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Abstract 
Mulualem Tigabu 2003. Characterization of Forest Tree Seed Quality with Near 
Infrared Spectroscopy and Multivariate Analysis. Doctoral dissertation.  
ISSN 1401-6230    ISBN 91-576-6508-7 

The thesis presents a rapid and non-destructive method for characterizing the genetic, 
physiological and technical qualities of both temperate and tropical tree species on single 
seed basis. It is based on ‘cross fertilization’ of near infrared technology and multivariate 
analysis. The result demonstrated that seed sources, mothers and fathers of Pinus sylvestris 
could be identified using near infrared spectroscopy (NIRS) with 100%, 93% and 71% 
classification accuracies, respectively. NIRS was employed to detect internal insect 
infestation in Cordia africana and a 100% classification of sound and insect infested seeds 
were achieved on the basis of insect cuticular components and moisture difference between 
the two fractions. An extension of this study was performed on Picea abies seeds differing 
in origin and year of collection. Detection of infested and uninfested seeds with NIRS was 
found insensitive to subtle differences in proteins, lipids and moisture provided that 
between-seed lot spectral variability is removed a priori with appropriate spectral 
pretreatment technique or the calibration model takes into account this natural variability. 
Sound and insect-damaged seeds of Albizia schimperiana were also successfully separated 
based on differences in relative water content. The moisture gradient between sound and 
insect-damaged seeds was intentionally created by soaking both fractions in water at room 
temperature for a specified time owing to the fact that the hard and impermeable seed coat 
of intact seeds does not allow the diffusion of water.   

The application of NIRS for the discrimination of viable and empty seeds of Pinus 
patula was evaluated and the two fractions were discriminated with 100% accuracy on the 
basis of divergence in lipid and protein contents. A further study was made to 
simultaneously discriminate filled, empty and insect-infested seeds of three Larix species. 
The result demonstrated a 100% recognition of infested and empty seeds while the 
recognition rates of filled seeds ranged between 90% and 100%; the highest being for Larix 
sukaczewii followed by Larix decidua and Larix gmelinii, respectively. In seed vigour 
analysis, it was also possible to distinguish between vigorous and aged seeds with 100% 
classification accuracy. 

The results reported in this thesis demonstrate the capability of NIRS combined with 
multivariate analysis as a tool for rapid and non-destructive analysis of several seed quality 
attributes. As establishment of new forest plantations shows an increasing trend globally, 
NIRS will play a pivotal role in upgrading seed lot quality through sorting of unproductive 
seeds, and hence facilitating single seed sowing for containerised seedling production in 
nurseries and/or direct sowing out in the field. Therefore, continued emphasis should be 
given towards developing simple, cost-effective and automated sorting system in the future. 

Key words: empty seed, filled seed, genetic seed quality, insect infestation, NIR, seed 
origin, seed quality, seed vigour 
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Introduction 

Seed quality 

The recent global forest account indicates that new forest plantation areas are being 
successfully established at the rate of 3.1 million hectares per year (Food and 
Agricultural Organization 2001). Industrial plantations, from which wood or fibre 
are supplied for wood processing industries, account for 48% and non-industrial 
plantations, such as fuelwood plantations, small scale wood lots, trees for 
conservation purposes, constitute 26% of the global plantation estate (Food and 
Agricultural Organization 2001). In terms of species composition, Pinus and 
Eucalyptus are the dominant genera, representing 20% and 10% of the global 
plantation estate, respectively. As many multipurpose trees are on endangered 
species list that necessitated conservation of germplasm (Hilton-Taylor 2000), 
there is an increasing trend towards planting indigenous species. The success of 
any sustainable reforestation program, among other things, hinges on a continuous 
supply of high quality seeds for the production of the desired quantity of seedlings 
in nurseries or for successful stand establishment by direct sowing out in the field.  

What is seed quality then? Seed quality is defined as “a measure of characters 
or attributes that will determine the performance of seeds when sown or stored” 
(Hampton 2002). It is a multiple concept encompassing the physical, physiological, 
genetic, pathological and entomological attributes that affect seed lot performance 
(Basu 1995). Seed quality is often indexed using viability and vigour. Viability, 
synonymous with germination capacity, refers to the ability of a seed to germinate 
and produce a normal seedling. In other words, it denotes the degree to which a 
seed is alive, metabolically active and possesses enzymes capable of catalysing 
metabolic reactions needed for germination and seedling growth. Seed vigour is 
“the sum total of those properties of the seed which determine the level of activity 
and performance of the seed or seed lot during germination and seedling 
emergence” (Hampton and TeKrony 1995). As seed vigour is not a single 
measurable property, aspects of performance associated with seed vigour include 
rate and uniformity of seed germination and seedling growth, emergence ability of 
seeds under unfavourable environmental conditions, and performance after storage 
and transport, particularly the retention of the ability to germinate.  

Several factors affect the production of high quality seeds, such as insect 
infestation (e.g. Barbosa and Wagner 1989, Wagner et al. 1991, El Atta 1993, 
Dajoz 2000, Bates et al. 2000, 2001), pollination failure and post-zygotic 
degeneration (e.g. Owens et al. 1990, El-Kassaby et al. 1993), infection by seed 
borne pathogens (Pritam and Singh 1997), environmental conditions during seed 
development (Gutterman 2000) as well as the genetic constitution (Bazzaz et al. 
2000). Insect infestation reduces seed quality by damaging the embryonic axis, or 
consuming cotyledon or endosperm thereby exhausting the reserve food, and a 
seed severely attacked by feeding larvae will be empty of its contents (El Atta 
1993, Bates et al. 2000, 2001). Early infestation often causes abortion of the 
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attacked ovule or the whole fruit; and attacks occurring later during fruit 
development result in empty seeds (Janzen 1972, Hedlin et al. 1981). In many 
conifers, such as pines and larches, the occurrence of a large quantity of empty but 
normal appearing seeds due to pollination and fertilization failures is well 
documented (Hakansson 1960, Hall and Brown 1976, 1977, Owens and Molder 
1979, Kosinski 1986, 1987, Owens et al. 1994, Owens 1995). Obviously, such 
unproductive seeds should be detected and eliminated to enable single seed sowing 
in containerised seedling production or to ensure the success of emergence and 
establishment of seedlings by direct sowing. 

Seed ageing or seed deterioration is also a well-known cause of reduced vigour 
and viability, which commences during physiological maturity and continues 
during harvest, processing and storage. Studies have shown that seed deterioration 
is accompanied by a cascade of physiological and biochemical perturbations (see 
reviews by Smith and Berjak 1995, Marcos-Filho and McDonald 1998, Walters 
1998, MacDonald 1999) that eventually result in reduced overall germination 
performance, speed and uniformity of germination, inferior seedling emergence 
and growth, reduced storability, as well as susceptibility to environmental and 
biological stresses (e.g. Delouche and Baskin 1973, Kalpana and Madhava Rao 
1995). Usually the loss of vigour precedes the loss of viability, and seed lots with 
similar total germination capacity can differ greatly in their rates of germination, 
emergency, and growth. The decline in seed vigour can be reversed using 
pretreaments such as priming (Winsa and Bergsten 1994, Sivritepe and Dourado 
1995, Oluoch and Welbaum 1996, Usberti and Valio 1997, Shen 2000), hormonal 
treatments (Wang et al. 1996) and cold moist stratification (Jones and Gosling 
1990, Poulsen 1996). Assessment of seed vigour is, thus, one of the seed testing 
routines to provide information regarding potential field performance and 
storability of a given seed lot as well as to decide whether a seed lot should be 
primed or not. 

The genetic seed quality encompasses adaptability to the planting site, growth 
performance, tolerance to biological and environmental stresses, and the level of 
gene diversity within a seed lot. It is particularly important in seed lots of forest 
trees because any anomalies cannot be detected early owing to the long life span of 
tree growth. Establishment of seed orchards using superior or plus-trees is the most 
common and cost-effective way of ensuring sustainable supply of genetically 
improved seeds (Zobel and Talbert 1984, Varghese et al. 2000). In Sweden, for 
example, 574 ha of Scots pine and 234 ha of Norway spruce seed orchards have 
been established that have supplied 42.9 and 9.7 tonnes, respectively of genetically 
improved seeds over the period 1968 – 1994 (Hannerz et al. 2000). However, 
pollen contamination has been shown as the major hurdle for maintaining the 
genetic purity of orchard seeds (e.g., Yazdani and Lindgren 1991, Pakkanen and 
Pulkkinen 1991, Wang et al. 1991, Harju and Nikkanen 1996, Kang et al. 2001). 
Knowledge of seed source is also crucial because effects of maternal environment 
(also called aftereffects) during seed development have been reflected on the 
performance of the progeny (Lindgren and Wang 1986, Dormling and Johnsen 
1992, Lindgren and Wei 1994, Wei et al. 2001).  
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A variety of seed testing methods have been continuously developed for rapid 
assessment of seed quality. X-radiography is a standardized method for assessing 
the proportion of filled, empty, insect-infested and physically damaged seeds in a 
given seed lot while excised embryo and tetrazolium tests are employed to 
promptly determine the viability of seed samples, especially for seeds that 
germinate slowly or exhibit dormancy (International Seed Testing Association 
2003). The most widely used methods for assessing seed vigour are measurement 
of germination rate and seedling growth rate, stress tests (e.g. cold test and 
accelerated ageing), and biochemical tests such as tetrazolium staining and leachate 
conductivity (Hampton and TeKrony 1995, Bonner 1998, Demelash et al. 2003a). 
Other approaches include measurements of respiratory activity (Bonner 1986), 
ATP content (Lunn and Madsen 1981, Siegenthaler and Douet-Orhant 1994), 
glutamic acid decarboxylase activity (Grabe 1964) and fumarase activity (Shen and 
Odén 2000, 2002). Molecular markers, such as allozymes, chloroplast and 
mitochondrial DNA, are adopted to estimate the extent of pollen contamination in 
seed orchards and putative seed origin (Wang et al. 1991, Stoehr et al. 1998, Wang 
and Szmidt 2001, Ribeiro et al. 2002). However, these methods have some 
limitations. For example, X-radiography is potentially hazardous for operators and 
the seed, and it requires highly experienced personnel to interpret X-ray images. 
The cutting and tetrazolium tests are destructive in nature and laborious. The 
various seed vigour tests are destructive, subjective (e.g. biochemical tests) or 
relatively slow for tree seeds (e.g. germination and seedling growth rate tests). On 
top of this, none of them renders the possibility of sorting low vigour seeds from a 
seed lot. The molecular techniques for determining the genetic quality of seed 
crops are also technically complex and expensive.  

Likewise, a variety of seed sorting techniques have been developed to upgrade 
seed lot quality; notably, the Pressure-Vacuum (PREVAC) method for removing 
mechanically and insect-damaged seeds (Lestander and Bergsten 1985, Bergsten 
and Wiklund 1987) and the incubation, drying and separation (IDS) technique for 
sorting empty and dead-filled seeds of Scots pine (Simak 1981, 1984), which later 
applied on seed lots of several other conifers and broadleaved species (Donald 
1985, Bergsten and Sundberg 1990, Sweeney et al. 1991, Vanangamudi et al. 
1991, Downie and Bergsten 1991, Downie and Wang 1992, Singh and Vozzo 
1994, Poulsen 1995, Falleri and Pacella 1997, Demelash et al. 2002, 2003b). 
Results from these studies, however, showed that the efficacy of these methods 
varies among species and seed lots and complete separation is still difficult to 
achieve for some species. This could be due to large inherent seed size variability 
(e.g. Cupressus lusitanica, Bergsten and Sundberg 1990), inadequacy of density 
gradient between sound and insect-damaged seeds (e.g. Albizia schimperiana, pers. 
observation), or insufficiency of the specific density of the flotation media. 
Furthermore, it has been shown that some flotation media have a detrimental effect 
on seed germination and storability (Barnett 1971, Simak 1973, Hodgson 1977). In 
Norway spruce seeds, Tillman-Sutela and Kauppi (1995a) have shown that the wax 
and crystal layers around the micropyle (the natural opening in the seed) restrict the 
imbibition process; thereby hindering the separation of viable and non-viable seeds 
with the IDS method. It was these limitations that have motivated the present thesis 
work.  
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Near Infrared Spectroscopy 

Historical development  

The near infrared (NIR) part of the electromagnetic spectrum is commonly defined 
as the region spanning wavelengths from 780 nm to 2500 nm. The NIR region was 
first discovered back in 1800 by Sir William Herschel while attempting to measure 
the heat energy of solar emission beyond the red portion of the visible spectrum. In 
honour of his historic discovery, the wavelength region between 780 and 1100 nm 
is termed as the ‘Herschel infrared’ (Davies 1990). After a long pause, Abney and 
Festing made the first serious NIR measurements and interpretations in 1881, 
followed by Coblenz in 1905. Further systematic studies on NIR spectra of organic 
compounds and assignment of bands to functional groups were undertaken between 
1922 and 1929, in the period 1930 to 1945 as well as in the 1980s (Osborne et al. 
1993).  

The advent of the Second World War was a turning point in the historical 
development of NIR technology. During this time, photoelectric detector (lead 
sulphide) was discovered that eventually became a major detector for the NIR 
region. Following this advancement in instrumentation a great deal of work was 
carried out in the period 1955 to 1965. The foundations for modern NIR analysis 
was laid in the 1960s when Karl Norris and co-workers started using wavelengths 
in the NIR region for rapid quality assessment of agricultural commodities, such as 
moisture in grain and seed (Norris and Hart 1965, Ben-Gera and Norris 1968), 
ripeness of fruits (Bittner and Norris 1968) and defects in eggs (Norris and Rowan 
1962). Norris has also designed and developed the first grain moisture meter 
(Norris 1962, 1964) and recognized the power of multivariate analysis for 
extracting quantitative information from complex NIR spectra (McClure 1994). As 
a result, Karl Norris is recognized as ‘father’ of modern NIR technology. Dickey-
john developed the first commercial NIR instrument, the Grain Analysis Computer 
(GAC), in 1971. Since then, several companies and individuals involved in the 
development of NIR instruments; notably, the Swedish Foss Tecator Company 
developed NIR transmittance spectroscopy fully dedicated to the analysis of intact 
individual grains/seeds (this instrument was used to record spectra from individual 
seeds in this thesis). The NIR technology has continued to show greater 
advancements in terms of instrumentation, precision as well as data acquisition and 
processing. Today, NIR spectroscopy is one of the fastest growing analytical 
technologies in the world with an overwhelming application in virtually all fields of 
science (Williams and Norris 1987, Osborne et al. 1993, McClure 1994, Workman 
1999, Burns and Ciurczak 2001, Blanco and Villarroya 2002). The history of NIR 
technology is far richer and fascinating than described here; further details can be 
found elsewhere (Osborne et al. 1993, McClure 1994, Hindle 2001).  

Principle and Theory 

NIR spectroscopy works on the principle of interaction of electromagnetic 
radiation with matter, which takes several forms (Figure 1). When a solid sample, 
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like a seed, is illuminated with monochromatic radiation emitted by NIR 
instrument, the incident radiation will be reflected by the outer surface (known as 
specular reflectance), traverses deep into the inner tissue of the sample and 
reflected back (diffuse reflectance), passes all the way through the sample 
(transmittance), will be absorbed completely (absorption) and part of it will be lost 
as internal refraction and scattering. If a sample absorbs none of the incident 
energy, total reflection occurs. In NIR spectroscopy, we are interested in the 
diffuse reflectance and transmittance, although the former includes the specular 
component. If the specular component dominates the reflectance spectra, the actual 
absorption information from the sample will be obscured. Thus, the specular 
reflectance together with the wide-angle deflection and scattering within the sample 
are considered as sources of systematic noise in the spectra and need to be 
carefully handled during pre-processing of the spectral data. Often, organic 
materials selectively absorb NIR radiation that yields information about the 
molecular bonds within the material being measured.  

 When a molecule absorbs radiation in the infrared (IR) region, vibrations in 
the bonds occur either due to stretching or bending. Stretching is vibration in which 
there is a continuous change in the interatomic distance along the axis of the bond 
between the two atoms while vibration involving a change in bond angle is referred 

 

Figure 1. An illustration of the interaction of NIR radiation with seed samples. 
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to as bending or deformation (Figure 2).  

The molecular bonds vibrate in a manner similar to a diatomic oscillator that 
can be explained using the quantum-mechanical model. According to the quantum 
selection rules, the only allowed vibrational transitions are those in which υ (the 
quantum number) changes by one (Δυ  = ± 1). The harmonic oscillator model, thus, 
explains the absorption bands observed in the IR region due to fundamental modes 
of molecular vibration; but failed to explain the presence of overtone bands in the 
NIR. However, real molecules do not behave exactly as predicted by the law of 
simple harmonic motion and real bonds do not strictly obey Hook’s law due to 
Coulombic repulsion between the two nuclei and dissociation of bonds beyond the 
limit of elasticity that levels off the potential energy (Figure 3). Consequently, the 
harmonic criterion is not fulfilled at higher vibrational states, and vibrations 
become rather anharmonic. Such anharmonic molecular vibrations allow energy 
transitions between more than one level, and thus creating overtone bands. 

Figure 2. M
odes of bond vibration for a hypothetical molecule AX2. 
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Figure 3. The energy of a diatomic molecule undergoing harmonic oscillation
(dashed line) and anharmonic vibration (solid line) that explains absorption in the
NIR region.  
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overtone transitions are absorptions from the ground level to vibrational energy 
level 2 or higher (Figure 4) while combination bands arise from addition or 
subtraction of fundamental C – H, O – H and N – H vibrations. The overtones and 
combination bands are much weaker (often by a factor 10 or higher) than the 
fundamental absorption bands. This allows analysis of samples that are several 
millimetres thick (Bokobza 1998). 

In addition to chemical information, NIR spectra contain physical information 
that can be used to determine physical properties, like bulk density in seeds 
(Velasco et al. 1998a, Font et al. 1999) and seed weight (Velasco et al. 1999).  
This is attributed to interactions between atoms in different molecules (such as 
hydrogen bonding and the dipole moment) that perturb vibrational energy states, 
thereby shifting the existing absorption bands and creating new ones through 
variation in crystal structure. This, in turn, allows crystal forms to be identified and 
physical properties determined (Blanco and Villarroya 2002).  

Interpretation of NIR spectra is not as simple as that of IR spectrum owing to a 
large number of overlapping overtone and combination bands with broader peaks. 
In general, bonds with high dipole moments give the strongest overtone 
absorptions, and the Beer-Lambert law describes the quantitative aspect of 
absorption. The law states that the fraction of radiant energy absorbed by 
infinitesimal thickness of sample is proportional to the number of molecules in that 
thickness; i.e., A = εCl, where A is absorbance, ε is the molar absorptivity, C the 
concentration and l is the path length. Since different materials absorb at different 
frequencies and exhibit different intensity of absorption, one is interested in 
determining the amount of various substances in a mixture based on measuring the 
relative amount of radiant energy absorbed at each frequency. Consequently, 
spectra measured as transmittance (T) is converted to absorbance (A) as follows: 

A = log (1/T) or A = log (T0/T)  

T0 is 100% transmission. For practical reasons, the diffuse reflectance (R) is 
converted to absorbance according to the formula:  

A = log (1/R)  

The intuitive argument for this relationship is that the diffuse reflectance is one 
in which the incident radiation is transmitted into the inner tissue of the samples 
and hence analogous to transmittance; except that the detector is repositioned to 
capture the diffuse reflectance (Birth and Hecht 1987). However, there are other 
more theoretical approaches to relate absorbance with concentration in diffuse 
reflectance spectrometry (see Osborne et al. 1993, Olinger et al. 2001). For an 
extensive coverage of the theory and principles of NIR technology see Murray and 
Williams (1987), Osborne et al. (1993), Ciurczak (2001) and Olinger et al. (2001) 
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Instrumentation 

A host of NIR instrumentations is commercially available; ranging from laboratory 
and on-line systems to portable field instruments. A list of NIR spectrometer 
manufacturers and the type of commercially available instrumentation together 
with their typical characteristics as well as basic instrument specifications can be 
found in Workman and Burns (2001). The basic instrumental configuration in all 
NIR spectrometers includes: Radiation source, wavelength selector/ modulator, 
sample presentation, detector and output relay (Figure 5). Tungsten-halogen lamps 
with quartz envelopes are the major energy sources for NIR instruments. These 
lamps provide high-energy output (10 – 200 W) over the 360-3000 nm region and 
last longer due to a bathing effect of the halide inside the lamp. Light emitting 
diodes (LED), laser diodes and lasers are non-thermal or ‘cold sources’, in which 
most of the energy consumed appears as emitted radiation over a narrow range of 
wavelengths. As the emitting wavelengths are predetermined, instruments based on 
such devices are usually dedicated for specific analysis, such as determination of 
moisture in samples.  

Radiation emitted from a source can be spectrally separated into individual 
wavelengths using different optical principles; namely, dispersive, interferometric 
and non-thermal (Osborne et al. 1993). A dispersive system is one where 
wavelengths of light are separated spatially and prisms were the classic dispersing 
elements in spectrometers for many years. However, prism is an inefficient 
arrangement with low and non-linear dispersion, and a large prism is often needed 
to achieve better performance. As a result, most scanning spectrometers used in 
laboratories and in industries today employ diffraction gratings and detector arrays 
for wavelength selection, which enable the detection of full spectrum 
simultaneously.  

Another dispersive device incorporated into NIR spectrometers in recent years 
is Acousto-optically tuneable filters (AOTF). AOTF choose wavelengths by using 
radio-frequency signals to change the refractive index of a crystal made of TeO2 
(tellurium dioxide) in such a way that it transmits light of a given wavelength 
region or scans the whole spectral range. Since the AOTF is a monochromator with 
no moving parts (McClure 1994), it produces more reliable and reproducible 
wavelength scans than other devices, and is best suited for rugged on-line process 
environments. The second major optical principle used for wavelength selection in 
NIR spectroscopy is interferometry. This method, referred to as non-dispersive, 
does not cause angular dispersion, but instead uses filter, often known as 
interferometer, for wavelength differentiation. Among family of interferometric 
systems is the Michelson interferometer; the Fabry-Perot interferometer and 
Fourier transform NIR instruments. For more detail about interferometric systems 
refer to Osborne et al. (1993) and McClure (1994). The last category, the non-
thermal system, involves the use of light emitting diodes, laser diodes or laser that 
can emit light in a narrow range of wavelengths. Laser diodes and lasers emit over 
an extremely narrow range and no pre-filtering of the radiation is required. Light 
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emitting diodes, however, emit over a relatively broader wavelength range, and 
interference filter is needed to narrow the radiation to the required bandwidth.  

 

Figure 5. Basic components of NIR instrumentation operating in transmittance and 
reflectance modes. 

Samples can be presented in a variety of forms for scanning by NIR 
spectrometers. Solid samples like seeds can be directly scanned using fibre optic 
probes. It can also be measured using standard sample holders that can be supplied 
by the manufacturer together with instrument, as in the case of Infratec 1225 Grain 
Analyzer. Ground samples can be scanned using standard sample cup made of 
quartz with glass windows. With minor modification to narrow down the window 
size, such a cup was used for measuring spectra from single seeds in this thesis. 

Radiation transmitted through or reflected from a sample is detected using 
devices comprising of semiconductors. Lead sulphide (PbS) is the most widely 
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used detector in the NIR over the range of 1100-2500 nm while silicon sensors are 
used for the 360-1000 nm range (McClure 1994). In multi-channel system covering 
visible-NIR region (400-2500 nm), PbS detectors sandwiched with silicon 
photodiodes are often used to acquire spectral information over many wavelengths 
simultaneously. Another less common detector is a device composed of Indium 
gallium arsenide (InGaAs) that operates over the range of 1000-1800 nm with 
slightly better sensitivity than PbS (Osborne et al. 1993). Finally, computers are 
becoming an indispensable part of NIR instrumentation for capturing spectral data 
as well as for process monitoring and analysis of spectral data.  

Multivariate analysis  

NIR spectroscopic data are often recorded at several hundred-wavelength channels, 
i.e. multidimensional. They are also highly collinear, meaning that some of the 
variables can be written approximately as linear functions of other variables. On 
top of this, it is not always possible to use absorbance at a single wavelength to 
predict the concentration of one of the absorbers due to the overlapping nature of 
spectral peaks (the so called selectivity problem). Spectral interferences from other 
unidentified constituents in the sample and/or instrumental drifts, measurement 
errors etc also require special attention in order to get a good result. A number of 
multivariate projection methods (also called data compression methods) have been 
developed to extract the valuable information from the spectra (see Martens and 
Næs 1989). In essence, the projection methods will try to find a low-dimensional 
hyper-plane that represents the multidimensional data as well as possible and make 
interpretation of results easier. In this thesis, two related projection methods are 
employed: Principal Component Analysis (PCA) and Partial Least Squares 
Projection to Latent Structures (PLS).  

Principal Component Analysis  

Principal component analysis is a bilinear projection method that decomposes the 
original data matrix, X into “ structure” and “noise” with few dimensional hyper-
plane based on maximum variance directions (Esbensen 2000). Here the data 
matrix, X, denotes N samples or objects (e.g. individual seeds) upon which K 
variables (absorbance values at K wavelength channels) have been measured. The 
general PCA model can be expressed as: 

X = TP' + E = ∑tap'a + E 
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T and P' denote a matrix of the scores and loadings, respectively after A 
dimensions while E represents the part of X left unexplained by the model. Scores, 
T, are coordinates of the objects projected down onto the hyper-plane and 
loadings, P, are directions of each dimension in the hyper-plane (i.e., the cosine of 
the angle between the principal component and each of the original coordinate 
axes) and the residual is the distance between each point in K-space and its point 

on the plane (Figure 6). The scores, T, and the loadings, P, are derived by the 
NIPALS (Non-linear Iterative Partial Least Squares) algorithm that is described 
elsewhere (Martens and Næs 1989, Esbensen 2000). The computed principal 
components are always orthogonal to each other and they represent successively 
smaller and smaller variances. The maximum number of principal components that 
can be derived from an X-matrix equals to either N-1 or K, depending on which is 
the smaller. As higher order PCs usually describes smaller variation, one is 
interested in fewer significant components that can be determined by “eigenvalue” 
criterion or cross-validation. A component is considered significant if its 
normalized eigenvalue is larger than 2 or if the predictive power, Q2, is larger than 
a significant limit. 

Figure 6. Geometric representation of PCA. A) Data plotted as a swarm of points in the 
variable space. Note that the open ring is the mean value. B) Mean centring of the data 
swarm that brings the original variable (also the PCs latter) into a common origin. C) 
The first PC, the maximum variance direction, which approximate the original data 
points as well as possible. The second PC lies along the second maximum variance 
direction and orthogonal to the first PC. The distance of each object, i, projected onto 
each PC to the centre is the score. D) The cosine of the angle between the PC and the 
original variable is the loading and the projected distance of each object to the PC is the 
residual. 
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Results from PCA are often presented as 2D (also 3D) plots of any pair of score 
and loading vectors. The most commonly used plot in multivariate data analysis is 
the score vector for PC1 versus the score vector for PC2. In fact, these are the two 
directions along which the swarm of data points displays the largest variation. The 
score plot (also referred to as map of samples) provides a useful guidance to 
identify outliers, to examine trends, clusters, and to explore similarity among 
objects. The loading plot (also called map of variables) gives us information about 
the relationship between the original X-variables and the principal components; 
i.e., how much each variable contributes to the explanation of each PC. In addition, 
loading plots can be used to study how the original variables covary. Variables 
situated close together along a PC (having similar loadings) covary positively 
while those lying on opposite sides along a single PC are negatively correlated to 
each other. 

PCA can also be used for more supervised classification purpose, known as 
Soft Independent Modelling of Class Analogy, SIMCA. SIMCA is a supervised 
multivariate classification approach based on a disjoint principal component 
analysis (PCA) for each class of similar observations (Wold 1976). A separate 
PCA model is computed for each class of samples. Based on the residuals of each 
sample from the PCA model, the standard deviation for each class (also called 
distance to the class model) is determined. This, in turn, is used to calculate the 
confidence interval or the critical distance to the model with an approximate F-test 
with degrees of freedom of the observation and the model at the 5% probability 
level. The unknown samples are then projected onto the existing PCA models and 
their residual standard deviations are compared to the confidence interval of each 
class. Finally, the unknown samples can be classified as: (1) belonging to a class, 
(2) belonging to several classes or (3) not belonging to any of the classes. A 
powerful graphical presentation of results from SIMCA analysis is to use the so 
called Coomans plot where class distances for two classes are plotted against each 
other in a scatter plot (see VII).  

Partial Least Squares Projection to Latent Structures 

PLS is the most widely used calibration technique in NIR spectroscopy owing to its 
capability to handle collinearity problems, its “built in” facility for outlier 
detection, the possibility to analyse multiple responses, the ease for visual 
interpretation of the data and its ability to cope with moderate missing data. Apart 
from quantitative analysis, PLS can be used for pattern recognition, the so-called 
Partial Least Squares-discriminant analysis, PLS-DA (Sjöström et al. 1986).  

PLS analysis can be viewed as the regression extension of PCA. It establishes a 
relationship between the predictor block, X-matrix, and the response, Y, via an 
inner relation of their scores. The X-scores, T, describe the object variation in the 
predictor block (the spectral matrix in this case) and the corresponding variation in 
the response block by the Y-scores, U. What PLS does is to maximize the 
covariance between these inner variables (also called latent structures) T and U. A 
weight vector, w*, is calculated for each PLS component that tells us the 
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contribution of each X-variable to the explanation of Y in that particular 
component. Thus, the matrix of weights, W*, contains the structure in X that 
maximizes the covariance between T and U over all model dimensions. Finally, the 
corresponding matrix of weights for the Y-block, C, and the matrix of X-loadings, 
P, are calculated to perform the decomposition of X and Y as follows: 

X = TP' + E ………………. (1) 

Y = UC' + F  = TC' + G …………….. (2)  

E, F and G are residual matrices for X, Y and the inner relation, respectively left 
unexplained by the model.  

A matrix of regression coefficients, B, can then be computed according to the 
formula: 

B = W*C' ……………… (3) 

From the above equations, the PLS model can be expressed as  

Y = XW*C' = XB + F …………. (4)    

Each new sample is predicted either using Eq. 4 or by computing the scores for the 
new samples and multiplying with the weight from the calibration model (Eq. 1 and 
2).  

The PLS parameters are derived by NIPALS algorithm for each component at a 
time. Given that the input variables, X and y are scaled and/or mean-centred, for a 
single y vector the following equations are used: 

1)  Estimate the loading weight, w as 

 w = X’y ⁄ (y’y)  

scale the w vector to length 1 using the factor, (y’XX’y)-0.5 

2)  Estimate the score t as 

 t = Xw 

3)  Estimate the spectral loading p as 

 p = X’t ⁄ (t’t) 

4)  Estimate the chemical loading c as  

 c = y’t ⁄ (t’t) 
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5) Create new X and y residuals, E and f, as  

 E = X – tp’    

 f = y – tc’  

For extracting the next component, use X = E and y = f and return to step 1. As a 
summary, the matrix relationship in PLS is shown in Figure 7. 

PLS offers many parameters and diagnostics for model interpretation, and 
evaluation of model performance and relevance. The scores, T and U, contain 
information about the observations and their similarities or dissimilarities in 
relation to the problem at hand. PLS score plots of the t/t-type are used to uncover 
outliers in the descriptor matrix, X-space, while the u/u-type reveals deviation of 
observation in the responses matrix, Y-space. In addition, when PLS is used for 
classification/discrimination purposes, the t/t-type score plot for the descriptor 
matrix, X, is very useful to get an overview of the class discriminating ability of the 
computed PLS model. Finally, the t/u-type score plots are valuable tools to 
examine deviations from the dominating X/Y correlation structure as well as to 
identify departures from linearity between X and Y.  A J-shaped curvature 
indicates that the response variables need transformation, such as logarithmic, and 
a curvature with inverse arching warrants transformation of X.  

 

Figure 7. Summary of matrix relationship in PLS modelling. The vector 1 for X and Y 
denotes the variable averages, 1* X ′ and 1*Y ′ , from the mean centering. The PLS 
scores are stored in T and U, the spectral loadings and weights (X) in P’ and W’, 
respectively, and the chemical loadings (Y) in C’. The variations in the data that were left 
unexplained by the PLS model form the E and F residual matrices.  



 22 

Similarly, the variable related information is interpreted in several ways. A plot 
of X-weights shows how the original X-variables are linearly combined to form the 
score vectors, ta. Using X-weights, it is possible to understand which original 
variables are summarized by the new latent variable; i.e. X-variables that are highly 
correlated with Y-variables get higher weights. In NIR spectroscopy, line plot of 
X-weights is often used, as it allows analysis of which absorption peaks are 
modelled by each component. Interpreting a PLS model consisting of many 
components and covering a multitude of responses can be a challenging task. In 
such cases, a plot of PLS coefficients makes model interpretation less laborious 
and time consuming because they are summarized into one vector. Its drawback is 
that the information regarding the correlation structure among responses is lost 
when multiple responses are modelled simultaneously. To avert this problem, 
variable influence on projection (VIP) can be used. VIP is a weighted sum of 
squares of the PLS weights, w*, taking into account the explained Y-variance of 
each model dimension. For a given model and problem, there will be one VIP-
vector summarizing all components and Y-variables. Further information about the 
calculation of VIP parameters can be found in Eriksson et al. (1999). As a rule of 
thumb, predictors with a large VIP (> 1.0) influence the model substantially, and a 
cut-off around 0.7 to 0.8 is suggested to discriminate between relevant and 
irrelevant predictors.    

The performance and relevance of PLS models are further evaluated by 
computing different statistics. The quantitative measure of the goodness of fit is 
given by the parameter R2X and R2Y, the explained variation for X and Y, 
respectively that can be computed as: 

R2X = 1 – SSX [A] ⁄ SSX [0] 

R2Y = 1 – SSY [A] ⁄ SSY [0]  

SSX [A] is the sum of squares of the X-residuals, (∑e2
ik), SSY [A] is the sum of 

squares of the Y-residual, (∑f2
im), after extracting A components; SSX [0] and SSY 

[0] are total sums of squares for X and Y, respectively.  

The prediction ability of the computed PLS model; the goodness of prediction, 
is also quantified by a parameter called the predicted variation, Q2, using either 
cross validation or prediction sets. In all studies presented in the thesis, a seven-
segment cross validation and prediction sets were employed to evaluate the 
prediction ability of the computed PLS models.  The fraction of the total variation 
of the Y’s that can be predicted by a component, Q2, is computed as: 

Q2 = 1 – PRESS⁄SS  

PRESS is the prediction error sum of square (∑ (Y - Ŷ )2 and SS is the residual 
sum of squares of the previous dimension. This parameter is essential to determine 
the significance of each model dimension. According to Rule 1, if Q2 for the whole 
data set due to cross validation is larger than a significant limit, the extracted 
dimension is considered significant. Q2 can also be computed for each Y-variable, 
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and if it is larger than a significant limit, the tested dimension is significant 
according to Rule 2. The cumulative Q2 for all extracted components can be 
computed as: 

Q2cum = (1.0 – ∏(PRESS⁄SS)a) 

∏(PRESS⁄SS)a is the product of PRESS⁄SS for each individual component, a. 
Larger cumulative Q2 value for a given response indicates that the model for that 
response is good. As a rule of thumb, a model with Q2 > 0.5 is considered as good, 
Q2 > 0.75 as very good and Q2 > 0.9 as excellent. The ultimate objective of 
developing a calibration model is to make predictions in the future. In all the 
studies in the thesis, the computed calibration models were applied to predict new 
samples in the prediction sets that were kept aside during model building.  The 
modelling error and the prediction ability are further evaluated by computing the 
root mean square error of calibration (RMSEC) and the root mean square error of 
prediction (RMSEP), respectively; and can be computed as follows: 

 )1(
)ˆ( 2

−−
−∑= AN

yyRMSEC  N
yyRMSEP

2)ˆ( −∑=  

ŷ is the predicted value; y is the actual value; N is the number of samples in the 
validation sets (both for cross validation and test set) and A is the model 
dimension.  

Spectral pretreaments 

NIR spectra are not usually amenable for direct analysis due to unwanted 
systematic variation that has no correlation with the response variable. Light 
scattering, base line shift, instrumental drift, and path length differences are among 
the common sources of systematic noise in the spectra, which should be removed 
from the raw spectral signals. Spectral pretreaments, also called spectral filters, are 
mathematic functions for handling such interferences in order to avoid its 
dominance over the chemical signal. The commonest data pretreatment techniques 
in NIR spectroscopy are derivatives (Savitzky and Golay 1964), multiplicative 
signal correction (Geladi et al. 1985), standard normal variate transformation 
(Barnes et al. 1989) and orthogonal signal correction (Wold et al. 1998). In the 
thesis, they were applied, as deem necessary, to enhance the spectral features, and 
thereby developing robust models. Other approaches to handle systematic spectral 
variations are described in Næs et al. (2002). 

Derivatives are intuitive ways of dealing with systematic variations in the 
spectra, and the first and second derivatives are often used to reduce additive 
baseline and scatter effects, respectively. The first derivative is the slope at each 
point of the original spectrum and calculated by taking differences between 
adjacent points and dividing by the wavelength gap, although the latter is not 
usually done as it only affects the scaling of the derivatives. Thus the first 
derivative at wavelength w could be computed as: 
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x1der =  xw – xw-1 

xw is absorbance at wavelength w in the sequence. The second derivative is the 
slope of the first derivative, and more similar to the original spectra; i.e., having 
peaks in nearly the same locations but inverted in direction.  The second derivative 
is computed as the difference of two adjacent first derivatives, yielding the second 
derivative formula:   

x2der = xw-1– 2xw + xw+1 

The major drawback of this simple approach is that derivatives reduce signals 
and amplify noise. To circumvent this problem, smoothing of the spectra prior to 
applying derivatives is essential. Savitzky and Golay (1964) described a more 
stringent approach based on fitting low-order polynomials.  

Multiplicative signal correction (MSC) works primarily for cases where the 
scatter effect is the dominating source of variability, which is very typical in many 
applications of diffuse NIR reflectance spectroscopy. Assuming that each sample 
spectrum has an offset and a slope due to interference effects, one can correct for 
this if the variability is systematic; i.e., constant over the spectral range. By plotting 
each spectrum, xi, against the reference spectrum, the offset (ai) and the slope (bi) 
are calculated using least squares of the equation: 

xi = ai +  x bi 

Finally, the sample spectrum is corrected as follows: 

xi,corr = (xi – ai) ⁄ bi  

The corrected spectra give a better prediction of the response not only due to 
removal of irrelevant information but also due to linearization of the relationship 
between the predictor and the response. An extension of the MSC approach is the 
piece-wise multiplicative scatter correction (PMSC), presented by Isaksson and 
Kowalski (1993). In essence, PMSC corrects non-linear additive and multiplicative 
scatter effects by fitting a linear regression in a local wavelength region. The 
assumption is that the scatter effects vary over the spectral range, and hence the 
scatter correction should be performed piece-wise using a moving window along 
the wavelength range. 

The standard normal variate (SNV) transformation removes the multiplicative 
effect of scatter and particle size on an individual object basis (Barnes et al. 1989). 
It has an effect very much similar to MSC; the only difference is that SNV 
standardizes each spectrum using only data from that particular spectrum. The 
SNV transformation is performed according to the following general formula: 

x*ik = (xik – mi) / Si 
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x*ik = the transformed absorbance value for the ith object at the kth wavelength, xik 
= the original absorbance value at the kth wavelength for the ith sample, mi = the 
mean of the K spectral measurements for sample i, Si is the standard deviation of 
the same K measurements and K is the number of X-variables (wavelength 
channels). The actual pretreatment can be perceived as mean centring and scaling 
to unit variance in the object direction. 

Orthogonal signal correction (OSC) is unique from the spectral pretreatments 
discussed above in one major aspect; it takes the response variable into account in 
its algorithm. OSC removes more general types of interferences in the spectra by 
removing components, latent variables, orthogonal to the response variable 
calibrated against. It is based on partial least squares regression, in which the 
weights in OSC are calculated to minimizing the covariance between the spectral 
data, X, and the response, y. Components orthogonal to y containing unwanted 
systematic variation are then subtracted from the original spectral data, X, to 
produce a filtered descriptor matrix.  

The OSC algorithm starts with the calculation of the first principal component 
for the spectral data according to NIPALS. The first score vector, t, is then 
orthogonalized against Y as (1-Y(Y′Y)-1Y′)t to produce the orthogonal score 
vector, t*. The PLS weights, w, are computed to make Xw = t*, thereby 
minimizing the covariance between X and Y. The score vector, t*, is then updated 
and give another score vector, t**, which is then orthogonalized to Y, and the 
iteration proceeds until t** converges. The spectral data, X, can then be expressed 
as a product of the updated-orthogonalized score vector, t**, and the 
corresponding loading vector, p**, and a residual, E. The residual, E, constitutes 
the filtered data, Xosc, after removal of the first component orthogonal to Y. 

E = X – t**p** 

Xosc = E  

With NIR diffuse reflectance spectra, two OSC- components are sometimes 
warranted (Wold et al. 1998). The second component can be removed by repeating 
the same procedure described above using the residual, E as X.  

Prior to prediction, new samples in the prediction sets must be treated in the 
same way. To do this, the score vector, ttest, is calculated using the weights derived 
from the calibration set and the new spectra, Xtest; i.e., ttest = Xtestw. The residual, 
Etest, constituting the filtered spectra can then be obtained by subtracting the 
spectral data, Xtest, from the product of the score vector, ttest, and the loading vector 
from the calibration, p**. 

Etest = Xtest – ttestp** 

Analogously, if two components were removed from the calibration set, the 
same should be done in the test set. The residual from the first component is used 
as X, the weights from the second orthogonal component are used to calculate the 
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score vector for the second component, finally subtracting the second loading from 
the calibration multiplied by the computed score vector for the second component 
from the residual of the first component will yield the filtered descriptor matrix 
after two components orthogonal to Y. Basically, the OSC-treatment was 
developed to generate a robust prediction model for quantitative analyses through 
removal of interferences that have no relevance for the analyte at hand. However, 
in qualitative analysis where no true response variables exist, discrete values can be 
assigned to each class and used to perform OSC filtering (Wold et al. 1998). In this 
thesis, this is demonstrated in studies I-III and V. 

Objectives  

The principal objective of the research presented in this thesis is to evaluate the 
potential of NIR spectroscopy combined with multivariate analysis as a rapid and 
non-destructive method for characterizing forest tree seed quality. The study 
covered the genetic, technical and physiological aspects of seed quality of both 
temperate and tropical forest trees. The specific objectives were:  

1) Identification of seed source and parents of Pinus sylvestris (Paper-I),  

2) Detection of internal insect infestation in Cordia africana   (Paper-II) 

3) Examining whether detection of infested seeds of Picea abies is sensitive to 
seed origin and year of collection (Paper-III), 

4) Separation of sound and insect-damaged seeds of Albizia schimperiana 
(Paper-IV), 

5) Discrimination of viable and empty seeds of Pinus patula (Paper-V),  

6) Simultaneously detection of filled, empty and insect-infested seeds of three 
Larix species (Paper-VI) and  

7) Rapid analysis of seed vigour of Pinus patula (Paper-VII).  

In all studies, the underlying hypothesis was that seeds in a certain quality class 
would have a unique spectral signature that can be utilized to build a discriminant 
multivariate model. 

Materials and Methods 

Tree species and sample preparation 

Seeds of both temperate and tropical species were used to evaluate the potential of 
NIR spectroscopy as a rapid and non-destructive method to characterize various 
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quality attributes. The temperate species were Pinus sylvestris L., Picea abies (L.) 
Karst, Larix decidua Mill., Larix gmelinii Rupr., and Larix sukaczewii Dyl., which 
are highly esteemed for their timber value, adaptability to the harsh cold 
environment as well as a variety of environmental and recreational values (e.g. 
Holtmeier 1995, Martinsson 1995, Stener 1995, Schmidt and Shearer 1995, 
Polubojarinov et al. 2000). The tropical species include Cordia africana Lam., 
Albizia schimperiana Oliv., and Pinus patula Schiede and Deppe that are 
multipurpose and valuable timber species. The taxonomy, description, habitat 
conditions, geographic distributions and uses of these tropical species are reported 
elsewhere (Hunde and Thulin 1989, Teketay 1991, Valera and Kageyama 1991, 
Friis 1992, Bekele et al. 1993, Fichtl and Adi 1994). 

In the study made to identify seed sources with visible and near infrared 
spectroscopy (I), seed samples were drawn from a single family (a cross of clones 
AC1005 and BD1178) growing in three localities in Sweden: Sävar (north, 
63º54’N and 20º33’E), Röskär (central, 59º25’N and 18º12’E) and Degeberga 
(south, 55º47’N and 14º04’E) and harvested in 1982-83. For identifying parents 
(I), seeds from four mothers (clone no. AC1005, AC1014, BD1032 and BD1178) 
independently crossed with the same father (clone no. Y3020) and seeds from the 
same mother (clone no. AC1005) but separately crossed with four different fathers 
(clone no. AC1014, BD1032, BD1178 and Y3020) were used. To avoid the 
confounding effects of year of collection and environment, seeds from different 
fathers were drawn from those families grown in southern Sweden and harvested in 
1982 while seeds from different mothers were sampled from those harvested in 
1983 from a seed orchard in Sävar. 

For the discrimination of filled/viable, empty and insect-infested seeds with 
NIRS (II, III, V and VI), seed samples from each species were initially sorted 
using X-radiography (43805 N X-ray system Faxitron Series Hewlett Packard) 
according to the international seed testing rule (International Seed Testing 
Association 2003). Seeds with visible embryonic axis and megagametophyte were 
recognized as filled/viable seeds while empty seeds were characterized by the 
absence of megagametophyte and embryo. Insect-infested seeds were those seeds 
with visible larvae enclosed within the seeds. To separate sound seeds from insect-
damaged seeds with NIRS (IV), damaged seeds were initially sorted manually by 
inspecting the visible exit holes made by the emerging adults and then both 
fractions were soaked in 40 ml of de-ionised water for one, three, six, nine and 
twelve hours at room temperature. This enabled us to create moisture gradient 
between insect-damaged and sound seeds as we know a priori that sound seeds of 
Albizia and many other legumes do not absorb water because of the hard and 
impermeable seed coats (e.g. Teketay 1996, Teketay and Tigabu 1996, Tigabu and 
Odén 2001). They were surface dried on a blotting paper for 10 minutes before 
scanning by NIR spectrometer.  

For the analysis of vigour using near infrared transmittance spectroscopy (VII), 
vigour classes were formed by exposing seeds to an accelerated ageing treatment at 
41°C and ca. 100% relative humidity for three, seven or nine days while untreated 
seeds served as high vigour class. The seeds were spread in a single layer on the 
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surface of bronze wire mesh seed holder above 250 ml (1 cm deep) de-ionised 
water in plastic boxes (22.5x19x7 cm). The boxes were then tightly covered with 
lids and then placed in an ageing chamber. At each ageing time, 100 samples were 
drawn for NIR analysis after thoroughly rinsing with de-ionised water to remove 
fungal outgrowth and surface drying for 10 minutes. The accelerated ageing 
regimes adapted in this study reduced the overall germination capacity and mean 
germination time to 75% and 12.3 days after three days of ageing, to 55% and 13.6 
days after seven days of ageing and to 13% and 19.1 days after nine days of ageing 
compared to 99% and 8.9 days, respectively for vigorous seeds. 

Measurement of NIR spectra 

NIR reflectance spectra, expressed in the form of log (1/R), were collected from 
single seeds with NIRSystems Model 6500 spectrometer (FOSS NIRSystems Inc., 
Silver Spring, Maryland, U.S.A.). NIR spectra were recorded on individual seeds 
using a fibre optic probe (IV and V) or a spinning sample cup (I, II and III). In the 
former case, individual seed was placed on a black metallic bar with an oval-
shaped depression (ca. 2 x 1 mm), fixed on a stature and scanned by tightly 
screwing the fibre optic probe against each seed.  In the latter case, individual 
seeds were placed in a modified spinning sample cup (diameter = 3.8 cm and depth 
= 0.9 cm) that allowed collection of radiation reflected from the entire surface of 
the seed. To narrow the sample cup window, a micro sample insert, black metallic 
ring with an oval slit in the middle (diameter = 0.7 cm and depth = 0.15 cm) was 
inserted into the spinning sample cup. Another micro sample insert without any slit 
was placed on top of each seed in order to avoid stray light reaching the cardboard 
cover that was used as a support. Since the background metallic bar had a 
negligible reflectance, such an arrangement enabled us to collect reflectance from 
individual seeds only. The instrument measures diffuse reflectance in the range 400 
nm to 2500 nm at 2 nm resolutions. Thirty-two monochromatic scans were 
averaged from each seed and reference measurements were taken on a ceramic 
plate after every 10 scans. 

NIR transmittance spectra, expressed in the form of log (1/T), were collected 
from single seeds with a 1225 Infratec analyser (FOSS Tecator, Sweden) from 850 
to 1048 nm at 2 nm resolutions. Individual seeds were placed in a single seed cell 
at 20 fixed positions. Each seed sample was scanned 32 times and the average of 
32 successive scans from each seed was recorded. Prior to scanning of every 
sample set (20 seeds at a time), reference measurement was taken using the 
standard built-in reference of the instrument. 

Data analysis 

To remove unwanted systematic noise in the spectra, the reflectance spectroscopy 
data sets (log 1/R) were treated using multiplicative signal correction (MSC), 
orthogonal signal correction (OSC) and/or first derivatives. Since no true y-values 
existed in our data set, discrete values were assigned for each class of observations. 
Depending on the nature of the data, one or two OSC components were extracted. 
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The transmittance spectroscopy data sets (log 1/T) were pre-treated with standard 
normal variate transformation (SNV) to remove the multiplicative effect of scatter 
and particle size on an individual object basis.  

Prior to building the calibration models, 25-30% of the observations were 
excluded to make up the prediction sets. Initially, principal component analysis 
(PCA) was performed on calibration sets as a basis for outlier detection and to get 
an overview of the data. Subsequently, calibration models were derived with partial 
least squares regression using the digitised NIR spectra as descriptor matrix and a 
vector of artificial discrete values as regressand. Seed sources and parents were 
assigned with y-values from 1 to 3 and from 1 to 4 (BD1032, AC1014, BD1178 
and AC1005 mothers; and fathers BD1032, Y3020, AC1014, and BD1178 were 
assigned with values 1 to 4 respectively). A value of 1 was assigned for filled, 
viable, sound, and vigorous seeds while –1 was assigned for empty, internally 
infested, insect-damaged, and aged seeds in each of the studies.  

The number of significant PLS factors to build the model was determined by a 
seven-segment cross validation. A factor was considered significant if the ratio of 
the prediction error sum of squares (PRESS) to the residual sum of squares of the 
previous dimension (SS) was statistically smaller than 1.0, or if the predictive 
power (Q2 = 1.0 – PRESS/SS) was larger than a significant limit. For a more 
comprehensive description of theories and applications of PLS regression in 
multivariate calibration and classification, see Martens and Næs (1989), Eriksson 
et al. (1999), Wold et al. (2001) and Næs et al. (2002).  

Finally, the computed models were applied to predict new samples in the 
prediction sets. Prior to prediction, the new samples were automatically pre-treated 
with SNV, MSC and OSC by the software system (Simca-P, version 8, Copyright: 
Umetrics AB, Sweden) while the first derivatives of the spectra from the test 
samples were computed using Unscrambler 7.5 (Copyright: CAMO ASA, 
Norway). For all tests, the decision threshold was set either at 0.0 or ± 0.5 
depending on the study. The classification accuracy (also referred to as 
classification rate and recognition rate in the thesis) for each model was computed 
as the ratio of number of samples in a given class predicted correctly to the total 
number in the prediction sets. All model calculations were made on mean-centred 
data sets. 

In vigour analysis (VII), the SIMCA approach was also applied to classify 
vigorous and aged seeds. A separate PCA model was computed for vigorous and 
aged seeds. Based on the residuals of each samples from the PCA model, the 
standard deviation for each class was determined. This, in turn, was used to 
calculate the confidence interval or the critical distance to the model with an 
approximate F–test with degrees of freedom of the observation and the model at 
the 5% probability. The number of significant principal components to build the 
PC–models was determined by the ‘eigenvalue’ limit (EV) criterion as suggested 
by Eriksson et al. (1999) for large data tables and a component was considered 
significant if its normalized eigenvalue was larger than 2. PCs were also significant 
according to cross validation. 
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The unknown samples in the prediction set were then projected onto the 
existing PCA models and their residual standard deviations were compared to the 
critical distance of each class. Samples in the test set with a probability of class 
membership greater than 5% were classified as members of a given class, 
otherwise non-members. The classification results were summarized and presented 
in so called Cooman’s plots where class distances for vigorous and aged seeds 
were plotted against each other in a scatter plot.  

Results and discussion 

Identification of seed source and parents 

Visible (VIS) and near infrared (NIR) spectroscopy was employed in order to 
identify seed sources, mothers and fathers of Pinus sylvestris based on single seed 
spectra. Calibration models were computed using the entire range of VIS+NIR, the 
VIS and NIR regions as well as using raw, MSC- and OSC-treated data sets. The 
results showed that both the VIS and NIR spectra contained much information 
(R2X ranging from 0.72 to 0.99), which in turn described the variation among seed 
sources considerably (R2Y ranging from 0.75 to 0.99). The overall predictive 
power (Q2 in the range from 0.72 to 0.99) according to cross validation was also 
high for all models. However, an OSC-treatment of the spectra reduced 
dimensional complexity (A = 1) of the computed models compared to the raw 
spectra and MSC-treated data set that utilized from three to nine components. For 
new samples in the prediction set, all calibration models (raw, MSC and OSC) in 
the VIS+NIR region successfully detected sources of Scots pine seeds with 100% 
accuracy, except the calibration model developed on raw data set where one 
sample was found at the limit for the northern and central seed sources. A similar 
result was found in the VIS region; but in the NIR region the MSC model resulted 
in higher average classification accuracy (99%) compared with the raw (84%) and 
OSC (89%) models.  

For the identification of parents, calibration models derived from the VIS+NIR 
spectral region described more than 75.6% of the spectral variation and more than 
93% of the between-mothers variation with an excellent prediction ability for the 
calibration set according to cross validation. The statistical summary for models 
developed in the VIS and NIR regions separately also showed an excellent overall 
fit of the models to the data. Between-fathers variability was better explained using 
the OSC-model derived from the VIS+NIR (R2Y = 0.94) and visible spectra (R2Y= 
0.92) while the NIR spectra alone poorly described the between-fathers variability 
(R2Y = 0.18 for both raw and OSC models), although the MSC-model was 
relatively good (R2Y =0.53 and Q2 =0.5). For identification of mothers, the highest 
average classification accuracy for the test samples was 93% using OSC-treated 
data sets in the VIS+NIR spectra. The OSC-model also resulted in better 
classification accuracy in the VIS region. The average classification accuracy was 
nearly similar among the three models in the NIR region. For identification of 
fathers, the highest average classification accuracy was achieved with MSC models 
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derived from full (71%) or visible range (70%) and the OSC model developed on 
visible spectra (70%). 

Apparently, the visible region was effective in identifying seed sources and 
parents of Scots pine. This can be attributed to varying colour types often 
encountered in Scots pine seeds: Light, mixed and dark with varying proportion 
within- and between-provenances (Tillman-Sutela and Kauppi 1995b). These 
authors also claimed that seeds from the northernmost provenance were 
predominantly dark, observed little absorption in the visible range and minor 
differences in the quantitative colour characteristics of the seed coat extract 
between the light and dark seeds of various provenances. In our case, seeds from 
central Sweden were black and glossy while those from southern and northern 
Sweden were mottled and light brown (or grey), respectively. This might be due to 
the fact that the genotypes were not mixed up in our study unlike the seed samples 
in the Tillman-Sutela and Kauppi (1995b) study that were collected from forest 
stands and orchard grafts with ca. 45% pollen contamination. In addition, it should 
be noted that NIR spectroscopy is highly sensitive and sufficiently detects subtle 
differences while multivariate analysis is powerful to extract such information from 
the spectra unlike the univariate analysis (Martens and Næs 1989). Our finding 
accords with previous studies that have demonstrated the efficacy of reflectance 
spectra in the visible region for classify wheat kernels according to their colour 
(Delwiche and Massie 1996, Dowell 1997, 1998, Wang et al. 1999).  

In the NIR region, absorption maxima were found at 900, 928, 1300, 1726, 
1960, 2126 and 2310 nm that accounted for identifying seed sources  (Figure 8A) 
while the peak at 1930 nm had the largest influence in both PLS factors for 
identifying mothers (Figure 8B). Other absorption maxima contributing to the 
identification of mothers appeared at 1126, 1204, 1440, 1506, 1520, 1724, 2190 
and 2308 nm. The absorption peaks at 900 and 928 nm are characterised by the C 
– H stretching third overtones and the 1100-1300 nm wavelength region 
corresponds to the second overtone C – H stretching modes of vibration where 
several compounds show characteristic absorption; notably molecules with methyl 
and methylene structures and oil (Osborne et al. 1993, Shenk et al. 2001). Several 
studies have shown that the absorption bands in the 1700-1800 nm wavelength 
regions strongly correlate with fatty acids (tripalmitin, triolein and trilinolein) in 
seeds of several oil crops (e.g. Cho and Iwamoto 1989, Sato et al. 1991, 1995, 
1998, Velasco et al. 1996, 1997, Daun and Williams 1997, Hourant et al. 2000). 
The longer wavelength region is characterized by N – H stretching vibration as 
well as combinations of C – H stretch and C – H deformation (Osborne et al. 1993, 
Shenk et al. 2001).  

Evidently, the success of identifying seed source in the NIR region could be 
attributed to divergence in lipids. This is further corroborated by an earlier study 
that has documented an increase in total lipid content of Scots pine seeds with 
latitude (Tillman-Sutela et al. 1995). Furthermore, a wide difference between dark 
and light seed coats in the relative content of saturated and unsaturated fatty acids 
has been reported (Grzywacz and Rosochacka 1980); especially erucic acid is 
uniquely found in black-coloured seeds. Several other organic and inorganic 
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compounds have been observed from the seed coat extracts of varying colour types 
(Rosochacka and Grzywacz 1980). It appeared that the absorption peak at 1930 nm 
had the largest contribution for the explanation of the between-mothers variability. 
This band is characterized by a combination of O – H stretch and starch is 
responsible for absorption (Shenk et al. 2001). The possible explanation for the 
divergence in starch content in seeds from different mothers could be differences in 
the degree of maturity of the surface structures. Tillman-Sutela et al. (1998) have 
shown that the sacrotesta, the outermost layer of the seed coat, contains starch 
grains in seeds that are not fully matured while the matured seeds are empty or 
filled with brownish granular substances. 

Detection of internal insect infestation 

The potential of NIR spectroscopy for the detection of internal insect infestation in 
seeds of Cordia africana was investigated. The result showed that the calibration 
model derived from OSC-spectra was excellent in terms of model complexity (A = 
2), explaining the variation between infested and sound seeds (R2Y = 0.94) and the 
overall predictive power of the calibration set (Q2 = 0.94) compared with raw (A = 
5, R2Y = 0.75, Q2 = 0.71), first derivative (A = 4, R2Y = 0.83, Q2 = 0.80) and MSC 
(A = 3, R2Y = 0.70, Q2 = 0.69) spectra. The possible sources of systematic 
variation could be light scattering due to the rough surface of the seed and path 
length difference arising from positioning of individual seeds during scanning. 
Seeds of Cordia have round oval shape and a larva within a seed was sometimes 
positioned on top and sometime below during scanning, and hence creating path 
length difference. For samples in the test set, the classification rates for both sound 
and infested seeds were 100%. The raw-model resulted in slightly better 
classification rate for both classes (92% and 88% for sound and infested seeds, 
respectively) compared with the first derivative and MSC models. 

A plot of PLS weights showed analogous profile with the difference spectrum 
obtained by subtracting the average spectrum of infested seeds from those of sound 
seeds. Major absorption peaks appeared at 1360, 1380, 1830, 1870 and 1902 nm 
(Figure 8C). This indicates that the chemical signal from insect larva was the basis 
for the classification of infested and sound seeds. Insect cuticular lipids are 
composed mainly of fatty acids, alcohols, esters, glycerides, sterols, aldehydes, 
ketones and hydrocarbons (Lockey 1988) as well as protein, catachols, pigments 
and oxalates (Kramer et al. 1995). The observed absorption peaks in the 1300 – 
1400 nm corresponds to C – H combinations and O – H first overtone (Shenk et al. 
2001) while the 1820 – 1880 nm wavelength region corresponds to C – H 
deformation (Murray and Williams 1987). Functional groups responsible for 
absorbance in these regions are CH2 and CH3, which are the common chemical 
moieties in fats and oils, which in turn are the major components of insect cuticle. 
Dowell et al. (1998) analysed spectra of the chitin hexamer (β-(1-4)-linked 
hexasaccharide of 2-acetamido-2-deoxy-D-glucopyranoside) and ground insect 
cuticle; and found absorption peaks around 1178 and 1500 nm, which are not 
distinctively seen in the present study, but still contributed to the discrimination of 
infested and sound seeds fairly well.  
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The 1900 – 1960 nm region corresponds mainly to O – H first overtone, which 
could be attributed to high moisture in infested seeds due to respiratory metabolism 
of hidden larvae (note that hidden larvae were alive). The shorter wavelength 
region has also some smaller peaks around 770, 808, 874 and 938 nm that 
correspond to N – H and C – H third overtones (Osborne et al. 1993). Structures 
typical of protein and lipid were responsible for absorption in this region, which in 
turn could be due to some proteins and lipids in insect cuticle. Absorption bands 
reported here agree with those determined by Ridgway and Chambers (1996, 
1998), Ghaedian and Wehling (1997) and Dowell et al. (1998, 1999, 2000).  

An extension of the study on internal insect infestation was conducted on Picea 
abies seeds in order to examine whether discrimination of uninfested and infested 
seeds by NIR spectroscopy is sensitive to seed origin and year of collection. 
Calibration models were developed on five seed lots collected from Sweden, 
Finland and Belarus at different years. Prior to modelling, between-seed lot 
spectral variation that had no relevance for discriminating the two fractions was 
removed using OSC treatment. Calibration models developed on each seed lot after 
extracting two OSC components described efficiently the variation between 
uninfested and infested seeds (R2Y ≥ 0.917) with an excellent overall predictive 
power (Q2 ≥ 0.900) according to cross validation. In all cases, the spectral 
information was summarized with one significant PLS factor, which concurs with 
the actual phenomenon in the data (either uninfested or infested). Each single lot 
model resulted in 100% classification rate for samples drawn from the same seed 
lot used to build the discriminant models, except calibration model derived from 
stand seeds of Belarus that misclassified 5% of uninfested seeds. New samples 
drawn from other seed lots were also discriminated with nearly 100% accuracy 
(Table 1). Pretreatment of the spectra with OSC prior to model building was 
paramount to remove subtle differences in reserve compounds (total lipid and 
protein contents) as well as moisture among seed lots, thereby generating a robust 
single lot model. A similar result was reported earlier where variation in moisture 
among samples significantly reduced the detection of internal insect larvae in 
wheat kernels while the levels of protein showed little effect (Dowell et al. 1998).   

 For comparison, discriminant models were developed by pooling calibration 
sets of each seed lot. The results showed that the discriminant model computed 
using raw data set explained 83.6% of the variation between infested and 
uninfested seeds (R2Y) and 82.1% of the predicted variation with six significant 
factors according to cross validation. With two significant factors, however, the 
OSC- model explained 92.1% and 91.9% of the between-class and predicted 
variations, respectively. Both models completely detected infested seeds in the test 
set. However, the raw-model misclassified 4% of uninfested seeds while the OSC-
model resulted in a 100% classification rate for uninfested seeds. As a whole, the 
classification accuracy using either single lot model or pooled model is similar, 
suggesting that calibration model developed on a single seed lot can be used for 
rapid assessment of infestation rate in other seed lots irrespective of their origin or 
year of harvest. 
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Figure 8. PLS weight plots depicting wavelength regions that influenced the identification 
of seed sources (panel A), mothers of Pinus sylvestris (panel B), discrimination of sound 
and infested seeds of Cordia africana (panel C) and Picea abies (panel D), sound and 
insect-damaged seeds of Albizia schimperiana (panel E), viable and empty seeds of Pinus 
patula (panel F), filled, empty and infested seeds of three Larix species (panel G) and 
vigorous and aged seeds of Pinus patula (panel H). Note in panels A & B the solid line is 
weight spectrum for the first factor and dotted line for the second factor; in Panel E the 
weight spectra from the different imbibition times are highly overlapped. In panel G, the 
solid, dashed and dotted lines stand for L. decidua, L. sukaczewii and L. gmelinii, 
respectively. 

Unlike the previous study on Cordia africana (II), the origin of spectral 
difference between infested and uninfested seeds is attributed to storage reserves 
that are depleted in the former by the feeding larvae. The difference spectrum, 
computed by subtracting the average spectrum of uninfested seeds from that of 
infested ones, revealed major absorption peaks at 1210, 1506, 1710, 1760 and 
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2276 nm. These peaks had the largest PLS weights and hence highly influenced the 
discriminant model (Figure 8D). Absorption bands in these regions mainly 
correlate with lipids and proteins due to C – H second overtone, N – H stretch first 
overtone and C – H stretch first overtone (Osborne et al. 1993, Shenk et al. 2001). 
Lipids are the major storage reserve in spruce seeds, accounting 28.33% (III) 
followed by proteins, constituting 17.43% of the chemical composition of the seed. 
The dominant fatty acids in spruce seeds are linoleic (C18: 2n-6), trienoic (C18: 3 
5c9c12c) and oleic (C18: 1n-8) acids, which represent 49, 25 and 12 mol% of the 
total fatty acids respectively (Tillman-Sutela et al. 1995, Wolff et al. 2001). 

Table 1. Classification rate (%) of uninfested (US) and infested (IS) seeds of Picea abies in 
the external test sets by single lot models. Note bold-faced values are classification rates 
for test samples drawn from the same seed lots used to develop the calibration models 

                 Classification rates 

    Sweden-O   Sweden-S   Finland-O   Finland-S  Belarus 

Models*   US   IS   US  IS    US  IS    US  IS   US  IS 

PLS-SO   100   100  100  100   100  100   100  100  100  100 

PLS-SS   100   95  100  100   100  100   100  100  100  100 

PLS-FO   100   100  100  100   100  100   100  100  95  100 

PLS-FS   100   100  100  100   100  100   100  100  95  100 

PLS-B    100   100  95  100   100  100   100  100  95  100 

* PLS-SO and PLS-SS are calibration models developed using orchard and stand seeds 
from Sweden, respectively; PLS-FO and PLS-FS are models derived from orchard and 
stand seeds from Finland, respectively and PLS-B is model developed using stand seeds 
from Belarus. The letters O and S after each country denotes orchard and stand seeds. 

Separation of sound and insect-damaged seeds 

NIR spectroscopy was used to separate sound and insect-damaged seeds of Albizia 
schimperiana soaked in water for one, three, six, nine and twelve hours at room 
temperature. The calibration models described more than 95% of the spectral 
variation (R2X) with few significant PLS factors according to cross validation 
irrespective of the imbibition time. Nonetheless, a calibration model calculated 
from one-hour imbibition treatment poorly described the variation between sound 
and damaged seeds (R2Y = 0.407, Q2 = 0.398). With increasing imbibition time, 
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the computed models explained more than 79% of the variation between the two 
groups with an excellent overall prediction ability (Q2 > 0.795) for the calibration 
set.  

Classification rates of sound and damaged seeds in test sets by PLS models 
computed on full spectrum and selected absorption bands are shown in Table 2. 
Although 96% of sound seeds were recognized correctly, damaged seeds imbibed 
for one hour were poorly predicted. The classification rate of damaged seeds was 
improved with increasing imbibition time, and a complete separation of sound and 
damaged seeds was achieved after six, nine and twelve hours of imbibition. 
Classification by selected NIR absorption bands gave more or less similar results 
with ‘full’ spectrum models. Six and twelve hours of imbibition resulted in 
consistent classification rate in both ‘full’ spectrum and selected absorption band 
models.  

Table 2. Classification rates (%) of sound (SS) and insect-damaged (DS) seeds of Albizia 
schimperiana in the test set using calibration models developed on 1100 – 2000 nm, 1400 – 
1500 nm and 1900 – 2000 nm wavelength regions 

              Wavelength regions 

1100 – 2000      1400 – 1500       1900 – 2000  

Treatments    SS   DS     SS   DS      SS   DS 

1 hr-soaked    96   56     100   56      96   59 

3 hr-soaked    100   96     100   96      100   92 

6 hr-soaked    100   100     100   100      100   100 

9 hr-soaked    100   100     100   96      100   100 

12 hr-soaked    100   100     100   100      100   100 

Analysis of PLS weight plots revealed two broad absorption bands in the 1400 
– 1500 nm and 1900 – 2000 nm wavelength regions with peaks ca. at 1450 nm and 
1940 nm (Figure 8E). Pure water has absorption peaks at 1450 and 1940 nm due to 
O – H stretch first overtone and combination bands involving O – H stretch and O 
– H bend although these bands are subject to shift as a result of variation in 
temperature and in hydrogen bonding when water is in a solvent or solute 
admixture (Osborne et al. 1993). The broad absorption peaks found in this study 
are similar to NIR absorption peaks of pure water. As expected, the classification 
models utilized mainly spectral difference attributed to relative water content to 
distinguish sound and damaged seeds.  
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Discrimination of empty and viable seeds 

The potential of NIR transmittance (log 1/T) and reflectance (log 1/R) 
spectroscopy for the discrimination of viable and empty seeds of Pinus patula was 
investigated. Using transmittance spectra, the calibration model explained 93% of 
the between-class variation (R2Y) and 92.8% of the predicted variation (Q2) with 
two significant PLS factors according to cross-validation. However, the calibration 
model developed on reflectance spectra described 85.2% and 85.1% of the class 
and predicted variations, respectively with one significant PLS factor. Calibration 
models derived from selected absorption bands also substantially described the 
between-class variability with very good prediction ability for the calibration as 
well as test sets. For new samples in the test set, the calibration model developed 
on log 1/T data set classified viable and empty seeds with 100% accuracy. In 
contrast, a PLS model computed based on ’full’ NIR reflectance spectra (1100 – 
2360 nm) resulted in 96% and 88% classification rates for viable and empty seeds, 
respectively.  

The difference spectra indicated that viable seeds absorbed more of the incident 
radiation than empty seeds; and absorption peaks typical of viable seeds were 
found at 926, 1170, 1206, 1716, 1760, 2308 and 2346 nm. For the reflectance 
spectra, the PLS weight plot that revealed identical absorption maxima with that of 
the difference spectrum is shown in Figure 8F. Evidently, the origin of spectral 
difference between the two fractions is attributed to differences in the availability 
of reserve compounds. It should be noted that empty seeds are devoid of the 
storage organ and the embryo, and hence no deposition of reserve compounds. The 
major reserve compounds in pine seeds are oil, protein and carbohydrate (mainly 
starch), which account 48, 35 and 6% of the total seed composition, respectively 
(Bewley and Black 1994, Miquel and Browse 1995). The dominant fatty acid 
compositions of the oil from Pinus patula seeds are linoleic, 9,12-18:2 (46.85%), 
pinolenic, 5,9,12-18:3 (19.96%), and oleic, 9-18:1 (16.26%) acids (Wolff et al. 
1997). These authors also reported several Δ5-olefinic acids, the sum of which 
accounts ca. 26.33% of the total fatty acids; and two major saturated acids: 
Palmitic (16:0) and stearic (18:0) acids.  

The observed absorption peaks correlate with fatty acids due to C – H 
stretching vibration of various functional group: CH2, CH3, CH = CH (Osborne et 
al. 1993, Shenk et al. 2001). Osborne et al. (1993) has described that the major 
absorption band in fat or oil is due to a long chain fatty acid moiety that gives rise 
to CH2 second overtone at 1200 nm; and the band near 1180 nm has been assigned 
as the second overtone of the fundamental C – H absorption of pure fatty acids 
containing cis double bonds, e.g. oleic acid, (Sato et al. 1991). Several authors 
have extensively studied the absorption bands in the 1700 – 1800 nm wavelength 
region in relation to fatty acid and oil characterization (e.g. Chow and Iwamoto 
1998, Reinhardt and Röbbelen 1991, Sato et al. 1995, 1998, Velasco et al. 1996, 
1997, 1998b, Daun and Williams 1997 and Hourant et al. 2000). The absorption 
maxima in the vicinity of 2308 and 2346 nm are characteristics of CH2 stretch and 
bend combinations as well as other vibrational modes and a positive correlation 
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between total polyunsaturated fatty acids (18:2 and 18:3) and absorbance in the 
2050 – 2230 nm region have been documented (Hourant et al. 2000). It was also 
reported that the NIR spectra of groundnut oil and liquid paraffin showed typical 
absorption bands at 2310 and 2345 nm (Osborne et al. 1993).  Apparently, the 
absorption bands observed in our study could be correlated to the dominant fatty 
acids in Pinus patula seeds; linoleic, pinolenic and oleic acids as well as several 
polyunsaturated fatty acids, such as Δ5-olefinic acids.  

Simultaneous detection of filled, empty and insect-infested seeds 

PLS discriminant models were developed to distinguish empty and insect infested 
seeds from filled seeds of three Larix species based on NIR transmittance spectra. 
The computed models for each species as well as the composite model explained 
more than 80% of the variation between seed fractions (R2Y) with 3 significant 
PLS factors according to cross validation. The overall prediction ability for 
calibration sets (Q2cv ≥ 0.796) as well as for test sets (Q2test ≥ 0.858) was 
excellent for all models. This shows that the NIR spectroscopy data contained 
much information that can be used to discriminate filled seeds from empty and 
insect infested seeds. For new samples in the test sets, discriminant models 
computed for each species separately resulted in 100% recognition of empty and 
insect infested seeds for all species. The recognition rate of filled seeds was, 
however, varied between species; the highest being for Larix sukaczewii (100%) 
followed by Larix decidua (97%) and Larix gmelinii (90%). The composite model 
developed by combining spectra of all species also resulted in 100% recognition 
rates for empty and insect infested seeds. Although the recognition rate of filled 
seeds of L. gmelinii and L. sukaczewii remained unchanged, the full spectrum 
composite model slightly reduced the recognition rate of filled seeds of L. decidua 
(95%) compared to the model developed separately for each species.  

Simultaneous discrimination of filled, empty and insect infested seeds of three 
Larix species based on two selected NIR absorption bands, 890 – 940 nm and 1000 
– 1048 nm, was also successful. A 3-factor PLS model explained more than 72% 
of the class variation (R2Y) with a very good predictive power for the calibration 
sets (Q2 > 72%) in both wavelength regions. For all species, empty and insect 
infested seeds were completely distinguished from filled seeds using either of the 
selected absorption bands. The truncated spectra in the 890 – 940 nm wavelength 
region misclassified 3% of filled seeds of L. sukaczewii while the 1000 – 1048 nm 
wavelength range resulted in complete recognition. While the shorter wavelength 
region (92% cf. 90% in the full spectrum model) slightly increased the recognition 
rate of filled seeds of L. gmelinii, the longer wavelength region of the spectra 
resulted in complete detection. The recognition rate of filled seeds of L. decidua 
was also slightly improved (97%) by selected absorption bands compared with that 
of the full spectrum model. As a whole the results indicate the possibility of 
developing filter type sorting instrument for large-scale seed cleaning operations 
that would be less expensive than monochromatic grating based equipment. 



 39 

The difference spectra revealed that filled seeds of all three species showed 
unique absorption in the 900 – 950 nm and 1000 – 1048 nm regions with small 
bumps at 898 nm. While empty and insect infested seeds absorbed more of the NIR 
radiation in the 850 – 900 nm and 950 – 1000 nm regions with peaks at 874 and 
974 nm. The discriminant models had the largest weights in this region, too (Figure 
8G). The observed absorption bands from filled seeds correlate with lipids and 
proteins (Murray and Williams 1987, Osborne et al. 1993). Previous studies on 
chemical content of Larix seeds have showed that lipids are the dominant reserve 
compounds as in the case of many other conifers (Wolff et al. 1997, 2001). The 
variation in reserve compounds between filled and empty seeds is obvious as 
storage organs, and hence storage reserves, are absent in the latter. However, the 
difference in the amount of storage reserves between filled and insect infested 
seeds could arise either from complete depletion of reserve compounds by the 
feeding larva or because the attack might have occurred early during seed 
development, and hence resulted in empty seeds. By cutting a sample of insect 
infested seeds and examining its contents, we observed that both the embryo cavity 
and the megagametophyte were totally absent, and it is only the larvae that were 
found enclosed within the seed coats. Studies on seeds of other conifers, such as 
Pseudostuga menziesii, have shown apparent depletion of lipids and proteins by 
the feeding larvae, and a seed severely attacked by feeding larvae was empty of its 
contents (Bates et al. 2000, 2001). The absorption bands typical of empty and 
infested seeds could be related to the chemical composition of the seed coat or 
testa, mainly phenolics (Bewley and Black 1994, Copeland and McDonald 2001) 
and to moisture from the respiratory activity of feeding larvae. This has been 
reported earlier where infested kernels of wheat showed high absorption in the 
region that correlates to moisture (Baker et al. 1999, Ridgway et al. 1999).  

Rapid analysis of seed vigour 

NIR transmittance spectroscopy was employed to classify vigorous and aged seeds, 
thereby serving as a tool for rapid and non-destructive analysis of vigour. The 
SIMCA analysis showed a clear differentiation of vigorous and aged seeds for new 
observations in the prediction set (Figure 9). No samples were misclassified as 
member of the other class, although few samples from each class were outside the 
95% prediction confidence limit of the respective class. The number of outlying 
samples was higher for aged seeds than vigorous seeds. This is, in fact, expected 
because individual seeds do not behave in a similar manner to the ageing treatment. 
Small seeds usually deteriorate more rapidly than large seeds in the high relative 
humidity environment due to their high surface to volume ratio (MacDonald 1999).  

Discrimination of vigorous and aged seeds as well as among classes of aged 
seeds was performed using PLS regression. As the model computed to 
simultaneously differentiate the four vigour classes was poor (R2Y = 0.27 and Q2 = 
0.26), a separate PLS model was computed to discriminate between vigorous and 
aged seeds (PLS-all), between seeds aged for three and seven days (PLS-37), and 
between seeds aged for three and nine days (PLS-39). Discrimination of seeds aged 
for seven and nine days was not successful and hence not reported. The PLS-all 
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model explained 74% of the variation between vigorous and aged seeds (R2Y) with 
one significant factor (A) using the ‘full’ spectral region. The prediction ability (Q2 
= 0.73) due to cross validation was also very good. A similar result was achieved 
using truncated spectra, 890 – 948 nm, where lipids show characteristic absorption. 
The PLS-37 model developed on ‘full’ spectra described 51% of the class 
variation, although the prediction ability for the calibration set was low (Q2 = 
0.45). Discriminant analysis performed using truncated spectra slightly improved 
the prediction ability (Q2 = 0.50) without changing the explained class variation 
much. The PLS-39 model computed on both ‘full’ and truncated spectra explained 
more than 55% of the variation between three- and nine-day aged seeds and more 
than 52% of the predicted variation according to cross validation.  

For new samples in the prediction sets, a complete recognition of vigorous 
seeds, seeds aged for seven or nine days was achieved while one sample aged for 
three days was misclassified as vigorous seed. Among aged seeds, it was also 
possible to differentiate seeds aged for three, seven and nine days with 80%, 90% 
and 75% accuracies, respectively. It appeared that the misclassification of seeds 
aged for nine days was much higher than seeds aged for seven days. Again, this 
could be associated with the rate of deterioration of individual seeds during the 
ageing process. In general, the result demonstrates that NIR spectroscopy has a 
great potential for rapid analysis of vigour as well as for sorting of vigorous and 
aged seeds. The success of differentiating seeds exposed to different accelerated 
ageing durations highlights the possibility of monitoring the progress of 
deterioration provided that other sources of variation are minimized or controlled.  

The weight plots for the first and second PLS factors revealed that the 850 – 
880, 890 – 940, 1010 – 1030 nm wavelength regions influenced the discrimination 
of vigorous and aged seeds as well as between aged seeds (Figure 8H). The 
absorption band in the 850 – 880 nm corresponds to the third overtone C – H 
stretching vibration and molecular structures responsible for absorption are 
benzene and chloromethane with absorption maxima at 874 nm and 880 nm, 
respectively (Osborne et al. 1993). This might be attributed to volatile compounds, 
such as aldehydes, alcohols, ketones, esters, and terpenes that evolve during 
storage and artificial ageing (Zhang et al. 1993, 1995, MacDonald 1999). The 
absorption peaks at 928 nm and 1020 nm have been assigned to oil and protein, 
respectively (Osborne et al. 1993). 
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There are growing evidences supporting the reduction in the quantity of 
unsaturated fatty acids, such as linoleic (18:2) and linolenic acid (18:3), as well as 
total lipid and phospholipid contents with accelerated and natural ageing of seeds 
(e.g. Pukacka and Kuiper 1988, Pukacka 1991, Marquez-Millano et al. 1991, 
Kalpana and Madhava Rao 1996, Thapliyal and Conner 1997). A decrease in total 
protein content and soluble protein in pigeonpea, peanut and sal seeds with 
accelerated ageing has also been documented (Nautiyal et al. 1985, Jeng and Sung 
1994, Kalpana and Madhava Rao 1997). Apparently, the divergence in lipids and 
proteins is the basis for the discrimination of vigorous seeds from aged seeds with 
NIR spectroscopy. This region was also useful for discriminating between aged 
seeds that could be attributed to the rate of depletion of lipids and proteins with 
duration of ageing.  

Conclusions  
The potential of NIR spectroscopy combined with multivariate analysis was 
evaluated for the characterization of forest tree seed quality. The results reported in 
this thesis demonstrate the capability of the technique for rapid and non-destructive 
analysis of the physiological, technical and genetic attributes of seed quality. As 
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Figure 9. Classification of vigorous and aged seeds in the prediction set using 
SIMCA. Dashed lines denote the 95% prediction confidence interval for class 
membership for vigorous (vertical) and aged (horizontal) seeds.  
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establishment of new forest plantation shows an increasing tendency globally, 
NIRS will play a pivotal role in upgrading seed lot quality through sorting of 
unproductive seeds, and hence facilitating single seed sowing for containerised 
seedling production in nurseries and/or direct sowing out in the field. 

A promising result was achieved in identifying seed source and parents of 
Pinus sylvestris using VIS+NIR spectroscopy. The result highlights the potential of 
the technique for routine authentication of putative seed origin of pine seeds and 
for characterizing and sorting seeds according to their genotype. Detection of 
internal insect infestation in forest tree seed using NIRS was also successful. The 
results show that subtle differences in protein and lipid contents as well as moisture 
among seed lots did not affect the classification accuracy provided that the 
calibration model takes into account these natural variability (pooled calibration 
model) or such variability is removed a priori with appropriate spectral 
pretreatment such as OSC. NIRS has demonstrated the capability for separating 
sound and insect-damaged seeds of Albizia schimperiana based on differences in 
relative water content between the two fractions. Since the method is based on a 
universal phenomenon, i.e., seeds with hard and impermeable seed coats do not 
absorb water unless the surface is punctured in some way, it can easily be extended 
to several legumes and other species known to have hard seed coats. The specific 
imbibition time for each species should, however, be empirically determined.  

Classification of viable and empty seeds of Pinus patula using near infrared 
transmittance and reflectance spectroscopy was successful. The technique is rapid 
and more efficient as it takes a fraction of a minute to scan a single seed, and no 
sample preparation is needed unlike, for example, the IDS technique. In addition, it 
can easily be extended to other species as the principle is based on a universal 
phenomenon, i.e., reserve compounds that are found only in viable seeds are 
detected by NIRS. Filled, empty and insect infested seeds of three Larix species 
were successfully detected using NIR spectroscopy. Thus, the result highlights the 
potential of NIR spectroscopy as a rapid and non-destructive technique to upgrade 
seed lot quality of Larix species by sorting out empty and infested seeds 
simultaneously. Furthermore, the technique can offer a unique opportunity for seed 
orchard managers to rapidly evaluate the efficacy of artificial pollination and the 
success of cultural treatments in reducing the quantity of empty seed production in 
seed orchards.  

NIR spectroscopy has demonstrated a great potential as a rapid and non-
destructive method for vigour test as well as sorting deteriorated seeds from a seed 
lot thereby enhancing its performance. Although the SIMCA analysis resulted in 
complete classification of vigorous and aged seeds, the PLS models were more 
accurate in classifying not only vigorous and aged seeds, but also among classes of 
aged seeds. Interestingly, the classification is based mainly on the underlying 
biochemical changes associated with seed deterioration.  

Classification and/or discrimination of seeds based on their quality attributes 
were also evaluated using selected absorption bands. In many cases, similar results 
were achieved with that of the full spectrum models. This underscores the prospect 
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of developing simple and less expensive instrument based on filters, diode arrays 
or lasers for commercial purpose. Therefore, continued emphasis should be given 
towards developing automated sorting equipment for large-scale seed cleaning 
and/or upgrading seed lot performance. Optimistically, NIR spectroscopy will 
become one of the seed testing methods in the foreseeable future. 
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