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Abstract

Inference for the coefficient of variation in normal distributions is con-
sidered. An explicit estimator of a coefficient of variation that is shared
by several populations with normal distributions is proposed. Methods
for making confidence intervals and statistical tests, based on McKay’s
approximation for the coefficient of variation, are provided. Exact
expressions for the first two moments of McKay’s approximation are
given. An approximate F-test for equality of a coefficient of variation
that is shared by several normal distributions and a coefficient of varia-
tion that is shared by several other normal distributions is introduced.

Key words: Coefficient of Variation, Confidence interval, Hypothesis test, McKay’s ap-
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1 Introduction

The coefficient of variation c in a single sample with observations y1, y2, . . . , yn

is defined as c = s/m, where m and s are

m =
1
n

n∑

j=1

yj and s =

√√√√ 1
n− 1

n∑

j=1

(yj −m)2, (1)

respectively. In this paper we consider independently normally distributed
observations with expected value µ > 0, variance σ2 and population coeffi-
cient of variation γ = σ/µ. We discuss three problems:

(i) Estimation of a coefficient of variation γ that is shared by k populations

(ii) Confidence interval and test for a coefficient of variation γ that is
shared by k populations



(iii) Test for equality of a coefficient of variation γ1 that is shared by k1

populations and a coefficient of variation γ2 that is shared by k2 pop-
ulations

Given k estimates c1, . . . , ck of a common coefficient of variation γ a
method is needed for pooling the estimates into one estimate. Explicitly
we want to know if the single estimates shall be weighted by the number of
observations ni, by the degrees of freedom ni − 1 or by some other function
of the sample size.

Zeigler (1973) compared several estimators of a common coefficient of
variation, but considered only the case of equally large sample sizes, and did
not discuss hypothesis tests and confidence intervals. Tian (2005) studied the
problem of making inference about a common γ based on k samples and sug-
gested a repeated sampling method for calculating a generalized probability
value as defined by Tsui and Weerahandi (1989). A drawback with resam-
pling methods is that they do not give the same result whenever applied.
There could be a need for a method based on explicit expressions. Verrill and
Johnson (2007) proposed a likelihood ratio based confidence interval for a
common coefficient of variation. However, the likelihood ratio test is known
to be too liberal for small sample sizes (Doornbos and Dijkstra, 1983; Fung
and Tsang, 1998; Nairy and Rao, 2003). This is confirmed in Section 4.2 of
the present paper. The likelihood ratio test is computationally inconvenient
when there are many populations. Verrill and Johnson (2007) provided, for
the likelihood ratio test, a web-based program that simulates critical values
for small samples.

We suggest that confidence intervals and tests for a common coefficient
of variation γ be based on the transformation for the coefficient of variation
developed by McKay (1932). This transformation gives an approximately χ2

distributed random variable when γ < 1/3, as confirmed by Fieller (1932),
Pearson (1932), Iglewicz and Myers (1970) and Umphrey (1983). Forkman
and Verrill (2008) showed that McKay’s χ2 approximation is asymptotically
normal with mean n− 1 and variance slightly smaller than 2(n− 1). Vangel
(1996) showed, by Taylor series expansion, that the error in McKay’s ap-
proximation is small when the population coefficient of variation is small.
We derive exact expressions for the first two moments of McKay’s approxi-
mation.

A test is introduced, based on McKay’s transformation, for the equality
of a coefficient of variation that is shared by k1 populations and a coefficient
of variation that is shared by k2 populations. Many tests have been proposed
for the special case k1 = k2 = 1: the likelihood ratio test (Lohrding, 1975;
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Bennett, 1977; Doornbos and Dijkstra, 1983), the Wald test and the score
test (Gupta and Ma, 1996), Bennett’s test (Bennett, 1976; Shafer and Sul-
livan, 1986) and Miller’s test (Miller, 1991a; Feltz and Miller, 1996; Miller
and Feltz, 1997).

The three problems listed above are considered in Sections 2–4, respec-
tively. In Section 4.2 we make a small Monte Carlo study of the performance
of the new test for equality of coefficients of variation compared with the
likelihood ratio test, Bennett’s test and Miller’s test.

2 Estimation of a Common Coefficient of Varia-
tion

Consider samples from k normally distributed populations with a common
population coefficient of variation γ, and define the sample coefficients of
variation as in Definition 1.

Definition 1. Let yij = µi + eij , where eij are independently distributed
N(0 , σ2

i ), i = 1, 2, . . . , k and j = 1, 2, . . . , ni, with positive expected values
µi and a positive common population coefficient of variation γ = σi/µi,
i = 1, 2, . . . , k. The coefficient of variation ci of sample i, i = 1, 2, . . . , k, is
defined as ci = si/mi, where mi and si are

mi =
1
ni

ni∑

j=1

yij and si =

√√√√ 1
ni − 1

ni∑

j=1

(yij −mi)2, (2)

respectively.

We shall, throughout this paper, assume that the expected values µi,
i = 1, 2, . . . , k, are positive, which implies γ > 0. Since we are focused on
applications with positive and approximately normally distributed observa-
tions, we also assume that the probability of negative observations is small.
We make this assumption by requiring µi − 3σi > 0, i = 1, 2, . . . , k. This
implies γ < 1/3.

The joint probability density function of the observations {yij} can be
written

k∏

i=1

(
(2π)−ni/2 exp

(
1

µiγ2

ni∑

j=1

yij − 1
2µ2

i γ
2

ni∑

j=1

y2
ij −

ni

2γ2
− ni log µiγ

))
. (3)

3



Thus, by the factorization theorem, the 2k dimensional statistic

S =
{ ni∑

j=1

yij ,

ni∑

j=1

y2
ij

}k

i=1

is sufficient for η = {1/(µiγ
2) , 1/(µ2

i γ
2)}k

i=1, and since there is a one-to-one
correspondence between η and β = (γ, µ1, µ2, . . . , µk), S is also sufficient
for β. By writing (3) as

exp
(
− 1

2γ2

k∑

i=1

ni∑

j=1

(yij − µi)2

µ2
i

−
k∑

i=1

ni log µiγ −
k∑

i=1

ni

2
log(2π)

)
,

we see that
k∑

i=1

ni∑

j=1

(yij − µi)2

µ2
i

is complete and sufficient for γ2, when µi, i = 1, 2, . . . , k, are known. When
µi, i = 1, 2, . . . , k, are unknown, µi can be estimated by mi. Thus, with
notation according to Definition 1, consider

U =
1∑k

i=1(ni − 1)

k∑

i=1

ni∑

j=1

(yij −mi)2

m2
i

=
∑k

i=1(ni − 1) c2
i∑k

i=1(ni − 1)
, (4)

as an estimator of γ2.

Theorem 1. Let γ be a common population coefficient of variation, as
defined in Definition 1. Let v =

∑k
i=1(ni − 1), and let Uv = U as defined

by (4). Assume that (ni − 1)/v → λi > 0 as v →∞. Then

√
v (Uv − γ2) d→ N(0 , 2γ4 + 4γ6), as v →∞.

Proof. With notations according to Definition 1

√
ni (mi − µi, s

2
i − σ2

i )
d→ N(0 ,V), i = 1, 2, . . . , k,

where

V =
(

σ2
i 0
0 2σ4

i

)
.
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Following Serfling (1980, p. 124)

√
ni (c2

i − γ2) →d N(0 ,g′Vg), i = 1, 2, . . . , k,

where, evaluated at {mi, s
2
i } = {µi, σ

2
i },

g′ =
(

∂c2
i

∂mi
,
∂c2

i

∂s2
i

)
=

(−2σ2
i

µ3
i

,
1
µ2

i

)
.

Thus √
ni (c2

i − γ2) d→ N(0, 2γ4 + 4γ6), i = 1, 2, . . . , k,

and, because
∑k

i=1 λi = 1,

√
v (U − γ2) =

k∑

i=1

√
ni − 1

v

√
ni − 1 (c2

i − γ2) d→ N(0 , 2γ4 + 4γ6). ¦

We now consider
T = f(U) =

√
U, (5)

with U from (4), as an estimator of γ. According to Theorem 2 the esti-
mator (5) is asymptotically normally distributed with mean γ and variance
(γ2/2 + γ4)/

∑k
i=1(ni − 1).

Theorem 2. Let γ be a common population coefficient of variation, as
defined by Definition 1, and let v =

∑k
i=1(ni − 1). Let Tv =

√
Uv, where

Uv = U as defined by (4). Then

√
v (Tv − γ) d→ N(0 , γ2/2 + γ4), as v →∞. (6)

Proof. By Theorem 1,
√

v Uv
d→ N(γ2 , 2γ4 + 4γ6) as v → ∞. Then, by

application of Theorem 3.1A in Serfling (1980),

√
v Tv =

√
v f(Uv)

d→ N(f(γ2) , (f ′(γ2))2(2γ4 + 4γ6)), as v →∞,

and (6) follows since (f ′(γ2))2(2γ4 + 4γ6) = γ2/2 + γ4. ¦
The expected values of the coefficients of variation ci are not defined,

because the densities of mi, i = 1, 2, . . . , k, are positive in neighborhoods of
zero. As a consequence the expected value of the estimator T , as defined by
(5), does not exist. Nevertheless, when the expected values µi are sufficiently
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large, say larger than 3σi, the probability of averages mi close to zero are
negligible in most applications, and we expect ci, i = 1, 2, . . . , k, to be close
to γ. According to Theorem 2 the estimator T is asymptotically unbiased.
We shall now derive a bias correction for the case of small sample sizes.

By a second order series expansion of T , as a function of {mi , s
2
i }, i =

1, 2, . . . , k,

E(T ) ≈ γ +
1
2

k∑

i=1

(
∂2T

∂(s2
i )2

V ar(s2
i ) +

∂2T

∂m2
i

V ar(mi)
)

, (7)

where the partial second order derivatives should be evaluated at {mi , s
2
i }k

i=1

= {µi , σ
2
i }k

i=1. By (7), since V ar(s2
i ) = 2σ4

i /(ni − 1) and V ar(mi) = σ2
i /ni,

E(T ) ≈ γ +
1
2

k∑

i=1

(−(ni − 1)2

4v2γ3µ4
i

2σ4
i

ni − 1
+

(ni − 1) γ

vµ2
i

(
3− ni − 1

v

)
σ2

i

ni

)

= γ +
1
2

k∑

i=1

(−(ni − 1) γ

2v2
+

γ3

v

ni − 1
ni

(
3− ni − 1

v

))

= γ − γ

4v
+

γ3

2v

k∑

i=1

ni − 1
ni

(
3− ni − 1

v

)
,

where v =
∑k

i=1(ni−1). Thus we expect T to be close to γ(1−1/(4v)) when
γ is small, and a bias adjusted estimator of a common population coefficient
of variation γ is given by

γ̂ =
(

1− 1

4
∑k

i=1(ni − 1)

)−1
√∑k

i=1(ni − 1) c2
i∑k

i=1(ni − 1)
, (8)

with notations as in Definition 1.
The result of a simulation study is presented in Table 1. Three sam-

ples of n1, n2 and n3 observations from normal distributions with expected
values 100, 1,000 and 10,000, respectively, and with a common population
coefficient of variation γ, were generated 20,000 times in MATLAB 6.5 (The
Mathworks Inc., Natick, MA, USA). In total 18 combinations of γ, n1, n2

and n3 were investigated. For each combination, the means of the unadjusted
estimator (5), the bias adjusted estimator (8), and their standard deviation
were calculated. The study indicates that the bias adjustment works well for
coefficients of variation smaller than 20%. In many chemical applications the
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coefficient of variation is smaller than 20%, and the bias adjusted estimator
(8) is then recommended. For example, in immunoassays the working range
is often defined as the range of concentrations for which the coefficient of
variation is smaller than 20% (Carroll, 2003).

Table 1: Averages and standard deviations of simulated esti-
mators T and γ̂ of a common coefficient of variation γ

γ n1 n2 n3 Mean(T ) Mean(γ̂) SD
0.05 2 2 2 0.0461 0.0503 0.0214
0.05 3 4 5 0.0486 0.0500 0.0119
0.05 10 10 10 0.0495 0.0500 0.0068
0.10 2 2 2 0.0927 0.1011 0.0430
0.10 3 4 5 0.0976 0.1004 0.0244
0.10 10 10 10 0.0994 0.1003 0.0138
0.15 2 2 2 0.1401 0.1528 0.0662
0.15 3 4 5 0.1470 0.1512 0.0369
0.15 10 10 10 0.1489 0.1503 0.0210
0.20 2 2 2 0.1887 0.2058 0.0897
0.20 3 4 5 0.1968 0.2024 0.0501
0.20 10 10 10 0.1990 0.2009 0.0286
0.25 2 2 2 0.2399 0.2617 0.1184
0.25 3 4 5 0.2482 0.2553 0.0655
0.25 10 10 10 0.2496 0.2519 0.0367
0.30 2 2 2 0.2954 0.3222 0.1542
0.30 3 4 5 0.3005 0.3091 0.0814
0.30 10 10 10 0.3011 0.3039 0.0458

3 Confidence Interval and Test for a Common Co-
efficient of Variation

In this section we consider the problems of making a confidence interval for
a coefficient of variation γ that is shared by k populations and testing the
statistical hypothesis that γ equals some specific value γ0. Confidence in-
tervals and tests could be based on the estimator γ̂ from (8). However, the
percentiles of the distribution of γ̂ are not easily obtained. The unadjusted
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estimator (5) is the square root of a weighted average of squared sample
coefficients of variation, and the reciprocal of each sample coefficient of vari-
ation is noncentral t-distributed (Owen, 1968). We shall build the confidence
interval and test on McKay’s approximation, as defined by Definition 2.

Definition 2. McKay’s approximation for the coefficient of variation of
sample i, as defined by Definition 1, is given by

Ki =
(

1 +
1
γ2

)
(ni − 1)c2

i

1 + c2
i (ni − 1)/ni

. (9)

The expected value of McKay’s approximation (9) exists, and the distri-
bution of (9) is well approximated by a central χ2 distribution with ni − 1
degrees of freedom, provided that γ < 1/3. McKay’s approximation is use-
ful for approximately normally distributed measurements of variables that
only take positive values. As noted in Section 2, if only positive values
can be obtained and the distribution is approximately normal, the expected
value µ cannot be smaller than 3 standard deviations σ. The requirement
γ = σ/µ < 1/3, needed for McKay’s approximation to be approximately χ2

distributed, is then fulfilled.
The distribution of

ui =
c2
i

1 + c2
i (ni − 1)/ni

, i = 1, 2, . . . , k, (10)

is consequently well approximated by a distribution with expected value

θ =
γ2

1 + γ2
= γ2 − γ4 + γ6 . . . (11)

and variance inversely proportional to ni − 1. Because the distribution of
McKay’s approximation Ki is, approximately, central χ2 distributed with
ni− 1 degrees of freedom,

∑k
i=1 Ki is, approximately, central χ2 distributed

with
∑k

i=1(ni − 1) degrees of freedom. Thus,
∑k

i=1 Ki =
∑k

i=1(ni − 1)ui/θ
can be used as an approximate pivotal quantity for constructing a confidence
interval for θ as defined by (11). This approximate 100(1− α)% confidence
interval for θ can be written

[∑k
i=1(ni − 1)ui

χ2
1−α/2

,

∑k
i=1(ni − 1)ui

χ2
α/2

]
,
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where χ2
α denotes the 100α:th percentile of a central χ2 distribution with∑k

i=1(ni−1) degrees of freedom, and ui is defined by (10). The corresponding
approximate 100(1− α)% confidence interval for γ is

[√√√√
∑k

i=1(ni − 1)ui

χ2
1−α/2 −

∑k
i=1(ni − 1)ui

,

√√√√
∑k

i=1(ni − 1)ui

χ2
α/2 −

∑k
i=1(ni − 1)ui

]
. (12)

Consider the statistical null hypothesis H0: γ = γ0. This hypothesis is
equivalent to the hypothesis H0: θ = θ0, where θ0 = γ2

0/(1 + γ2
0). Thus we

can use ∑k
i=1(ni − 1)ui

θ0
(13)

as an approximately central χ2 distributed, with
∑k

i=1(ni − 1) degrees of
freedom, test statistic of the hypothesis H0: γ = γ0.

The proposed confidence interval (12) and test (13) rely on the adequacy
of McKay’s approximation. Since we are interested in the adequacy, we end
this section with an investigation of the first two moments of the approxima-
tion, as functions of the population coefficient of variation γ and the sample
size n.

Theorem 4. Let γ be the population coefficient of variation as defined by
Definition 1, and let K = K1 be McKay’s approximation for the coefficient
of variation in a sample with n = n1 observations, as defined by Definition 2.
The first and second moments of McKay’s approximation are

E(K) =
n(n− 1)h(γ, n)

2θ
,

E(K2) =
n(n2 − 1)(n(1 + γ2) h(γ, n)− 2γ2)

4θ2
,

where θ = γ2/(1 + γ2) and, for t = 0, 1, 2 . . .,

h(γ, n) =

9







γ2(1− exp(−1/γ2)), n = 2

t∑

r=0

(−1)r

(
γ2

t + 3/2

)r+1 Γ(t + 3/2)
Γ(t + 3/2− r)

+(−1)t+1

(
γ2

t + 3/2

)t+3/2 2 Γ(t + 3/2)√
π

d(
√

(t + 3/2)/γ), n = 3 + 2t

t∑

r=0

(−1)r

(
γ2

t + 2

)r+1 Γ(t + 2)
Γ(t + 2− r)

+(−1)t+1

(
γ2

t + 2

)t+2

Γ(t + 2) (1− exp(−(t + 2)/γ2)), n = 4 + 2t,

with
d(x) = exp(−x2)

∫ x

0
exp(z2) dz.

Proof. Forkman and Verrill (2008) showed that Kθ/n is type II noncentral
beta distributed with parameters (n−1)/2, 1/2 and n/γ2. Consequently X =
1−Kθ/n is type I noncentral beta distributed with parameters 1/2, (n−1)/2
and n/γ2. A type I noncentral beta distribution with parameters a, b and δ
is central Beta(a+V, b), where V is Poisson(δ/2). Marchand (1997) provided
expressions for the first and second moments of the type I noncentral beta
distribution with parameters a, b and δ based on g(a+b, δ/2) = E(1/(a+b+
V )). We let h(γ, n) = g(n/2, n/(2γ2)). Then, according to Marchand (1997),

E(X) = 1− (n− 1)h(γ, n)
2

, (14)

E(X2) = 1− (n2 − 1) γ2

2n
+

(n− 1)(n− 3 + (n + 1) γ2) h(γ, n)
4

, (15)

and the theorem follows since E(K) = n(1−E(X))/θ and E(K2) = n2(1−
2E(X) + E(X2))/θ2. ¦

The function d, required for odd sample sizes in Theorem 4, is Dawsons’s
integral, which has been tabulated by Abramowitz and Stegun (1972). Be-
cause exp(−(t + 2)/γ2) ≈ 0, t = 0, 1, 2 . . ., Theorem 4 makes it easy to
calculate approximate first and second moments, especially for even sample
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sizes. For example,

E(K) ≈





1 (1 + γ2), n = 2

3
(

1 +
γ2

2
− γ4

2

)
, n = 4

5
(

1 +
γ2

3
+

2γ4

9
+

8γ6

9

)
, n = 6,

and

E(K2) ≈





3 (1 + 2γ2 + γ4), n = 2

15 (1 + γ2 − γ4 − γ6), n = 4

35
(

1 +
8γ2

3
+ 5γ4 + 6γ6 +

8γ8

3

)
, n = 6.

Notice that when γ is small, n = 2, 4, 6, E(K) approximately equals n − 1
and E(K2) approximately equals (n− 1)(n+1), which is the exact first and
second moments, respectively, of a χ2 distributed random variable with n−1
degrees of freedom.

4 Test for Equality of Two Common Coefficients
of Variation

We now introduce a statistical test for the hypothesis that a coefficient of
variation γ1 that is shared by k1 populations equals a coefficient of variation
γ2 that is shared by k2 populations. Definition 3 makes clear the setting and
what we mean by coefficients of variation in this case.

Definition 3. Let yrij = µri + erij , where erij are independently dis-
tributed N(0, σ2

ri), r = 1, 2, i = 1, 2, . . . , kr and j = 1, 2, . . . , nri, with
positive expected values µri and positive population coefficients of varia-
tion γr = σri/µri. The coefficient of variation cri, r = 1, 2, i = 1, 2, . . . , kr,
is defined as cri = sri/mri, where mri and sri are

mri =
1

nri

nri∑

j=1

yrij and sri =

√√√√ 1
nri − 1

nri∑

j=1

(yrij −mri)2, (16)
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respectively.

4.1 A Test for Equality of Coefficients of Variation

Consider the hypothesis H0: γ1 = γ2. Let

uri =
c2
ri

1 + c2
ri(nri − 1)/nri

, r = 1, 2; i = 1, 2, . . . , kr,

and

θr =
γ2

r

1 + γ2
r

, r = 1, 2,

with notation according to Definition 3. Because
∑kr

i=1(nri − 1)uri/θr is
approximately central χ2 distributed with

∑kr
i=1(nri−1) degrees of freedom,

and θ1 = θ2 when the hypothesis is true,

F =
∑k1

i=1(n1i − 1)u1i/
∑k1

i=1(n1i − 1)∑k2
i=1(n2i − 1)u2i/

∑k2
i=1(n2i − 1)

(17)

is approximately F distributed with
∑k1

i=1(n1i−1) and
∑k2

i=1(n2i−1) degrees
of freedom. Thus F can be used as an approximately F distributed test
statistic for the hypothesis of equal coefficients of variation.

When k1 = k2 = 1, the test statistic F , as defined by (17), simplifies to

F =
c2
1/(1 + c2

1(n1 − 1)/n1)
c2
2/(1 + c2

2(n2 − 1)/n2)
, (18)

where cr = cr1 and nr = nr1, r = 1, 2, as defined by Definition 3. According
to Theorem 6 the distribution of the logarithm of F , as defined by (18),
equals the distribution of the logarithm of an F distributed random variable
plus some error variables that are in probability of small orders. Let Op

denote order in probability, defined as in Azzalini (1996).

Theorem 6. Let γ = γ1 = γ2 as defined by Definition 3, with k1 = k2 = 1.
Let X be an F distributed random variable with n1 − 1 and n2 − 1 degrees
of freedom, let Z be a standardized normal random variable, and let U1 and
U2 be χ2 distributed random variables with n1 − 1 and n2 − 1 degrees of
freedom, respectively. Let X, Z, U1 and U2 be independent. Then

log F
d= log X + 2Zγ

√
1
n1

+
1
n2

+
(

U1

n1
− U2

n2

)
γ2 + R(n1, n2, γ) (19)
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where F is defined by (18) and R(n1, n2, γ) = Op(max{n−1
1 γ2, n−1

2 γ2, γ4}).
Proof. Write log F as

log F = log c2
1

(
1 +

(n1 − 1)c2
1

n1

)−1

− log c2
2

(
1 +

(n2 − 1)c2
2

n2

)−1

. (20)

Let Wr = Ur/(nr−1), r = 1, 2, and let Z1 and Z2 be independent standard-
ized normal random variables. The distributions of the averages mr1 and
the standard deviations sr1, r = 1, 2, as defined by Definition 3, equals the
distributions of µr1+Zrσr1/

√
nr and µr1γ

√
Wr, respectively. Thus c2

r equals
Wrγ

2/(1 + Zrγ/
√

n)2 in distribution. The distribution of the first term in
(20) consequently equals the distribution of

log W1γ
2 − log

(
1 +

2Z1γ√
n1

+
Z2

1γ2

n1
+

(n1 − 1)W1γ
2

n1

)

= log W1γ
2 +

2Z1γ√
n1

+
Z2

1γ2

n1
+

(n1 − 1)W1γ
2

n1

−1
2

(
2Z1γ√

n1
+

Z2
1γ2

n1
+

(n1 − 1)W1γ
2

n1

)2

+ . . .

= log W1γ
2 +

2Z1γ√
n1

+
(n1 − 1)W1γ

2

n1
+ Op

(
max

(
γ2

n1
, γ4

))
. (21)

The corresponding calculations can be made also for the second term in
(20), and (19) follows. ¦

4.2 Simulation Study

In this section we investigate, by Monte Carlo technique, the significance
levels and powers of the introduced approximate F-test (18), for the hypoth-
esis H0: γ1 = γ2 when k1 = k2 = 1. We also study the likelihood ratio test,
Bennett’s test as modified by Shafer and Sullivan (1986), and Miller’s test.
These tests are, for quick reference, given in the Appendix.

In each simulation two samples with n1 and n2 observations, respectively,
were randomly generated 20,000 times in MATLAB 6.5. The observations
were normally distributed with expected values 100 and 1,000, and with co-
efficients of variation γ1 and γ2, respectively. The tests were performed with
significance level 5% against the alternative hypothesis of unequal coefficients
of variation, that is the tests were two-sided.

Eight cases were studied. The type I errors of the tests were investigated

13



in Cases 1–6, and the powers of the tests were investigated in Cases 7 and 8.
In Cases 1–3, the common coefficient of variation γ was 5%, 15% and 30%,
respectively. The sample sizes were equal, i.e. n1 = n2 = n, and varied
varied from 2 to 20. In Cases 4–6, γ was 5%, 15% and 30%, respectively, but
in these cases n1 = 4 and n2 varied from 2 to 20. In Case 7 one coefficient
of variation was 5%, and the other 15%, and in Case 8 one coefficient of
variation was 15%, and the other 30%. In Case 7 and 8, the two sample
sizes were equal and varied from 2 to 20. Thus 19 simulations were made
per case.

The results of the simulation study are presented in Figures 1–8, with one
figure per investigated case. The likelihood ratio test showed too large fre-
quency of type I error (Figures 1–6), especially for sample sizes smaller than
10. When n2 = 2 the frequency of rejected hypotheses was larger than 20%
with the likelihood ratio test. Bennett’s test was also too liberal, though not
as liberal as the likelihood ratio test (Figures 1–6). Miller’s test performed
better with regard to type I error, except when only 2 observations were
sampled per distribution (Figures 1–3). The approximate F-test, introduced
in this paper, was the only test that produced almost correct frequency of
rejected hypotheses in all cases (Figures 1–6). The likelihood ratio test and
Bennett’s test, which were too liberal, showed better power for small sample
sizes than Miller’s test and the approximate F-test (Figures 7 and 8).

5 Discussion

In applications with constant, or almost constant, coefficients of variation it
is often appropriate to assume that the data follows lognormal distributions.
One should therefore consider working on the log scale (Cole, 2000). After
log transformation of the data the usual tests for equality of variances, such
as Bartlett’s test, could be applied.

However, it is not always appropriate to assume that the data is log-
normally distributed. In immunoassays, for example, normally distributed
errors in the volumes of samples could result in normally distributed mea-
surements of concentration with constant coefficient of variation. In this
paper we have discussed inference for the coefficient of variation when there
are reasons to believe that the data is normally, but not lognormally, dis-
tributed.
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Figure 1: Case 1. Probability of type I error when γ1 = γ2 = 5% and
n = n1 = n2.
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Figure 2: Case 2. Probability of type I error when γ1 = γ2 = 15% and
n = n1 = n2.
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Figure 3: Case 3. Probability of type I error when γ1 = γ2 = 30% and
n = n1 = n2.
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Figure 4: Case 4. Probability of type I error when γ1 = γ2 = 5% and n1 = 4.
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Figure 5: Case 5. Probability of type I error when γ1 = γ2 = 15% and
n1 = 4.
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Figure 6: Case 6. Probability of type I error when γ1 = γ2 = 30% and
n1 = 4.
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Figure 7: Case 7. Power when γ1 = 5%, γ2 = 15% and n = n1 = n2.
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Figure 8: Case 8. Power when γ1 = 15%, γ2 = 30% and n = n1 = n2.
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Since it is often necessary to relate the standard deviation to the level
of the measurements, the coefficient of variation is a widely used measure
of dispersion. Coefficients of variation are often calculated on samples from
several independent populations, and questions about how to compare them
naturally arise. There is a need for an explicit estimator of a common coef-
ficient of variation. Such an estimator has been given in this paper.

For making confidence intervals and tests we have considered McKay’s
approximation, which is valid only when the population coefficient of vari-
ation γ is smaller than 1/3. Coefficients of variation are usually calcu-
lated on positive data, such as measurements of concentration, weight or
length. Given that the positive measurements are approximately normally
distributed γ is smaller than 1/3, because otherwise the expected value is
smaller than 3 standard deviations, and the probability of negative obser-
vations is not negligible. Thus, McKay’s approximation is applicable for
positive variables, provided only that the distributions are approximately
normally distributed. Normality could be checked, e.g. by the Shapiro-Wilk
test.

Over the years many tests have been proposed for equality of coefficients
of variation. In this paper, an additional test has been introduced: the
approximate F-test. Unlike many other tests the new test can be applied
not only when there are one estimate per population coefficient of variation,
but also when there are several. The small simulation study reported in
this paper indicated good performance of the approximate F-test, especially
with regard to type I error. It would, however, be interesting to see results
from a larger simulation study, including more cases, several tests and an
investigation of robustness. As already pointed out, the methods proposed
in this paper are intended for normally distributed data. Miller (1991b)
suggested a nonparametric test for equality of coefficients of variation. This
nonparametric test was recommended for nonnormal distributions by Fung
and Tsang (1998).

The Fmax-test (Hartley, 1950) is a natural extension of the approximate
F-test to more than two common coefficients of variation (G.E. Miller, per-
sonal communication). For two coefficients of variation, the Fmax-test and
the approximate F-test are identical for the two-sided hypothesis. The Fmax-
test requires equal degrees of freedom. Tables for the Fmax distribution were
given by Nelson (1987).
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Appendix. The Likelihood ratio test, Bennett’s and
Miller’s Tests

Let mr = mr1 and cr = cr1 denote the average and the coefficient of vari-
ation, respectively, in the r:th sample, r = 1, 2, as defined by Definition 3.
The likelihood ratio test statistic can be written

−2 log λ = n1 log
n1(γ̃µ̃1)2

(n1 − 1) c2
1m

2
1

+ n2 log
n2(γ̃µ̃2)2

(n2 − 1) c2
2m

2
2

, (22)

where λ is the likelihood ratio and γ̃, µ̃1 and µ̃2 are the maximum likelihood
estimates of γ, µ1 and µ2, respectively. These are, according to Gerig and
Sen (1980),

µ̃1 =
n1m1µ̃2

(n1 + n2)µ̃2 − n2m2
, µ̃2 = − q

2p
+

√
q2

4p2
− r

p
,

γ̃ =
1
µ̃2

√
(n2 − 1) c2

2m
2
2

n2
+ m2

2 −m2µ̃2, (23)

where p = (n1 + n2)c2
1 + n2, q = −(2n2c

2
1 + 2n2 − n1)m2 and r = ((n2

2(c
2
1 +

1)− n2
1(c

2
2 + 1))m2

2)/(n1 + n2). Asymptotically (22) is χ2 distributed with 1
degree of freedom.

Bennett’s test statistic, as modified by Shafer and Sullivan (1986), can
be written

(n1 + n2 − 2) log
(

1
n1 + n2 − 2

(
(n1 − 1)c2

1

1 + c2
1(n1 − 1)/n1

+
(n1 − 1)c2

1

1 + c2
1(n1 − 1)/n1

))

−(n1 − 1) log
(

(n1 − 1)c2
1

(n1 − 1)(1 + c2
1(n1 − 1)/n1

)

−(n2 − 1) log
(

(n2 − 1)c2
2

(n2 − 1)(1 + c2
2(n2 − 1)/n2)

)
,

and is approximately χ2 distributed with 1 degree of freedom.
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Miller’s test statistic (Miller, 1991a),which is approximately N(0 ,1), is

(c1 − c2)
(

c2

2(n1 − 1)
+

c4

n1 − 1
+

c2

2(n2 − 1)
+

c4

n2 − 1

)−1/2

,

where c = ((n1 − 1)c1 + (n2 − 1)c2)/(n1 + n2 − 2).
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