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Lipids in common carp (Cyprinus carpio) and effects on human 
health 

Abstract 
There is evidence that n-3 fatty acids (FA), especially EPA and DHA, are beneficial for 
human health. This thesis examined factors influencing FA composition in common 
carp flesh, sought to develop a procedure for long-term sustainable culture of common 
carp with improved muscle lipid quality (omega 3 carp) and studied the health benefits 
of eating such carp in the secondary prevention of cardiovascular disease.  

An approach using the bioactive compound sesamin to increase biosynthesis of EPA 
and DHA from alpha linolenic acid showed that addition of sesamin did not alter 
muscle lipid composition in common carp. Investigations of the response of carp to 
finishing feeding and prediction of FA changes by a dilution model revealed that fillet 
FA composition reflected the FA composition of the diet and was correlated to the 
length of the feeding period. The simple dilution model accurately predicted changes in 
the fillet FA composition.  

A procedure for long-term sustainable culture of omega 3 carp based on 
supplementation by pellets containing rapeseed cake and extruded linseed as a lipid 
source was developed and the carp were compared with fish supplemented by cereals 
and fish kept on natural feed (plankton and benthos) only. Carp supplemented by 
cereals were characterised by a high level of monounsaturated FA (MUFA) and low 
level of n-3 FA, whereas carp supplemented by the rapeseed/linseed pellets had a 
favourable FA profile close to that of fish kept on natural feed only. 

Studies on the effects of purging on carp flesh lipid content and composition showed 
that lipid quality changed during the purging period, with increasing levels of n-3 FA 
and decreasing levels of MUFA. Supplementation with rapeseed/linseed pellets in the 
growing period and purging for no longer than 14 days resulted in a nutritionally 
beneficial FA composition combined with an economically acceptable weight loss.  

In studies on the health benefits of carp in the prevention and treatment of 
cardiovascular disease, consumption of carp improved plasma lipid parameters in 
patients after major cardiac revascularisation surgery. Overall, these results suggest that 
culture of carp should be recognised as long-term sustainable and carp should be 
promoted as a healthy and local product. 

Keywords: common carp, fatty acid composition, human health, nutrition, pond culture. 
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1 Introduction 

1.1 Fatty acids and aquaculture 

The world capture fisheries have been relatively stable in the past decades. It is 
not possible to further increase the fish capture on a world-wide scale without 
a risk of overfishing, so aquaculture is the only solution to meet the increasing 
consumer demand for fish. Aquaculture is the fastest growing animal food 
producing sector, with a growth rate from 1970 of around 8.3% per year and 
with 52.5 million tons in 2008 (68.3 million tons including aquatic plants), it 
accounts for almost half the global food fish supply (SOFIA, 2010).  

Fish oil and fish meal have traditionally been used as ingredients in 
aquafeeds for carnivorous fish culture. Fish oil has a high level of the n-3 
highly unsaturated fatty acids (n-3 HUFA; 20 or more carbons and three or 
more double bonds), especially eicosapentaenoic (EPA; 20:5n-3), 
docosapentaenoic (DPA; 22:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), 
which are natural and nutritious for fish and humans. As aquaculture expands, 
fish meal and fish oil are becoming more expensive and scarce. Consequently, 
there is high pressure on the aquafeed producers to replace these ingredients 
with more sustainable alternatives (Pickova & Morkore, 2007). Generally, 
vegetable sources of oil and protein are used as the replacement. Vegetable oils 
can replace a substantial amount of fish oil in the diets of many fish species 
without affecting growth and feed conversion efficiency. However, the 
drawback of these alternatives is the lack of n-3 HUFA, which compromises 
the nutritive value of the farmed fish for consumers. Several alternative oil 
sources, derived from unicellular algae, pelagic organisms or benthic 
invertebrates containing high amounts of n-3 HUFA, have been identified and 
tested in aquafeeds. However, the price of these is still too high for them to be 
commonly used in aquafeeds (reviewed by Turchini et al., 2009).   
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1.2 Common carp  

Common carp (Cyprinus carpio) is one of the most cultured fish species in the 
world. In 2008, world production was 2 987 433 tons and the European 
production was 144 747 tons (FAO, 2011). Carp is thus well-established 
cultured species with a well-known production cycle. It is consumed as a 
traditional food in central Europe. 

Carp is an omnivorous species, eating plankton and benthos (worms, 
insects, molluscs) as well as detritus in natural conditions (Adamek et al., 
2004). The typical carp culture practice is to use artificial shallow earthen 
ponds in which production is based on plankton and benthos production, 
supplemented by cereals. The digestive system of carp is better adapted to a 
diet including more carbohydrates than carnivorous species. The production 
cycle in Europe usually takes 3-4 years. 

There are two sources of n-3 HUFA in carp produced in ponds: i) the 
natural feed organisms (plankton and benthos), which are rich in n-3 HUFA; 
and ii) the n-3 HUFA synthesised by carp from alpha linolenic acid (ALA). It 
has been reported that unlike marine fish, carps are able to bio-convert ALA to 
n-3 HUFA (Zheng et al., 2004; Tocher, 2003; Olsen et al., 1990; Farkas, 
1984). It is therefore of interest to determine and maximise the ability of carp 
to synthesise n-3 HUFA from ALA in order to preserve the lipid quality of the 
fish as human food and achieve sustainable utilisation of feed resources. Carp 
culture could therefore become a net producer of n-3 HUFA if fish with high 
enzyme activity in FA elongation and desaturation were selected. 

Carp also have relatively low requirements for both n-3 and n-6 FA (0.5-
1%) which can be met by plant 18-carbon FA (Takeuchi, 1996). The inclusion 
rate of fish meal in carp culture is low (5%)  (Tacon & Metian, 2008), and fish 
oil can even be omitted. Thus, substitution of these ingredients will be 
considerably easier for carp than for carnivorous aquaculture species. 

Carp culture could therefore be an example of long-term sustainable 
production without relying on a supply of fish oil and fish meal. In addition, 
carp culture turns nutrients “lost” to water (especially N and P) into highly 
valuable nutritious flesh via the natural food chain in carp ponds. The low 
trophic levels are an especially important source of valuable n-3 HUFA in 
central parts of continents, where the population has less access to marine fish 
from capture.   
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1.3 Health benefits of fish consumption 

Fish consumption is steadily increasing world-wide and fish is being promoted 
as healthy and beneficial for human health. Nutrients in fish and other aquatic 
organisms that are recognized as characteristic for these foods and that are 
important for human health are proteins, lipids, especially the n-3 
polyunsaturated fatty acids (n-3 PUFA), vitamins D and B12, antioxidants 
such as astaxanthin and some trace elements, e.g. selenium, iodine. Altogether, 
these compounds make fish consumption an important source of beneficial 
bioactive compounds in human nutrition. 

Studies on the beneficial effects of fish intake are very often directed 
towards marine fish and shellfish. EPA and DHA are therefore misleadingly 
called “marine” fatty acids or “fish” fatty acids. These n-3 HUFA are to a large 
degree synthesized by microalgae, both in freshwater and saltwater, and 
transported via the food chain in the systems. 

Today’s Western diet is generally deficient in n-3 fatty acids and excessive 
in n-6, resulting in a low n-3/n-6 ratio. It has been suggested that humans 
evolved on a diet with an n-3/n-6 ratio close to 1:1, whereas in the Western 
diet this ratio exceeds 1:15 (Simopoulos, 2008; Leaf & Weber, 1987). This 
dietary change is suggested to be associated with many lifestyle diseases. 
Several studies suggest that the excessive dietary intake of n-6 FA typical of 
the Western diet also promotes obesity, as reviewed by Ailhaud (2006).  

Studies indicate that conversion of ALA to EPA occurs but is limited in 
humans and that further transformation to DHA is very low (Burdge & Calder, 
2005). Therefore it has been proposed that EPA and DHA should be consumed 
directly to maintain optimal tissue functions. Fish lipids are characterized by a 
high level of n-3 HUFA, especially EPA, DPA and DHA, which are generally 
referred to as n-3 long-chain PUFA or n-3 HUFA. They have many different 
functions and actions in the human body, e.g. influencing the physical 
properties of cell membranes, membrane protein-mediated responses, acting as 
eicosanoid precursors, cell signalling and gene expression in many different 
cell types (Calder & Yaqoob, 2009). EPA and DHA have been shown to have 
beneficial effect on a range of cardiovascular risk factors and can result in 
primary cardiovascular prevention and reduction in total and cardiovascular 
mortality (Calder & Yaqoob, 2009).  

The beneficial effects of fish consumption are generally recognised, but, 
there have been several concerns about the overall safety of eating fish, mainly 
due to the potential risk of contaminants (mercury, PCB, dioxines). However, 
Mozaffarian et al. (2006) conducted an extensive meta-study and concluded 
that the benefits of fish intake exceed the potential harmful effects of any 
pollutants present in the fish. 
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1.4 Recommendations and situation in the Czech Republic 

Many authorities and nutrition and health organisations have developed 
specific dietary recommendations for intake of fish and fatty acids for different 
countries around the world.  
 

The European Food Safety Authority (EFSA) has approved several 
health claims related to the consumption of fish or EPA and DHA, e.g. 
maintenance of normal level of blood triacylglycerols, normal brain function 
and vision, cardiac function and blood pressure (EFSA Panel on Dietetic 
Products, 2010b).  

 
The EFSA Scientific Panel on Contaminants in the Food Chain stated that: 

“There is evidence that fish consumption, especially of fatty fish (one to two 
servings a week) benefits cardiovascular system and is suitable for secondary 
prevention in manifest coronary heart disease” (CHD) (EFSA, 2005).  

 
The EFSA Panel on Dietetic Products, Nutrition and Allergies proposed 

reference labelling intake values for fatty acids: 
 250 mg EPA+DHA; 2 g ALA and 10 g of LA per day (EFSA, 2009) 

 
and has set the following Dietary Reference Values for fats (EFSA Panel on 
Dietetic Products, 2010a): 

 Fat: 20-35% energy (E%) 
 Saturated FA (SFA) and trans FA: as low as possible 

It has also set the following Adequate Intake values (EFSA Panel on Dietetic 
Products, 2010a): 

 LA 4 E% 
 ALA 0.5 E% 
 EPA+DHA adults 250 mg 
 DHA children 6-24 months 100 mg 
 Pregnancy and lactation additional 100-200 mg of DHA 

 
The WHO/FAO has stated that “regular fish consumption (1-2 servings per 

week) is protective against coronary heart diseases and ischemic stroke and is 
recommended. The serving should provide an equivalent of 200-500 mg of 
EPA and DHA” (WHO/FAO, 2003). The WHO/FAO Expert Consultation 
recommends that Member States “should emphasise:  

 The benefits of fish consumption on reducing coronary heart disease 
mortality (and the risks of mortality from coronary heart disease 
associated with not eating fish) for the general adult population 
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 The net neurodevelopmental benefits to infants of fish consumption 
by women of childbearing age, particularly pregnant and nursing 
mothers.” (WHO/FAO, 2011). 

 
The American Heart Association recommends (Kris-Etherton et al., 

2002): 
 For the general population: “at least two servings of fish per week 

(particularly fatty fish)”.  
 Patients with documented CHD: ≈ 1 g of EPA+DHA/day  
 Patients with hypertriglyceridaemia: 2-4 g EPA+DHA/day  

 
The Czech Society of Nutrition recommends (Dostálová et al., 2012): 
 Fish consumption: 400 g/week 
 Fat:  

o adults with low energy expenditure <30 E%  
o adults with high energy expenditure <35 E% 
o children 30-35 E% 
 

 SFA: 10 E% (20 g) 
 PUFA: 7 - 10 E%  
 n-6/n-3 ratio: max 5:1.  
 Trans FA as low as possible, max 1 E% (2.5 g/day)  
 Cholesterol: 100 mg/1000 kcal (max. 300 mg/day) 
 

Fish intake is generally very low in the Czech Republic (in 2008 only 5.5 
kg of fish or fish products per capita per year) (MZe, 2009), and it is far below 
current recommendations. Other sources of n-3 FA, including EPA and DHA, 
are scarce in the diet consumed by the Czech population (Hibbeln et al., 2006). 
Thus, it would be beneficial to generally increase fish consumption and also to 
increase the content of the beneficial fatty acids in locally produced fish and 
associated products.  

1.5 Fatty acids and their metabolism 

Fatty acid is a carboxylic acid, usually with an aliphatic chain that can be 
either saturated (without double bonds) or unsaturated (with double bonds). 
Unsaturated fatty acids are further divided according to number of double 
bonds into monounsaturated (one double bond) or polyunsaturated (more than 
one double bond). The double bond can be organised in a cis- or trans-
configuration. Another important characteristic is a position of the first double 



 16 

bond (from the methyl end). The principle of fatty acid nomenclature is shown 
in Figure 1. 

  
 
 
 
 
 

 

 

 

Figure 1. Principle of fatty acid nomenclature  

Fatty acids are an important source of energy. In the form of 
triacylglycerols, they can yield more than twice the amount of energy for the 
same mass as carbohydrates or proteins. In the form of phospholipids, they 
serve as a basic building block for all cellular membranes. Fatty acid 
metabolism consists of catabolic processes, which generate energy and fatty 
acid metabolites, and anabolic processes, which lead to the creation of fatty 
acids and other molecules of which they form part. 

Fatty acids are predominantly formed in the liver from two-carbon bodies 
(acetyl-CoA) through the action of a cytosolic multienzyme complex called 
fatty acid synthetase. All known organisms are able to de novo biosynthesise 
SFA. The SFA can be further modified by inserting a double bond to form 
mono unsaturated fatty acids (MUFA) by Δ-9 desaturase which is located in 
the endoplasmatic reticulum. There are two series of PUFA which cannot be 
formed by any vertebrates (including fish) and are therefore essential. The n-6 
family is synthesised from LA (18:2n-6) and the n-3 family is synthesised from 
ALA (18:3n-3). These two 18-carbon (C18) fatty acids can be further 
converted to HUFA by desaturases and elongases (Morais et al., 2009; Voss et 
al., 1991) (Figure 2).  
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Figure 2. Pathways of HUFA biosynthesis from C18 fatty acids, adapted from Voss et al. (1991) 
and Morais et al. (2009) 

The rate of conversion varies in different organisms usually depending on 
the extent to which the species can obtain HUFA from the natural diet. Thus 
the carnivorous species which can obtain excess HUFA from their natural diet, 
usually have a lower ability for conversion compared with herbivorous species. 
In marine fish species this bioconversion occurs poorly, if at all, and therefore 
they have essential requirements for HUFA in their diet (reviewed by Tocher, 
2003). Regulation of the HUFA biosynthetic pathway is described in detail in 
section 1.7. 

1.6 Factors influencing flesh quality with focus on carp 

1.6.1 Species 

There are differences in muscle lipid content between fish species which also 
lead to differences in FA composition (Fontagné-Dicharry & Médale, 2010). 
Some fish species have a low lipid content in the fillet (less than 2 %), e.g. 
pikeperch (Stizostedion lucioperca), European perch (Perca fluviatilis) and 
Atlantic cod (Gadus morhua). Other fish species have a high lipid content in 



 18 

the fillet (more than 10%), e.g. Atlantic salmon (Salmo salar), European eel 
(Anguilla anguilla), while that in common carp is intermediate  (Henderson & 
Tocher, 1987). In general lipids in marine fish species contain more HUFA 
with a higher n-3/n-6 ratio than those in freshwater fish species (Henderson & 
Tocher, 1987).    

1.6.2 Genetic background 

Another important factor affecting lipid content and composition in fish is the 
genetic background. It has been shown that muscle lipid content is a highly 
heritable trait (>0.5) in common carp and that there is a relatively high positive 
genetic correlation between body size (length and body weight) and lipid 
content (0.71 and 0.59, respectively) (Kocour et al., 2007).  

Leaver et al. (2011) analysed flesh lipid parameters in 48 families of 
Atlantic salmon and found that flesh n-3 HUFA composition is a highly 
heritable trait (h2 = 0.77 ± 0.14). Specific hepatic mRNA expression patterns 
were found to be associated with high flesh n-3 HUFA, which indicates a 
possible mechanism for genotype-dependent deposition in flesh. 

There are few data available on the effect of genetic origin on the lipid 
composition in carp (Fauconneau et al., 1995). In a study with four carp 
hybrids Buchtova et al. (2007) found that FA composition was not affected to 
any great extent by hybrid type.  

1.6.3 Sex, maturation 

Kocour et al. (2007) reported that females of Hungarian synthetic mirror carp 
were fattier than males, probably due to later maturation. In a study with four 
common carp hybrids Buchtova et al. (2008) found only minor differences in 
lipid composition between males and females, possibly caused by different 
lipid content. Fajmonova et al. (2003) did not find sexual dimorphism in lipid 
content and FA composition in three-year-old carp. This indicates that effects 
of sex dimorphism on FA composition in carp are probably only minor and 
observable only in sexually mature stages. 

1.6.4 Tissue 

Fish fillet is heterogeneous and is composed of white muscle, pink and red 
muscle, adipose tissue and skin (Nathanailides et al., 1995). The tissues differ 
greatly in lipid content and therefore the lipids are not equally distributed in 
the fillet. Mráz & Pickova (2009) reported that the lipid content in carp white 
muscle, red muscle and abdominal wall was around 1, 17 and 30 % 
respectively. The lipid class and FA composition in the three tissues was 
highly influenced by the lipid content. Abdominal wall had the highest 
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proportion of triacylglycerols with a high level of MUFA and low level of n-3 
FA, whereas white muscle was the leanest and had a high proportion of 
phospholipids and a high level of n-3 FA including EPA and DHA. The effect 
of fattiness on the FA composition can be explained to a large extent by 
differences in the FA composition of the major lipid fractions and the relative 
contribution of these fractions to total lipids. Phospholipids are particularly 
rich in PUFA, whereas triacylglycerols contain high levels of MUFA and 
much lower levels of PUFA (Kiessling et al., 2001). Thus PUFA are 
negatively correlated to fattiness and MUFA are positively correlated 
(reviewed by Henderson & Tocher, 1987). 

1.6.5 Nutrition 

 “You are what you eat” - nutrition has a major impact on the lipid content and 
composition in fish. Thus good pond management to maintain a sufficient 
amount and appropriate structure of the planktonic and benthic community in 
ponds is of great importance when seeking to improve carp FA composition.  

Cereals are usually used as a supplemental feeding for carp. Since they are 
rich in carbohydrates and have very low levels of n-3 FA, the flesh of the 
farmed carps generally contains a high level of oleic acid and a low level of 
favourable n-3 HUFA (Csengeri, 1996; Mráz et al., 2012). A supplementary 
feedstuff which is rich in ALA could be an alternative way to increase the n-3 
HUFA content in carp flesh. Feedstuffs with a high level of ALA that are 
cheap and easily available include rapeseed, linseed and hempseed. Rapeseed 
or rapeseed cake is becoming an important part of pellets for carp nutrition in 
the Czech Republic for its low price and availability. Rapeseed and linseed oil 
have a moderate / high level of ALA (13% and 60%, respectively) and a 
favourable n-3/n-6 ratio (around 1:2 and 5:1, respectively) (Pickova & 
Morkore, 2007). They are commonly used in feed for salmonids as a 
replacement for fish oil (Bell et al., 2001) to different proportions. Mráz et al. 
(2012) studied lipid content and FA composition in carp supplemented by 
rapeseed cake pellets in comparison to carp supplemented by cereals and carp 
fed only on natural feed (plankton and benthos) available in ponds. The 
supplementation by rapeseed cake pellets resulted in higher levels of PUFA 
and HUFA compared with the cereal-supplemented group. Those authors 
suggested that part of the rapeseed in the feed mixture should be replaced by 
linseed to further improve carp FA composition. 
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1.6.6 Bioactive compounds 

An alternative approach to influence muscle lipid composition might be to use 
biologically active compounds which modulate the fish metabolism to 
synthesize or deposit more n-3 HUFA.  

One such biologically active compound could be sesamin. In the first study 
investigating sesamin effects in fish Trattner et al. (2008a) found that 
sesamin/episesamin supplementation increased the level of DHA up to 37% in 
white muscle of rainbow trout (Oncorhynchus mykiss) fed high ALA vegetable 
oil. An in vitro study with Atlantic salmon hepatocytes showed that 
sesamin/episesamin exposure led to increased elongation and desaturation of 
ALA to DHA, indicating that sesamin has modulatory effects on lipid 
metabolism leading to increased levels of DHA and higher β oxidation activity 
(Trattner et al., 2008b). However, there are still many questions about the use 
of sesamin in fish feed, especially whether effects similar to those observed in 
some studies on salmonids can also be observed across different fish species, 
including cyprinids. 

Another potential bioactive compound is lipoic acid. Lipoic acid acts as an 
antioxidant both in the hydrophilic and hydrophobic phases (Navari-Izzo et al., 
2002). It is reported to have several effects on lipid metabolism in chickens 
(Hamano, 2006) and rats (Mythili et al., 2006). Trattner et al. (2007) studied 
the effect of lipoic acid on FA composition in brain and muscle of South 
American pacu (Piaractus mesopotamicus) and found that lipoic acid 
increased the level of EPA in muscle polar lipids. 

Conjugated linoleic acid and tetradecylthioacetic acid are also reported to 
have stimulatory effects on DHA synthesis in salmonids (Kennedy et al., 2007; 
Moya-Falcón et al., 2004). 

1.6.7 Purging, starvation 

Purging of fish before slaughter or delivery to market is a common practice in 
aquaculture to remove possible off-flavours and eliminate undigested food 
from the intestine. It usually involves transferring the fish to clean water and 
keeping them without feeding for a period lasting from a few days to many 
weeks. Purging can also improve the nutritional quality of farmed fish by 
reducing excessive fat and increasing the n-3 HUFA percentage (Palmeri et al., 
2008b; Einen et al., 1998). Einen et al. (1998) studied the effect of starvation 
prior to slaughter in Atlantic salmon and found significant but rather marginal 
effects of starvation on FA composition in muscle, belly flap and liver. 
However, the fish used in the study had quite a high muscle lipid content 
(16%) and much larger effects would probably be seen in fish with a lower 
muscle lipid content.  
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Csengeri (1996) studied the effects of starvation on lipid content and 
composition in common carp and observed a consistent decrease in the oleic 
acid levels in both muscle and liver, whereas PUFA were partly protected. He 
also concluded that the effect of starvation was dependent on the previous 
feeding regime. Vacha et al. (2007) studied the effects of long-term starvation 
on FA in common carp fed either on cereals or natural feed only. The carp 
supplemented by cereals had a high lipid content (>10%), whereas in the carp 
fed on natural feed was only 1.8%. The largest differences in FA composition 
were seen in the fish fed on natural feed only, where mainly decreased levels 
of PUFA were observed.       

1.6.8 Preparation of fish as food 

The last but by no means least important factor influencing lipid content and 
composition is processing and cooking. It has been shown that in particular, 
the quality of fats and oils added during processing has a very strong influence 
on lipid composition (Sampels et al., 2009; Ansorena & Astiasaran, 2004). 
Sampels et al. (2009) found high variation in the n-3/n-6 ratio in fish products, 
with it being up to 400 fold lower than in raw fish. They concluded that fat 
sources used during fish processing and preparation have the largest impact on 
the food the FA content and composition in the table-ready food and proposed 
that this be stated on the product label. The lipid composition in fish may 
change further when it is fried before consumption (Ramirez et al., 2005). 

1.7 HUFA biosynthesis 

1.7.1 HUFA biosynthesis in common carp 

The HUFA biosynthetic pathway in fish was established using rainbow trout 
hepatocytes (Buzzi et al., 1996). It is anticipated, and also suggested by the 
cumulative evidence, that the same pathway exists in other fish species, 
including common carp (Tocher, 2003). Common carp has been shown to be 
able to elongate and desaturate n-3 and n-6 HUFA from its C18 precursors. 
This was first demonstrated by Farkas et al. (1978) using injection of 
radiolabelled sodium acetate into common carp juveniles, followed by 
detection of incorporated radioactivity in different FA. In later experiments, 
Farkas (1984) used slices from common carp liver incubated with radiolabelled 
FA. Tocher et al. (1999) demonstrated the ability of common carp to convert 
ALA to HUFA in cell lines. Furthermore, feeding studies have shown that the 
essential FA requirements of common carp can be satisfied by C18 PUFA, 
which suggests that common carp are able to convert these to HUFA 
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(RadunzNeto et al., 1996; Takeuchi, 1996). Despite the large number of 
studies investigating the ability of common carp to produce HUFA from C18 
precursors, the molecular mechanisms behind HUFA biosynthesis are not fully 
understood and the genes coding the enzymes responsible remain to be 
identified and characterised in common carp.  

1.7.2 Genes related to HUFA biosynthesis and their regulation 

The first desaturase to be characterised in fish was from the model species 
zebrafish (Danio rerio). This work was done by Hastings et al. (2001), who 
used heterologous expression in the yeast Saccharomyces cerevisiae. They 
found that zebrafish has a bifunctional Δ-5/Δ-6 enzyme which possesses the 
capacity to desaturate both types of substrate. In contrast, the other fish 
desaturases characterised to date are either unifunctional or have major activity 
towards one substrate and only residual capacity to desaturate other substrates 
(Monroig et al., 2010b; Zheng et al., 2005a; Hastings et al., 2004; Zheng et 
al., 2004). In Atlantic salmon, three different desaturases with Δ-6 activity 
have been identified and characterised (Monroig et al., 2010b) (Table 1). The 
only HUFA-related gene characterised so far for common carp is Δ-6 
desaturase (GenBank accession no. AF309557) (Zheng et al., 2004) (Table 2). 
It includes an open reading frame of 1335 base pairs specifying protein of 444 
amino acids. It is more specific towards the n-3 substrate and shows low Δ-5 
desaturase activity. Thus the specific Δ-5 desaturase probably remains to be 
identified for common carp. Recently, Ren et al. (2012) cloned two Δ-6 
desaturase-like cDNAs (Fad6-a and Fad6-b) and studied their expression in 
liver related to dietary FA in common carp (Table 2). They found that there 
was almost no effect on expression of Fad6-b, whereas diet had a strong effect 
on expression of Fad6-a. 

Several elongases have been identified in mammals with three involved in 
elongation of PUFA (ELOVL2, ELOVL4 and ELOVL5) (Jakobsson et al., 
2006). ELOVL2 predominantly elongates C20 and C22 whereas ELOVL5 
primarily elongates C18 and C20 (Leonard et al., 2000). Agaba et al. (2004) 
characterised a multifunctional elongase from zebrafish with ability to elongate 
C18, C20, C22 as well as MUFA and PUFA. Hastings et al. (2004) 
characterised ELOVL5 in Atlantic salmon with activity to elongate mainly 
C18 and C20. Morais et al. (2009) characterised ELOVL2 and a second 
ELOVL5b from Atlantic salmon and showed that the elongase ELOVL5b 
primarily elongates C18 and C20 and ELOVL2 elongase predominantly 
elongates C20 and C22. ELOVL4 has been characterised in zebrafish 
(Monroig et al., 2010a) and in Atlantic salmon (Carmona-Antoñanzas et al., 
2011) with ability to convert C20 and C22 up to C36 (Table 1). Recently, Ren 
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et al. (2012) cloned two Elovl5-like elongase (Elovl5-a and Elovl5-b) cDNAs 
and studied their expression in liver related to dietary FA in common carp 
(Table 2). They found that there was almost no effect on expression of Elovl5-
b whereas diet had strong effect on expression of Elovl5-a. 

 

Table 1. Overview of HUFA biosynthetic genes characterized in Atlantic salmon (Salmo salar) 

Gene name GenBank  

accession no. 

Product Characterised by 

D6fad_a AY458652 delta-6 fatty acyl desaturase 
D6fad_a 

(Zheng et al., 2005a) 

D6fad_b GU207400 delta-6 fatty acyl desaturase (Monroig et al., 2010b) 

D6fad_c GU207401 delta-6 fatty acyl desaturase (Monroig et al., 2010b) 

Fadsd5 AF478472 delta-5 fatty acyl desaturase (Hastings et al., 2004) 

Elov12 FJ237532 Polyunsaturated fatty acid 
elongase Elov12 

(Morais et al., 2009) 

Elvol5a AY170327 Polyunsaturated fatty acid 
elongase Elvol5a 

(Hastings et al., 2004) 

Elovl5b FJ237531 Polyunsaturated fatty acid 
elongase Elovl5b 

(Morais et al., 2009) 

Elovl4 HM208347 Elongation of very long 
chain fatty acid-like 4 

(Carmona-Antoñanzas et al., 
2011) 

Table 2. Characterised/cloned HUFA biosynthetic genes in common carp (Cyprinus carpio) and 
primers used for rea- time PCR 

Gene 
name 

Forward primer (5’-3’)   Reverse primer (5’-3’) 

Fadsd6† -   - 
Fad6-a* ATCGGACACCTGAAGGGAGCG   CATGTTGAGCATGTTGACATCCG 

Fad6-b* GTACCAATGGGAGGTTCGGCAC   GAGTTGAAGGTTTGGATGAAATGCATG
Elovl5-a* GTCCTGACCATGTTCCAGACATCTTG   CTGTAAGCGGACGAGGTGTCGTC 

Elovl5-b* GTCCTGACCATGTTCCAGACATCTTG   CATGAAGCTCCTCTACTGCGCTG 

† GenBank accession no. AF309557, characterised by Zheng et al. (2004) 

* Cloned and primers designed by Ren et al. (2012)  

 
Nutritional factors such as content of FA (Jump & Clarke, 1999) and 

bioactive compounds in the diet affect the expression of genes involved in 
lipid metabolism (Leaver et al., 2008; Trattner et al., 2008a; Trattner et al., 
2008b; Monroig et al., 2010b; Ren et al., 2012; Schiller Vestergren et al., 
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2012). In general, both desaturases and elongases are up-regulated in fish fed a 
diet with C18 precursors (vegetable oils) compared with fish fed a diet 
containing HUFA (fish oil) (Morais et al., 2009; Leaver et al., 2008; Zheng et 
al., 2005b; Tocher et al., 2001). Environmental factors have also been shown 
to influence the expression of Δ6 desaturase in fish (Zheng et al., 2005b). For 
more detailed information, see the review by Vagner & Santigosa (2011).  

Hepatic Δ-6 and Δ-5 desaturases are coordinately regulated. The rate of 
transcription of Δ-6 desaturase is positively correlated with the nuclear 
concentration of sterol regulatory element binding protein 1 (SREBP-1) and is 
stimulated by peroxisome proliferator-activated receptor α (PPARα) activators. 
The nuclear content of SREBP-1 is increased by insulin and glucose, and 
back-regulated by n-6 and n-3 PUFA. Different PPARα activators, e.g. 
fibrates, induce Δ-6 desaturase enzymatic activity by an increased rate of Δ-6 
desaturase gene transcription caused by enhanced binding of activated-PPARα 
to the Δ-6 desaturase promoter (He et al., 2002). Elongases are regulated by 
the nuclear receptor liver X receptor α (LXR) and the transcription factor 
SREBP-1c (Qin et al., 2009), which in turn are both influenced by the 
concentration of PUFAs. PUFAs repress expression of SREBP-1c and Elovl5, 
but when combined with LXR ligand stimulation, which increases SREBP-1c 
mRNA and nuclear SREBP-1c, Elovl5b mRNA levels are restored to normal. 
Elovl5 is also the target for several miRNAs in zebrafish (zebrafish miRNA 
database, http://cbio.mskcc.org/cgi-bin/mirnaviewer/mirnaviewer4.pl). 

Dreesen et al. (2006) found in the human genome a protein non-coding 
antisense RNA gene that functions as a naturally occurring ‘‘cis-antisense’’ 
regulator of Δ-5 desaturase gene expression. Anti-sense transcripts may 
regulate gene expression by interfering with gene transcription and mRNA 
processing, accelerating mRNA decay and slowing translation of mRNA into 
protein. Dreesen et al. (2006) provided evidence that co-expression of reverse 
Δ-5 desaturase non-coding RNA (RevΔ5ase ncRNA) decreased the Δ-5 
desaturase enzymatic activity by >70%. RevΔ5ase ncRNA most likely exerts 
its influence through the binding of complementary regions of the Δ-5 
desaturase transcript. The resulting double-stranded RNA complex could 
accelerate Δ-5 desaturase mRNA decay, and/or interfere with Δ-5 desaturase 
mRNA translation. However, it is not known whether the RevΔ5ase ncRNA 
exists in fish. 
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2 Objectives 

The overall aims of this work were to identify factors influencing FA 
composition in common carp flesh; develop a long-term sustainable culture of 
common carp with improved muscle lipid quality; and determine the health 
benefits of meals from such fish in the prevention and treatment of 
cardiovascular disease.  
 

Specific objectives were to: 
 
Study the effects of sesamin on fish performance, lipid content, FA 

composition, CYP content, EROD activity and global gene expression in 
common carp (Paper I). 

 
Test the response of common carp to finishing feeding technology and 

attempt to predict of FA changes by a dilution model (Paper II). 
 
Examine the effects of purging period on lipid content and quality in fillet 

of common carp (Paper III). 
 

Develop a long-term sustainable culture of common carp with improved 
muscle lipid quality (Paper III). 

 
Study the health benefits of meals from common carp in the prevention and 

treatment of cardiovascular disease (Paper IV). 
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3 Materials and Methods 

The materials and methods used in the studies carried out within the 
framework of this thesis are described briefly in this section. For a more 
detailed description of each method, see Papers I-IV. An overview of the 
materials and methods used is given in Table 3.  

3.1 Study design 

3.1.1 Study I 

Two-year-old common carp (Cyprinus carpio) individuals (mean weight 830 
g) were reared in six 1 m3 tanks (6 fish per tank) connected to a recirculation 
system. The fish were fed diets with or without sesamin addition (0.58 g/100 g 
feed) for 9 weeks. Survival, specific growth rate and feed conversion ratio 
were calculated for each treatment. Samples of white dorsal muscle and 
hepatopancreas were taken from all fish. The white muscle samples were 
analysed for lipid content and FA composition (in total lipids, phospholipids 
and triacylglycerols). The samples from hepatopancreas were analysed for total 
content of cytochrome P450, EROD activity and global gene expression 
profiling.    

3.1.2 Study II 

Study II examined the response of common carp to a fish oil finishing feeding 
treatment and sought to predict FA changes in fillet using a dilution model. 
During the 110-day experiment, market-size fish kept in cages connected to a 
recirculation system were fed either vegetable oil diet (rapeseed/linseed; VO) 
and olive oil diet (OO) only or with a subsequent fish oil (FO) finishing 
treatment (30 or 60 days), with each treatment carried out in duplicate. 
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The scheme of the experimental design used in study II is shown in Figure 3. 
Three individuals were randomly sampled from each tank (3 x 2 tanks = 6 per 
treatment) after 50, 80 and 110 days for lipid analysis. At the end of the trial, 
survival, growth and feed conversion were calculated for each treatment. 
 
 

 

Figure 3. Experimental design for the 110-day feeding trial. Fish (10 per tank) were fed one of 
three diets or combinations of diets. The different dietary regimens were: 110 OO/0 FO; 80 
OO/30 FO; 80 OO/30 FO; 110 VO/0 FO; 110 VO/0 FO; 80 VO/30 FO; 50 VO/60 FO and 110 
FO control. Treatments were carried out in duplicate. Fish were sampled at 0, 50, 80 and 110 
days.  

The data obtained from the lipid analyses for groups 80 OO/30 FO, 80 
VO/30 FO and 50 VO/60 FO were compared against predicted data calculated 
according to the dilution model designed by Robin et al. (2003) and verified 
by Jobling (2004):  
 

PT = PR + [(P0 – PR) / (QT/Q0)] 
 

PT = Predicted percentage of a particular FA at time T 
PR = Percentage of a particular FA measured at time T in the fillet of 

control fish continuously fed the reference/finishing diet  
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P0 = Percentage of a particular FA in the fillet of test fish at the beginning 
of the finishing feeding period 

QT = Quantity of total FA in the test fish at time T  
Q0 = Quantity of total FA in the test fish at the beginning of the finishing 

feeding period  
 

The predicted percentage of an individual FA, e.g. EPA, at a specific point 
in time (PT) (in this case the end-point after 110 days) was calculated by 
taking the percentage of the specific FA measured at time T (110 days) in fish 
continuously fed the finishing diet (PR=110 FO control 110 days) and the 
corresponding percentage in test fish (80 OO/30 FO, 80 VO/30 FO or 50 
VO/60 FO) at time point P0 (50 or 80 days) directly before the finishing 
feeding period. Q0 was the average total FA content (lipid content x body 
mass) of the test fish before the finishing feeding period and QT the final total 
FA content in fish from the corresponding group at the end of the experimental 
trial.  

3.1.3 Study III 

Study III investigated lipids in the flesh of common carp reared in different 
production systems and the effects of a long-lasting purging period on carp 
flesh lipid content and composition.  

The study used 4-year-old market carp (average weight 1700-2600 g) 
previously reared for five months in on of three different production systems 
(natural food only, N; supplemented by cereals, C; supplemented by 
rapeseed/linseed pellets, P) (Figure 4).  Fish were labeled by groups and placed 
into a storage pond with continuous inflow of clear freshwater (experimental 
design is shown in Figure 4 and 5). During the 70-day experiment, water 
temperature decreased continuously from 18.5°C at the start to 2.5°C at the 
end of the experiment. Every 14 days, 10 fish were weighed, fillet yield was 
determined and samples for lipid analyses were taken from each group. 
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 Figure 4.  Experimental design of the purging experiment, phase 1 feeding trial. Fish placed in 6 
experimental ponds were cultured in three production systems for 5 months. Ponds were 
harvested and the fish labelled by groups and placed into a storage pond (duplicates) 

Figure 5. Experimental design of the purging experiment, phase 2 purging period. N, fish 
previously fed natural food only; C, fish previously supplemented by cereals; P, fish previously 
supplemented by the rapeseed/linseed pellets. Fish were sampled on days 1, 14, 28, 42, 56 and 70  
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3.1.4 Study IV 

Influence of carp (carp with increased content of omega 3 FA) consumption on 
subjects recovering from cardiac revascularisation surgery during a follow-up 
spa treatment was studied.  

After the surgery the subjects were randomly allocated into two groups and 
underwent a four-week follow-up spa treatment in Spa Podebrady, Czech 
Republic. During the experiment the subjects consumed either the standard spa 
diet (Control; 56 individuals, 41 males, 15 females, age 41-80 years) or a diet 
enriched with two 200 g servings of carp (Treated; 87 individuals, 64 males, 
23 females, age 50-83 years). The carp fillets used in the trial originated from 
carp reared in a pond on a diet supplemented by pellets containing rapeseed as 
the lipid source. One 200 g carp serving contained on average 878 mg of n-3 
PUFA. The energy intake was equal in both groups of subjects. Body mass 
index, blood pressure, plasma lipids and C-reactive protein (CRP) were 
measured in subjects at the beginning of the spa treatment and after 4 weeks. 

3.2 Lipid analyses 

3.2.1 Lipid extraction and fatty acid composition analyses 

Lipid analyses were performed as already described in detail by Mráz & 
Pickova (2009). Lipids from tissues and diets were extracted by the hexane-
isopropanol method (Hara & Radin, 1978). Total lipids were fractionated by 
thin layer chromatography for separation of lipid classes (Pickova et al., 1997). 
FA were methylated (Appelqvist, 1968) and analysed with a Varian CP3800 
gas chromatograph (Stockholm, Sweden) equipped with flame ionisation 
detector and split injector and fitted with a 50 m length x 0.22 mm i.d. x 0.25 
µm film thickness BPX 70 fused-silica capillary column (SGE, Austin, TX, 
USA) (Fredriksson Eriksson & Pickova, 2007). FA were identified by 
comparison with the standard mixture GLC-461 (Nu-check Prep, Elysian, MN, 
USA) using retention time. Peak areas were integrated by means of Varian 
Galaxy chromatography workstation software (Varian AB, Stockholm, 
Sweden). FA were quantified by use of the internal standard 15-
methylheptadecanoate (Larodan Fine Chemicals AB, Malmo, Sweden). 

3.2.2 Composition of lipid classes 

Analyses of lipid classes composition was performed according to Olsen & 
Henderson (1989) with minor modifications. Extracted lipid samples dissolved 
in hexane (conc. 1 μg/μL) were applied by a Camag ATS 4 automatic TLC 
sampler (Camag, Muttenz, Switzerland) in 4 mm lines on pre-developed and 
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activated 60 HPTLC plates (20x10, 0.20 mm layer; Merck, Darmstadt, 
Germany). The lipid classes were separated by automatic developing chamber 
AMD2 (Camag, Muttenz, Switzerland) using hexane-diethyl ether-acetic acid 
(85:15:2, v/v) as mobile phase. The separated lipid classes were derivated by 
dipping the plate into the phosphoric acid/ethanol with subsequent heating 
treatment in the oven (150°C, 10 minutes). Quantitative analyses of the lipid 
classes were performed densitometrically by use of the Camag TLC scanner 3 
(Camag, Muttenz, Switzerland). The lipid classes were identified and 
quantified by comparison against an external standard (TLC 18-4A; Nu-Check 
Prep, Elysian, Minnesota, USA). 

3.3 Sesamin analyses 

Sesamin was analysed from extracted lipid samples with HPLC according to 
Moazzami & Kamal-Eldin (2006). Separation was performed on a silica 
column using hexane/1,4-dioxane (94:4, v/v) as mobile phase and detection 
was using a fluorescence detector (excitation wavelength 296 nm and emission 
wavelength 324 nm). External standards were used for identification and 
quantification. 

3.4 Total content of cytochrome P450 and ethoxyresorufin O-
deethylation 

Microsomal fraction was prepared from the hepatopancreatic homogenate by 
means of Ca-aggregation method as described by Zamaratskaia et al. (2009). 
The total cytochrome P450 content was determined using the 
spectrophotometric method of Omura & Sato (1964), measuring the 
differences in the spectra (dithionite+carbon monoxide) – dithionite. The 
activitiy of 7-ethoxyresorufin O-deethylase was estimated using an HPLC-
based method according to Zamaratskaia & Zlabek (2009). 

3.5 Global gene expression profiling 

Global gene expression analysis was performed using a cDNA common carp 
microarray with 26K gene probes (carp ARRAY ver 5.; Williams et al., 2008). 
Total RNA was extracted from hepatopancreas using the TRIzol Plus RNA 
Purification Kit (Invitrogen 12183-555, Paisley, UK). Total RNA was 
quantified using a NanoDrop 1000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). The RNA was reverse-transcribed to cDNA 
and labeled using the SuperScript Plus Indirect cDNA Labeling System 
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(Invitrogen L1014-04, 05 and -06). The labelled cDNA was hybridised on the 
microarrays using the Maui hybridisation system (BioMicro Systems, Salt 
Lake City, UT, USA). The microarrays were scanned using the Agilent DNA 
microarray scanner and the data obtained were processed by BLUEFUSE 
software (BlueGnome, Great Shelford, Cambridge, UK). 

3.6 Total RNA extraction, cDNA synthesis and real time PCR 

In addition to study II, gene expression study was performed to examine 
effects of dietary oils on the HUFA biosynthetic pathway in common carp (not 
included in the manuscript). For that purpose samples of hepatopancreas from 
groups 110 OO/0FO, 110 VO/0FO and FO control were used (6 
fish/treatment).  

Total RNA was isolated from 30-50 mg of carp hepatopancreas using the 
RNeasy® Mini Kit with on-column Rnase free DNase set (Qiagen, MD, USA). 
All protocols were performed according to the manufacturer’s instructions. 
Purity and density were measured by optical density (NanoVue, 
Spectrophotometer, GE Healthcare Life Sciences, Uppsala, Sweden) and 
samples were stored in RNase-free water (Eppendorf, Hamburg, Germany) at   
-80˚C. The cDNA was synthesised following the protocol from the ImProm-
IITM Reverse Transcription System (Promega, MD, USA). A mixture of the 
Oligo d(T)15 and random primers were used. The reactions were performed by 
incubating the samples at 25˚C for 5 min, 42˚C for 60 min, 75˚C for 15 min.  

Primers for Real-Time PCR analysis (Table 4) were designed using Primer 
Express® software version 3.0 (Applied Biosystems, Foster City, CA, USA), 
ordered from Invitrogen (Carlsbad, CA, USA) and were validated by melting 
curve. Sequences of genes were found in common carp EST database in 
GenBank® by sequence similarity to zebra fish (Danio rerio) sequences using 
BLAST. 

Real-time PCR was performed in a StepOnePlus™ Real-Time PCR System 
(Applied Biosystems, Foster City, CA, USA) with gene-specific primers for 
elongation factor 1α (EF1-α), protein 13-40S = (40S), peroxisome proliferator-
activated receptor α and γ (PPARα, PPARγ), liver X receptor (LXR), sterol 
regulatory element binding protein 1 (SREBP-1), ∆-6 fatty acyl desaturase 
(Fadsd6), elongation of very long chain fatty acid-like 2 and 5 (ELOVL2, 
ELOVL5), acyl-CoA oxidase (ACO), carnitine palmitoyl transferase I (CPT1). 
A 2xPower SYBR® Green PCR Master Mix (Applied Biosystems, Foster 
City, CA, USA) was used in the PCR reaction mix of 20 µL with 4 µL primers 
(final concentration 0.5 µM), and 10 µL cDNA. All samples were analysed in 
triplicate with a non-template control on each plate. The reactions were 
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incubated at 95˚C for 5 min, 45 cycles of 95˚C for 10s, 60˚C for 15s and 72˚C 
for 15s.  

3.7 Statistical analyses 

The data were processed using the data analysis software STATISTICA CZ, v. 
9 (StatSoft, Inc., Prague, Czech Republic) or Microsoft Office Excel v. 2003 
(Microsoft Corporation). All values were expressed as mean ± standard 
deviation. For statistical analyses, the two-tail student’s t-test and one-way 
ANOVA with following Tukey’s post-hoc test with statistical level of 
significance α=0.05 were used.  

The microarray data were first normalised (Huber et al., 2002) and 
corrected (Cleveland & Devlin, 1988). The differentially expressed genes were 
extracted using Q-values (Storey, 2002) and a control false discovery rate at a 
level of 10 % (Benjamini & Hochberg, 2000). The up and down regulated 
genes were associated with the gene ontology terms to examine which 
metabolic pathways were influenced by sesamin addition. 

The ΔCT was calculated and the reference genes were evaluated using the 
DataAssist software version 2.0 (Applied Biosystems, Foster City, CA, USA). 
S40 was chosen as reference gene, having the best stability over all samples 
and treatments. The relative expression was then calculated by comparing the 
ΔCT values for fish fed VO, OO and FO diets using the term 2-ΔΔCT and 
reported as arbitrary fold change units (Livak & Schmittgen, 2001). 
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4 Summary of results 

4.1 Study I 

There were no significant differences in fish survival, specific growth rate, 
food conversion ratio and lipid content in white muscle between the fish 
supplemented with sesamin and the control fish. Sesamin supplementation did 
not alter FA composition in carp white dorsal muscle. Sesamin increased total 
cytochrome P450 content in hepatopancreatic microsomes, as well as 7-
ethoxyresorufin O-deethylase activity. Transcriptomic analysis, using 
microarray with 26K gene probes, revealed that expression of 662 genes was 
altered by sesamin in carp liver. However, it failed to establish any significant 
pattern of transcriptional response, including lipid biosynthetic genes. In 
conclusion, sesamin proved not to be effective in increasing n-3 HUFA 
biosynthesis in common carp muscle. 

4.2 Study II 

The fillet lipid content in common carp was not affected by any dietary 
treatment over the course of the feeding trial and varied between 9 and 10% at 
the end of the trial. Replacing the OO or VO by FO finishing feeding resulted 
in fillets with clearly different FA profiles. The longer the fish were fed the 
finishing FO diet, the higher the levels of SFA, MUFA, n-3 PUFA and the 
lower the level of n-6 PUFA and the n-6/n-3 ratio in the group previously fed 
the VO diet. In the group previously fed the OO diet, the FO finishing 
treatment caused a lower level of MUFA, lower n-6/n-3 ratio and higher level 
of n-3 PUFA. PUFA composition showed differences in the content of EPA 
and DHA that were directly correlated to the length of the FO finishing feeding 
period. The percentage of EPA and that of DHA increased linearly with an 



 38 

increasing time of fish oil consumption. The percentages of EPA and DHA 
were up to six-fold higher in FO groups compared with VO-only groups.  
Even though the fillet FA composition changed significantly as a result of the 
dietary FA composition, the FA levels in the fillet did not match the levels in 
the feed supplied. The most obvious differences were seen in MUFA and 
PUFA levels. The levels of MUFA in the VO- and FO-only diets were 31% 
and 35%, respectively. The MUFA level was considerably higher in the fillet 
and varied between 47% and 54%. The PUFA contents in the VO- and FO-
only diets were 57% and 38%, respectively, but the corresponding values in 
the fillet were significantly lower and varied from 20% to 34%.   
At the end of the experiment, the measured FA composition in the fillet 
samples from fish receiving the finishing feed (80 OO/30 FO, 80 VO/30 FO 
and 50 VO/60 FO) was compared with the predicted values obtained using the 
dilution model designed by Robin et al. (2003). It was found that the dilution 
model gave very good predictions for the 10 most important FA or FA groups 
in common carp, with a slope of the regression line close to 1 (0.97, 0.99 and 
1.00, respectively) and with R2 values of 0.996, 0.993 and 0.992, respectively. 
Similar regression data were obtained for all the FA identified (data not 
shown).  

4.3 Study III 

After phase I, the fish reared in the three production systems had clearly 
distinct FA profiles. Fish supplemented by cereals (group ‘C’) had the highest 
fat content (8.7%) and were characterised by a high level of MUFA, especially 
oleic acid, and a low level of n-3 PUFA. Fish kept on natural feed only (group 
‘N’) had a lower fat content (3.5%) and were characterised by a low level of 
MUFA and a high level of n-3 PUFA. Fish supplemented by rapeseed/linseed 
pellets (group ‘P’) had a similar fat content (7.3%) to group C and their FA 
profile was much closer to that of the fish kept on natural feed only (Figure 6).  

During phase II, fish body weight decreased in all groups. After 70 days of 
purging, the lowest weight decline was observed in group N (-9.2%; -161 g), 
followed by group P (-14.6%; -352 g) and the largest decline was measured in 
group C (-19.6%; -529 g). There was a distinct reduction in fat content within 
all groups during the experiment. The largest decrease was measured in group 
C (-62%), followed by group P (-48%) and the lowest was in group N (-9%). 
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Figure 6. Fillet fatty acid in carp from three production systems. C, supplemented by cereals; P, 
supplemented by the rapeseed/linseed pellets; N, fed natural food (plankton benthos) only. 
(mean±SD; n=6; * indicates significant difference (p < 0.05) between the groups).  

FA composition also changed with the length of the purging period. There 
were almost no changes in the proportion of SFA within the groups depending 
on time. MUFA decreased continuously in group C, from the initial 54.2±2.19 
% to 46.9±4.49 % at the end. A decrease was also observed in group P, but 
was not significant. Almost no changes were observed in group N, where the 
proportion of MUFA varied between 45.2±3.41 % and 48.2±2.44 % during the 
whole purging period. The proportion of PUFA increased linearly in groups C 
and P, where the significantly highest proportion of PUFA was found at day 70 
(26.9±5.72 % and 31±2.46 %, respectively). In contrast to the other groups, a 
trend of slightly decreasing PUFA was observed in group N (29.1±3.97 % at 
the beginning; 26.9±4.23 % at the end). The n-3 PUFA content followed the 
same trend as total PUFA. Its proportion increased continuously within groups 
C and P, while it remained unchanged in group N. Interestingly, there were 
almost no significant differences between the groups after 70 days of purging. 

4.4 Study IV 

Plasma lipids improved significantly in the group of human subjects in the 
secondary prevention study receiving carp compared with the control group. In 
brief, total cholesterol decreased by 27% in the treated group compared with 
2% in the control group (p<0.001), LDL cholesterol decreased by 26% 
compared with 4% (p<0.001), plasma triglycerols decreased by 26% compared 
with 3% (p<0.001) and plasma HDL cholesterol increased by 30% compared 
with 10% in the control group (p<0.001) (Figure 7). The carp group also had 
significantly decreased glucose (p<0.05) and CRP (p<0.01) compared with the 
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control group. There were no differences in body mass index between the 
groups.   
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Figure 7. Changes of the plasma lipids and C-reactive protein after 4-week intervention with carp 
(difference between baseline and final values). TC, total cholesterol; LDL-C, LDL cholesterol; 
HDL-C, HDL cholesterol; TG, triglycerols; CRP, C-reactive protein. 
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5 General discussion 

This thesis examined factors influencing lipid content and composition in 
common carp flesh and health effects of carp consumption on subjects after 
cardiovascular surgery.  

5.1 Factors influencing lipid content and quality 

Lipid content and composition of carp flesh are influenced by several 
environmental and internal factors. The environmental factors are e.g. diet, 
starvation and water temperature, and the internal factors are e.g. genetic 
background, size, age, sex, maturation. When the carp flesh is prepared as a 
meal for consumers, other factors further influence the final composition, such 
as the part of the fish used, processing and preparation (cooking, frying, use of 
additional fat).  

As the results presented in this thesis show, there are several possibilities to 
further improve the lipid composition of cultured carp. High amounts of 
plankton in the pond, a good supplemental diet containing high levels of ALA 
and suitable processing and cooking with healthy ingredients were identified 
as the most important measures. Further improvements might be achieved in 
future by better understanding of HUFA biosynthesis, effects of genetic 
background and consequent selection of carp with higher ability for n-3 HUFA 
biosynthesis, as well as advances in the area of bioactive compounds. 

5.2 Effects of dietary sesamin 

The aim of the study I was to investigate whether a diet with sesamin had a 
positive effect on FA composition in common carp muscle, as previously 
reported for salmonids (Trattner et al., 2008a; Trattner et al., 2008b). It was 
found that dietary sesamin did not alter the FA composition of carp muscle. 
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Four possible explanations for this difference between salmonids and carp 
were proposed in Paper I:  
i) There may be an evolutionary aspect. Salmonids, being predators, do not 
naturally consume this type of vegetable sources, whereas cyprinids as 
omnivores usually include such compounds in their diet. It has also been 
shown in mammals that there are species-dependent differences in the 
physiological response to dietary lignans (Kushiro et al., 2004).  
ii)  HUFA biosynthesis may be suppressed by the n-3 HUFA content in 
experimental diets.  
iii) Pure sesamin was used in Paper III, instead of an equimixture of 
sesamin/episesamin as used by Trattner et al. (2008a). Therefore, episesamin 
and sesamin might have different actions.  
iiii) Rate of HUFA biosynthesis may differ depending on fish age and size, 
since sesamin can affect different life stages depending on their natural 
capacity.  
 

In Paper I there was higher EROD activity and a higher content of total 
CYP P450 in carp with sesamin supplementation, similar to that reported in 
rainbow trout liver (Trattner et al. 2008a). This indicates that carp also 
recognise sesamin as a xenobiotic compound in contrary to that suggested 
above  in i).  

Transcriptomic profiling with a cDNA microarray showed that sesamin 
supplementation altered expression of 662 genes in carp liver. However, there 
was no viable pattern to the responding genes that might signal changes in 
lipid metabolism.   

In conclusion, there were no alterations in HUFA biosynthesis in the 
experiment with carp described in Paper I. It would be interesting to 
investigate in more depth the mechanism of sesamin action and metabolism in 
salmonids, in which sesamin has positive effects, before attempting to study it 
in other fish species. In the future, it would also be interesting to identify and 
investigate other bioactive compounds which possibly influence n-3 HUFA 
biosynthesis. 

5.3 Response to finishing feeding and prediction of FA changes 

Paper II evaluated the response of common carp flesh lipids to a high fish oil 
finishing diet after a growth period in which different vegetable oils were used.  
It was found that the fillet FA composition reflected the FA composition of the 
diet and was significantly correlated to the length of the feeding period. This 
agrees with previous findings showing that it is possible to boost the content of 
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beneficial EPA and DHA in fish fillet by n-3 HUFA supplementation prior to 
harvest of common carp, Atlantic salmon and other species (Benedito-Palos et 
al., 2009; Steffens & Wirth, 2007; Turchini et al., 2006; Torstensen et al., 
2005; Bell et al., 2004; Steffens, 1997). 

The results in Paper II revealed that the simple dilution model proposed by 
Robin et al. (2003) gives an excellent prediction of the FA composition in 
fillet of carp of marketable size. This confirms previous findings for 
carnivorous fatty fish species such as Atlantic salmon (Jobling, 2003), where 
the lipids are predominantly represented by storage fat (triacylglycerols). The 
dilution model proposed by Robin et al. (2003) has its advantages and 
disadvantages depending on application. However, the model is clear in its 
simplicity and is therefore likely to be applicable for fish farmers, enabling 
production of high quality fish as well as minimising the use of expensive 
finishing feed.  

The EFSA recommends a daily intake of 250 mg EPA+DHA per person 
(EFSA, 2009), or two servings of fish per week. A 200 g serving of carp from 
the 110 FO control and 110 VO/0 FO group contained 1190 mg and 180 mg 
EPA+DHA, respectively. According to the predictions by the dilution model 
and experimental values obtained in Paper II, the finishing feeding treatment 
needs to be applied for 70 days to achieve the recommended daily value of 250 
mg EPA+DHA in two 200 g servings a week. Reducing FO feeding to this 
shorter period would significantly reduce fish production costs and lead to 
more sustainable use of limited FO resources. 

5.4 Effects of purging on lipid content and quality 

The process of purging is characteristic and crucial in carp aquaculture in the 
conditions of Central Europe for two reasons. First, at least several days of 
purging are necessary to empty the gut and eliminate possible unpleasant 
odour and taste. Second, market carp in the Czech Republic are harvested from 
ponds during the autumn and then purged for several weeks before reaching 
the market in time for Christmas, as carp is the traditional Christmas Eve meal 
for most of the Czech population. It would be impossible to harvest all the 
market carp within 2 or 3 weeks before Christmas due to frosty weather and 
other practical problems.  

In general, weight losses are observed in purged carp as a result of 
prolonged starvation. During the purging, fat content also decreases. This 
might be a positive effect in fish with excessive fat (>10%), which is common 
for fish produced on a low amount of natural feed in the pond and 
supplemented with cereals. On the other hand, too low a fat content (<5 %) has 
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a negative impact on sensory properties and lowers the amount of beneficial 
fish FA. In addition, the length of the purging period should be limited for 
economic reasons. 

The FA composition also changes during purging. This change is caused by 
several factors including:  

i) The change in fat content, which is connected to changes in the 
proportion of phospholipids and triacylglycerols. Phospholipids are rich in n-3 
PUFA and n-3 HUFA, whereas triacylglycerols are rich in MUFA (Mráz & 
Pickova, 2009). Thus decreasing fat content causes a higher proportion of 
phospholipids and consequently higher levels of n-3 PUFA and n-3 HUFA and 
a lower level of MUFA in the flesh when expressed as a percentage of total 
FA.  

ii) Selective utilisation of FA for energy needs. Fish selectively utilise 
dietary FA for β-oxidation. Kiessling & Kiessling (1993) showed that SAFA 
and MUFA are preferentially utilised by red muscle mitochondria in rainbow 
trout compared with PUFA. Thus MUFA are most likely preferentially utilised 
during purging also in common carp and the levels of n-3 PUFA and n-3 
HUFA are consequently higher in the flesh when expressed as a percentage of 
total FA. 

iii) Fish adjust their FA composition according to water temperature to 
ensure suitable fluidity of biological membranes. Paper III showed that until 
day 56 there was a significant increase in the relative content of stearidonic 
acid (18:4n-3) in all test groups, with 18:4n-3 being the first desaturation step 
product of long-chain PUFA synthesis from 18:3n-3. Between days 1 and 56, 
the proportion of 18:4n-3 increased about five-fold in all groups. It appears 
that Δ-6 desaturase is activated by decreasing the temperature and stimulating 
the synthesis of 18:4n-3 in carp. This metabolic addition of PUFA may help 
enhance the fluidity of biological membranes at low water temperatures. 
Similar results have been observed by Palmeri et al. (2008a) in a study with 
Murray cod (Maccullochella peelii peelii). 

It is important to note that although the relative content of n-3 PUFA 
increased continuously during purging in Paper III and the flesh composition 
was therefore relatively improved, the real weight and fat content of the purged 
fish decreased. In addition, with prolonged purging and loss of surplus fat, the 
fish from all groups started to metabolise n-3 PUFA, leading to a decrease in 
their nutritional value. Therefore, is important for both economic and 
nutritional reasons to terminate purging at the right time in order to optimise 
the combined benefits. These results indicate that a purging period should be 
long enough to allow the elimination of possible unpleasant odour and taste, 
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but short enough from a practical handling point of view to preserve the 
beneficial FA composition of the n-3 enriched carp.  

In Paper III the best compromise was achieved after 14 days, which 
corresponded to 220 °D (day degrees = sum of the average daily water 
temperature). One portion (200 g) of carp purged for 14 days contained 1.13 g 
n-3 PUFA and 316 mg EPA+DHA (group C); 1.54 g and 453 mg (group P); 
0.95 g and 320 mg (group N).  

5.5 Production of omega 3 carp  

In this thesis, a system for production of so-called omega 3 carp (carp with 
increased content of n-3 FA) was developed and successfully tested. The 
rearing technology is based on semi-intensive culture of carp in ponds with 
maximum use of natural feed (plankton, benthos), in combination with 
affordable, environmentally sustainable and FA enhancement of the feed. The 
system consists of the following components: 
 

i) The ponds chosen for omega 3 carp production are suitable in terms of 
productivity (at least 300 kg/ha; natural productivity of ponds in the 
Czech Republic is usually 200-500 kg/ha), dry overwintering and 
fertilisation with nutrients to support growth of natural plankton and 
benthos. 

ii) In April, carp with approximate weight 1 kg are stocked in the pond in 
an appropriate stocking density to obtain 50% of yield from natural 
production (2-2.3-fold the natural productivity of the pond). 

iii) The carp diet is supplemented by pellets based on rapeseed cake and 
extruded linseed as a lipid source (Mráz et al., 2011a). 

iv) The ponds are harvested in the period October-November and the carp 
are purged for 2-4 weeks according to water temperature in order to 
empty the gut, eliminate possible unpleasant odour and taste and 
improve the lipid profile. 

v) The fish are filleted and, if necessary, excess fat on the abdominal 
wall is removed. 

 
Fillets of omega 3 carp are characterised by a lower level of MUFA, higher 

level of n-3 PUFA and n-3 HUFA and lower n-6/n-3 ratio than fillets from 
carp supplemented by cereals (Mráz & Pickova, 2011). One serving (200 g) of 
fillet from omega 3 carp contains approximately 300 mg EPA+DHA and 1 g n-
3 FA, which is very close to the recommended values. 
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The feeding formula developed here is now protected by utility pattern no. 
21926 (Mráz et al., 2011a) and the rearing technology by Czech national 
patent no. 302744 (Mráz et al., 2011b). The omega 3 carp are already available 
on the market in the Czech Republic under a specific trademark (Figure 8). 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8. Trademark used in Czech Republic for carp with an increased content of n-3 FA. 

5.6 Effects of carp consumption on human health 

To the best of my knowledge, Paper IV was the first study to investigate the 
effects of common carp consumption on human health. The results showed that 
consumption of common carp flesh with increased content of n-3 FA had 
positive effects on plasma lipids and inflammation markers (CRP) in subjects 
recovering from heart surgery. This indicates in turn that carp consumption is 
beneficial for the central European population in general.  

The improvement of plasma lipid parameters (decrease in total cholesterol, 
LDL cholesterol and triglycerols and increase in HDL cholesterol) after 
consumption of carp flesh observed in Paper IV is in agreement with published 
studies on sea fish (Balk et al., 2006). In Paper IV there was a significant 
decrease in CRP in the blood of recovering heart patients, which might have 
resulted from the anti-inflammatory effects of omega 3 FA (Al-Khalifa et al., 
2007). The carp flesh used in Paper IV had a relatively low amount of n-3 
HUFA in relation to the high effects observed on plasma lipid parameters. 

It is possible that it was not only lipid quality that was responsible for the 
change in lifestyle-related parameters observed in Paper IV. The subjects 
replaced meat with fish, which might be one contributing factor, as many 
studies have shown that fish protein has some beneficial properties with the 
same type of effects (Wergedahl et al., 2004).  
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Fish proteins have been shown to have several positive effects on different 
disorders and parameters of metabolic syndrome. Among the most important 
findings observed are increased insulin sensitivity, anti-inflammatory effects, 
and prevention of type 2 diabetes and obesity (Lavigne et al., 2001).  

Cod protein has been shown to protect against development of obesity-
linked insulin resistance and glucose intolerance in mice (Lavigne et al., 2001; 
Lavigne et al., 2000). Similar effects have been observed in human trials 
(Ouellet et al., 2008; Ouellet et al., 2007; von Post-Skagegård et al., 2006). In 
addition, a decrease in the level of CRP, which is increased in insulin 
resistance (Chou et al., 2010), has been reported (Ouellet et al., 2008; Ouellet 
et al., 2007).  

The mechanisms underlying these effects remain to be investigated. High 
levels of specific amino acids with a low level of branched amino acids, such 
as taurine and arginine, might be one possible explanation. Salmon calcitonin, 
the bioactive part of fish protein, has been shown to protect against 
osteoporosis (Chesnut Iii et al., 2008) and is a homologue of amylin, a 
hormone involved in regulation of satiation and energy expenditure (Osaka et 
al., 2008).  

In a recent study, Pilon et al. (2011) compared the effects of proteins from 
different fish species (bonito, herring, mackerel and salmon) included in a high 
fat, high sucrose diet fed to rats. They found that proteins from all fish species 
showed anti-inflammatory action through tumour necrosis factor-α and 
interleukin-6 compared with a casein diet. In addition, the group fed salmon 
protein had lower weight gain and reduced fat in epididymal white adipose 
tissue. This suggests that there might be specific effects linked to proteins from 
different fish species.  

This leads to the conclusion that carp can be of major importance in 
combating metabolic disorders in many populations in central continental 
regions without access to the sea, as carp can be produced world-wide in large 
quantities. However, more studies are needed with both animal studies and 
intervention studies on human subjects to confirm this.   

5.7 Ongoing work related to carp n-3 HUFA biosynthesis 

We believe that by understanding the regulation of HUFA biosynthesis in carp, 
it would be possible to identify tools for fully exploiting the internal ability of 
carp to convert ALA to n-3 HUFA by means of a balanced diet, inclusion of 
bioactive compounds in the diet, selection of more efficient lines, etc. The 
genome of common carp has not yet been sequenced/published and the 
majority of genes related to n-3 HUFA biosynthesis have not yet been 
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annotated/characterised. Most of the molecular work related to HUFA 
biosynthesis in fish so far been has been performed on Atlantic salmon and 
zebrafish.  
 

We aimed to find carp HUFA biosynthetic genes in the available expressed 
sequence tags in GenBank by sequence similarity to zebra fish and to study 
how the expression of these genes is affected by dietary FA. Therefore trial 
described in study II was used to analyse gene expression related to different 
oils in the diet. 

 

 

Figure 9. Gene expression in hepatopancreas of common carp fed one of three diets with different 
lipid sources (fish oil, vegetable oil (rapeseed/linseed blend), olive oil). Relative gene expression 
was calculated according to the 2–ΔΔCt method using S40 as reference gene and normalised against 
the fish oil group. *significant p-value in comparison with the fish oil group (n=6). 
Abbreviations: Fadsd6 = delta-6 fatty acyl desaturase, ELOVL = elongation of very long chain 
fatty acid-like, ACO = acyl-CoA oxidase, CPT1 = carnitine palmitoyl transferase I, PPAR = 
peroxisome proliferator-activated receptor, LXR = liver X receptor, SREBP-1 = sterol regulatory 
element binding protein-1. 
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Melting curve analyses confirmed that all primers were specific for one 
target only. The results showed that replacement of fish oil by a mixture of 
vegetable oils (rapeseed/linseed) and olive oil, respectively, significantly 
increased expression of Fadsd6 and Elovl2, which are genes involved in 
HUFA biosynthesis (Figure 9). A similar trend for Elovl5 was observed in the 
olive oil group, but was not statistically significant. Expression of liver X 
receptor was slightly but significantly increased in the olive oil group 
compared with the fish oil group. There was a trend for increased expression 
of SREBP-1 in the vegetable and olive oil groups compared with the fish oil 
group, but it was not statistically significant. In conclusion, excessive amounts 
of HUFA (fish oil group) in the diet of carp decreased expression of genes 
involved in HUFA biosynthesis, confirming findings in other fish species.  

These results are promising, although some uncertainty exists in relation to 
gene sequences in common carp and thus further verification is required. 

The unknown factors behind the different responses and discrepancies 
between gene expression and FA synthesis in studies by Trattner et al. (2008a, 
2008b), Schiller Vestergren et al. (2011, 2012) and Vestergren et al. (2012) 
and those presented above for carp need further examination. In a first step, we 
aim to study whether small RNAs are part of the unknown regulation. It is 
likely that miRNAs and other small RNAs play a similar critical role in more 
or less all stages of uptake, transport, elongation, desaturation, β-oxidation and 
composition of n-3 and n-6 lipids in freshwater fish. However, to the best of 
our knowledge, no studies have been conducted to date on miRNA regulation 
of HUFA biosynthesis in carp.  
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6 Conclusions 

 
Sesamin supplementation had no impact on fish weight, specific growth rate, 
food conversion ratio and lipid content. In addition, sesamin did not positively 
alter the FA composition of carp muscle. Sesamin increased total cytochrome 
P450 content in preparation of hepatopancreatic microsomes, as well as EROD 
activity. The transcriptomic profiling with cDNA microarray showed that 
sesamin supplementation altered expression of 662 genes in carp liver. 
However, there was no viable pattern in the responding genes that might signal 
changes in lipid metabolism. Overall, sesamin was ineffective as a means of 
changing the tissue lipid composition in common carp. 
 

In general, common carp muscle has a favourable FA composition and 
should be regarded as a healthy product. There are several ways in which the 
lipid composition of cultured carp can be further improved, the most important 
being high amounts of natural food, a good supplemental fish diet containing 
high levels of ALA and suitable processing and cooking with healthy 
ingredients. Further improvement might be achieved in future through better 
understanding of HUFA biosynthesis and effects of genetic background and 
consequently selection of carp with higher ability for n-3 HUFA biosynthesis, 
and also through development of bioactive feed compounds. 

 
A simple dilution model can provide an excellent description of changes in 

the fillet FA composition of common carp fed mainly vegetable oil with a 
finishing period of fish oil. Therefore the model can be used for calculating the 
finishing feeding period required to achieve a specific fillet FA composition in 
terms of e.g. EPA and DHA content, while saving fish oil resources. 
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Lipid analyses on purged common carp reared in three different production 
systems showed that the type of diet prior to purging significantly affected 
carp flesh quality. Purging time was also important, mainly for economic 
reasons. Supplementation with rapeseed/linseed pellets in the growing period 
and purging for no longer than 14 days (or 220 °D) resulted in a nutritionally 
beneficial FA composition combined with an economically acceptable weight 
loss. The physiological processes in lipids of carp during purging need to be 
investigated in terms of amount and composition of FA in individual lipid 
classes, especially triacylglycerols and phospholipids. 

 
Consumption of common carp with an increased content of n-3 FA 

significantly improved plasma lipid parameters in patients recovering from 
major cardiac revascularisation surgery. Carp lipid quality was responsible for 
part of the change observed in lifestyle related parameters, and replacing meat 
with fish was probably another contributing factor. Culture of common carp 
should therefore be recognised as long-term sustainable and carp should be 
promoted as a healthy local product. 
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7 Future research 

This thesis evaluated factors influencing lipid content and composition in 
common carp muscle. The results presented here form the first step to 
developing long-term sustainable culture of common carp with improved flesh 
lipid quality, which can be important in the prevention and treatment of 
cardiovascular disease. Some specific areas for future research are: 
 

 Fatty acid metabolism in common carp 
 

 The effects of minor lipid soluble bioactive compounds on fish 
welfare, metabolism and quality 

 
 The effects of genetics and heritability on lipid quality in common 

carp 
 

 The storage stability of carp flesh with increased content of n-3 FA 
 

 Other health-beneficial compounds such as specific peptides, proteins 
and amines and other small compounds in fish flesh, especially that of 
freshwater fish.  
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