether foetal fluid
sampling could be used as a complement to the serological test evaluated in paper
III. Foetal fluid samples were obtained in late gestation (244-267 days) from 9
heifers that were pregnant with PI foetuses as a result of an experimental infection
in early pregnancy. The PI status of the offspring was confirmed after birth. In
addition, a sample from a non-infected cow was obtained and used as a negative
control. After appropriate sedation and local anaesthesia, the dams were sampled
by making a “blind” perpendicular puncture through the abdominal and uterine
walls and into the foetal compartments. The target area is located approximately
10 cm cranial of the udder and 10 cm medial of the flank. The sampling was
successful in all cases and the heifers were followed clinically after the sampling,
during calving and for 30 days afterwards. The control cow was followed for 10
days after sampling. Samples were assayed using VI, by nested RT-PCR and in an
indirect ELISA for detection of the presence of antibodies.
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Indirect transmission of BYDYV in connection with the birth of PI
calves, despite rapid removal of the newborn (V)

The potential for transmission of BVDV to susceptible cattle via foetal fluids,
uterine lochia and the environment in which the PI calf is born was investigated in
four different trials. The objective was to mimic a situation when a PI calf is
removed, or dies, shortly after birth and thus ceases to constitute a source of
contagion. In the first three trials, calves that were negative to BVD virus and
antibodies were exposed to samples of foetal fluid, or uterine lochia that had been
collected after calving from the heifers used in study IV. In trial I, the calves were
exposed to pooled samples, collected from different cows but on the same day
post partum (0, 2, 4, 7, 10 and 14). In the second trial, the samples came from
days 0, 2 and 4, were not pooled and originated from dams where it had been
possible to isolate virus from their foetal fluids pre partum (IV). The samples
used in trial IIT had been collected in a Norwegian study on days 0 and 1 and were
screened for antibodies prior to selection. The samples with the lowest antibody
levels were selected for exposure. In total there were 20 exposures, of which 8
were done with samples from day 0. VI was later attempted on all samples from
days 0 and 1.

Trial IV was executed in Norway where 4 susceptible calves were penned for 8
hours with cows that had delivered PI calves within the preceding 24-48 hours,
after the PI offspring had been removed. The procedure was repeated twice,
except for one calf that was exposed four times to such dams within 24 hours after
they had calved. In addition, 2 calves were kept within the same housing unit
without having contact with the cows or the other calves. All calves were tested
for seroconversion after the trials.

Methodological considerations

Although the relative insignificance of acute infections in relation to persistent
infections is acknowledged, the perception of their ability to maintain a herd
infection after the removal of PI animals is still a matter of discussion. However,
to the author’s knowledge, studies specifically aimed at qualitative or quantitative
assessment of the transmission associated with acutely infected animals have not
been performed. Numerous experimental and observational studies have been
carried out, both at the individual and herd level. However, most of them either do
not address transmission at all, or they do not differentiate between acute and
persistent infections.

Transmission of an infection can be studied by mathematical modelling, in
experimental studies and by observational studies in the field. Below are some
considerations regarding these different approaches in relation to our studies and
to the study of BVDV transmission in general.
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Modelling studies

Simulation modelling has the advantage that the behaviour of an infection can be
investigated, assumptions about different routes of spread can be tested and the
potential effect of different control measures can be estimated even though there
is incomplete knowledge about the system. At the same time, it is a good way of
identifying critical gaps in the current knowledge (Anderson & May, 1991,
Dijkhuizen & Morris, 1995). However, modelling studies on BVDV transmission
models per se are scarce. Those seen in the literature are mainly aimed at
assessing the economic impact and to compare different control strategies (e.g.
Pasman et al., 1994, Serensen et al., 1995). Consequently, they do not explicitly
address acute infections from a transmission point of view, but of course include
assumptions about them in order to estimate the total effect on reproduction and
production. However, Cherry, Reeves and Smith (1998) developed a deterministic
model where they examined the test-and-cull strategy, assuming that the
transmission rate for acute infections was zero. Their conclusion was that the
strategy could only work if PI animals were removed before 11 days of age. In
their own criticism of the model, they appreciate that stochasticity is probably an
important element in the dynamics of the infection and that a model that
incorporates this would be superior (G. Smith, personal communication).
Consequently, the stochastic model presented by Innocent and colleagues
(Innocent et al., 1997) seems able to produce results that are more consistent with
what is seen in the field. For example, it showed that the presence of PI animals is
sufficient to maintain infection in a herd and that the differential mortality in PI
calves and healthy calves have a strong influence on the probability of
spontaneous elimination.

Somebody wisely said that “All models are wrong, but some are useful”. In order
to be useful, a model should be validated, preferably against real data.
Transmission studies like ours (I, II, V) can perhaps, despite their lo-tech
appearance, contribute to the development of more realistic models, make them
more valid and thus better decision tools.

Experimental studies

In general, results from experimental studies have limited validity in the field,
because stress, stocking density, co-infections and other factors that may facilitate
transmission are not present to the same extent. For the purpose of our studies,
and in order to mimic a real life situation, we chose to use conventionally reared
calves (I, II, V). In the literature, colostrum-deprived calves are often used
(Stoffregen et al., 2000, Walz et al., 2001a, Hamers et al., 2002), possibly due to
difficulties to obtain naturally seronegative calves. Colostrum is important for the
development and maturation of the immune system in the newborn (Xu, 1996)
and consequently for host susceptibility. Thus, the use of animals that are
deprived of colostrum may further delimit the ability to extrapolate results from
the experiment to the field.
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Small scale experimental studies can be used to quantify transmission and
estimate Ro. In their study on Aujeszky’s disease, de Jong and Kimman (1994)
introduced infectious animals in a group of susceptible peers in a manner similar
to what we did in paper II, but with the objective to study differences in
transmission between groups of vaccinated and unvaccinated pigs. The same, or
similar design has later been used to estimate Ro for bovine herpesvirus type 1
(BHV-1), classical swine fever virus, Sarcoptes scabiei and porcine respiratory
and reproductive syndrome virus (Bosch et al., 1996, Moormann et al., 2000,
Stegeman et al., 2000, Nodelijk et al., 2001). Some of the conditions that have to
be met in order to estimate Ro based on data from studies of this type are that all
infected animals are equally infectious and that all susceptible animals are equally
susceptible. In order to conclude on the former, a measure of the dose exerted by
the infectious animals is needed. Dose assessment generally requires the use of a
proxy. Examples of such proxies are period of viremia or period of virus shedding
in different bodily excretions and fluids (Bosch et al., 1996, Nodelijk et al., 2001).
Their validity depends on how the presence of virus is determined and how the
test actually correlates with infectivity. For example, RT-PCR will probably
overestimate infectivity as the presence of viral RNA does not necessarily
correspond to the presence of infectious virus. To ascertain equal susceptibility is
difficult - is there such a thing? Still, although equal susceptibility could be
difficult to obtain, a basic requirement should be that study animals are randomly
allocated to ensure that the study groups are representative with respect to
individual variation in susceptibility.

Field studies

There are several field studies where acute infections are said to circulate for long
periods of time, despite the absence of PI animals (Barber et al., 1985, Moerman
et al., 1993, Edwards, 1997). In papers I and 11, we did not observe any secondary
infections when only transiently infected animals were present, even when the
animals had a concurrent corona virus infection. In contrast, we saw that PI calves
only had to be present for a few hours in order to cause seroconversions in
susceptible animals even though there were no direct contacts between the
infectious and susceptible animals (V). In addition, we found that infectious virus
can be present in foetal fluids from dams giving birth to PI calves, at doses
sufficient to lead to infection. This emphasises that in order to draw conclusions
on the infectivity of acute infections from field studies, the absence of PI animals
at any time must be reassured.
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Results and discussion

A detailed discussion of the results achieved is given in each of the papers I-V.
Here, they will be discussed in terms of how they relate to the eradication of
BVDV on a larger scale. Also, some of the ideas put forward in paper VI are
discussed further, together with ideas for future research.

The prospects for large-scale eradication of BVDV

The Scandinavian test-and-cull strategy relies heavily on the assumption that
BVDV can be eradicated from a herd (and eventually from the population) as
long as PI animals are identified and removed. This assumption is supported by
our findings in papers I and II. Similar experiences are reported from Denmark
(Bitsch et al., 2000) and by studies on indirect transmission where the absence of
further transmission from acutely infected animals have been noted (Gunn, 1993,
Lang-Ree et al., 1994). This clearly shows that the early perception of BVDV as
an infection that spreads readily and can be controlled only by vaccination
(Kahrs, 1981, Harkness, 1987) does not hold.

Prevent new herd infections and delimit outbreaks

Both from the economic and the ethical perspective, it is better to prevent than to
treat. As indicated earlier, the major routes by which BVDV is transmitted
between infected and susceptible herds under endemic and uncontrolled
conditions, are by movement of PI animals and dams pregnant with PI foetuses.
Surprisingly, there are very few studies, if any, that elaborate on what can be done
to reduce the latter risk, although it is readily acknowledged (Meyling et al., 1990,
Fray et al., 2000). In paper I1I, we show that PI carriers can be identified with a
high probability using a standard serological assay, as long as the sample is taken
in late pregnancy and the assay used is able to quantitatively reflect the antibody
titre. Thus, by applying a test of this type in the livestock trade, the risk of
transmission of BVDYV infection between herds can be reduced, without
completely blocking of with pregnant, seropositive cattle. Also, in paper IV it was
shown that it is possible to detect viral RNA in foetal fluids by the use of PCR.
Prenatal diagnosis of BVDYV infection, if put into context within a protocol for
virus elimination, can shorten the duration of herd infection. It may even prevent
the outbreak of an infection that is still latent from a herd point of view, i.e.,
where PI animals are present only in utero. To the author’s knowledge, the
methods described in papers III and IV are currently the only available pre-
emptive methods for delimiting the consequences of BVDV infections.

Shorten the herd level duration of infection

The first step in eliminating BVDV from herds is to identify and remove PI
animals and secondly to do follow-up on all calves born during the subsequent
year. Normally, these would be tested around 12 weeks of age, and there is of
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course a risk that the infection is perpetuated if a PI animal is born and a
susceptible animal in early pregnancy becomes infected during this time period.
The studies presented here support the claim that after removal of any PI animals
initially present, the infection will cease to circulate (I, II) and that it is possible
to actively delimit any further spread associated with the birth of additional PI
animals (IV, V). The key is to know what animals are at risk of giving birth to PI
calves (III, IV) and what animals are seronegative, pregnant and at risk of
perpetuating the infection, and to separate these groups in time and place (V).

The results in paper IV showed that virus is present in foetal fluids in sufficient
amounts to be isolated. It was therefore suggested that such fluids could be a
significant source of virus spread within a herd, in connection with the birth of PI
calves (V). However, only one of 20 exposures to foetal fluids collected at and
after calving resulted in a seroconversion (V, trials I-1II). This suggests that any
dissemination of foetal fluids in connection with the birth of PI calves is of minor
importance. So, from a control perspective, it is once again the PI calves
themselves that are the problem. In paper V, frial IV, one calf seroconverted
although it was not deliberately exposed to any potential source of infection.
During the period when this calf was in the study, three PI calves were born and
kept in the same stable unit, but only for a short period of time after birth. The PI
calves were never given colostrum and it is therefore possible that their ability to
transmit the virus by indirect means (via aerosol or personnel), was relatively
higher than it would have been under natural conditions. Still, the results
emphasise that potential PI carriers have to calve in an environment where their
offspring can do no harm. This is in isolation, or in a unit where all other animals
are immune. However, the risk of transmission from mothers of PI calves to
susceptible animals seems to be negligible within a few days after calving (V).

Applicability to systems where vaccines are used, and type Il strains are
present

One argument raised as to why the test-and-cull approach could not work in
countries where vaccines are available is that vaccination precludes the use of
serology for herd diagnosis. Also, vaccines are perceived as necessary to prevent
BVDV outbreaks in general and of type I BVDV in particular. There is also
some confusion regarding how infectious acute BVDV is, which is of particular
concern with respect to type Il strains. However, although a lot of the recent work
on BVDYV infections have focussed on type II infections (Ellis et al., 1998, Odeon
et al., 1999, Walz et al., 1999, Walz et al., 2001b), there appear to be no studies
that have addressed transmission from animals primarily infected with BVDV
type II and if this differs from type I strains. Also, to bear in mind is that
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even though type II strains are prevalent in some parts of the world (Bolin &
Ridpath, 1998, Fulton et al., 2000b) it is evident that a majority of the strains are
just as avirulent as type I strains (Ridpath et al., 2000). Thus, type II strains
essentially behave like type I strains and should also be able to control with the
same approaches.

Epidemiological principles for large-scale eradication of BYDV
without the use of vaccines (VI)

Since 1999, when paper VI was published, the Scandinavian countries have come
further in their aims to eradicate BVDV infection using only zoo-sanitary
measures. In Norway, the number of herds with restrictions has decreased from
the top notation of 2,949 in July 1994 to 92 today (K. Plym-Forshell, personal
communication). The corresponding figures for Denmark are approximately 6,000
in January 1997 to 350 today (PI status) (Bitsch et al., 2000, V. Bitsch, personal
communication). In Sweden, the number of herds with confirmed or suspected
infection peaked in July 1998 when 3,747 herds were under investigation. The
current figure is 842 herds. The progress of the Swedish BVDV scheme is shown
in figures 1-3. Figure 1 shows the number of herds declared free from infection
after successful elimination of virus (n=3,272) and the number of new infections
in herds previously certified as being free is shown in figure 2 (n=365). Figure 3
shows the successive decrease of herds with high antibody levels in bulk milk,
indicating the decreasing prevalence of herds with active BVDV infection.
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Fig. 1. Number of Swedish cattle herds certified as being free from the infection after
successful elimination of BVDV within the voluntary national eradication scheme, per
month from the start of scheme in September 1993 to April 2002.
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Fig. 2. Number of new cases of BVDV infection detected in Swedish cattle herds
previously certified as being free from BVDYV infection, per month from the start of the
voluntary national eradication scheme in September 1993 to April 2002.

In contrast to what could be expected, the progress has been faster in high
prevalence/high density areas like Denmark and South-East Sweden (Lindberg,
1996, Bitsch et al., 2000) than in low-prevalence areas like Finland and Northern
Sweden. Thus, we do not have any reason to believe that the principles presented
in paper VI will not hold also in other densely populated areas, as long as the
known risk factors for transmission between herds are being managed. They are
discussed in paper VI and some of them are further commented on below.
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Fig. 3. Distribution of Swedish dairy herds over BVDV antibody classes in 7 national
bulk milk surveys performed 1993-2001 (n=8,810 herds tested on all occasions). Class 0
and 1 are indicative of undetectable-low antibody levels. Class 2 is intermediate and class
3 reflects high levels of antibody to BVDV in bulk milk. Herds with recent or ongoing
infection are usually found in class 3.
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Wildlife reservoirs

The presence of non-bovine hosts of BVDYV has been put forward as a reason why
eradication could not be achieved (Kahrs, 1981). In Scandinavia, wild ungulates,
mainly roe deer, can often be seen on cattle pastures. Consequently, any exposure
to PI cattle could lead to the development of infected offspring. However,
serological investigations made in roe deer populations do not suggest the
presence of PI individuals (Nielsen et al., 2000), possibly because they are in
early pregnancy at a time when cattle are not on pasture. Still, in areas where wild
ungulates and cattle breed and graze synchronically, the situation could be
different, as suggested by the results from Anderson and Rowe (1998). Persistent
infection has been confirmed in eland (Vilcek et al., 2000). However, it is still
unclear if the virus is able to persist in wildlife populations without being
reintroduced, which would be required if it is to act as a long-term reservoir.

Semen and embryos

As discussed in paper VI, the main risks for reintroduction of BVDV after
eradication are likely to be associated with the importation of livestock, semen
and embryos and/or with the use of modified live vaccines. In Sweden, livestock
and vaccines can more or less be disregarded, but semen and embryos are
imported in significant quantities and often from countries with less control on
BVDV infections. Both are regarded as safe means of introducing new genetic
material, but recent studies have elicited that more knowledge is needed for
proper risk management. It is becoming increasingly obvious that in-vitro
fertilized embryos and contaminated biologicals are potential hazards in the use of
embryo transfer (Trachte et al., 1998, Stringfellow et al., 2000, Vanroose et al.,
2000). Also, the underlying biology of persistent testicular infection, described by
Voges and colleagues (1998), is still unclear. For example, a recent study suggests
that the timing of infection is irrelevant as virus could be isolated from testicular
tissue 7 months after acute infection in post-pubertal bulls, although it could not
be isolated from semen for more than 21 days (Givens et al., 2002).

In Sweden today, the import requirements for semen and embryos are regulated
through the farmers’ organisations. Essentially all imported semen is tested for the
presence of viral RNA by RT-PCR. An exception is made for bulls that have been
proven antibody negative after sampling, if they have been tested for virus at a
previous occasion. Also, semen from antibody positive bulls from countries with
a similar control system in place is excluded from testing. An alternative for
countries that do not have control schemes would be to test seronegative bulls at
Al stations on a monthly basis as suggested by Wentink and colleagues (2000).
The risk of introduction of BVDV through embryo transfer is managed within the
BVDV scheme. In affiliated herds, dams that receive imported embryos, or
embryos from non-certified herds, have to be subjected to an antibody test 4-12
weeks after transfer to check for seroconversion.
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Vaccination

The technical difficulties associated with BVDV vaccine production are
acknowledged. BVDV is a virus that exhibits substantial variation and although
the main antigenic epitopes are known, it is still difficult to produce vaccines that
are able to prevent infection with heterologous genotypes and subtypes within
these (Hamers et al., 2001). Also, it has not been possible to satisfy the needs for
broad and high degree of protection with an ability to differentiate between
natural infection and vaccination (van Oirschot, 1999).

In a recent review, van Oirschot (2001) lists a number of characteristics of an
ideal vaccine. It should:

e contain a variety of immunogens and thus be multivalent in a single stable
formulation

only need one or two non-invasive administrations

induce broad humoral and cell-mediated immunity

confer lifelong protection

induce herd immunity

induce correlates of protection (i.e. there should be a measurable parameter
that corresponds well with true protection)

not be inhibited by maternal immunity

not compromise the ability to diagnose infection

be safe

be cheap

Being rather provocative, one could say that a vast majority of the BVDV
vaccines currently on the market only fulfil the last criterion.

In the US, where vaccination is widely used, more than 140 different products are
registered (Ridpath et al., 2000). The demands for registration are low (US
Government, 1997) and this has lead to a plethora of vaccines with questionable
efficacy. There is a problem with their ability to prevent postnatal infection (van
Campen & Woodard, 1997, Rush et al., 2001, Thurmond et al., 2001, Wittum et
al., 2001) and none of the products actually claim to prevent prenatal infection.
Thus there is a general inability to actually target the critical control points in
BVDV epidemiology'.

In addition, live vaccines in general have a problem with safety issues related to
pestivirus contamination. The problem of inactivation of any adventitious virus,
as well as its deleterious consequences, are well documented (Wensvoort &
Terpstra, 1988, Kreeft et al., 1990, Levings & Wessman, 1991, Leken et al., 1991,
Yanagi et al., 1996, Falcone et al., 1999, Audet et al., 2000). Recently, the Dutch
IBR scheme, in which a modified live vaccine was used, suffered from severe

' However, just recently, the first BVDV vaccine with the indication “prevention of
transplacental infection” was registered (Bovilis BVD; Intervet).
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outbreaks of BVDV after contaminated vaccine batches had reached the market
(Barkema et al., 2001). As a result, the European Council/EDQM recently saw a
need to revise its guidelines for the production of bovine serum and for products
where pestivirus contamination is an issue (EDQM, 2001).

Another complicating factor is that currently there are no vaccines for BVDV
available that allow differentiation between natural exposure and vaccination (van
Oirschot, 1999). Consequently vaccination compromises the ability to use
serology for diagnostic purposes, including the cheap and rapid herd level tests
that are available. Thus, unfortunately, when the farmer decides to vaccinate he
also reduces the veterinarian’s ability to help him if complications arise.
Interpreting serological patterns in vaccinated herds is difficult as they vary with
the types of vaccines and immunisation programmes used (van Campen et al.,
1998, S. Hietala, personal communication).

Yet another problem is the way in which BVDV vaccines are used in the field
(Kelling, 1996). A survey performed in the US indicated that although a majority
of the herds vaccinated, less than 30% were doing it correctly (Quaife, 1996). As
indicated earlier, modified live vaccines are capable of producing transplacental
infections in pregnant animals and MD in PI cattle, if they are used incorrectly.
They have also been shown to have the same immunosuppressive properties as
wild strains (Roth & Kaeberle, 1983). Killed vaccines are safer to use, but require
that strict immunisation programmes are adhered to in order to provide adequate
protection. Minor human mistakes, like failing to vaccinate one or two animals,
are sufficient for new persistent infections to become established if a PI animal is
introduced in the herd. Therefore, in order to control BVDV, the awareness that
biosecurity is the top one priority must always be high, irrespective of whether or
not vaccines are used. Several studies indicate how the use of vaccines can give a
false sense of security and thus promote risky behaviour by livestock owners
(Vannier et al., 1997, Engel & Wierup, 1999). A risky behaviour with respect to
BVDV is, e.g., to purchase untested stock, or to use common pastures without
knowing the status of the other herds using the same pasture. Because of the flaws
of current vaccines and vaccination schemes, this is a serious problem.

Vaccination and test-and-cull approaches for BVDV eradication are not mutually
exclusive, as long as safe (killed) vaccines are used and it is ensured that the
herd’s BVDV status can be monitored. However, the message has to be
recognised that biosecurity is the first line defense and that vaccination is back-up
protection. Also in schemes based entirely on test-and-cull, vaccination could be a
helpful tool to break the vicious circle in infected herds. However, it should be
regarded as therapy — a time limited measure — and not as prophylaxis.
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Biosecurity

Eradication at a national scale has been accomplished for other viral diseases in
cattle, such as EBL and IBR. It has also been achieved in pig populations, where
Aujeszky’s disease is a good example of how a highly prevalent infection can be
eradicated once the epidemiological understanding and good diagnostic tools are
available (Andersen et al., 1989, Engel, 1999). The general experience with
vaccines seems to be that they can be useful to prevent severe outbreaks, but also
that they are not solely sufficient to prevent transmission between herds and
achieve eradication (Stegeman, 1997, Vannier et al., 1997). Instead, the key factor
to success seems to be biosecurity. How rigid the biosecurity barrier has to be will
vary with type of infection, but for pseudorabiesvirus and BHV-1, the control of
new introductions (by testing or by recruitment from certified free herds) seem to
be a key issue, just like for BVDV (Stegeman et al., 1996, van Schaik et al.,
1998).

However, despite massive information and education about biosecurity, it is
unlikely that all farmers in an area will adopt perfect routines. Therefore, the
single key measure for successful eradication of BVDV from cattle populations is
to block PI animals from having access to ‘hot-spots’ like cattle auctions,
common pastures and other places where animals from many different farms co-
mingle. If animals in early pregnancy are present and become infected, they will
efficiently introduce BVDV into their herd of destination. Thus, testing for
BVDV always has to start with a test in the herd of origin.

Implications for future research

The purpose with research is not only to answer questions but also to identify new
ones. | believe that it will be important to continue to clarify how acute type II
infections differ from persistent infections with respect to infectivity, as this
seems to be a paradigm that obstructs any initiatives to efficiently control BVDV
infections in some countries.

Also, I think the prospects for prenatal diagnosis by using non-invasive methods
like serology, should be further investigated, in particular to determine whether it
is practicable in vaccinated herds. We made our study on antibody positive
animals in herds with ongoing infection where the average antibody levels were
generally high, and we were still able to get a good discrimination between
antibody positive dams carrying healthy foetuses and those that were pregnant
with PI calves. This implies that it could be possible to use this approach also in
dams that are vaccinated.

The underlying immunological mechanisms responsible for the high antibody

titres in PI carriers also warrants further study. We have been able to demonstrate
the presence of virus in maternal circulation of PI carriers, in samples obtained
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from the heifers used in study IV (data not shown). This indicates one means by
which the maternal immune system could be continuously challenged, but the
routes by which the virus travels do not yet seem to be understood.

We did not experience any negative side effects of the foetal fluid sampling but in
the study by Callan and colleagues (2002), 14 of 169 animals aborted or delivered
premature calves within 3 weeks of the procedure. It could not be determined if
this was due to the procedure or a result of the infection. Still, this suggests that
safety issues related to the methodology should be studied further.

Houe (2000) emphasizes that any choice of control approach should be based on
thorough epidemiological investigations in the areas where the programme is
going to be applied. However, to work with disease control in animals is
nevertheless to work with people, and it is therefore important to have an
understanding of how social factors contribute to positive progress. These are e.g.
the infrastructure of the cattle industry, the educational level of farmers and other
professionals involved in the eradication as well as the general attitude towards
the scheme among stakeholders. The overall question is really how to
communicate the right message at the right time to all concerned, not only in
order to increase the general knowledge, but to actually change attitudes and
behaviour. I believe that future cows and farmers would benefit from more
research being done on the social epidemiology of farm animal disease control
and eradication, alongside with the classical epidemiological questions still to be
answered.
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Concluding remarks

Animals acutely infected with type I BVDV are highly inefficient in
transmitting the infection to susceptible animals. The rate of transmission is
not necessarily increased by the presence of a concurrent BCV infection,
despite marked clinical disease in both infective and susceptible animals.
Given these conditions, the probability that BVDV infection can be
maintained in a herd after all PI animals have been removed is negligible.

There are three ways in which diagnosis of persistent infection in the unborn
calf can be made. The first is by serology, using an indirect ELISA able to
quantitatively reflect the antibody titre on serum samples taken in the last
trimester. The second is by analysing samples of foetal fluid obtained in late
gestation using RT-PCR and the third is by isolating virus from the same
specimen. Serology is highly sensitive, but the specificity is relatively low.
RT-PCR is less sensitive, but performs better than VI. The specificity of the
latter two tests has not been investigated.

Antibodies can be present in foetal fluid, and this affects the sensitivity of VI
and possibly also the RT-PCR when applied to this specimen. The presence
of antibodies in foetal fluids is likely to reduce the infectivity associated with
such fluids.

Foetal fluids expelled in connection with the birth of PI calves can contain
infectious doses of virus. If susceptible animals in early pregnancy are in
contact with such fluids, a new persistent infection could be established, and
BVDV infection could be perpetuated in the herd. However, the infectivity
associated with foetal fluids is low and uterine lochias excreted after calving
are not likely to be infectious.

Rapid removal of newborn PI calves does not prevent further spread of
BVDV infection if susceptible animals are kept within the same premises.
Strategies aimed at delimiting further spread have to include separation of
animals in early pregnancy from calving cows/heifers. If prenatal diagnosis of
persistent infection can be achieved, separation can be restricted to dams
identified as potential PI carriers.

The principles for eradication of BVDV from cattle populations that have
been applied in the Scandinavian countries and in Austria still hold.
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