This is an author produced version of a paper published in CROP PROTECTION. This paper has been peer-reviewed and is proofcorrected, but does not include the journal pagination.

Citation for the published paper: Wiik, L., Rosenqvist, H. (2010) The economics of fungicide use in winter wheat in southern Sweden. *Crop Protection*. Volume: 29 Number: 1, pp 11-19. <u>http://dx.doi.org/10.1016/j.cropro.2009.09.008</u>

Access to the published version may require journal subscription. Published with permission from: Elsevier

Epsilon Open Archive http://epsilon.slu.se

1 The economics of fungicide use in winter wheat in southern Sweden

2 Lars Wiik^{a,*}, Håkan Rosenqvist^b

4 ^a Swedish University of Agricultural Sciences, Department of Plant Protection Biology, PO

- ^b Swedish University of Agricultural Sciences, Department of Agriculture Farming
- 7 Systems, Technology and Product Quality, PO Box 102, SE-230 53 Alnarp
- 8

3

9 Abstract

10 In southern Sweden, fungicide treatment of winter wheat is prevalent and recommended 11 almost routinely against leaf blotch diseases. However, yield increases and hence the resulting 12 net returns from fungicide use are highly variable within and between years. These variations 13 raise questions about whether, when and how fungicides should be used. To help answer these 14 questions, a thorough economic evaluation of fungicide use was carried out, based on results 15 from untreated plots and fungicide-treated plots in trials in farmers' fields, 1983-2007. 16 Scenarios with varying grain prices and costs of fungicide treatment were evaluated and 17 examined. Doubling and tripling the grain price led to the largest impact on the net return 18 from fungicide treatment, followed by increasing cost of the fungicide. Other costs were of minor importance. The mean net return from fungicide use was no more than $12 \in ha^{-1}$ over 19 20 the 25 years (2008 grain prices and costs used in calculations). Furthermore, the mean net return was negative in 10 years and less than 50% of the entries were profitable to treat in 11 21 22 years. Changes over time and changes in controllable factors (e.g. fungicide and cultivar 23 choice, crop rotation, techniques) and uncontrollable factors (e.g. emerging and new diseases, 24 price relations) influenced the profitability of fungicide use. Fungicide use was in fact more profitable (mean net return 21 compared with $3 \in ha^{-1}$) during the latter part of the period 25 26 (1995-2007) than in the earlier part (1983-1994). Improved decision support systems in a 27 holistic framework based on sound economics are urgently needed.

⁵ Box 102, SE-230 53 Alnarp, * Lars.Wiik@ltj.slu.se

Keywords: plant disease, net-return, profitability, integrated pest management, *Septoria tritici.*

3

4 1. Introduction

5 Many important diseases of winter wheat such as Leaf Blotch Diseases (LBDs, including 6 Septoria tritici blotch – the major leaf blotch disease in Sweden, Stagonospora nodorum 7 blotch and tan spot), powdery mildew, brown rust and yellow rust are effectively controlled 8 by fungicides and fungicide use has therefore been a standard procedure in many countries for 9 decades (Cook and Jenkins, 1988; Wiik, 2009). In southern Sweden (Scania), fungicides are 10 used by most farmers in winter wheat, especially against LBDs. According to actual official 11 recommendations: 'With present grain prices fungicide input is most often profitable in the 12 southern and central Sweden, but the optimal dose strongly fluctuates due to differences in 13 disease intensity between years.' (SCB/SJV, 2008; SJV, 2008).

14

15 In their review on the economic basis for protection against plant diseases, Ordish and Dufour 16 (1969) declared the economics of diseases to be a somewhat neglected theme. Some years 17 later Carlson and Main (1976) found economic models of biological systems to be too simple 18 compared with the complex nature of such systems. Since then, the economic importance of 19 plant diseases and the net return from control measures have been estimated now and then, 20 (Cook and King, 1984; Zadoks, 1984; Cook and Jenkins, 1988; Priestley and Bayles, 1988; 21 Cooper and Dobson, 2007; Fabre et al., 2007). However, in our opinion the subject has still 22 not been studied sufficiently to provide a good base for limitation and optimisation of control 23 measures. Sundell (1980) made a rough estimate of crop losses in agricultural crops in 24 Sweden during the late 1970s and evaluated the possibilities of reducing these losses and the 25 economic consequences of different restrictions. He found host plant resistance to be the most

1 profitable measure in the controlling of a number of fungal diseases, but he also found a 2 considerable short-term potential for increased use of fungicides and a marked increase in net 3 production costs when the use of pesticides was stopped. In a later evaluation by the Royal 4 Swedish Academy of Agriculture and Forestry, the economic losses caused by total omission of fungicides and a 50% decrease of herbicides in cereals was estimated at 77 €ha⁻¹ (KSLA, 5 6 1989). More specifically, in winter wheat Wilk (1991) found fungicide treatment to be decreasingly profitable at increasing cost levels (calculated in dt grain ha⁻¹); 81% at cost level 7 1 dt ha⁻¹ and 33% at cost level 6 dt ha⁻¹ for 167 field trials in southern Sweden, and 68% and 8 9 13% respectively for 96 field trials in central Sweden.

10

The profitability of fungicide use in field trials carried out during 1983-2007 in southern Sweden was evaluated in a more thorough economic analysis than usual, supplemented with scenarios with different grain prices and fungicide treatment costs expected to be relevant in future assessments. The aim of the evaluation was to highlight economic considerations in wheat production and to examine the profitability of a single fungicide treatment at GS 45-61 in winter wheat.

17 **2. Materials and methods**

18 **2.1. Field trials**

Data from 446 field trials on winter wheat carried out in 1983-2007 in southern Sweden were used (for details of fungicides, dates etc. see Wiik, 2009; Wiik and Ewaldz, 2009). Yields measured as dt ha⁻¹ (dt = metric deciton = 100 kg) at 15% water content in untreated and fungicide-treated plots were used in the economic analyses. We chose to evaluate a single fungicide treatment just before and during heading because it had given the greatest yield increase in studies on treatment strategies performed by Wiik (2009). In the fungicide-treated

1 plots a single fungicide treatment was applied in growth stages (GS) 45-61, i.e. from boots 2 swollen to beginning of anthesis of a crop stand according to the description of the principal 3 and secondary growth stages (00-99) by Tottman and Broad (1987). Hectolitre weight (HLW, 4 g/L), grain protein content (%) and Hagberg falling number (s) for untreated and fungicidetreated plots were not used in the evaluation of the data but are considered in the discussion. 5 6 The field trials were carried out on farms using different cultivars and agricultural practices, 7 e.g. fertiliser dose. All interventions except fungicide treatment were carried out by farmers. 8 The field trials, which comprised four replicates, were carried out by staff at the Rural 9 Economy and Agricultural Societies according to a precise protocol that included instructions 10 on choice of field (level surface, representative of the region), choice of fungicides (most used 11 on the market broad spectrum such as morpholines, azoles and strobilurins), timing of 12 treatment (GS 45-61), dose (normal recommended), spraying technique (best available), 13 harvesting etc. During 1983-1994 and 2006-2007, each entry (N, see Tables 2, 4 and 5) 14 represents one experimental treatment in a field trial. During 1995-2005 more than one entry 15 or experimental treatment was taken at times from a field trial, e.g. if a single fungicide 16 treatment was tested on more than one cultivar or if there were different nitrogen levels in the 17 same field trial. Mean is usually given as mean of years, but in some cases also as mean of 18 entries (Tables 3 and 6). Results from the latter period are based on more entries than the 19 earlier period.

20 **2.2. Study site**

The county of Scania (55°23'-56°25'N, 12°50'-14°31'E) is the southernmost part of Sweden. Scania is a lowland area with more than 40% arable land bordered by coastline to the south, west and east. In general, slightly more than 25% of the Swedish winter wheat acreage of about 275 000 ha was grown in Scania during 1983-2007 (www.sjv.se, accessed February 2009). Cultural practices, cultivars used and the impact of weather are presented in earlier
 papers (Wiik, 2009; Wiik and Ewaldz, 2009).

3 **2.3. Economics**

Fungicide treatment distinctly increases the costs of production by more than the obvious cost
of the fungicide. The economic model used was:

6 U = [(Y - D) * N] - (cF + cS) (equation 1)

7
$$N = Z - (cP + cK + cH + cT + cA)$$
 (equation 2)

8 where U (\notin ha⁻¹) is the net return (income minus costs), Y (kg ha⁻¹) is the yield increase due to 9 a fungicide treatment at GS 45-61, D (kg ha⁻¹) is the yield loss due to wheel damage caused 10 by spraying, N (\notin kg⁻¹) is the net value per kg kernel, and cF (\notin ha⁻¹) and cS (\notin ha⁻¹) are the 11 costs (c) of fungicide (F) and spraying (S). The net value N in equation 1 is given by equation 12 2, where Z (\notin kg⁻¹) is grain price per kg, and cP (\notin kg⁻¹), cK (\notin kg⁻¹), cH (\notin kg⁻¹), cT (\notin kg⁻¹) 13 and cA (\notin kg⁻¹) are the costs (c) per kg kernel of phosphorus (P) losses from the field, 14 potassium (K) losses from the field, harvest (H), transport (T) and artificial drying (A).

15 Cost calculations were based on data from www.agriwise.org (accessed March 2009), the Swedish Rural Economy and Agricultural Societies and the Swedish Board of Agriculture 16 17 (www.siv.se, accessed March 2009) and adjusted estimations of damage owing to fungicide 18 application reported by Folkesson (1992). All calculations were made in Swedish crowns 19 (SEK) and converted to euro (\oplus at an exchange rate of 10 SEK to 1 \in The net return was calculated for 21 scenarios, seven scenarios each at three grain prices, 10, 20 and $30 \in dt^{-1}$ 20 (Table 1). In the scenarios, four different fungicide prices (0, 30, 40 or 60 \in ha⁻¹), three costs 21 of spraying (0, 6 or $12 \notin ha^{-1}$) and three costs of damage owing to spraying (0, 4 or $8 \notin ha^{-1}$) 22 23 were used in the calculations (Table 1). Two digits designate each scenario; the first digit 1, 2 and 3 represents the grain price (10, 20 or 30 \in dt⁻¹, respectively) and the second digit 0, 1, 2, 24

3, 4, 5 or 6 an ascending total cost of a fungicide treatment (0, 46, 50, 56, 60, 76 or 80 \in ha⁻¹), 1 2 respectively. This means that the second digit describes the same costs in three scenarios, e.g. for scenarios 13, 23 and 33 the treatment cost is 56 \in ha⁻¹ but the grain price differs. One more 3 scenario (12b) was included to consider the net return of a mean optimal fungicide dose 4 5 during the latter period (1995-2007) of the study (optimal dose (od) = cost of fungicide at the 6 dose giving highest net return). Results from 36 field trials with different doses of Amistar (two or more of 0.25 L ha⁻¹, 0.50 L ha⁻¹, 0.75L ha⁻¹ and 1.00 L ha⁻¹, active ingredient 7 azoxystrobin 250 g L⁻¹) carried out during 1998-2002 were used to estimate the mean optimal 8 9 dose (Wiik, unpublished). The functions used were based on available entries without taking 10 different varieties, nitrogen levels etc. into consideration. Fungicide resistance to strobilurins had probably not evolved in Sweden at that time (Jørgensen and Thygesen, 2006). In scenario 11 12b, yield increase was corrected according to the dose-response found. 12

An overview of the net return is also given for the three grain prices and three fungicide
treatment cost levels (low, medium and high), i.e. 33 € ha⁻¹, 67 € ha⁻¹ and 100 € ha⁻¹,
respectively (Table 2a and Table 2b).

The increase in harvesting costs was fixed at $0.2 \notin dt^{-1}$, transport costs $0.5 \notin dt^{-1}$ (30 km) and 16 drying costs 1.0 \in dt⁻¹. Phosphorus (3 kg ton⁻¹ grain) and potassium (5 kg ton⁻¹ grain) were 17 18 removed from the field due to the grain yield increase achieved by the fungicide treatment (Bertilsson *et al.*, 2005). The resulting financial loss was estimated to be $0.6 \notin dt^{-1}$ (P) and 0.3 19 \in dt⁻¹ (K) at fertiliser prices of 200 \in dt⁻¹ and 60 \in dt⁻¹, respectively. In total, the increase in 20 the costs of harvest, transport, drying and losses of P and K was estimated at 2.6 \in dt⁻¹. Grain 21 22 price and producer price are used synonymously in the following and net return refers to the 23 producer price minus the above-mentioned costs.

1 2.4. Statistical methods

ANOVA and regression (SPSS ver. 17.0) were used to analyse the results and boxplots to
show the variability (Hawkins, 2005). Following ANOVA, the Student-Newman-Keuls
(SNK-test) and Tukeys multiple range test were used to compare means.

5 3. Results

6 3.1. Fungicide treatment and yield increase

A mean yield increase due to a single fungicide treatment at GS 45-61 was achieved each year
during the period 1983-2007 (Figure 1). In 13 years out of 25 this mean annual numerical
yield increase ranged between 10-19 dt ha⁻¹ and was statistically significant, but in other years
the yield increase was very small, 3 dt ha⁻¹ and below, and not statistically significant.

The mean annual standard deviations in yield did not differ greatly between fungicide-treated
plots and untreated plots (11.9 and 11.6 respectively) (Figure 1).

13 **3.2.** Grain price and profitability

14 The variation in net return in the 771 entries during 1983-2007 was very large. For example, with a grain price of $10 \notin dt^{-1}$ at a low fungicide treatment cost (33 \notin ha⁻¹), the best 10% of 15 entries gave 113-218 \in ha⁻¹ and the worst less than -20 \in ha⁻¹ (Table 2a). With the same grain 16 price (10 \in dt⁻¹) and at three treatment cost levels (low, medium and high), it was profitable to 17 18 treat 77, 50 and 28% of the 771 entries, respectively, corresponding to a required yield increase of 4.5, 9.1 and 13.6 dt ha⁻¹, respectively (Table 2b). Furthermore, at double and triple 19 20 the grain price, the corresponding fraction of profitable entries obviously increased. The 21 maximum treatment costs (calculated as means of years) while still giving a positive net return increased by a factor of about 2.3 at grain price $20 \in dt^{-1}$ and a factor of about 3.7 at 22 grain price $30 \notin dt^{-1}$ compared with grain price $10 \notin dt^{-1}$ (Table 3). 23

Calculated as a mean over years at the chosen three ascending grain prices the net return of a
 single fungicide treatment at GS 45-61 was positive if the total treatment cost was less than
 61, 143 and 226 €ha⁻¹, respectively. Calculated as a mean over all entries it was 74, 175 and
 275 €ha⁻¹ respectively (Table 3).

5 3.3. Differences between years

Net return differed substantially between years. For example, at grain price of $10 \in dt^{-1}$ the 6 7 maximum treatment costs while still giving a profitable mean annual net return varied between 18 \in ha⁻¹ (1992) and 137 \in ha⁻¹ (1987) (Table 3). The variability in net return was 8 9 large, not only between years but also within years (Figure 2). Three years, representing 10 different intensities of fungal disease and mean yield increases achieved by a single fungicide 11 treatment at GS 45-61, differed in the percentage of entries it was profitable to treat. At three 12 ascending fungicide prices (low, medium and high, scenarios 11, 13 and 15) 52, 45 and 27% 13 respectively of the entries during 2001 were profitable to treat, while during 2002 with severe 14 attacks of LBDs the corresponding entries were 93, 92 and 84%, and in a year with low 15 disease pressure (2005) only 16, 10 and 6% (not shown in Tables or Figures).

16 **3.4. Costs and profitability**

17 Mean annual net return was negative in scenarios 15 and 16 and positive in all other scenarios 18 (Table 4). Negative mean net returns were frequent in several years in scenarios 11-16, less frequent in scenarios 21-26 and rare in scenarios 31-36. At grain price $10 \notin dt^{-1}$ and three 19 20 ascending fungicide treatment costs (scenarios 11, 13 and 16) fungicide treatment was 21 profitable in 16, 14 and 7 years out of 25, respectively. With the same three ascending 22 treatment costs as above and at double the grain price (scenarios 21, 23 and 26) fungicide 23 treatment was profitable in 22, 20 and 17 years out of 25, respectively, and at triple the grain 24 price (scenarios 31, 33 and 36) in 25, 25 and 20 years out of 25, respectively (Table 4). In scenarios 11-16 the number of profitable entries was below 50% in 10-18 years out of 25
(Table 5) and no entries at all were profitable in two years, 1992 and 1994. At doubled the
grain price (scenarios 21-26) the number of profitable entries was below 50% in 3-9 years out
of 25, while at triple the grain price (scenarios 31-36) it was below 50% in at most 4 years out
of 25.

6 3.5. Optimal dose

Mean maximum yield increase was achieved by using a mean dose of 0.9 L ha⁻¹ Amistar (e.g. y=-1464x²+2658x+13, R²=0.98, mean of four doses; y=yield increase, x=dose). However,
mean maximum net return was achieved by using a mean dose of 0.55-0.66 L ha⁻¹ Amistar
(e.g. y=-923x²+1219x+9, R²=0.93, mean of four doses; y=mean net return, x=dose). In
scenario 12b, when mean optimum dose and estimated yield increase were considered, the
mean net return during 1995-2007 was 24 €ha⁻¹, and of these 13 years three gave a negative
mean net return.

14 **3.6.** Relationships between net return and number of profitable entries

In each scenario, the relationship between the mean annual net returns (Table 4) and the mean annual number of profitable entries (Table 5) was strong. These relationships showed a good fit, especially at grain price $10 \notin dt^{-1}$, with a second degree equation, e.g. scenario 11 gave the equation y=-0.01x²+1.4x+46.1 (y=no. of profitable entries and x=net return, R²=0.94, N=25). Profitable entries were present even in years with low mean net returns.

20 **3.7.** Quality factors affecting payment to the farmer

Fungicide treatment resulted in an increase in mean HLW of more than 10 g L⁻¹ in 12 years out of 25, of which six had a statistically significant mean increase of about 20 g L⁻¹ (Table 6). Increased HLW as a result of a single fungicide treatment at GS 45-61 positively affected payment to the farmer in 16% of the entries, i.e. when HLW exceeded 740 g L⁻¹. In three

years (1987, 2002 and 2007), HLW of 740 g L⁻¹ was exceeded in more than one-third of the 1 2 entries. Fungicide treatment significantly increased HLW calculated as a mean of entries, but 3 not if calculated as a mean of years. In a mean over 18 years, protein content decreased 4 slightly (~2%, 10.3 to 10.1% protein content) as a result of a single fungicide treatment, but 5 the decrease was only statistically significant in one of those years. In a mean over 15 years 6 the Hagberg falling number decreased by almost 17% as a result of a single fungicide 7 treatment, of which the mean annual decrease was statistically significant in three years, with 8 the largest decrease (48 s) in 1998. The decrease in protein content and Hagberg falling 9 number due to fungicide treatment affected payment to the farmer negatively in 6% and 4% of 10 the entries, respectively, i.e. when protein content fell below 10.5% and Hagberg falling 11 number below 200 s. Fungicide treatment did significantly decrease protein content and 12 Hagberg falling number when calculated as a mean of entries, but not when calculated as a 13 mean of years.

14 **Discussion**

15 Doubling and tripling the grain price was the most important factor for the outcome of the net 16 return in our calculations, especially compared with the relatively low impact of costs of 17 fungicide application, crop harvest, transport, drying and loss of plant nutrients (P and K). 18 After grain price, the cost of fungicide had the next largest impact on the net return. We 19 consider the grain prices and costs chosen in the different scenarios to be relevant for future assessments of the profitability of fungicide input, e.g. the grain price was about $10 \notin dt^{-1}$ up 20 to 2006 and since then has fluctuated peaking at almost 30 \in dt⁻¹ in early 2008, which is in 21 22 agreement with our choice of 10, 20 and $30 \notin dt^{-1}$. The cost of fungicide control is well in line with estimations by the National Board of Agriculture (SJV, 2008; www.agriwise.org, 23 24 accessed March 2009).

1 To examine whether fungicide application in winter wheat at GS 45-61 in southern Sweden is 2 profitable to the farmer from a strictly economic point of view, scenario 12a can be used as an 3 example of the past and present time (SJV, 2008; www.agriwise.org, accessed March 2009). The mean net return was $12 \in ha^{-1}$ during the 25 years of this study. This is not a conclusive 4 5 result, and in several years the mean net return was negative and less than 50% of the entries 6 were profitable to treat. However, changes occur over time that has an impact on the outcome. The mean yield increase during 1983-1994 was 660 kg ha⁻¹ compared with 970 kg ha⁻¹ for 7 8 1995-2005, a difference probably explained by the change from azole to strobilurin fungicides 9 (Bayles, 1999; Wiik, 2009) and to the so far effective active ingredient prothioconazole since 10 2005. In our chosen past and present time scenario 12a, mean annual net return was higher in the latter period compared with the earlier period, i.e. $21 \in ha^{-1}$ compared with $3 \in ha^{-1}$. In this 11 12 study, we used all available entries in field trials with one single fungicide treatment in winter 13 wheat during a limited growth period (GS 45-61), shown to be the most important GS for 14 LBDs in Sweden (Wiik, 2009). However, in some varieties, at high infection pressure and 15 other situations a double treatment might be needed, and the economics of more intense use 16 also need to be evaluated. As the field trials are based on different soil types, different wheat 17 varieties and a range of agricultural practices, our results only demonstrate a mean of the 18 results from entries with different backgrounds and do not show the effect of different means 19 of production, e.g. the profitability for a specific variety or at a specific nitrogen level. Such 20 influences will be evaluated in a coming article. Consequently, changes over time in 21 agricultural practices influence the profitability of fungicide use, such as the introduction of 22 more active fungicides as well as fungicide resistance and fungicides more adapted to the 23 actual disease situation. In addition, changes other than the inherent fungicidal effects can 24 almost certainly affect the profitability of fungicide use; e.g. climate change leading to 25 increased or decreased pesticide costs in winter wheat (Chen and McCarl, 2001), increased

use of cultivars with better plant disease resistance (Priestley and Bayles, 1988; Marasas *et al.*, 2003), new diseases and disease interactions (Anderson *et al.*, 2004; Bearchell *et al.*, 2005), new cropping systems (Duveiller *et al.*, 2007) and price relations (Nail *et al.*, 2007).

4

According to the Swedish recommendations a fungicide treatment is habitually required, but 5 6 in some years the dose can be reduced (SJV, 2008). The fungicides evaluated in the present 7 study were generally at full dose, but using results from field trials evaluating dose-response 8 we were able to consider the economic outcome of reduced doses. Many fungicides are very 9 potent and a dose reduction usually does not impair the efficacy and resulting yield increase 10 greatly due to the non-linear shape of the dose-response curve. Wilk et al. (1995) reported that half dose of Tilt Top (0.5 L ha⁻¹, a.i. fenpropimorph 375 g L⁻¹ and propiconazole 125 g L⁻¹ 11 ¹) resulted in only about 15% less yield increase, while the efficacy against LBDs, brown rust, 12 13 yellow rust and mildew was 82, 90, 84 and 78%, respectively compared with the full dose. Similarly, a reduction in the dose of Amistar from 1.0 L ha⁻¹ and 0.5 L ha⁻¹ resulted in only 14 19% less yield increase, and the efficacy against LBDs, brown rust, yellow rust and mildew 15 16 was 85, 100, 97 and 102%, respectively (Wiik, unpublished). With these and other results in 17 mind it is not surprising that reduced doses are being considered in plant protection (Milne et al., 2007; Bürger et al., 2008). By using an optimum dose of Amistar (0.66 L ha⁻¹) compared 18 with a recommended standard dose (0.8 L ha⁻¹) during 1995-2007, the farmer would have 19 gained $3 \in ha^{-1}$ (24 instead of 21 $\in ha^{-1}$) according to our calculations. 20

21

Scenario 25 may describe a most likely possible future, a scenario with double the producer price compared with scenarios 10-16 and a 52% increase in the costs owing to fungicide use compared with our past and present time scenario 12a. The mean net return of this scenario during all 25 years was 65 € ha⁻¹. However, divided into the earlier and later periods mentioned previously, both the net return and the percentage of profitable entries were higher in the later period than in the earlier period, i.e. $86 \in ha^{-1}$ compared with 43 € ha⁻¹ and 78% compared with 58%, respectively. In another scenario, scenario 16, with the same low grain price as in the past and present time scenario 12a but with a 60% increase in the cost of fungicide use, the mean net return during the 25 years of study was negative (a loss of 16 € ha⁻¹) and only 30% of the entries were profitable to treat with a fungicide.

8

9 The Official Statistics of Sweden (SCB/SJV, 2008; Agneta Sundgren, pers. comm., 2009) 10 show that fungicides with active ingredients such as prothioconazole, pyraclostrobin, 11 propiconazole, azoxystrobin, fenpropimorph and cyprodinil were used on 99% of the winter wheat acreage in southern Sweden during 2006. However, the present study shows that a 12 13 routine single fungicide input at GS 45-61 against LBDs in southern Sweden was questionable from a strictly farm economics point of view in almost one-third of the entries 14 during 1995-2007, and probably higher in central Sweden (Wiik, 1991). On the other hand, 15 part of the total accumulated profit of $328 \in ha^{-1}$ to $198 \in ha^{-1}$ (scenarios 11-13) in southern 16 17 Sweden during 1995-2007 would be somewhat at risk unless entirely reliable decision support 18 systems are available. Accordingly, thorough economic analyses and probabilities must be 19 allowed to play a vital part in decision support systems (Headley and Lewis, 1967; Rossing et 20 al., 1994; Fabre et al., 2007). No true decision support system is in use for LBDs in Sweden. 21 Although existing recommendations take account of precipitation, infection pressure, 22 fungicide, fungicide dose, soil type and cultivar, fungicides against LBDs are used almost 23 routinely in southern Sweden (SJV, 2008).

1 In this study, grain type (bread, starch or feed), HLW, protein content and Hagberg falling 2 number and some other factors upon which producer price were not used in the economic 3 calculations because they have not been routinely recorded. Whether the farmer aimed at 4 bread or feed grain is not unimportant, but the producer price difference was only about 7% 5 higher for bread grain in costing calculations 2000-2008 (www.agriwise.org, accessed March 6 2009). Fungicide treatment affected HLW positively and in exceptional years protein content 7 and Hagberg falling number negatively, but probably without major economic consequences 8 to the farmer, even if weather and choice of cultivar can be decisive (Ruske et al., 2004; 9 Gooding, 2007; Wang et al., 2008). Nitrogen fertilisation affects yield, quality parameters and 10 the yield increase achieved by fungicide treatment (Dimmock and Gooding, 2002; Walters 11 and Bingham, 2007). For example, in Swedish field trials carried out during 2001-2003 a single fungicide treatment during heading of winter wheat cultivar Ritmo at three fertiliser 12 levels of 120, 170 and 220 kg N ha⁻¹ gave yield increases of 10.6, 12.6 and 16.1 dt ha⁻¹ and 13 14 improved kernel protein content from 9.9 to 10.8 and 11.7 %, respectively (Wiik and Pålsson, 15 2004). In the present study, which did not permit direct comparisons between nitrogen levels, the range of nitrogen fertilisation was 84-230 kg N ha⁻¹. The protein content in our study 16 17 changed due to amount of nitrogen fertilisation, as in the study by Wiik and Pålsson (2004), 18 with the yield increase due to a single fungicide treatment being statistically significant between nitrogen levels at high amounts of nitrogen fertilization (>180 kg N ha⁻¹). About 20% 19 of the field trials in our study were fertilised with more than 180 kg N ha⁻¹ and thus nitrogen 20 fertilisation will influence the net return, but we omitted the most likely influence of nitrogen 21 22 from the present economic analysis.

23

For decades, fungicides have been an important means of production in winter wheat in many countries and unfortunately or fortunately not just an optional extra (Eyal, 1981; Cooper and

1 Dobson, 2007). Our calculations were carried out from a strict farm production economics 2 perspective but as fungicides may have adverse effects on the environment and human health, 3 approval based on risk-benefit analysis has long been regulated by public authorities (Headley 4 and Lewis, 1967). The economics of pesticide usage are complex and influenced by market 5 prices and involvement from the authorities (Zilberman et al., 1991; Serra et al., 2005). Taxes 6 on pesticides instead of bans may better fulfil environmental goals (Zilberman et al., 1991) 7 and reduced price support or a decreased producer price will impede the use of pesticides 8 (Serra et al., 2005). Regev et al. (1997) showed that fungicides were not risk-reducing at low 9 levels of rainfall and we found no evidence of lower crop variability in fungicide-treated plots 10 than in untreated plots. Subsequently, fungicides did not increase cropping reliability, a fact 11 that is also noteworthy in an economic perspective. In the different scenarios we indirectly 12 showed the effect of market change through the different grain prices selected, and the effects 13 of taxes on pesticides and fuel through the different costs of production. Changes are difficult 14 to predict but scenarios like ours based on real facts are valuable as a baseline for future 15 discussions and recommendations.

16

The profitability to farmers of using a single fungicide treatment in winter wheat in southernmost Sweden during 1983-2007 was found to be doubtful rather often, although it improved during the latter part of the study due to more effective fungicides becoming available. Producer price and different costs obviously influenced the farm profits. Manageable and non-manageable changes and variations within and between years highlights the need for valid, economically sound and risk/uncertainty-derived decision support systems, preferably based on a more holistic concept than those of today.

1 Acknowledgements

The Swedish Farmers' Foundation for Agricultural Research (SLF), the Swedish Board of
Agriculture and the Swedish University of Agricultural Sciences funded this research. Field
trials were carried out by the Agricultural Societies in southern Sweden. Our sincere thanks
for creative discussions and critical reviews of this paper go to: Eva Johansson, Erland
Liljeroth, Arnulf Merker, and Hans Andersson, Jan-Eric Englund, Göran Gustafsson, Lennart
Johnsson, Mary McAfee and Gunnar Svensson.

8

9 **References**

10	Anderson, P.K.,	Cunningham, A.A.	, Patel, N.G., Morales,	F.J., E	pstein, P.R.,	Daszak, P.,

11 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and

12 agrotechnology drivers. TRENDS in Ecology and Evolution 19 (10), 535-544.

13

Bayles, R., 1999. The interaction of strobilurin fungicides with cereal varieties. Plant Var.
Seeds 12 (2), 129-140.

16

17	Bearchell, S.J., Fraaije, B.A., Shaw, M.W., Fitt, B.D.L., 2005. Wheat archive links long-term
18	fungal pathogen population dynamics to air pollution. PNAS 102, 5438-5442.

19

20 Bertilsson, G., Rosenqvist, H., Mattsson, L., 2005. Fosforgödsling och odlingsekonomi med

21 perspektiv på miljömål. Naturvårsdsverket, Rapport 5518, 58 p. Stockholm.

22

Bürger, J., de Mol, F., Gerowitt, B., 2008. The "necessary extent" of pesticide use - Thoughts
about a key term in German pesticide policy. Crop Prot. 27, 343-351.

1	Carlson, G.A., Main, C.E., 1976. Economics of disease-loss management. Annual Review of
2	Phytopathol. 14, 381-403.
3	
4	Chen, C-C., McCarl, B.A., 2001. An investigation of the relationship between pesticide usage
5	and climate change. Climatic change 50, 475-487.
6	
7	Cook, R.J., Jenkins, J.E.E., 1988. The contribution and value of pesticides to disease control
8	in cereals. In Control of plant diseases: Costs and Benefits (eds. Clifford BC, Lester E), 3-12.
9	
10	Cook, R.J., King, J.E., 1984. Loss caused by cereal diseases and the economics of fungicidal
11	control. In Plant Diseases: Infection, Damage and Loss, 237-245. Blackwell Scientifique
12	Publications, Oxford.
13	
14	Cooper, J., Dobson, H., 2007. The benefits of pesticides to mankind and the environment.
15	Crop Prot. 26, 1337-1348.
16	
17	Dimmock, J.P.R.E., Gooding, M.J., 2002. The influence of foliar diseases, and their control
18	by fungicides, on the protein concentration in wheat grain: a review. J. Agric. Sci. 138, 349-
19	366.
20	
21	Duveiller, E., Singh, R.P., Nicol, J.M., 2007. The challenges of maintaining wheat
22	productivity: pests, diseases, and potential epidemics. Euphytica 157, 417-430.
23	
24	Eyal, Z., 1981. Integrated control of Septoria diseases of wheat. Plant Dis. 65, 763-768.
25	

1	Fabre, F., Plantegenest, M., Yuen, J., 2007. Financial benefit of using crop protection decision
2	rules over systematic spraying strategies. Phytopathol. 97, 1484-1490.
3	
4	Folkesson, Ö., 1992. Körskador vid körning i växande gröda. Faktablad om växtskydd,
5	Jordbruk 65 J, 4 p. SLU Uppsala.
6	
7	Gooding MJ., 2007. Influence of foliar diseases and their control by fungicides on grain yield
8	and quality in wheat. In: H.T. Buck et al. (eds.) Wheat Production in Stressed Environments,
9	567-581. Developments in Plant Breeding vol. 12. Springer.
10	
11	Hawkins, D., 2005. Biomeasurement. Understanding, Analysing, and Communicating Data in
12	the Biosciences. 284 p. Oxford University Press, UK.
13	
14	Headley, J.C., Lewis, J.N., 1967. The pesticide problem: an economic approach to public
15	policy, pp. 141. Resources for the Future, Inc., Washington, D.C., USA.
16	
17	Jørgensen, L.N., Thygesen, K. 2006. Fungicide resistance and its impact on recommendations
18	to farmers – experience from Denmark. In Aspects of Appl. Biol. 71, 65-70.
19	
20	KSLA, 1989. Minskad bekämpning i jordbruket. Möjligheter och konsekvenser. Rapport nr.
21	36, pp. 88. Kungl. Skogs- och Lantbruksakademien, Stockholm Sweden (ISSN 0349-1811).
22	
23	Marasas, C.N., Smale, M., Singh, R.P., 2003. The economic impact of productivity
24	maintenance research: breeding for leaf rust resistance in modern wheat. Agric. Econ. 29,
25	253-263.

2	Milne, A, Paveley, N., Audsley, E., Parsons, D., 2007. A model of the effect of fungicides on
3	disease-induced yield loss, for use in wheat disease management decision support systems.
4	Ann. Appl. Biol. 151, 113-125.
5	
6	Nail, E.L., Young, D.L., Schillinger, W.F., 2007. Diesel and glyphosate price changes benefit
7	the economics of conservation tillage versus traditional tillage. Soil & Tillage Research 94,
8	321-327.
9	
10	Ordish, G., Dufour, D., 1969. Economic bases for protection against plant diseases. Annu.
11	Rev. Phytopathol. 7, 31-50.
12	
13	Priestley, R.H., Bayles, R.A., 1988. The contribution and value of resistant cultivars to
14	disease control in cereals. In: Control of Plant Diseases: Costs and Benefits, Clifford BC and
15	Lester, E. eds., 53-65.
16	
17	Regev, U., Gotsch, N., Rieder, P., 1997. Are fungicides, nitrogen and plant growth regulators
18	risk-reducing? Empirical evidence from Swiss wheat production. J. Agric. Econ. 48, 167-178.
19	
20	Rossing, W.A.H., Daamen, R.A., Hendrix, E.M.T., 1994. Framework to support decisions on
21	chemical pest control under uncertainty, applied to aphids and brown rust in winter wheat.
22	Crop Prot. 13 (1), 25-34.
23	

1	Ruske, R.E., Gooding, M.J., Dobraszczyk, B.J., 2004. Effects of triazole and strobilurin
2	fungicide programmes, with and without late-season nitrogen fertiliser, on the baking quality
3	of Malacca winter wheat. J. Cereal Sci. 40, 1-8.
4	
5	SCB/SJV, 2008. Växtskyddsmedel i jord och trädgårdsbruket 2006. Statistiska Meddelanden
6	MI 31 SM 0701 korrigerad version, 70 p. (<u>www.sjv.se</u> and <u>www.scb.se</u> accessed March
7	2009).
8	
9	Serra, T., Zilberman, D., Goodwin, B.K., Hyvonen, K., 2005. Replacement of agricultural
10	price supports by area payments in the European Union and the effects on pesticide use. Am.
11	J. Agric. Econ. 87, 870-884.
12	
13	SJV, 2008. Bekämpningsrekommendationer. Svampar och insekter 2008 (www.sjv.se,
14	accessed March 2009).
15	
16	Sundell, B., 1980. Växtskadegörare i jordbruket. 3. Ekonomiska effekter av en minskad
17	användning av kemiska bekämpningsmedel (engl. summary). Rapport från institutionen för
18	ekonomi och statistik, 170, pp. 128. SLU Uppsala.
19	
20	Tottman, D.R., Broad, H., 1987. The decimal code for the growth stages of cereals, with
21	illustrations. Ann. appl. Biol. 110, 441-454.
22	
23	Walters, D.R., Bingham, I.J., 2007. Influence of nutrition on disease development caused by
24	fungal pathogens: implications for plant disease control. Ann. appl. Biol. 151, 307-324.
25	

1	Wang, J., Pawelzik, E., Weinert, J, Zhao, Q, Wolf, G.A., 2008. Factors influencing falling
2	number in winter wheat. Eur. Food Res. Technol. 226, 1365-1371.
3	
4	Wiik, L., 1991. Ekonomisk betydelse av svampsjukdomar i stråsäd vid förändrade priser
5	(Engl. summary). 32:a svenska växtskyddskonferensen. Uppsala 30-31 januari 1991.
6	Skadedjur och växtsjukdomar, 171-186.
7	
8	Wiik, L., 2009. Yield and disease control in winter wheat in southern Sweden during 1977-
9	2005. Crop Prot. 28, 82-89.
10	
11	Wiik, L., Ewaldz, T. Impact of temperature and precipitation on yield and plant diseases of
12	winter wheat in southern Sweden 1983-2007, Crop Protection (2009),
13	doi:10.1016/j.cropro.2009.05.002.
14	
15	Wiik, L., Pålsson, L., 2004. Olika insatser av fungicider och kväve i höstvete. Skåneförsök
16	2003. Meddelande nr 70, försöksringarna och hushållningssällskapen i Skåne, 144-161.
17	
18	Wiik, L., Olofsson, B., Johnsson, L., Olvång, H., 1995. Sprutning mot skadesvampar i stråsäd
19	med fungicider 1976-1992. Engl. summary. SLU, institutionen för växtskyddsvetenskap,
20	rapport 3, pp. 115.
21	
22	Zadoks, J.C., 1984. Analyzing cost effectiveness of EPIPRE. EPPO Bull. 14, 401-407.
23	
24	Zilberman, D., Schmitz, A, Casterline, G., Lichtenberg, E., Stebert, J.B., 1991. The
25	economics of pesticide use and regulation. Science 253, 518-522.

Designa	tion of scena	rios at three	Fungicide price	Cost of spraying	~Cost of damage ^a	Treatment cost
	grain price	S				
10 € dt ⁻¹	20 € dt ⁻¹	30 € dt ⁻¹	€ ha ⁻¹	€ ha⁻¹	€ ha ⁻¹	€ ha ⁻¹
10	20	30	0	0	0	-
11	21	31	30	12	4	46
12a	22	32	40	6	4	50
12b	-	-	od ^b	6	4	od^{b}
13	23	33	40	12	4	56
14	24	34	40	12	8	60
15	25	35	60	12	4	76
16	26	36	60	12	8	80

Table 1. Designation and economics of 22 scenarios with different grain prices (€ dt⁻¹) to the farmer and different treatment costs associated with spraving (\in ha⁻¹)

1626366012880a Mean cost at 0.4% damage in the crop due to spraying was ~4 € ha⁻¹, and at 0.8% ~8 € ha⁻¹ depending on yield level.b In scenario 12b, the cost of Amistar at optimal dose (od) was included to consider the net return when a mean optimal fungicide dose was used during the latter period of the evaluation period (1995-2007).

Year (N ^a)	Grain pric		Grain pric		Grain pric	Grain price 30 € dt ⁻¹				
	Max. cost	Std. dev.	Max. cost	Std. dev	Max. cost	Std. dev				
1983 (13)	46	28	109	66	172	104	cdef			
1984 (16)	60	23	141	54	221	85	cdef			
1985 (13)	32	18	76	42	120	66	def			
1986 (7)	34	44	80	103	126	162	def			
1987 (7)	137	41	323	97	508	153	а			
1988 (5)	62	13	145	31	229	49	cdef			
1989 (12)	19	24	44	57	70	89	f			
1990 (9)	95	51	224	119	353	187	abc			
1991 (11)	64	23	150	53	237	83	cdef			
1992 (6)	18	11	43	26	67	41	f			
1993 (3)	24	24	56	56	89	88	ef			
1994 (12)	20	12	46	29	73	45	f			
1995 (47)	36	26	84	61	133	96	def			
1996 (65)	75	50	176	118	277	186	bcdef			
1997 (63)	88	38	206	90	324	141	abcd			
1998 (36)	101	41	237	95	374	150	abc			
1999 (34)	90	46	211	109	332	172	abcd			
2000 (37)	58	33	137	79	215	124	cdef			
2001 (93)	53	41	124	95	195	150	cdef			
2002 (107)	132	54	311	127	490	201	ab			
2003 (94)	81	30	191	71	301	111	abcde			
2004 (36)	67	42	158	99	249	155	cdef			
2005 (31)	24	25	57	59	91	92	ef			
2006 (6)	36	19	84	45	132	70	def			
2007 (8)	72	24	169	55	266	87	cdef			
Mean ^b	61	34	143	79	226	124				
Mean ^c	74	50	175	119	275	187				

Table 3. Maximum total cost (\notin ha⁻¹) of a single fungicide treatment at GS 45-61 in southern Sweden 1983-2007 that still gives a profitable net return at three grain prices (scenarios 10, 20 and 30)

^a Valid in max. cost columns at all three grain prices. Group size is unequal. Harmonic mean of group sizes is used. Type I error levels are not guaranteed. ^b Mean of years (N=25). ^c Mean of all entries (N=771).

Shaded a	areas rep	oresent a	nnual m	eans wi	th negat													
Year							urn (€ h					f 18 sce						
	11	12a	13	14	15	16	21	22	23	24	25	26	31	32	33	34	35	36
1983	3	-1	-7	-9	-27	-29	63	59	53	49	33	29	123	119	113	107	93	87
1984	16	12	6	3	-14	-17	93	89	83	78	63	58	171	167	161	153	141	133
1985	-12	-16	-22	-24	-42	-44	29	25	19	14	-1	-6	70	66	60	52	40	32
1986	-10	-14	-20	-22	-40	-42	33	29	23	17	3	-3	76	72	66	57	46	37
1987	93	89	83	82	63	62	276	272	266	262	246	242	459	455	449	443	429	423
1988	17	13	7	5	-13	-15	98	94	88	82	68	62	178	174	168	159	148	139
1989	-25	-29	-35	-37	-55	-57	-3	-7	-13	-17	-33	-37	20	16	10	3	-10	-17
1990	51	47	41	38	21	18	176	172	166	160	146	140	301	297	291	281	271	261
1991	20	16	10	7	-10	-13	103	99	93	88	73	68	187	183	177	168	157	148
1992	-26	-30	-36	-38	-56	-58	-4	-8	-14	-19	-34	-39	18	14	8	0	-12	-20
1993	-20	-24	-30	-33	-50	-53	9	5	-1	-7	-21	-27	38	34	28	19	8	-1
1994	-25	-29	-35	-37	-55	-57	-1	-5	-11	-16	-31	-36	22	18	12	4	-8	-16
1995	-9	-13	-19	-21	-39	-41	36	32	26	20	6	0	81	77	71	62	51	42
1996	30	26	20	17	0	-3	127	123	117	111	97	91	220	221	215	205	195	185
1997	43	39	33	30	13	10	157	153	147	141	127	121	272	268	262	251	242	231
1998	56	52	46	43	26	23	189	185	179	172	159	152	321	317	311	300	291	280
1999	45	41	35	32	15	12	162	158	152	145	132	125	279	275	269	258	249	238
2000	13	9	3	0	-17	-20	87	83	77	70	57	50	162	158	152	140	132	120
2001	8	4	-2	-5	-22	-25	75	71	65	58	45	38	142	138	132	120	112	100
2002	87	83	77	74	57	54	262	258	252	245	232	225	437	433	427	415	407	395
2003	36	32	26	23	6	3	142	138	132	125	112	105	248	244	238	227	218	207
2004	22	18	12	9	-8	-11	109	105	99	91	79	71	195	191	185	174	165	154
2005	-21	-25	-31	-35	-51	-55	7	3	-3	-11	-23	-31	35	31	25	12	5	-8
2006	-9	-13	-19	-22	-39	-42	36	32	26	19	6	-1	80	76	70	60	50	40
2007	27	23	17	14	-3	-6	121	117	111	104	91	84	214	210	204	194	184	174
Mean ^a	16	12	6	4	-14	-16	95	91	85	79	65	59	174	170	164	155	144	135

Table 4. Different scenarios and mean annual profitability (\in ha⁻¹) for a single fungicide treatment at GS 45-61 in southern Sweden 1983-2007. Shaded areas represent annual means with negative profitability

^a Mean of years.

Year	11 12a 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 1983 13 46 46 38 38 15 15 85 85 77 77 69 62 85 85 85 85 77																		
		11	12a	13	14				· /·						32	33	34	35	36
1983	13	46	46	38	38	15	15	85	85	77	77	69	62	85	85	85	85	85	77
1984	16	75	75	75	69	25	25	100	94	94	94	75	75	100	100	100	100	94	94
1985	13	15	15	8	8	0	0	85	77	62	62	46	38	92	92	92	92	77	62
1986	7	29	29	29	14	14	14	57	57	57	57	43	29	57	57	57	57	57	57
1987	7	100	100	100	100	86	86	100	100	100	100	100	100	100	100	100	100	100	100
1988	5	80	80	80	80	0	0	100	100	100	100	100	100	100	100	100	100	100	100
1989	12	8	8	8	8	8	8	42	33	33	25	25	17	42	42	42	42	33	33
1990	9	89	89	89	78	67	67	89	89	89	89	89	89	89	89	89	89	89	89
1991	11	82	73	64	64	36	36	100	100	100	100	100	91	100	100	100	100	100	100
1992	6	0	0	0	0	0	0	50	50	33	33	0	0	83	50	50	50	50	50
1993	3	33	33	0	0	0	0	67	33	33	33	33	33	67	67	67	67	33	33
1994	12	0	0	0	0	0	0	42	42	33	33	17	8	75	58	50	42	42	42
1995	47	32	26	19	17	6	6	68	68	64	62	51	40	81	79	79	72	68	62
1996	65	74	71	66	66	52	48	82	80	78	78	77	74	83	83	83	82	80	78
1997	63	86	84	79	78	57	54	97	97	95	95	95	94	98	98	98	97	97	95
1998	36	94	94	92	89	67	64	100	100	100	97	97	97	100	100	100	100	100	100
1999	34	85	79	71	68	56	56	97	97	97	94	94	91	97	97	97	97	97	97
2000	37	62	62	57	51	30	27	86	86	78	78	76	76	89	89	89	89	86	78
2001	93	52	48	45	43	27	26	74	74	74	71	66	60	78	77	75	74	74	73
2002	107	93	92	92	92	84	84	98	98	97	96	93	93	100	100	99	98	98	97
2003	94	87	83	76	73	55	53	100	100	99	98	95	94	100	100	100	100	100	98
2004	36	67	61	58	58	42	39	83	83	81	81	72	69	89	83	83	83	83	81
2005	31	16	13	10	10	6	6	42	39	32	32	29	26	55	55	48	42	39	32
2006	6	17	17	17	17	0	0	83	83	83	83	67	33	83	83	83	83	83	83
2007	8	88	75	75	75	50	25	100	100	100	100	100	100	100	100	100	100	100	100
Mean ^a		56	54	50	48	31	30	81	79	76	75	68	64	86	83	83	82	79	76

Table 5. Profitability (% of no. of entries) of a single fungicide treatment at GS 45-61 in southern Sweden 1983-2007. Shaded areas represent annual means with negative profitability in Table 3

^a Mean of years.

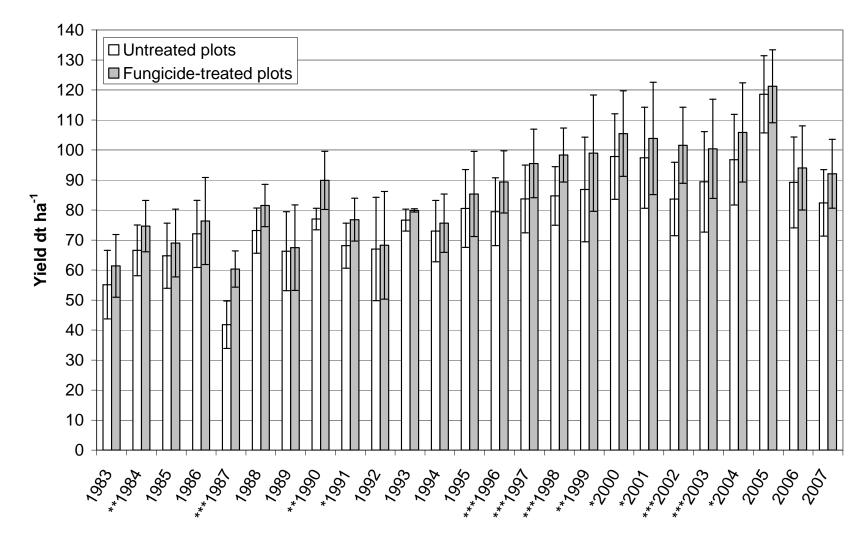
Year			HLW g/L		intreate		Protein conte	m payment thres			gberg falling	number s
1 cui	N^{a}	Untreat ^b	Treat ^c	Change ^d %	N ^a	Untreat ^b	Treat ^c	Change ^d %	N ^a	Untreat ^b	Treat ^c	Change ^d %
1983	13	785	798	0	-	-	-	-	-	-	-	
1984	16	789	800	6	-	-	-	-	-	-	-	-
1985	13	809	808	0	-	-	-	-	-	-	_	-
1986	7	821	820	0	-	-	-	-	-	-	-	-
1987	7	754	777	57	-	-	-	-	-	_	_	-
1988	5	826	832	0	-	-	-	-	-	-	-	-
1989	12	829	829	0	7	11.8	12.0	0	7	264	260	0
1990	9	831	833	0	4	10.3	10.7	0	4	270	270	0
1991	11	820	824	0	8	10.6	10.6	0	10	270	270	0
1992	6	827	825	0	3	10.7	10.8	0	3	270	270	0
1993	3	821	823	0	-	-	-	-	3	270	270	0
1994	10	828	827	0	2	12.4	12.1	0	-	-	-	-
1995	41	782	788	0	3	10.8	10.5	67	-	-	-	-
1996	65	743	759*	20	56	10.6	10.3	9	-	-	-	-
1997	49	770	787**	8	28	10.9	10.5	0	-	-	-	-
1998	36	753	768	22	36	11.7	11.3	6	36	329	288*	22
1999	34	710	729	15	32	11.1	10.7	13	32	181	167	6
2000	36	716	721	0	35	12.0	11.9	3	35	254	240	17
2001	71	760	770**	17	72	10.9	10.8	1	68	323	304*	4
2002	98	726	764***	36	98	11.4	10.9***	10	71	353	327*	3
2003	85	739	764***	22	85	12.0	11.7	2	61	364	345	0
2004	36	750	762*	22	36	11.9	11.7	6	12	313	298	0
2005	31	795	800	0	31	10.5	10.6	0	31	349	341	0
2006	5	748	751	0	5	12.4	12.2	0	3	307	313	0
2007	8	740	755	38	8	11.8	11.5	0	4	256	259	0
Mean ^e	771	757	773***	16		11.3	11.1***	6		315	296**	4
Mean ^f	25	779	789 ns			11.3	11.2 ns			292	281 ns	

Table 6. Influence of fungicide treatment on wheat grain factors (HLW, protein content, Hagberg falling number) that affect the price received by the farmer Calculated change between fungicide-treated and untreated field plots deriving from payment threshold values (see footnote d)

^a Number of entries, field trials (1983-1994, 2006-2007) or experimental treatments (1995-2005), untreated and treated respectively. ^b Not fungicide-treated plots. ^c Fungicide-treated plots, single treatment during GS 454-61. ^d Change due to fungicide treatment for numbers of N exceeding payment threshold values: HLW \geq 740 g/L, protein \geq 10.5%, Hagberg falling number \geq 200 s. Asterisks (*, **, ***) indicate statistically significant differences. ^e Mean of all entries. ^f Mean of years.

Percent of entries in 10%	return is divided into 10 % steps in decreasing order of net return Net return € ha ⁻¹ at three fungicide treatment cost levels					
steps in descending order		-				
of net return and at						
three grain prices						
	Low	Medium	High			
<u>Grain price 10 € dt⁻¹</u>						
0 - 10 %	218 to 113	184 to 79	151 to 46			
10 - 20 %	113 to 83	79 to 49	46 to 16			
20 - 30 %	83 to 63	49 to 29	16 to -4			
30 - 40%	63 to 48	29 to 14	-4 to -19			
40 - 50 %	48 to 34	14 to 0	-19 to -33			
50 - 60 %	34 to 23	0 to -12	-33 to -45			
60 - 70 %	23 to 8	-12 to -26	-45 to -59			
70 - 80 %	8 to -3	-26 to -37	-59 to -70			
80 - 90 %	-4 to -20	-38 to -54	-71 to -87			
90-100 %	< -20	< -54	< -87			
<u>Grain price 20 € dt⁻¹</u>						
0-10 %	557 to 310	523 to 276	490 to 243			
10 - 20 %	310 to 240	276 to 206	243 to 173			
20 - 30 %	240 to 193	206 to 159	173 to 126			
30 - 40 %	193 to 158	159 to 124	126 to 91			
40 - 50 %	158 to 125	124 to 91	91 to 58			
50 - 60 %	125 to 98	91 to 64	58 to 31			
60 - 70 %	98 to 64	64 to 30	31 to -3			
70 - 80 %	64 to 37	30 to 3	-3 to -29			
80-90 %	35 to -3	1 to -37	-32 to -70			
90-100 %	< -3	< -37	< -70			
Grain price 30 € dt ⁻¹						
0-10 %	896 to 507	862 to 473	829 to 440			
10 - 20 %	507 to 397	473 to 363	440 to 330			
20 - 30 %	397 to 323	363 to 289	330 to 256			
30 - 40 %	323 to 268	289 to 234	256 to 201			
40 – 50 %	268 to 216	234 to 182	201 to 149			
50 - 60 %	216 to 173	182 to 139	149 to 106			
60-70~%	173 to 120	139 to 86	106 to 53			
70-80%	120 to 77	86 to 43	53 to 10			
80 - 90 %	74 to 14	40 to -20	7 to -53			
90-100 %	< 14	< -20	< -53			

Table 2a. Net return (\notin ha⁻¹) at three grain prices and three fungicide treatment cost levels [low (33 \notin ha⁻¹), medium (67 \notin ha⁻¹) and high (100 \notin ha⁻¹)] estimated for 771 entries in field trials carried out 1983-2007. The net return is divided into 10 % steps in decreasing order of net return


Table 2b. Percent no. of profitable entries (net return > 0 \in ha⁻¹) and yield increase required to obtain a profitable net return at three grain prices and three fungicide treatment cost levels, low (33 \in ha⁻¹), medium (67 \in ha⁻¹) and high (100 \in ha⁻¹) during 1983-2007.

Grain price	Percentage of profitable entries at			Yield inc	Yield increase (dt ha ⁻¹) required to		
	three fungicide treatment cost levels			obtain	obtain a profitable net return		
	Low	Medium	High	Low	Medium	High	
$10 \in dt^{-1}$	77	50	28	4.5	9.1	13.6	
$20 \in dt^{-1}$	89	80	69	1.9	3.9	5.8	
30 € dt ⁻¹	91	86	82	1.3	2.5	3.7	

Figure 1. Yield (dt ha⁻¹) in untreated and fungicide-treated (single treatment at GS 45-61) plots in farmers' fields in southern Sweden, 1983-2007. Bars represent standard deviations. Asterisks before years indicate statistically significant differences between untreated and treated plots. Data from Wiik (2009) and Wiik and Ewaldz (2009).

Figure 2. Variability (as boxplots according to SPSS, Hawkins, 2005) in net return (\notin dt⁻¹) in scenario 12a during 1983-2007 with 771 entries. Medians are marked as a horizontal line in the boxes with upper and lower quartiles. T-shaped bars indicate the range, with outliers (•) and extreme outliers (*).

U3/Fig

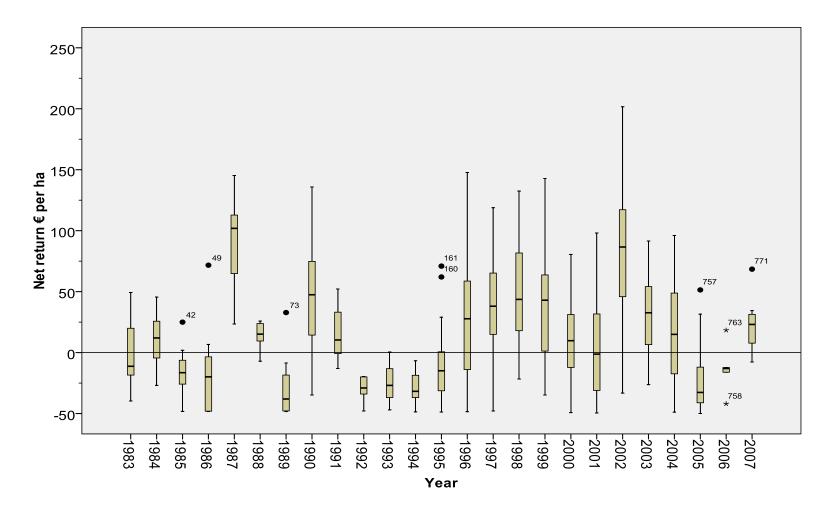


Figure 2.