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ABSTRACT

Background: Evergreen ericaceous dwarf shrubs form a dominating component of low arctic
and low alpine vegetation. They typically produce high contents of secondary chemicals such as
phenolics. The primary function of these chemicals may be to defend the shrubs by making
them less palatable to herbivores.

Question: Does the production of secondary chemicals carry a fitness cost in terms of low
growth rate and, therefore, low capacity to recover from past herbivory?

Methods: In 2000, we constructed vole-proof exclosures on low arctic islands where
vegetation had, since 1991, been heavily impacted by grey-sided voles. In 2000 and 2003,
we surveyed the vegetation of the exclosures, of unfenced plots on the same islands, and
of control plots on a vole-free island. We used the point-frequency method for vegetation
surveys.

Results: In the exclosures, the biomasses of most plant species increased, by and large, at the
same pace. The two woody species, which increased most rapidly, were the maximally palatable
bilberry (Vaccinium myrtillus) and the phenolics-laden, maximally unpalatable northern
crowberry (Empetrum nigrum ssp. hermaprhoditum). The recovery rates of these species
were similar.

Conclusions: The high concentrations of phenolics typical for evergreen arctic dwarf shrubs
do not carry any obvious cost in the form of reduced capacity for compensatory growth. The
principle of trade-offs does not help to explain the variation in plant palatability.
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INTRODUCTION

A characteristic feature of northern tundra and mountain areas is the abundance of
evergreen ericoids in nutrient-poor upland habitats (Nordhagen, 1928; Kalliola, 1939; Dahl, 1957; Oksanen
and Virtanen, 1995; Virtanen et al, 1999a, 1999b; Nilsson er al, 2002). These plants accumulate phenolics,
which constitute about 15-20% of the dry weight of their leaves Jonasson er al., 1986; Nilsson et al.,
1998, 2000; Gallet ef al., 1999; Shetsova et al., 2005; Hansen er al., 2006). Similar dry weight percentages have
also been reported for co-existing deciduous dwarf shrubs (Jonasson et al, 1986; Oksanen et al, 1987;
Graglia et al, 2001; Hansen et al, 2006), but the values for evergreen ericoids imply much higher
amounts of phenolics per leaf area unit and per unit weight of palatable mesophyll
material. Much of the dry weight of evergreen ericoid leaves consists of other poorly
palatable material, such as cuticles and internal support structures, increasing their
weight-to-area ratio (Woodward, 1986; Van Wijk er al, 2005) (see also Table 1) and reducing their
palatability. Therefore, herbivores seldom forage on evergreen ericoids, unless facing an
acute risk of starvation (Kalela, 1957; Aleksandrova et al., 1964; Skjenneberg and Slagsvold, 1968; Emanuelsson,
1984; Moen et al., 1993a; Hamback and Ekerholm, 1997; Rammul ez al., 2007).

Nutrient-poor low arctic and low alpine heaths are characterized by periodically intense
impacts of arvicoline rodents and migratory reindeer/caribou on the vegetation (Nordhagen,
1928; Tihomirov, 1959; Kalela, 1971; Oksanen and Oksanen, 1981; Emanuelsson, 1984; Moen et al., 1993b; Créte and Doucet,
1998; Olofsson er al., 2001, 2004a, 2005; Bréthen er al., 2007), which could conceivably favour inedible plants
(Harper, 1969; Crawley, 1983, 1990; Pastor and Naiman, 1992; Schmitz, 1994, 2006; Polis and Strong, 1996; Schmitz et al., 2000;
Rausher, 2001). The other option — tolerance and a capacity for rapid compensatory growth
(McNaughton, 1979; Oesterheld and McNaughton, 1991; Strauss and Agrawal, 1999; Rausher, 2001; Del-Val and Crawley,
2005) — should be less advantageous in nutrient-poor tundra habitats, where plants cannot
grow rapidly anyway (Grime, 1979) and where a surplus of reduced carbon therefore often
accumulates (Bryant et al., 1983; Oksanen, 1990; Honkanen and Haukioja, 1998; Jones and Hartley, 1999).

Nevertheless, resistance and tolerance represent two alternative strategies to tackle
herbivory and alternative uses of reduced carbon, making a trade-off likely (van der Meijden er al,
1988; Herms and Mattson, 1992; Rosenthal and Kotanen, 1994). Moreover, the high content of phenolics in
evergreen ericoids does not emerge as a passive consequence of a nutrient shortage and the
subsequent shunting of the surplus carbon to phenolics, as proposed by Bryant ez al. (1983).
Contrary to the predictions of their carbon—nutrient balance hypothesis, evergreen ericoids
do not respond to shading by reducing the concentration of phenolics in their leaves (Hansen
et al, 2006). Moreover, the northern crowberry, Empetrum nigrum ssp. hermaphroditum, starts
to accumulate phenolics in the current year’s leaves by early summer (Nilsson ez al, 1998), when
conditions for growth are optimal (Chapin, 1987). These observations indicate an active and
potentially costly synthesis of phenolics. The trade-off between defence and compensatory
growth should become acute when herbivory has speeded up nutrient circulation, thus
increasing the marginal costs of reduced carbon (Zimov ez al, 1995; Olofsson ez al., 2001, 2004b).

To test the hypothesis of a trade-off between defence (resistance) and capacity for
compensatory growth (tolerance), we thus excluded herbivorous vertebrates from parts
of low arctic islands that had for a decade been strongly impacted by food-limited voles
(Hambiick er al, 2004; Dahlgren er al, 2009). The vegetation of these islands consisted of both
unpalatable evergreen ericoids and palatable herbs and deciduous dwarf shrubs. According
to the predictions of the trade-off hypothesis, the palatable plants with low defensive
budgets should recover rapidly, while the heavily defended evergreens should increase
slowly, if at all.
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METHODS

The study was conducted in the freshwater archipelago of Lake IeSjavri, Norwegian
Lapland, where in 1991 we had introduced grey-sided voles (Myodes rufocanus Pall.) on
four two-trophic-level islands, isolated enough to be practically predator-free (Hambick er al,
2004; Dahlgren er al., 2007, 2009; Aunapuu et al., 2008). A fifth island, to be referred to as the one-trophic-
level island, did not show any signs of past rodent activity in 1991 and has since remained
rodent free owing to continual trapping, including intensive snap-trapping when needed.
For the composition of the vegetation and the characteristics of the common species,
see Table 1. For a detailed description of the system, see Dahlgren et al. (2009) and Aunapuu
et al. (2008).

In spring 2000, we built a vole exclosure of 2 X 2 m on each two-trophic-level island. We
used galvanized hardware netting with a mesh size of 1.2 x 1.2 cm. The net was 1 m high
and was dug down into the mineral soil. Two poison-baited vole traps were placed in
each exclosure to ensure that they would remain free from voles. The composition of the
vegetation was recorded annually within the four permanent plots in each exclosure, and
within eight unfenced permanent plots on the experimental islands (plot size 0.5 x 0.5 m,
laid out in a fixed pattern), using the point-frequency method (Jonasson, 1988), with 100
sampling points per plot (pin diameter 2 mm). The one-trophic-level island had a similar
set of unfenced plots, studied as above. All contacts between the green parts of vascular
plants and the pin were recorded separately, except for the crowberry and other micro-
phyllous plants (Phyllodoce caerulaea, and club mosses) for which branches were treated as
units. The point-frequency data were transformed to biomasses by undertaking separate
point-frequency censuses on 90 additional plots in July 2003, followed by harvesting all
shoots of vascular plants, sorting by species, drying for 48 h at 60°C, and weighing. Linear
regressions between the point-frequencies and dry weights were thereafter computed for
all species.

We computed the effects of vole exclusion on plant biomass in two ways: (1) by comparing
changes in exclosures to changes on open plots within the same islands (the exclosure index,
E); and (2) by comparing exclosure changes to changes on the one-trophic-level island (the
recovery index, R). The strength of the exclosure index lies in the physical vicinity of the
plots that are to be compared; its problem is that the dynamics on open plots are still far
from asymptotic (Dahlgren er af, 2009). The recovery index relates changes in exclosures to the
impacts of the physical environment on each species in a habitat free from herbivore
impacts. Because we were working with a piece of inland tundra with low and variable
winter precipitation, creating unpredictable variation in snow melt (Anonymous, 1978; Oksanen and
Virtanen, 1995; Lippestad, 2007), it was important to control the experiment for the impacts of
premature snow melt (see Dahl, 1957; Kullman, 1989) by having a reference island that was as
exposed to the winds and late winter sunshine as were the two-trophic-level islands.

Eight plant species, to be referred to as the ‘common species’, were initially present in
both exclosures and open plots on at least three two-trophic-level islands. For these species
and for the community-level plant biomass, we first computed island-specific indices of
relative biomass change (CB;;) as ratios of final (2003) to initial (2000) biomass on each
island and in both treatments. (Note that we use i to refer to the identity of the island and
j to the treatments. For exclosures, j=e¢; for open plots on two-trophic-level islands,
j = o; for the one-trophic-level island, j = v.) Island-specific exclosure indices, E;, were then
computed as E;=In(CB,/CB,,). The island-specific recovery index, R,, was computed as
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R;=In(CB,/CB,). Species-specific indices were calculated directly from point-frequency
scores without converting them to biomass. To avoid divisions by zero, we replaced zeros
with 0.5. For the twinflower, Linnaea borealis, which was not recorded on the one-trophic-
level island, we set CB, = 1.

Treatment effects on the community- and species-level biomasses were examined with a
t-test. The species-specific E; and R; values were analysed using analysis of variance
(ANOVA) and Tukey’s post hoc test, which is controlled for mass significance and thus
minimizes the risk of type I error. However, it is based on the assumption of statistical
independence between the units that are to be compared, which is not the case in plant
communities containing plants with similar responses to external factors. Therefore,
all standard post hoc tests create a high risk of type II error when applied to plant
communities: real interspecific differences tend to be obscured by the in-built Bonferroni-
type corrections in large materials containing ecologically similar species. In our material,
Tukey’s post hoc test yields a P-value of 0.4 for the same contrast for which a ¢-test yields
P=0.1.

To ameliorate the problem with type II error, we also conducted a principal components
analysis (PCA) on the changes in the vegetation. In this analysis, we first standardized the
sums of point-frequency scores of the eight common species in 2000 and in 2003 to unity
for each island x treatment combination, to ensure that abundance changes of all common
species had equal impact on the result, ran the PCA, and used a z-test to determine whether
the enclosure and open plots moved in different directions with respect to the first and
second principal components. By combining changes in mutually correlated species to two
principal components, both type I and type II errors are avoided, but the species-specific
information is lost.

The PCA was carried out using SAS version 9.1. All other statistical tests were performed
in SPSS (version 12-0 for Windows). Latin nomenclature was based on Lid (1987, Mitchell
Jones et al. (1999), and DelHoyo et al. (1992), except that Clethrionomys was replaced by
Mpyodes (Pall.), which has priority (Paviinov, 2006). For the Latin names of the common plant
species, see Table 1.

RESULTS

When the experiment began, community-level plant biomass on the exclosures of the
two-trophic-level islands was only 55% of the community-level plant biomass on the
one-trophic-level island, indicating strong suppression by vole herbivory and thus much
potential for recovery. In fact, after the exclusion of voles, the community-level plant
biomass doubled in 3 years. At the same time, the community-level plant biomass continued
to decline on the open plots (Table 2). The exclosure and recovery indices for community-
level plant biomass differed significantly from zero (exclosure index: ¢, =5.382, P =0.013;
recovery index: t,=12.667, P=0.001). The increases in community-level plant biomass
varied little between islands (Figs. 1 and 2).

The recovery rates of individual species were more variable (Figs. 1 and 2). The results
of ANOVA implied significant interspecific heterogeneity in recovery rates (exclosure
index: F;,9=3.556, P=0.014; recovery index: F;,;o=3.313, P=0.012), but in pairwise
comparisons significant differences emerged only in those comparisons involving either the
tiny (mean biomass in 2000 < 1 g-m™>; see Table 1) and even initially sparse twinflower or
the lingonberry, which recovered weakly, if at all (Fig. 1, Tables 2 and 3). All other species
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Table 2. Probability values for obtaining the observed interspecific differences under the null
hypothesis ‘no interspecific difference in the exclosure (E) index’, yielded by Tukey’s post hoc test
(below diagonal), and corresponding probability values for the null hypothesis ‘no interspecific
difference in the recovery (R) index’ (above diagonal)

Rcha Csue Vmyr Vuli Bnan Lbor Vit Enig

Rubus chamaemorus 0.99 0.98 0.96 0.89 0.03 0.39 1.00
Cornus suecica 1.00 0.69 1.00 1.00 0.22 0.92 1.00
Vaccinium myrtillus 0.55 0.52 0.57 0.41 0.01 0.08 0.85
Vaccinium uliginosum 1.00 1.00 0.89 1.00 0.29 0.97 1.00
Betula nana 1.00 1.00 0.38 0.99 0.42 0.99 1.00
Linnaea borealis 0.11 0.22 0.00 0.07 0.31 0.77 0.13
Vaccinium vitis-idaea 1.00 1.00 0.75 1.00 0.99 0.06 0.79
Empetrum nigrum 0.99 1.00 0.91 1.00 0.98 0.06 1.00

Note: Probability values < 0.1 are shown in bold font.

e
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Rcha Csue Vmyr Vuli Bnan Lbor Wvit Enig COM
species

Fig. 1. Responses of the common vascular plants to the exclusion of grey-sided voles, as indicated by
the exclosure index (Rcha = cloudberry, Rubus chamaemorus; Csue = dwarf cornel, Cornus suecica;
Vmyr = bilberry, Vaccinium myrtillus; Vuli = arctic blueberry, Vaccinium uliginosum; Bnan = dwarf
birch, Betula nana; Lbor = twinflower, Linnaea borealis; Vvit = lingonberry, Vaccinium vitis-idaea,
Enig = crowberry, Empetrum nigrum). Open circles refer to herbs, solid circles to deciduous dwarf
shrubs, and black triangles to evergreens. The response of the community-level plant biomass (COM)
to the exclusion of grey-sided voles is denoted by a white triangle and a horizontal line. Error bars
represent standard errors. Responses are measured as natural logarithms of response ratios (InRR),
with open plots on the same islands as points of reference.

recovered vigorously and, on average, largely at a similar pace to each other. But there were
differences between islands (Fig. 2, Table 3).

Two species, bilberry and northern crowberry, appeared to respond to the exclusion of
voles more positively than other plants. Their exclosure and their recovery indices were
more than a standard error above the averages for community-level plant biomass (Figs. 1
and 2). For these species, the P-values for the null hypotheses of no interspecific difference
in exclosure and recovery indices were high (> 0.8; Table 2).
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Fig. 2. Responses of the common vascular plants to the exclusion of grey-sided voles, as indicated by
the recovery index (Rcha = cloudberry, Rubus chamaemorus; Csue = dwarf cornel, Cornus suecica;
Vmyr = bilberry, Vaccinium myrtillus; Vuli = arctic blueberry, Vaccinium uliginosum; Bnan = dwarf
birch, Betula nana; Lbor = twinflower, Linnaea borealis; Vvit = lingonberry, Vaccinium vitis-idaea;
Enig = crowberry, Empetrum nigrum). Open circles refer to herbs, solid circles to deciduous dwarf
shrubs, and black triangles to evergreens. The response of the community-level plant biomass (COM)
to the exclusion of grey-sided voles is denoted by a white triangle and a horizontal line. Error bars
represent standard errors. Responses are measured as natural logarithms of response ratios (InRR),
with the plots on the one-trophic-level island as points of reference.

Table 3. Changes in the positions of the open plots
and exclosures in the coordinate space defined by the
first two principal components from 2000 to 2003
(islands are used as replicates; i.e. n = 4)

PCI PC2
Exclosures —-0.003 £ 0.283 +0.311 £0.090
Open plots —-1.033 £0.862 —-0.317£0.278

The first two principal components explained 64% of the variation in the vegetation. The
first axis (eigenvalue 3.28, explaining 41%) was related to snow melt and palatability: poorly
palatable, chionophobic (strongly favoured by early snow melt) ericaceous dwarf shrubs
obtained high positive loadings (crowberry: 0.49; arctic blueberry: 0.43; lingonberry: 0.40),
whereas the highest negative loadings were recorded for two herbs (dwarf cornel: —0.48;
cloudberry: —0.40. The second axis (eigenvalue 1.82, explaining 23% of the variation) was
related to the abundance relationships between bilberry (loading: + 0.52) and dwarf birch
(loading: —0.57).

With respect to the first axis, the exclosures changed very little during the experiment
(Table 3), and the small movements of plots along this axis have no statistical relationship to
the treatment (¢, =1.136, P =0.299). Along the second axis, the exclosures and open plots
moved in different directions and the difference was marginally significant (#;=2.153,
P =0.075), indicating that bilberry recovered more rapidly than the comparatively tall
dwarf birch.
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DISCUSSION

The exclusion of voles resulted in a vigorous increase in community-level plant biomass.
The increase was spatially consistent at the community level but the results of ANOVA
highlighted significant differences in the responses of different species. Pairwise tests
indicated that the aberrant behaviour of two species, the twinflower and the lingonberry,
accounted for the heterogeneity revealed by the ANOVAs. The principal components
analysis nuanced this picture by indicating that the tallest woody plant in our material, the
dwarf birch, recovered slowly, as it has done in areas subjected to intense grazing by caribou
(Créte and Doucet, 1998).

Contrary to the predictions of the trade-off hypothesis, the maximally unpalatable
northern crowberry recovered at the same pace as the highly palatable bilberry. The physical
conditions (low snowfall resulting in early snow melts) were favourable for the chionophobic
crowberry and stressful for the chionophilic (depends on snow lasting until summer)
bilberry (Table 1) (see also Danl, 1957), but the indices were controlled for this source of bias (see
Methods). Note also that the plots did not move along the first principal component,
reflecting the relationship to snow cover.

The negative treatment response of the tiny, trailing twinflower (foliage height < 1 cm)
does not provide evidence that defence is costly. Belonging to the Caprifoliaceae, the
twinflower is taxonomically unrelated to ericoids and is moderately palatable to grey-sided
voles (Ericson and Oksanen, 1987; Moen er al., 1993a). Its low stature and consequent poor ability to
compete for light provide a plausible explanation for its poor performance in exclosures and
for its absence from comparable scrublands on the one-trophic-level island.

The trade-oft hypothesis is more plausible for the other poorly recovering evergreen, the
lingonberry, but other results contradict this interpretation. In the studies of Tolvanen (1994)
and Olofsson et al. (2004a, 2005), in which they examined the impacts of an intermittent
disturbance, the lingonberry recovered as fast as the bilberry or even faster. It is therefore
likely that the poor recovery of the lingonberry in our exclosures reflects the accumulated
impacts of its heavy losses during the 1990s (Dahigren er af, 2009), which have presumably
drained its resources.

Our results are thus in line with the conclusion of Leimu and Koricheva (2006) that there is
no consistent trade-off between resistance and tolerance. Whatever the metabolic costs of
producing phenolics, they do not appear to result in a lower capacity to recover from past
herbivory in this habitat (see also Riipi er o, 2002). On balance, accumulation of phenolics
does not provide an efficient defence against small herbivorous vertebrates either. In late
winter, when food is running out, arctic herbivores take whatever they can get, including
phenolics-laden evergreen ericoids (Pulliainen, 1970; Dahlgren e al, 2009). Instead of having a
primarily defensive function, the phenolics of evergreen arctic ericoids may have evolved as
weapons in plant—plant chemical warfare (Nilsson er al., 1998, 2000; Gallet ez al., 1999; Shetsova et al., 2005).
Phenolics also protect against physical stresses, such as photo-oxidation (Close and McArthur,
2002), which is probably more relevant than chemical warfare when a plant community is
recovering from heavy herbivory.

Although the principle of trade-offs (Levins, 1968) is intellectually appealing and serves as a
point of departure, it nevertheless only generates hypotheses — to be tested and exposed to
the risk of refutation. Traits can provide multiple benefits. Hence adaptation need not be
a zero sum game.
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