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Abstract 
Sallnas. 0. 1990. A matrixgrowth modelof the Swedish forest. Studia Forestalia Suecica 183. 23 pp. 
ISSN 0039-3 150. ISBN 9 1-576-4174-9. 

An area forest matrix model was developed, intended for use as a tool for modelling forest yield in 
an integrated forest sector model. The model was estimated from data from the Swedish National 
Forest Survey. Log-linear models are used in the estimation of transition probabilities. By 
comparison with another growth model, the matrix model generates reasonable growth levels and 
growth patterns. General characteristics of the model and the matrix concept are analyzed and 
discussed. In general. the model is considered suitable for implementation in integrated forest 
sector modelling. 
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Introduction 

In Sweden, as in other countries in which the forest 
sector is of prime importance to the economy, in- 
creasing interest is being shown in integrated forest 
sector analysis. In several countries, formal forest 
sector models are being developed to serve as tools 
for the analysis of policy. In developing these models, 
which attempt to  encompass the forest as well as 
forest industry and the product market, pioneer work 
was done by Randers, Stenberg & Kalgraf (1978) as 
regards the SOS-model and by Adams & Haynes 
(1980) with the TAMM model. Other efforts along 
these lines are exemplified by Kallio, Propoi & 
Seppala (l98O), by Nilsson's ( 1980) industrially fo- 
cussed model, by Lonnstedt's (1986) fairly aggregated 
regional model, and the trade-focussed GTM model 
developed at  IIASA (Kallio, Dykstra & Binkley, 
1987). 

One essential component in a forest sector model is 
a module which projects the forest state, and thus 
serves as a basis for forest management decisions. 
Since the early 1970s, two major models for timber 
assessment studies at  the regional level have been 
developed in Sweden. The first model was used by a 
government commission on forest policy (SOU, 
1978). The second is the "HUGIN-system" (Bengts- 
son, 1981). Both are based on data from the Swedish 
National Forest Survey (NFS), and have been used 
for generating options on which government forest 
policy can be based. These two simulation models, 
HUGIN in particular, were constructed to simulate 
the outcome of different management programmes. 
Their design allows management programmes to be 
formulated in detail. Because of their size and com- 
putational properties, large forest models such as 
HUGIN are not well suited to  incorporation into 
integrated forest sector systems. Their wealth of de- 
tail, and their lengthy running times, make them 
rather poorly suited for this purpose. Another of 
their characteristics is that the growth functions used 
in them (in the case of HUGIN; Eko 1985, Soderberg, 
1986) often possess a mathematical structure which 
makes them difficult to  incorporate into an optimiz- 
ing environment. 

On the basis of this outline of developments in 
forest and forest sector modelling, it is possible to 
identify a need for a forest projection tool that 

- can be used at a regional level, 
- can be quickly and easily handled in the computer, 
- can be associated with a representative description 

of the forest region under study, 
- is sufficiently differentiated to  depict the dynamics 

of the forest in a way which makes the interaction 
with a forest industrial model meaningful. 

The matrix model concept is one interesting modell- 
ing approach to the objectives stated above. 

The aim of this study is to  develop a matrix model 
that could be incorporated into an integrated forest 
sector model. An area matrix model consists basical- 
ly of three parts: (1) a matrix of forest areas, express- 
ing the state of the forest, (2) a set of transition 
probabilities which, under different treatments, go- 
verns the transition of areas between the elements of 
the state matrix, and (3) a set of activities. This report 
focusses on the development of the state and transi- 
tion matrices, while the question of how to derive the 
activity pattern is not addressed. Furthermore, the 
emphasis is almost entirely on the modelling of estab- 
lished forests. Modelling of young forest is only brief- 
ly discussed. The development of the model is pre- 
sented in a series of steps: 

a.  The formal model is defined in general terms, 
together with some preset restrictions. 

b. The choice of variables and the classification 
scheme which defines the state matrix are dealt 
with. 

c. The data set from the Swedish National Forest 
Survey (NFS), used for estimating the model, is 
presented. 

d. The methods for estimating transition probabili- 
ties are presented. 

The paper concludes with a general discussion of 
the concept, in which the model is evaluated against 
other growth functions estimated from data from the 
NFS. In addition, some basic characteristics of the 
matrix model are presented and the results are dis- 
cussed. 



Materials and methods 

Matrix models 

Three major groups of forest matrix models may be 
found in the literature. By far the largest group en- 
compasses models built with the single tree as the 
basic entity and diameter as the state-defining vari- 
able. These models are often used for modelling the 
development of uneven-aged or  selection forests. 
Usher (1966, 1969, 1979) was perhaps the first to  
pursue the concept in a forest context. Bruner & 
Moser (1973) addressed the question of predicting 
diameter distributions. Rorres (1978) used linear pro- 
gramming to seek the optimal harvesting policy in an 
"Usher-like" matrix model. Buongiorno & Michie 
(1980) attempted t o  deal with some of the problems 
of exponential growth inherent in the earlier models. 
In particular, they dealt with the problem of modell- 
ing ingrowth. Kallio et al. (1980) used a matrix model 
based on the single tree, in which the states were 
defined by age and species, to  model the forest in a 
forest sector model. Although the basic entity in their 
model was area, this area was associated with the 
single tree, hence the model resembles diameter- 
based models. Houllier (1986) made a study in which 
the design of forest surveys was related to  the prob- 
lem of constructing dynamic models based on survey 
data. Haight & Getz (1987) developed a diameter 
matrix model which was compared with associated 
single-tree growth functions. Leps & Vacek (1986) 
used a matrix model to  investigate the development 
of a tree population with respect to  vitality classes, 
for a situation involving air pollution. 

In the second group of matrix models are models 
concerned with forest succession in multi-species for- 
ests. Chief interest is attached to the long-term deve- 
lopment of species, and to size distribution in the 
forest studied. Many of the models in this group are 
"diameter-type" models, and since the objective is to  
analyse succession, questions concerning in-growth 
and species change are of prime importance. The 
models of Horn (l975), Barden (I98 1) and Bellefleur 
(1981) represent this group. 

Area matrix models, considered here as models in 
which the basic entity is forest area and in which the 
states are defined by variables related to  area, make 
up the third group, which occur more sparsely in the 
literature. One early application was presented by 
Hool (1966), in which an area matrix model was 
incorporated into an optimizing overall structure by 
means of a dynamic programming algorithm. Hool's 
model was further developed by Lembersky & John- 
son (1975). Vaux (1971) outlined a basic structure for 

a simple model, and Kouba (1977) used an area- 
based matrix model for discussing the concept of the 
normal forest. 

Common criticisms directed against forest matrix 
models concern the assumption of stationarity of the 
process (Binkley, 1980; Roberts & Hruska, 1986) and 
the restriction of projections to  periods that are in- 
teger multiples of the growth period implicit in data 
used for estimating the model (Harrison & Michie, 
1985). Manders (1987) suggests a procedure for test- 
ing the assumption of stationarity. The problems of 
assessing the effects of errors in input and parameters 
and of measuring uncertainties in short-term projec- 
tions, were analysed by Peden, Williams & Frayer 
(1973). Williams (1978) later suggested possible im- 
provements to  the model. Vandermeer (1978) and 
Manders (1987) discussed the determination of the 
category size in matrix models, with particular refer- 
ence to errors to  be expected when estimating transi- 
tion probabilities. General features of matrix models 
are discussed by Enright & Ogden (1979), Rottier 
(1984), Houllier (1986) and Manders (1987). 

The model 

In what follows, the general formulation of the area 
matrix model, its basic structure and the descriptive 
variables for the forest are discussed. An early proto- 
type of the model was presented in Sallnas, Hagglund 
& Eriksson (1985). Throughout this paper, a super- 
script index is used for denoting time, while subscript 
indices denote cell, state o r  activity. 

Given a set of states S ,  a set of activities A and a set 
of transition probabilities P, the area matrix model is 
formulated 

wherex:is the area residing in state iES at time t ,  4; is 
the fraction of the area in state i that is subject to 
activity k E A at time t ,  and pij(k',kr-I) E P is the 
probability for an area residing in state i  at  time t to 
be found in state j at time t+ 1 if subjected to  activity 
kr at time t and to activity kt-' at time t-1. The time 
step is set to five years. Three activities are allowed 
for in the model-thinning, final felling and no treat- 
ment. 

The states in S constituting the basic forest descrip- 
tion are defined by the variables: 



- geographical region 
- owner category 
- site quality 
- species composition 
- age 
- volume. 

The first three of these state variables refer to the 
site, while the others refer to the growing stock on the 
site. Most yield models recently developed in Sweden 
use, among others, the variables region, site, age and 
species composition as explanatory variables (see, 
e.g. Eriksson, 1976; Eko, 1985; Agestam, 1985 and 
Tham, 1988). In these models basal area is, in addi- 
tion, used as an independent variable. In the present 
study, volume was, however, chosen. The variable 
ownership category has been introduced, since 
growth differences which reflect different manage- 
ment history may be embodied in this variable (see, 
e.g. Attebring, 1985; Kempe, 1980 and SOU, 1981). 

The model outlined is a second-order model, in the 
sense that the transitions depend, not only on the 
activities in the present period, but also on those in 
the previous period. In the case of thinnings, this 
feature is of interest, since any thinning effect may be 
expected to last for more than one period. To pre- 
serve this property, while simplifying the model, it 
was converted to one which, from the activity point 
of view, is a first order model, by the introduction of 
a new variable, viz. thinning status. Status I indicates 
forests not thinned during the previous period, while 
status I1 indicates for forests thinned during the pre- 
vious period. When the thinning status variable is 
included in the set of variables that span the state set 
S, the probabilities in equation (2. I )  may be written 
pil(k), or for ease of notation, pi,,, where k denotes 
the activity applied in time t. 

The three defined treatments, and the definition of 
the state matrix, span the theoretical set of possible 
transition paths. However, to simplify the model, it 
was decided to restrict the possible transitions. Tran- 
sitions corresponding to volume growth are restricted 

Table 1. Possible transition paths in the model 

to the augmentation of zero, one or two volume 
classes during one time step. The thinning activity is 
expressed by a reduction of the volume class by one, 
which takes place before growth. This implies that in 
the case of thinning, the possible compound transi- 
tions are that the volume class is reduced by one, 
remains unaltered or is increased by one. Further- 
more, it was decided that the thinning treatment is 
not permissible in thinning status 11, i.e. in forests 
thinned during the preceding period. Age transitions 
are governed by the assumption of even distribution 
of areas within each age class. The permitted transi- 
tion paths for established forests are summarised in 
Table 1. 

Young forests, in this study defined as bare land or 
forests with an average height of less than six metres, 
are described only by the variables region, owner- 
ship, site and age. Not until the young forest areas 
enter the set of established forest are they associated 
with a volume class and a species composition. 

Classification 

With a defined classification scheme and a data set of 
forest entities (plots, stands, etc.) describing the state 
for every entity at two subsequent times, a first set of 
state and transition matrices can be established. The 
state matrix contains the number of entities residing 
in each defined state, while the transition matrix gives 
the number of entities which, during the implicit five- 
year period, progress from one state to another. Here 
the classification is discussed, and in particular, the 
intervals chosen for the different variables. The cru- 
cial point of determining the intervals for the volume 
variable is dealt with in some detail. 

Since the model is based on a discrete set of states, 
a sequence of intervals over which the data can be 
classified must be defined for every variable. The 
number of intervals affects both the estimation proce- 
dure and the computational properties of the model. 
A large number of intervals gives rise to large ma- 
trices and consequently, to a large number of para- 

State at  time t State at time t+ 1 
Thinn. Acti- Thinn. 

Age Spec. Vol. status' vity Age Spec. Vol. status 

I J k I none i,i+ I j k,k+ l.k+2 I 
I1 none i,i+ I j k,k+ l,k+2 I 
I thinn. i,i+ 1 j k-l,k,k+l I1 
I final - young forest - 

Thinning status I1 denotes forests that have been thinned in the previous period, and status I denotes forests ot thinned in 
the previous period. 

- 5 



meters t o  be estimated. Another consequence of large 
matrices is long running times. However, it is essen- 
tial to  depict the forest in such a way that a sufficient 
differentiation of growth patterns, as well as of man- 
agement programmes, is possible. 

The top-level classification to be made is the separ- 
ation of young forests from established forests. The 
limit was set a t  an average height of six metres, a 
choice that may be compared with the eight-metre 
limit used in the HUGIN-system (Hagglund, 1981~) .  
In the remainder of this section, and the entire sec- 
tion concerned with estimation (p. 9), established 
forests alone will be dealt with. Young forests are 
separately discussed (p. 13). 

Intervals for the volume variable 
The volume variable has a somewhat different status 
as compared with the other variables. All other varia- 
bles describe state, but where dynamic behaviour is 
concerned, their main function is to  separate differ- 
ent volume growth patterns. Volume growth is the 
core of the model, and can be recorded only as a 
difference in the area distribution by volume classes 
over a time interval. Therefore, it is essential to de- 
fine the volume classes in such a way that growth is 
correctly depicted even in a single-period perspective. 

Given the seven-dimensional classification matrix, 
denote by i the cell index with respect to  volume 
class, and by j the compound cell index associated 
with all other variables. If the number of volume 
classes is assumed to be N, the growth &expected in 
the model for a unit area in cell i j  can be expressed as 

where pi,,(k) denotes the probability for the area in 
class i j  to  be found in volume class m one time period 
later under treatment k, and dl, the difference in 
volume between volume class i and m. The unit area 
has a "true" growth, gi, and a minimum demand on a 
model of this kind is that the relation 

obtains. Howeve a more strict requirement would be 
that the relation should obtain at class level, i.e. 

If the volume growth g of a unit in class i j  with 
standing volume v is estimated by a function g(v) = 

exp(f(v)), and the residuals to the function f(.) are 

assumed to be normally distributed, the growth for a 
unit can be expressed as 

where s is the standard deviation of the residuals and 
eEN(0,l). If the deviation about the function f(v) is 
regarded as a variation in growth for a unit with 
volume v. and we set 

with vi as the upper limit of volume class i, the proba- 
bility for the unit with initial volume v to  grow out of 
the volume class may be expressed as 

P(v + exp(f(v) + s .e)) > v,) = 1 -@(bi(v)) (8) 

where @ is the cumulative normal density function. 
Consequently, considered over the entire class, which 
is assumed to contain a uniformly distributed forest 
area, the probability for an arbitrary unit in volume 
class i to grow out of the class is 

In the case of no treatment, thep,,,(k)'s. in expres- 
sion (I), can be expected to  be small for m < i and 
m > i+ 1 and consequently g*,, may be approximated 
by pi,n . dl, where n = i+ 1. Relation (5) then becomes 

p. d.  = g.. q n  m 11 

Setting 

substituting P*i for Pi,n and recognising that din = 
(vi+{ - vi-,)/2, the difference between the means of 
volume classes i and i+ 1, makes it possible to  gener- 
ate a sequence of class limits once vo and v ,  are fixed. 
By means of this procedure, with functions f ( . )  (see 
Appendix 1) estimated for different forest types, it 
was possible to  create volume class sequences which, 
in a broad sense, accord with the average growth of 
the plots. 

Intervals for other variables 
Geographical region: Four regions were distinguished 
(Fig. 1). These coincide with regions used by the 



u REGION 4 

Fig. I .  The regions used in the matrix model 

government commission of enquiry into future forest 
policy (SOU 1981). Ownership category: Two owner- 
ship categories were distinguished in the model, viz. 
non-industrial private forest owners and others. Site 
quality: Site quality, expressed as potential mean an- 
nual yield, was used to distinguish different growth 
conditions. Four classes were used, the definition of 
which differed between regions. In regions 1 and 2, 
site class 1 was assigned to high-altitude forests. Spe- 
cies composition: Three classes were distinguished, 
viz. coniferous forests dominated by pine and by 
spruce, respectively, and deciduous forests. Age: Six 
age classes were used, each comprising 20 to 40 years. 
The intervals differed between site classes. Thinning 
status: Two different values for the thinning status 
variable were used, the one denoting forest not 
thinned during the latest five-year period, the other 
denoting forest thinned during the latest period. 

The exact intervals used for all variables are given 
in Appendix 2. 

Data 

The model was estimated from data collected by the 
Swedish National Forest Survey (NFS), which an- 

nually samples the Swedish land area using systema- 
tic stratified cluster sampling, comprising about 
1,000 clusters and 12,000 sampling plots. Until 1982, 
plots were temporary and circular, with a radius of 
ten metres (Bengtsson, 1978; SLU, 1974- 1982). 
Most of the plots are "volume-plots", on which all 
trees are calipered. In this study, all such plots situat- 
ed on forest land in the surveys from the years 1974 to 
1982 were used. In total, there were about 100,000 
plots. Some variables were assessed from the "20- 
metre plot", i.e. an imaginary plot with a radius of 20 
metres, which has the same centre as the ordinary 
ten-metre plot. 

NFS-variables and simulations 
For each plot in the NFS, numerous data are collect- 
ed, of which only a small number have been used in 
this study. Some of these data deserve further explan- 
ation. Area characteristics, such as geographical si- 
tuation, altitude and ownership category, are record- 
ed for every plot. Site index, expressed as estimated 
dominant height at 100 years of age, is assessed and 
later converted to  potential mean annual yield. For 
every plot an age-class, relating to  the 20-metre plot, 
is assessed. If the age is less than 40 years, an exact 
age is recorded. On the plots, the height of a number 
of sample trees is measured and they are bored for 
estimation of increment and volume. By a standard 
procedure (Holm, Hagglund & Mirtensson, 1979) 
each calipered tree is associated with a sample tree, 
thus assigning volume and growth to all trees, and 
consequently to all volume-plots. The data are differ- 
entiated by species. In this study, these calculated 
growth figures were used without adjustment for cli- 
matic variation. Natural mortality is assessed for 
every species, enabling the volume of losses by mor- 
tality to  be simulated on the plots in connection with 
the other simulations. Recent treatments, together 
with the estimated time period in which they took 
place, are recorded. However, whether o r  not the 
plot has been fertilised cannot be determined (Bengts- 
son & Sandewall, 1978). It should, however, be re- 
cognised that the data set relates to  forests in which 
the area fertilised annually has averaged some 
150 000 hectares. 

Preprocessing of the material 
Before the estimation of the model, the basic data 
were preprocessed. The state, five years before mea- 
surement, as expressed by the variables age, volume 
and species composition, was assessed for every plot. 
The volume of species s on plot i five years before 
measurement, v$was calculated according to 



where v:, g, and mis are respectively, the recorded 
volume and the recorded growth and mortality dur- 
ing the period. In this connexion, mortality was as- 
sessed directly from recorded mortality on the indivi- 
dual plot. It should be noted that if the plot had been 
thinned during the five-year-period preceding the sur- 
vey, growth includes only the growth of the remain- 
ing trees. In its turn, this implies that if thinning had 
been carried out fewer than five years before the 
survey, growth covers unthinned as well as thinned 
conditions. Previous height was calculated, to  make 
it possible t o  decide whether o r  not the plot should be 
regarded as belonging to the set "young forests" 
(average height less than six metres) five years before 
measurement. The calculations were performed using 
a simple relation which states that the quotient 
between subsequent heights equals the third root of 
the corresponding volume quotient. 

Growth level 

These variations were analysed, to  provide a picture 
of the relative growth level implicit in the data set 
used in the present study. 

Growth was simulated by means of the recorded 
growth (obtained from increment cores) of sample 
trees. Sample trees are recorded by the NFS every 
year, but not all trees were in fact used for growth 
and volume simulations. Thus in some cases, growth 
for a specific year was simulated using increment 
cores from sample trees of another year. 

Table 2 shows the year of recording for sample 
trees used for the growth estimates of different survey 
years. The recorded growth for sample trees from an 
individual year is deduced from the five outer annual 
rings. If the occurrenm of the different annual rings 
in the data set are summed, the sums may be regard- 
ed as weights expressing the relative importance, to  
the total growth level, of each annual ring. From 
annual indices for different species and regions 
(Bengtsson & Wulff, 1987) weighted averages were 
computed (Table 3). They may be regarded as rough 
estimates of the growth levels inherent in the data set. 

Due to weather conditions, the overall growth of the 
forest varies substantially from one year to  another. 

Table 2. The relation between year of survey and year of recording of sample trees used for growth estimates 

Survey year 1974 75 76 77 78 79 80 8 1 82 

Sample trees 74/75 75 77 77 79 79 8 1 8 l 8 1 
from year(s) 

Table 3. Annual indices for the different annual rings in the data set 

Annual indices 

Annual Spruce Pine 
ring Weight North South North South 

Weighted mean 



Estimation of transition probabilities 

With the classification scheme defined above (p. 5) 
and the preprocessed data set giving the state of every 
plot both at the time of survey and five years before 
survey, a first transition matrix was established. The 
aim of this section is to  outline methods for estimat- 
ing the transition probabilities for established forests 
from this basic matrix (transitions from young to 
established forest are dealt with below). First, the 
non-volume transitions are briefly dealt with. 

However, the primary question at  issue here is the 
estimation of volume transitions, the main problem 
being to discover a method that yields estimates even 
for those parts of the matrix in which the number of 
observations is low or  nil. Log-linear models, which 
form the basis of the estimation procedure employed, 
are outlined. They are used for testing which varia- 
bles to  use in the estimation, which is carried out as a 
stepwise procedure supported by a sequence of in- 
creasingly aggregated log-linear models. 

The problem of estimation has the following back- 
ground: If the number of states is denoted by m, the 
abovementioned initial matrix is of size m.m and can 
be written N = (ni,), where nii is the weighted number 
of plots belonging to state i five years before survey 
and t o  state j at  the time of survey. The weights used 
are compounded of the size of the (part of the) plot 
and the sampling probability. Now the matrix of 
transition probabilities P = (pi,) could be estimated 
by the straightforward Maximum-Likelihood esti- 
mate 

However, in the m-dimensional state matrix, a large 
number of cells have none or  very few observations 
(see Table 4). In these cases there would be no esti- 
mates o r  very poor ones. This situation was ap- 
proached in two ways. Only volume transitions were 
in fact estimated (see below), thus limiting the 
number of parameters t o  be estimated, and log-linear 
models were used to test for the aggregation level in 
the estimates. 

Non-volume transitions 
In the matrix N, the transitions between -different 
species composition groups are rather few in number. 
It should, however, be noted that in the data set it 
was not possible to  judge whether o r  not a plot had 
crossed a species boundary when thinned, since the 
removed volume is not recorded. To limit the number 
of parameters to  be estimated, it was decided to 
restrict the transition to  take place inside the original 
species group. Age-transitions are depicted by transi- 
tion rates equalling the quotient between the projec- 
tion period of five years and the age class width. 
Transitions between thinning status classes are guided 
solely by the activity undertaken; thus if an area is 
thinned, it progresses to thinning status I1 and for the 
next period it returns to  status I. This way of specify- 
ing the model means that all non-volume transitions 
inside the set of established forests are of an a priori 
nature (Table 5).  

Table 5. The number of observations in the species 
groups at time of recording (t) and Jive years earlier 
(t-51, in region 1 

Time t 
Species group 

Time t-5 Species 
group 

Log-linear models 
To test which variables to  use for differentiating the 
growth patterns in different parts of the transition 
matrix, P, it was decided to fit log-linear models to  
the matrix of counts, N. Log-linear models are dis- 
cussed in depth in Bishop, Fienberg & Holland 
(1975). A briefer presentation is given in Everitt 
(1977), which serves as a base for the following out- 
line of loglinear models. 

Table 4. The distribution of the states in region 3 by number of observations 

Number of 
observations. 0 1 2 3 4 5 6 7 8 9 9 -t 

Fraction of total 
number of states (%) 54 14 7 5 3 2 2 2 2 I 8 



Starting with a two-dimensional matrix of observa- 
tions, A =  (aii) with the total number of observations 
denoted by T, the probability that an observation will 
fall in element aii may be expressed by 

If there is no compound effect between the two varia- 
bles associated with the indices i and j respectively, 
the probability can be expressed as 

where the convention pi. = Z, pi, is used. Taking 
natural logarithms and converting from probabilities 
to expected counts, ei,, will yield 

Following the notational convention of Bishop et al. 
(1975) this model can be rewritten as 

where 

That is, we have a model, linear in the logarithms, 
consisting of three terms: one grand mean, one term 
associated with the first variable and one term asso- 
ciated with the second variable, i.e. a log-linear mo- 
del based on the assumption of no interaction 
between the two variables. Generalizing to more than 
two dimensions is straightforward. In the three-varia- 
ble case the analogue unsaturated model would be 

implying interactions between all pairs of variables, 
but assuming no threevariable interaction. It should 
be noted that "corresponding to particular hypoth- 
eses, particular sets of expected value marginal totals 
are constrained to be equal to  the corresponding 
marginal totals of observed values" (Everitt, 1977). 
That is, to  every log-linear model, based on a particu- 
lar hypothesis about existing or  non-existing interac- 
tion effects, there is a corresponding set of fixed 
marginal totals. For example to  the model 

corresponds the set of fixed marginal totals 
{ei..,e.j.,e..k,e.jk). Thus, given the matrix and the 
variables, a log-linear model can be defined by the set 
of fixed marginal totals. Denoting the three variables 
by a ,  b and c respectively, the above model could be 
described by the set of marginal totals 
{aOO, 060, OOc, Obc), where a letter stands for a 
variable not summed over, while " 0  indicates a 
summed-over variable. However, in this study we are 
dealing solely with hierarchial models, i.e. if a speci- 
fic effect is included in the model, all lower order 
effects embedded in the original one are presumed to 
be included as well. Thus in this case the model could 
be described by the set (a00,Obc). Finally, if we neg- 
lect the unnecessary zeros, the model is denoted 
{a,bc). This notational convention is used through- 
out the remainder of this paper. 

In some cases, log-linear models can be fitted via 
direct estimates, but it is often necessary to  use an 
iterative algorithm. An algorithm, originally pro- 
posed by Deming and Stephan, and described in 
depth in Bishop et al. (1975), is used here. 

Testing the outcome of the model, the expected 
counts, against the observed counts constitutes a way 
of testing the assumption about independence 
between the two variables. There are several options 
for measuring this goodness of fit. The usual X2 mea- 
sure 

with x, as the observed value and m, as the fitted 
value, is one such option. However, the likelihood 
ratio 

has some computational advantages that make it pre- 
ferable. Both measures are asymptotically X2-distri- 
buted, and share the property that if a model A yields 
a measure of, say, LA with DA degrees of freedom and 
another model B, including one more interaction fac- 
tor, yields L ,  and D,  respectively, then the difference 
LA-LB is X2-distributed with DA-D, degrees of free- 
dom (Kendall, 1975). This property makes it possible 
to test for the improvement in fit when additional 
factors are included in the model. 

When computing the degrees of freedom, the 
number of independent parameters estimated should 
be subtracted from the number of cells estimated. 
However, the resulting figure should be adjusted by 
subtracting the number of elementary cells with zero 
estimates and adding the number of parameters that 



cannot be estimated due to corresponding zeros in 
the model defining marginal totals. 

Fitting of log-linear models 
The matrix of observed counts is in seven dimen- 
sions, where the variables are region, ownership, site, 
age, species group, volume and thinning status. It has 
already been stated that the transitions are restricted 
to take place in the subspace spanned by age, volume 
and thinning status. Furthermore, the transitions in 
the volume dimension are restricted to three classes. 
Thus, the N matrix can be collapsed to an n x 3  matrix 
(n,) where i is, as  before, the state five years before 
measurement, and j E (0,1,2) is the number of volume 
classes the plot gains during the transition period. 
Volume class definitions d o  vary over regions and site 
classes, which implies that the 16 submatrices defined 
by these two variables should be treated separately. 
All other variables, i.e. ownership, age, species 
group, volume and thinning status, can be used to 
differentiate the transition patterns, but it is also 
possible, when estimating the probabilities, to merge 
the data over one or several of these variables. What 
we can call the explanatory power of the variables 
can be tested by fitting different log-linear models to  
the matrices of observed counts. 

Because of limitations in available computer 
software, the analysis could not be carried out in 
more than 5 dimensions. In turn this makes it neces- 
sary to  deal with the testing in two subsequent steps. 
Before the analyses it is necessary to  introduce some 
further notational conventions. The variables, ow- 
nership category, species, age, volume, and thinning 
status are abbreviated c,  s,  a ,  v, and t respectively. A 
new variable "outclass", defined as  volume class at  
time of measurement minus volume class five years 
before measurement, is denoted o. Region and site 
class serve in this context as separators of subma- 

trices, and are denoted by r a n d  i. Three different sets 
of the matrices of observed counts will be used in the 
following: 

where all variables follow the notation from above 
and the variable v x a  is the compound variable vo- 
lume class x age class. Now the log-linear models can 
be denoted unambiguously; for example, the model 
including the three-factor effect v-a-s and the single 
factor o applied on matrix A can be written { o . v a ~ ) ~ .  

The first step of the analysis focusses on the set of 
A matrices, that is the matrices defined as (o,v,a,t,s). 
To test for the included variables, a number of log- 
linear models were fitted to  these matrices. All mo- 
dels included the marginal sum vector, o r  in other 
words, the configuration "vats". This configuration 
fixes the marginal sums over the o,  outclass, variable, 
thus ensuring that the original sampling scheme is 
preserved. The combination of the variables volume 
and outclass was as well kept in all models, since 
these two variables constitute the growth level in the 
different region x site sub-matrices. In Table 6 some 
results from fitting a number of models to  the data 
for Region 1 are given. 

Starting with the most aggregated model, including 
only the configuration corresponding to the two-fac- 
tor effect outclass-volume class, one interaction fac- 
tor in turn is added. If the inclusion of the new factor 
improves the fit, another factor is added. Thus the 
improvement in fit is evaluated by the relation 
between the change in L~-measure and degrees of 
freedom. Normal X2-evaluation is used for the com- 
parison, implying that an improvement in fit is noti- 
ceable by a decrease in the L~-measure that clearly 

Table 6. L~ measureldegrees offreedom for different models in different site classes; REGION 1. Matrix of observed 
counts defined as A=(outclass, volume, age, thinning type, species group) 

- 

Site class 

Model 

(ov, vats) 
(ov,oa, vats) 
(ov,ot,vats) 
(OV,OS, vats) 
(ov, oa, ot, vats) 
(ov,oa,os, vats) 
(ov,oa,ot,os, vats) 
(ova,os, vats) 
(0 vs,oa, vats) 
(oas, ov, vats) 



exceeds the loss of degrees of freedom. It can be 
concluded that, besides the variable volume already 
given, age was the variable with the greatest explana- 
tory power. Introducing it on the two-variable level 
significantly improved the fit, which was also the case 
with the species variable. However, no significant 
improvement was associated with the incorporation 
of the thinning type variable, nor with the introduc- 
tion of three-variable effects. A best-fitting model 
was reached when three two-factor effects, outclass- 
volume,outclass-age class and outclass-species 
were combined. 

However, the variable ownership category remains 
to be analysed. Therefore, in step two of the analysis 
the test-matrices are the B matrices. Table 7 shows 
results from the fitting of models including the ow- 
nership variable, to the data set of Region l .  

It may be noted that in site classes 1 and 2, the 
ownership variable had a significant impact on the 
two-factor level. From the analysis above it may be 
concluded that the best-fitting model for Region 1 is a 
model in which the two variable effects outclass- 
volume, outclass-age class and outclass-species are 
incorporated. In site classes 1 and 2, the two-factor 
effect outclass-ownership category is also included. 
A similar testing procedure was carried out for the 

other regions of Sweden. In Region 3 the results were 
practically identical to those of Region 1. Regions 2 
and 4, however, differed from the pattern distin- 
guished so far. Table 8, relating to the results for 
Region 4, is similar to Table 6 but for the addition of 
some models. 

The figures imply that the best fitting model is the 
one in which the three-variable effect outclass-vo- 
lume-age is combined with two-variable effects, 
outclass-species and outclass-thinning type. In 
other words, the data set can support the estimation 
of a more detailed model than was the case for Re- 
gions 1 and 3. Moreover, it is possible to carry out 
the second step of the analysis, the inclusion of the 
variable owner category, in a somewhat different 
way. Since the best fitting model includes the three- 
factor effect outclass-volume-age, the variables 
volume and age can be merged to one compound 
variable. Thus in the second step, the C matrices were 
used for Region 4. Now, since we are working with a 
compound "second" variable-volume x age, the in- 
clusion of the configuration "ovxa" in a model im- 
plies a three-factor effect outclass-volume-age. In 
this region it is noticeable that in site classes 1 and 4 
there were significant improvements in fit when the 
ownership category variable was incorporated (Table 

Table 7. L~ measureldegrees of freedom for different models in different site classes, REGION 1. Matrix of 
observed counts defined as B = (outclass, volume, age, ownership category, species group) 

Site class 

Model 1 2 3 4 

(ov,oa,os, vacs) 3791335 60 11502 4751419 4281373 
(ov,oa,oc, vacs) 3601333 5901500 47414 17 426137 1 
(ovc, oa, os, vacs) 34513 18 57 11474 4481392 3971340 
(oac,ov,os, vacs) 3631309 5831449 4651338 4201363 

Table 8. L~ measureldegrees of freedom for different models in different site classes; REGION 4. Matrix of observed 
counts defined as A= (outclass, volume, age, thinning type, species group) 

Site class 

Model 

(ov, vats) 
(ov,oa, vats) 
(ov,ot, vats) 
(ov,os, vats) 
(ov, oa, ot, vats) 
(ov,oa, os, vats) 
(ov,oa, ot, os, vats) 
(ova,os, vats) 
(ova, ot,os, vats) 
(ovs,oa, vats) 
(om,  ov, vats) 



Table 9. L%easureldegrees of freedom for different models in different site classes; REGION 4. Matrix of observed 
counts defined as C=(outclass, volume . age, ownership category, thinning type, species group) 

Site class 

Model 1 2 3 4 

(OV x a,ot,os, vats) 9851467 1 1311379 9181259 8 131270 
(ov x a,oc,ot,os,vats) 9671465 1 1301377 9161257 8061268 

9). However, because there were rather few counts in 
these site classes, it was decided not to include the 
ownership category variable. 

In the case of Region 2, the situation is more 
difficult. The first stage of the testing procedure 
showed the best-fitting model to be one with two- 
variable effects outclass-volume, outclass-age. 
outclass-thinning type, as well as outclass-species, 
included. Since software limitations restricted the an- 
alysis to five dimensions and the absence of three- 
factor effects precluded a merging of variables, it is 
not possible to test the interaction of thinning types 
and ownership category. However, the ownership 
variable showed a very slight effect on the fit when 
tested without disaggregation into different thinning 
types. Hence it was decided not to include the owner- 
ship variable in the "best-fitting model". 

The conclusions of the testing procedure described 
are summarised in Table 10. 

Estimation of volume transitions 
In the previous section, best-fitting log-linear models 
were established. This testing was carried out with 
models including the configuration "vats", which 
conserves the original sampling pattern. If it is re- 
called that the configuration "vats" stands for the 
marginal sums over the outclass variable, it is clear 
that models including this configuration will not yield 
estimates in cells which correspond to zero entries in 
these marginal sums. In order to give estimates in 

Table 10. The best-fitting model for site-classes in re- 
gions. Variables are abbreviated according to outclass 
= o, volume class = v, age class = a, owner category 
= c, thinning type = t, species composition = s. Ma- 
trices are dejned A = (o,v,a,t,s) and B = (o,v,a,c,s) 

Region Site Model 

1 1 and 2 (ov, oa, oc,os, vacs), 
1 3 and 4 (ov, oa, os, vacs), 
2 1-4 (ov, oa,ot, os, vats), 
3 1 and 2 (ov, oa,oc,os, vacs), 
3 3 and 4 (ov, oa, os, vacs), 
4 1-4 (ova,ot,os, vats), 

these cells as well, models excluding these configura- 
tions were fitted to the observations. However, the 
"best-fitting" models include configurations that are 
not all non-zero, and consequently they will not, even 
in the unrestricted form, give estimates in all cells. 
Furthermore, models do give estimates in cells where 
the estimate can be expected to be poor owing to a 
very small number of observations in the particular 
entry in an associated marginal sum. Hence, a limit 
of five deduced observations in the individual cell was 
used to determine which model to use. This can be 
dealt with by employing a sequence of increasingly 
aggregated models. The most aggregated model that 
can be used is the model defined by the sole configur- 
ation "om, i.e. the estimates are taken as the average 
in a certain outclass over all volume classes, species, 
ages, etc. When applying this method, the sequence 
of models was determined from the results of the 
model testing in the previous section. In Table 11 the 
sequence of models used is given, as also the number 
of states that in subsequent steps could not be given 
estimates. It is clear that, in certain regions and,site 
classes, a considerable number of estimates must be 
taken from aggregated models. 

Young forests 

Young forests are classified according to four varia- 
bles only, viz. region, ownership, site quality and 
age. The intervals for the first three of these coincide, 
of course, with those chosen for established forests. 
The age classification is, however, unique for the 
young forests. A five-year interval was chosen to 
correspond to the calculation time step in the model. 
Eleven five-year age classes were combined with a 
class defined as bare forest land, to form in total 384 
young forest classes over the four site quality classes 
and two ownership categories in four regions. Proba- 
bilities relating to transitions from young forest to the 
set of established forests were estimated from the 
data set by a straightforward Maximum-Likelihood 
estimate. Let y, be the number of plots that resided in 
young forest state i five years before measurement, 
and that remain in the set of young forest at time of 



Table 11. The models used for estimation and the number of states which could not be given estimates, for different 
regions and site classes. (Total number of states in every submatrix is 720. 

Site class 

Model 1 2 3 4 

Region 1 

(ov,oa,oc, os)B 
(ov,oa,os)B 
(ov, oa)B 
(ov)B 

Region 2 

(ov,oa,ot,os)A 
(ov,oa, os)A 
(ov, oa)A 
(ov)A 
(o)A 

Region 3 
(ov,oa,oc, os)B 
(ov,oa, os)B 
(ov, oa)B 
(ov)B 
(o)B 

Region 4 
(ova, ot, os)A 
(ov,oa,ot,os)A 
(OV, oa, os)A 
(ov,oa)A 
(ov)A 
(o)A 

measurement, andxij the number of plots that resided 
in the young forest state i five years before measure- 
ment and are in state j of the established forest at the 
time of measurement. The probability of moving 
from young forest state i to  state j in the established 
forest pii is then given by 

and the probability of moving from the young forest 
state i to  i f  I ,  U ~ , ~ + I ,  by 

where c is exogenously given. The constant c can be 
regarded as an expression for regeneration quality. 

Some characteristics of the model 

In this section, some characteristics of the model are 
analysed in three steps. First, the overall initial 
growth level is compared to the figures given by other 

sources. Even if the model is primarily intended to be 
used for analysing forest a t  an aggregated level, it 
must be evaluated at  a disaggregated level to  ensure 
that it depicts the dynamics of different forest types 
correctly Thus, in the second step the growth of 
different forest types, according to the matrix model, 
is compared with the outcome of a well-established 
Swedish growth model. Finally, the growth dynamics 
of the model are illustrated by examples of the deve- 
lopment of two specific forest types over age. 

Growth level 
The present growth level of the Swedish forests is 
known through the figures published by the National 
Forest Survey (cf. Skogsdata, 82-87). The simula- 
tions carried out with the HUGIN-system in the latest 
national timber assessment study (AVB-85), could 
also be used in a comparison (Bengtsson, 1986). In 
Table 12, the estimated growth levels of these systems 
are compared with that of the matrix model. 

The comparison should be interpreted with cau- 
tion, since the various growth figures relate to  differ- 
ent management programmes. In addition, the NFS 



Table 12. Growth level in the Swedish forests according to different sources (m' per hectare and year) 

Region 

1 1 ' 2 2' 3 4 

NFS 75-79' 2.6 3.7 4.6 5.5 
AVB-852 2.4 3.5 4.4 5.3 
Matrix model3 2.2 2.3 3.4 3.5 4.0 4.9 

' Skogsdata 82. Recorded gross growth incl. growth of harvested trees, Survey data from the years 75-79. : Net growth. Regions 1' and 2' refer to  forest land in regions 1 and 2 but excluding high altitude forests. 
Net growth. Regions 1' and 2' refer to  the site classes 2-4 in the regions respectively, which constitute roughly the same 
areas as in the AVB case. 

figures relate to  gross growth recorded during the 
years 1975-79. The AVB growth figure was deduced 
from the simulated fellings during the period 1980- 
1990 and from the difference in standing volume 
between 1980 and 1990, while the figure from the 
matrix model is deduced from a single-period simula- 
tion, the forest state being depicted by the NFS-data 
used in this study. 

In order to  study the matrix model for different 
forest types, it was compared with the growth model 
of Eko (1985) on a sitelspecies level. From NFS-data 
(1973- 1977), Eko estimated growth functions for the 
Swedish forests. The two models in the comparison 
employ different ways of formulating management 
programmes. Since every deduced growth level is 
associated with a specific management programme, it 
was decided to assess the maximum yield according 
to the two models. For the matrix model, this was 
done by solving the linear programming problem 

where uik denotes the (volume) outcome of activity k 
in state i, and y,  the area in state i that is treated with 
k; x relates to the earlier defined states, and p to  the 
transition probabilities. The maximum yield, accord- 
ing to  Eko's functions, was sought under the restric- 
tion that the only thinning intensity permitted was 30 
per cent of the basal area. Complete enumeration was 
used to solve the problem. The development of the 
young forest is represented here by assigning a given 
state to the area when entering the established forest 
at a fixed age. Some well known starting values, 
originally proposed by Hagglund (198 lb), and later 
used by Eko, were used here. Eko's functions express 
basal area growth per time period, for which reason 

the initial forest states in these cases have been ex- 
pressed in terms of age, basal area and number of 
stems. These values were used to establish the start- 
ing states in terms of volume, by using volume func- 
tions developed by Eko (1985). In Table 13, the maxi- 
mum yield for the two models is presented for spruce 
and pine forests in different combinations of region 
and site. 

The maximum growth figures of Table 13 are each 
associated with a management programme. To illus- 
trate this association, the thinning strategy of the 
optimal management programme, according to the 
Eko model, was applied to  the matrix model. 

Figs. 2 and 3 show the development over age of 
total volume yield for the models in two different 
region-site-species combinations. 

In Fig. 2, for a pine forest in central Sweden, the 
curve of the matrix model shows overall a somewhat 
higher growth level than the curve corresponding to 
the Eko functions. This is not surprising, since the 
site chosen for the Eko curve is placed rather low in 
the range of site classes valid for the matrix model. 

/ 
MATRIX + 
MODEL / 

/ 

Fig. 2. Total yield, according to  the matrix model and the 
Eko model in a pine forest on  site class 2 in region 2. The 
thinning programme defined maximizes volume yield in the 
functions of Eko. 



Table 13. A comparison of the maximum yield according to the matrix model and the model of Eko, for different 
regions, sites and species 

Matrix model Eko model Starting values Yield 

Region Site Class- Site- Basal 
species class definition index Site' Age Vol. area Matrix Eko 

1 pine 

2 pine 

3 pine 

4 pine 

I spruce 

2 spruce 

3 spruce 

4 spruce 

' Potential annual yield, m3 per hectare and year (PS, 1985). 

However, the maximum annual yield under this man- 
agement programme, according to the matrix model, 
is 2.6 m3/ha, as compared with the figure of 2.8 m3/ha 
in Table 13. 

Fig. 3, which refers to  a spruce forest on a good 
site, shows that the matrix model features a signifi- 

G MATRIX 

Fig. 3. Total yield, according to the matrix model and the 
Eko model, in a spruce forest on site class 4 in region 3. The 
management programme defined maximizes volume yield in 
Eko's functions. 

cantly lower growth level than the Eko model. The 
maximum annual yield level of 8.5 m3 in Table 13 is 
reduced to 7.5 m3 when the thinning programme 
according to Eko is applied. 

Growth pattern 
From the discussion above, it is clear that when maxi- 
mum volume yield is sought, the matrix model does 
not favour management programmes similar to  those 
of the Eko model. The growth pattern of the model 
can be analysed through the steady-state solutions of 
problem (I 2). 

The solution to one of the linear programming 
problems is depicted in Fig. 4 by the horizontal bars. 
The volume development of the forest over time, 
according to the optimal management programme 
deduced by the Eko functions, is also shown in the 
figure. In this case, Eko's functions result in a pro- 
gramme in which the forest is thinned three times, a t  
the ages of 25, 35 and 45 years respectively, resulting 
in a low standing volume at  low age, and a clear- 
felling at an age of about 70 years. The matrix model 
implies a programme in which thinning is carried out 
a t  a higher age, and final felling is postponed to an 
age of about 100 years. 



% of total area 

1 2 3 4 5 6 
Age class 

= no treatment 

= final felling 

Fig. 4. The steady-state solution to  (12) for a spruce forest on site class 4 in region 3 over time. Area fractions in different age 
and volume classes are expressed in percent. A corresponding development, according to  Eko. is indicated by the solid line 
(up to final felling) and by the broken line (after the imaginary final felling). 

Fig. 5 is an analogue graph which refers to a pine model. It features growth prolonged to an advanced 
forest on a poor site. The principal difference age, and by comparison with the Eko functions, does 
between the two management programmes is similar not take full advantage of early thinnings. 
to  that of the previous case. These two examples are Another apparent feature of the steady-state solu- 
fairly typical of the growth pattern of the matrix tions is that the forest area is distributed over several 

% of total area 

1 2 3 4 5 6 
Age class 

[? = no treatment 

a = thinn~ng matr~x model - final felling I 
Fig. 5. The steady-state solution to (12) for a pine forest on site class 2 in region 2 over time. Area fractions in different age 
and volume classes are expressed in per cent. A corresponding development, according to Eko. is indicated by the solid line 
(up to final felling) and by the broken line (after the imaginary final felling). 



volume classes even in the lower age classes. This 
effect is due to the model structure, with age classes 
wider than the calculation period, and age transitions 
expressed as fractions of the area residing in a specific 
age class. This structure implies that some areas in an 
age class change not age class, but volume class, 
during a period, thus creating a dispersion over the 
volume dimension. There is also a corresponding 
effect over the age variable. Owing to the formulation 
of age transitions, some areas change age class when 
residing in a low volume class. The magnitude of 
these effects was investigated by comparing the 

steady-state solution in the present model, containing 
6 age classes, with a corresponding solution to a 
model in which the forest was described by 22 age 
classes, each with a width of five years. The example 
relates to spruce forest on a good site. A management 
programme without thinnings, and postulating final 
felling at the lower limit of the sixth original age 
class, was applied. The expected "tilt" of the develop- 
ment of volume over age in the "22-class" solution 
compared to the "6-class" solution, is clearly evident 
(Table 14). 

Table 14. Average standing volumes (in3 per hectare) at the mean age of the original age classes, according to 
simulations with 6 and 22 age classes respectively (Figures in brackets indicate that the volume is calculated at the 
lower limit o f  the class) 

Number of 
age classes Age class 
used in the 
simulation I 2 3 4 5 6 

Discussion 

The "growth model" presented here consists of two 
logical components-one yield model and one struc- 
ture in which the yield model can be implemented. 
The yield model consists of the transition probabili- 
ties and their associated volume class scheme. 

Yield model 
Establishment of the yield model is concentrated to 
the task of classification and estimation. One impor- 
tant point 'in the classification is the definition of 
volume class. The choice of intervals for the volume 
variable is crucial to the disaggregated short-term 
growth level embedded in the final model. The dis- 
cussion of this question in this paper is largely intui- 
tive, and could be pursued more rigorously. Here, 
the importance of volume class size relates to the fact 
that forest areas are regarded as being represented by 
the mean of the class in which they reside, while the 
discussion of category size by Vandermeer (1978) and 
Manders (1987) focusses on errors expected when 
estimating transition probabilities. Age class inter- 
vals, which in the yield model context serve only as 
growth pattern separators, can be chosen ad hoc, but 
the intervals used here are not ideal. Intervals should 

differ between regions, not only by site class categor- 
ies. 

The model is based on the assumption that the 
variables site, species, age and volume do depict the 
forest in a way appropriate to the present applica- 
tion. Testing the influence of these variables by way 
of the fit of the log-linear models demonstrated that 
they are important. The ownership variable showed a 
significant effect in some areas. This may be inter- 
preted as a result of the past application of different 
management regimes by different owners. In some 
areas a thinning effect was distinguished, noticeable 
in terms of a significant effect of the thinning variable 
in the testing of different models. Because of unrelia- 
bility of the data in regions in which thinnings are 
few, this effect was included in the final model only in 
regions in which its effect was strong and logically 
consistent. 

The choice of log-linear models as a tool in the 
estimation procedure should be regarded as an alter- 
native to the straightforward Maximum Likelihood 
estimates commonly used (cf. Buongiorno & Michie, 
1980; Mendoza & Setyarzo, 1986; Michie & McCand- 
less, 1986; Mertens & Gennart, 1985 or Satyamurthi, 
1981). The most crucial problem is how to fill in the 



extremes of the matrix, i.e. corners in which the 
number of observations is very low. By using, in the 
estimation procedure, the configurations identified in 
the testing phase, the issue can be addressed. The 
methods merit further investigation where log-linear 
models that recognise the ordered structure of some 
of the variables could be employed. An interesting 
alternative estimation procedure could be to use com- 
monly employed stand or tree-level growth functions 
to generate the transition probabilities (cf. Haight & 
Getz, 1987, or Kaya & Buongiorno, 1987). 

The NFS data are the only consistent data set 
covering the whole forest area of Sweden. The NFS 
data used in this study have, in common with most 
survey data based on temporary plots, two apparent 
drawbacks to their use in forest yield studies: no 
knowledge is available about fertilization of the plots, 
and only the mere fact that a plot has been thinned is 
known. The amount of wood harvested is not record- 
ed for most plots. However, the new design of the 
survey, based on sampling with partial replacement, 
will partly solve the latter problem. Michie & Buon- 
giorno (1984) discuss different methods that can be 
used for parameter estimation when remeasured Sam- 
ple plots are available. 

In the Data section, the inherent growth level of 
the data set was examined. The calculations made 
were approximate, in that they disregarded different 
sampling probabilities, etc. It may nevertheless be 
concluded that the overall growth level seems to be 
rather low for spruce in southern Sweden, while it is 
rather high for pine in the northern part of the 
country. It might have been more appropriate to 
have used growth data adjusted for climate, instead 
of the unadjusted data. Furthermore, data used for 
estimating the development of young forest relate to 
forest regenerated during a period in which the qua- 
lity of regeneration in Sweden was fairly low (see e.g. 
Kempe, 1980). The sceptical attitude to the basic 
assumption regarding stationarity, represented by 
Binkley (1980) and Roberts & Hruska (1986), is pro- 
bably well founded in this case. 

Implementing the yield model 

The primary yield model was implemented in this 
study into a model possessing certain specific charac- 
teristics. In this model, the number of age classes was 
chosen to coincide with the number used in the esti- 
mation of the yield model. It would be possible to use 
a structure in which the age classes of the yield model 
were split, e.g. into classes with a width of five years. 
However, in such a case, all matrices would have 

been large, resulting in a large computational bur- 
den. The comparison between simulations carried 
out with different numbers of age classes (cf. Table 
14), showed that although there were differences in 
volume development over age, the effects were not 
especially pronounced. Some of the differences 
between the Eko model and the matrix model, identi- 
fied in the discussion of growth pattern, probably are 
a consequence of the treatment of age as a series of 
discrete, wide classes. However, the tendency 
towards an improper age development in the model 
implies that a very skewed forest state, as in a single 
stand or a small forest property, would fairly soon be 
spread out in an inappropriate fashion. 

One main structural feature of the model is its 
limited flexibility as regards thinning. Only one thin- 
ning activity, taking down the standing volume one 
class, is defined, which makes it difficult to analyse 
detailed management programmes. It is possible to 
allow additional thinning intensities, since the yield 
model recognises only the thinning response in the 
period after that in which thinning has taken place. 
However, the defined intensity corresponds to a har- 
vest of 20-30 per cent of the standing volume. This 
level can be expected to correlate with the intensity in 
the thinning carried out on the plots, hence to the 
intensity related to the thinning response estimated. 

Fertilisation was not included in the model. This 
activity could, however, be incorporated fairly easily 
by estimating the growth response from functions. 
The variables used for describing the forest coincide 
with the most important variables in commonly used 
response functions (Rosvall, 1979). 

The development of young forest is intentionally 
not dealt with in detail. The present approach means 
that young forest development cannot be controlled 
by the user. It is possible to regulate the development 
only by means of the coefficients controlling transi- 
tions from the bare land classes to the young forest. 

In this paper, the formulation of the activity pat- 
tern of the model has not been discussed. It is stated 
only that the three activities allowed for in the model 
are thinning, final felling and no treatment, and that 
activities should be formulated in terms of fractions 
of the area in a state to be treated. The construction 
of these activity fractions depends, of course, on the 
context in which the yield model is used, but like 
most other matrix models, it can used in the context 
of both simulation and optimisation. 

Concluding remarks 

In the light of the evaluation of the model carried out 
above (p. 14), it seems reasonable to conclude that 



the overall growth level of the model is acceptable. 
Although it must be borne in mind that the growth 
figures relate t o  different management programmes, 
the growth of the first period compared to the NFS 
figures and the simulations with AVB exhibited no 
significant deviations, with the exception of the ten- 
dency for spruce forests in southern Sweden to de- 
viate. This trend is further emphasised in the species1 
sitelregion comparisons with the Eko functions. To 
some extent, the differences between the matrix mo- 
del and the Eko functions is explained by the circum- 
stance that the site classes of the matrix model are 
somewhat wide, and that the corresponding sites cho- 
sen for the Eko model sometimes represent extremes 
in the site intervals. Another explanation is given by 
the "poor years" inherent in the data set. When these 
factors are recognised,the correspondence between 
growth levels seems adequate. In the comparison 
with the Eko functions, the matrix model was opti- 
mised. It featured management programmes that dif- 
fered from those of the reference model. Thinnings 
were carried out comparatively late, as was the final 
felling. It is not surprising that models, which have 
different structures and are estimated by different 
methods, should feature such differences, even 
though they may be based on the same kind of data. 
Optimising a model, as was done in this study, may 
be regarded as a means of scrutinising the model for 
anomalies. The matrix model revealed no counter- 
intuitive results. 

A model of the type presented in this study may be 
given two fundamentally different interpretations. 
The transitions may be regarded as fractions of areas 
moving from one state to  others; this implies that the 
different transition paths result from actual differ- 
ences in physical conditions, from genetic dispersion 
or  structural properties of the forest not depicted by 
the descriptive variables. The other interpretation of 
the transitions is as probabilities, implying that the 
model depicts a system in which at  any moment there 
exist several possible developments, each one asso- 
ciated with a probability. In this case, the develop- 
ment of the forest system is viewed as a stochastic 
process (for a discussion of the subject see, e.g., 
Houllier, 1986.) Furthermore, it should be noted that 
the model presented has the properties of a Markov- 
model. For this class of models, there is an extensive 

body of theory, available for analysing the character- 
istics of the model (cf. Isaacson & Johnson, 1975). 

One basic question deserves attention: is the matrix 
model a plot level, stand level o r  forest level model? 
(For a discussion of stand vs. plot level data, see 
Hagglund, 1982). In the cells of the matrix reside 
aggregates of sample plots. The present model differs 
from a calculation unit model based on aggregates of 
plots, in that it is not based on the average values of 
the variables in the aggregates, but recognises that 
forests described in the same way d o  develop in dif- 
ferent ways (or a t  least, that there are different proba- 
bilities associated with a number of possible develop- 
ments). 

As with most forest growth models, the model 
presented here relies on a basic assumption of sta- 
tionarity. It has been stated that at least in one case, 
that of young forest development, this assumption is 
invalid. Taking into consideration the development 
of the genetic material used in regeneration, air pollu- 
tants, possible long-term climatic changes and other 
external effects, it appears plausible that the assump- 
tion of stationarity should not hold. The conse- 
quences of this will become more pronounced with 
time. 

The properties and characteristics of the model, as 
discussed here, imply that it is most suitable for ap- 
plication to forest areas that are in some respects 
heterogeneous, such as large, uneven stands or  forest 
regions, and that it should not be used for very long- 
term simulations. 

In the Background, some desirable properties of a 
forest projection tool suitable for application in an 
integrated forest sector environment were identified. 
The model presented in this study can be used on a 
regional level and is, in consequence of the matrix 
structure, easily handled in a computer. It is estimat- 
ed from NFS-data, which naturally can also serve as 
a source of continuously updated state description of 
the Swedish forests. Although, by comparison with 
most stand projection models in Sweden, the model is 
quite aggregated, the degree of differentiation could 
suffice for an integrated environment. Together with 
the robustness of the model, these properties imply 
that the model presented can serve as a part of a 
forest sector model. 
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Appendix 1 

Growth functions used for generating volume classes: 

General model g = a . sb . exp ( c  . v) 

where g is growth per cent per five year period, s site 
expressed in potential production measured in m31100 
hectareslyear and v is growing stock (m3/ha). 

Coefficients 

Region Site class a h L 

Appendix 2 

Classification scheme for the NFS-plots 

VARIABLE 

SPECIES 1 >50% conifers, pine dominated (% of standing volume) 
COMPOSITION 2 >SO% conifers. spruce dominated 
(% of 3 >50% broadleaves 
standing 
volume) REGION 

1 2 3 4 

SITE CLASS 1 >500 m altitude >600 m altitude <5 <6 
m3/ha, years 2 <2.5 <4 5-7 6-9 
potential mean 3 2.5-3.5 4-6 7-9 9-11 
increment 4 >3.5 >6 >9 >I1  

SITE CLASS 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4  

VOLUME I 25 25 30 30 30 30 35 40 30 35 40 45 35 45 50 55 
CLASS (Upper 2 35 36 45 48 42 44 54 65 45 57 67 78 53 72 82 92 
limit) 3 46 49 64 70 55 60 78 99 63 85 103 123 75 107 125 142 
m3/ha 4 57 63 86 100 68 78 109 144 86 122 151 185 102 153 181 208 

SITE CLASS 

1 2 3 4 

AGE CLASS 1 50 
(Upper limit) 2 70 

3 90 
4 120 
5 160 
6 >I60 
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