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Abstract  

 

The heterogeneous seminal plasma (SP) is involved in endometrial inflammation and 

following immune changes that occur post-mating in pigs. This study tested whether SP 

spermadhesins (binding heparin [HBPs] or not [PSP-I/PSP-II]) recruit different lymphocyte 

subsets (CD2+, CD4+ and CD8+) and polymorphonuclear leukocytes (PMNs) to the superficial 

endometrium/lining epithelium and lumen, respectively, of oestrous sows, in vivo. In 

Experiment 1, endometrial biopsies were taken under narcosis from six sows whose uterine 

horns were separated and their lumen infused with 3 mg/mL spermadhesins (HBP resp 

PSP-I/PSP-II) in 100 mL saline (treatment horn) or 100 mL saline (control horn). Endometrial 

samples removed between 2 and 120 min post-infusion were studied by 

immunohistochemistry (IHC, using mABs) or histology, to assess the degree of T-cell 

respectively PMN entry over time. In Experiment 2, eight conscious oestrous sows were 

singly infused intra-utero with 3 mg/mL of PSP-I/PSP-II in 100 mL saline (n = 4) or 100 mL 

of saline (n = 4), to assess relative PMN numbers in the uterine lumen, 3 h post-infusion. 

Compared to controls, PSP-I/PSP-II infusion significantly recruited uterine lymphocytes from 

10 min (CD2+) or from 60 min (CD8+) onwards, while HBPs had only increased CD4+ cells 

by 120 min. As well, PSP-I/PSP-II, but not HBPs, significantly (P < 0.05) induced an early 

(10 min) PMN migration to the surface epithelium, 5-fold by 30 min and 7-fold from 60 min 

onwards (P < 0.001), with PMNs visible in the lumen from 30 min of infusion. Six-fold more 

PMNs were collected from the uterine lumen of PSP-I/PSP-II-infused sows compared to 

controls, 3 h after infusion (P < 0.001). Seminal plasma PSP-I/PSP-II heterodimer triggers the 

entry of cleansing uterine PMNs, initiating a cascade of transient and long-lasting 

immunological events in oestrous sows. 

 

1.1 Introduction 

 

In the pig, as in many other species, mating causes a transient endometrial inflammation 

(reviewed by Robertson et al., 2006) which, at first sight, is a logical step by the female 

genital tract to combat the entry of foreign cells (e.g. the spermatozoa), foreign proteins (in 

the seminal plasma, SP) and, eventually, of pathogens. Some spermatozoa escape this 

inflammation by reaching the oviductal sperm reservoir (SR) and participating in fertilization. 

Spermatozoa, and later the early embryo, the foetus and the placenta, are immuno-tolerated by 
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the female, despite all being allogeneic (they contain transcripts of paternal origin) and thus 

liable to immune rejection. How is this accomplished? 

 

The boar ejaculate is large and fractionated; most spermatozoa are delivered in a sperm-rich 

fraction (SRF) followed by a post-SRF containing increasing amounts of SP proteins 

(reviewed by Rodriguez-Martinez et al., 2005). Shortly after sperm deposition, a certain 

proportion of the spermatozoa colonize the tubal SR, whose pre-ovulatory functionality 

ensures their viability and potential fertilizing capacity in an inflammatory-free environment 

(reviewed by Rodriguez-Martinez, 2007). The other spermatozoa, the major proportion, are 

removed from the uterine cavity by retrograde flow (20–25% of the spermatozoa leaving within 

30 min, Steverink et al., 1998), while the rest are trapped (neutrophil extracellular traps, [NETs], 

Alghamdi et al., 2009) and phagocytosed by invading polymorphonuclear granulocytes (PMNs), 

which apparently start entering the lumen ~10 min after artificial insemination (AI), peak entry 

by 30 min and continue to enter for the following 2–3 h (Lovell and Getty, 1968; Viring and 

Einarsson, 1981; Rodriguez-Martinez et al., 1990), largely exceeding the number of 

inseminated spermatozoa (Matthijs et al., 2003). This uterine PMN influx is accompanied by 

accumulation of macrophages, granulocytes and lymphocytes in the endometrial stroma and, 

to a lesser extent, in the base of the lining epithelium (Rodriguez-Martinez et al., 1990; 

Bischof et al., 1994; Kaeoket et al., 2003; Robertson, 2007), a picture not seen in the oviduct, 

except for the mesothelial-covered infundibulum (Jiwakanon et al., 2006) or the presence of 

lymphocyte-like cells in the base of the SR and the adjoining isthmus segment (Rodriguez-

Martinez et al., 1990). 

 

What causes this transient PMN influx and the apparent changes in immune cell phenotypes 

over time is yet unclear, but components of the SP seem to play a role. The SP initiates the 

transitory inflammatory response (O’Leary et al., 2004) followed by a secondary recruitment 

of antigen-presenting cells (macrophages and dendritic cells), prerequisite for the generation 

of paternal antigen-specific maternal T cells (Schuberth et al., 2008) that can recognize and 

respond to paternal major histocompatibility (MHC) antigens. However, prevention of the 

development of maternal type-I immunity to, particularly, conceptus antigens is essential for 

pregnancy, and it is attained by induction of a transient state of peripheral immune tolerance 

by the female (Robertson et al., 2009).  
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SP proteins are a major component of the boar ejaculate (39.4 ± 13.45 mg/mL, Rodriguez-

Martinez et al., 2005), of which 80–90% are of vesicular gland origin, with 75–90% of them 

belonging to the spermadhesin family; the alanine-glutamine-asparagine proteins AQN (-1 

and -3), the alanine-tryptophan-asparagine proteins [AWNs] and the porcine seminal plasma 

proteins I and II [PSP-I and PSP-II] (reviewed by Calvete and Sanz, 2007). Spermadhesins 

are multifunctional 12–16 kDa glycoproteins that attach to the sperm plasma membrane to 

various degrees from the testis to the ejaculate and whose biological activities depend on their 

sequence, grade of glycosylation or aggregation state, as well as their ability to bind heparin. 

The AQN-1, AQN-3 and AWN are grouped as heparin-binding proteins or HBPs (Calvete et 

al., 2005). Spermadhesins are involved in sperm membrane stabilization, capacitation, and 

sperm-oviduct and zona pellucida (ZP) interplay (Caballero et al., 2008). Moreover, PSP-I 

and PSP-II, which account for >50% of all SP proteins (Garcia et al., 2008) can bind to pig 

lymphocytes (Yang et al., 1998), enhance their proliferation (Leshin et al., 1998) and act as 

leukocyte chemoattractant in rodents (Assreuy et al., 2002, 2003). It remains to be determined 

whether specific boar SP proteins act also in the female pig in vivo. 

 

The aim of the present study was, therefore, to test whether pig HBPs and PSPs, isolated from 

the SP of SRF samples collected from mature, fertile boars could recruit different lymphocyte 

subsets and PMNs into the superficial endometrium, respectively, the lining epithelium and 

the lumen of the pig uterus in vivo, and thus be responsible for triggering changes in the 

female in response to the entry of spermatozoa at mating. Selected results of these 

experiments have previously been presented elsewhere (Rodriguez-Martinez et al., 2009) 

 

1.2 Material and Methods 

 

1.2.1 Animals 

Mature boars (Swedish Yorkshire and Swedish Landrace, n = 5) 2–5 years old, kept in 

individual pens with females in the close neighbourhood and selected for normal semen 

quality and proven fertility, were used as semen providers for SP collection. Crossbred sows 

(n = 14) with normal reproductive performance prior to the study, weaned after a lactation of 

3 or 5 weeks (weighing between 160 and 230 kg at weaning) and a mean parity of 4 

farrowings (range of 2–6) were used. The sows were, following clinical examination on site, 

either kept at a commercial farm having common research facilities with the Department of 

Medicine and Animal Surgery, University of Murcia, Spain (n = 6), or purchased from a 
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Swedish commercial herd and brought directly after weaning to the Division of Reproduction, 

Swedish University of Agriculture Science (SLU), Uppsala, Sweden (n = 8). Sows were either 

relocated into individual crates present in a mechanically ventilated confinement facility 

(Spain) and fed once a day with a commercial diet (2.5 Kg/d, 15% protein, 3% fat, 6% 

cellulose, 6.35% ash and 0.75% lysine), or individually housed in straw-bedded pens with 

mechanical ventilation and fed according to Swedish standard (Simonsson, 1994) for dry 

sows (barley-based sow diet, 14.5% protein and 12.5 MJ/kg of metabolizable energy), 

2.5 kg/day. Water was provided ad libitum. Beginning on the day after weaning, all sows 

were checked for detection of oestrus twice a day (0700 and 1900 h) by experienced 

operators, in the presence of a boar. The experimental protocol had previously been reviewed 

and approved by the Bioethical Committee of the University of Murcia, Murcia, Spain (Exp. 

1) or the Local Ethical Committee for Experimentation with Animals, Uppsala, Sweden (Exp. 

2).  

 

1.2.2 Isolation of SP spermadhesins 

To obtain the HBPs and the PSP-I/PSP-II, sperm-rich ejaculate fractions (SRF, 100 mL) were 

collected by the gloved-hand method. The SP was separated from spermatozoa by 

centrifugation at 800 × g for 15 min at 20ºC, and the supernatants were sequentially filtered 

through 10 µm and 1.2 µm filters and pooled. The HBPs and the PSP-I/PSP-II were isolated 

as described by Calvete et al. (1995). The identity and purity of the protein preparations were 

assessed by automated Edman degradation (using an Applied Biosystems Procise N-terminal 

sequencer) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) 

mass spectrometry (using sinapic acid saturated in 0.1% trifluoroacetic acid and 70% 

acetonitrile as matrix and an Applied Biosystems Voyager-DE Pro instrument operated in 

delayed extraction and linear modes). Amino acid analysis (after hydrolysis in 6N HCl at 

110ºC for 24 h in evacuated and sealed ampoules) was used to quantify the amount of either 

protein, which averaged ~15 mg/mL.  

 

1.2.3 Experiment 1: Determination of lymphocyte subsets (CD2, CD4 and CD8) and PMNs 

recruited into the porcine superficial endometrium in vivo, following infusion of HBPs or 

PSP-I/PSP-II to anaesthesized oestrous sows 

The oestrous sows (n = 6) were sedated by azaperone i.m. administration (2 mg/Kg b.w., 

Azaperone, Abbott, Spain) before being induced to general anaesthesia by an i.v. injection of 

thiopental sodium (7 mg/kg b.w., Penthotal, Abbott, Spain) and maintained by narcosis with 



HRM et al-2009-BSP as uterine immunoattractants 

 

inhalatory isofluorane (3.5–5%, Isofluorane, Hoeschst, Germany). A midline incision was 

done to expose the reproductive tract and to reach (one side at a time) the uterine horn tip and 

the ipsilateral oviduct and ovary, to confirm pre-ovulatory status. Long plastic catheters were 

passed through the cervix into each of the uterine horns for infusion, and one of the uterine 

horns was randomly clamped close to the uterine body to provide two separate infusion horn 

units. One of the uterine horns was randomly used as intra/animal control, infused with 

100 mL of saline, to provide baseline cell presence, while the contralateral horn was randomly 

infused with either HBPs (n = 3) or PSP-I/PSP-II heterodimer (n = 3), at 3 mg/mL dose (in 

100 mL of saline). Samples (~5 × 5 × 5 mm) of the superficial antimesometrial endometrium 

were surgically collected for biopsy at 10–15 cm distance from each other, albeit at random 

location, at various intervals (2, 10, 30, 60 and 120 min after infusion), fixed in 2% 

paraformaldehyde solution in 0.067 M sodium cacodylate buffer (pH 7.2, 500 mOsm) and 

conventionally embedded in paraffin wax. Sections were mounted on polylysine-coated slide 

glasses and subjected to an antigen-retrieval method (microwave heat-induced antigen 

retrieval, Shi et al., 1991), in order to unmask epitopes usually masked during the fixation and 

paraffin-embedding process, prior to immunohistochemistry (IHC). Complementary sections 

were stained with haematoxylin and eosin (HE) for histological screening. 

 

The IHC was used to characterize some leukocyte subpopulations according to their 

expression of cluster cell surface antigens (Piriou-Guzylack and Salmon, 2008), by means of 

mouse monoclonal antibodies (mAbs) towards CD2, CD4 and CD8 (VMRD, Pullman, WA, 

USA). Tris-buffered saline (TBS), 0.05 M pH 7.6 was used for all dilutions and washings. 

Single IHC-labellings were performed using a standard avidin-biotin immunoperoxidase 

technique (Vectastain ABC kits, Vector Laboratories, Burlingame, CA, USA). The 

deparaffinized, microwave-treated sections were pre-incubated with 10% normal goat serum 

(NGS, 2 × 30 min) to diminish non-specific protein binding, within incubating humid 

chambers. The sections were then overlaid with 50 µL of the primary mAbs and incubated at 

+4ºC, overnight, followed by rinsing and 30 min incubation with the secondary biotinylated 

antibody (goat anti-mouse, 1:1000, Vector Laboratories, Burlingame, CA, USA). Use of 

normal mouse IgG (Santa Cruz, CA, USA) and omission of the primary mAbs on 

complementary endometrial sections constituted negative controls, while lymph node sections 

were used as positive controls. Diaminobenzidine (DAB, Dakopatts, Älvsjö, Sweden) was 

used as chromogen to visualize immunostained cells. Following fixed-time counterstaining 
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with Mayer’s haematoxylin (H) and mounting in glycerine gelatin, sections were examined 

with bright-field light microscopy.  

 

Counting of IHC-marked T cells (H-stained sections) and of PMNs (HE-stained sections) in 

coded tissue samples for biopsy was done with a Nikon FXA photomicroscope (Nikon, 

Tokyo, Japan) at ×400 using an ocular reticle (tissue area: 0.0625 mm2) divided in small 

squares, placed in one ocular eyepiece, by one and the same operator. Particular attention was 

given to the lining epithelium and the subjacent lamina propria, avoiding preparation 

artefacts. Counting was carried out along the length of the surface epithelium and the entire 

area of the lamina propria contained within the reticulum, on between 7 and 10 ocular reticle 

fields. The relative number of cells was quantified in treatment tissues against control tissues, 

at each time interval.  

 

1.2.4 Experiment 2: Degree of recruitment of PMNs in the uterine lumen following a single 

cervical insemination of PSP-I/PSP-II heterodimer in conscious oestrus sows 

Eight multiparous (parity 2−4) crossbred sows were, following detection of standing oestrus, 

randomly allotted to one of two equal groups, control or treatment. The control group was 

infused intra-utero (mimicking cervical AI ad modum) with sterile physiological saline 

solution (100 mL dose, 0.9% NaCl), whereas the treatment group was infused with 

PSP-I/PSP-II heterodimer in physiological saline solution (3 mg/mL, 100 mL dose). All sows 

were inseminated ~12 h after onset of behavioural oestrus. The sows were slaughtered 3 h 

after infusion, and the genitalia promptly removed and macroscopically examined for 

normality. The uterine horns were divided into right and left by surgical clamps, leaving 5 cm 

segments (one ad-tubal and another ad-uterine) for histological examination, which were 

immersion-fixed with a 2.5% solution of glutaraldehyde in cacodylate buffer. The remaining 

mid-segments (~1 m long) were flushed with 50 mL of saline solution, and the flushing was 

collected in 50 mL conical centrifuge tubes (BD Falcon, San Jose, CA, USA). Pressure on the 

tissues was consistently avoided to minimize blood contamination of the flushing and, to 

ensure the samplings per animal were uniform, collection was stopped, once 50 mL of uterine 

fluid contents per uterine horn was collected. The 50 mL flushed fluid was centrifuged 

(300 × g), the upper 85 mL discarded, and the remnant 15 mL containing a pellet was 

examined for cell content. Cells were counted with a Bürker haemocytometer and 
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distinguished as leukocytes and other cells (erythrocytes , epithelial cells) in Papanicolau-

stained smears. Cell numbers were expressed as PMNs per mL. 

 

The fixed tissue specimens were post-fixed in 2% OsO4, dehydrated in increasing ethanol 

concentrations and infiltrated with Agar 100 (Agar Scientific, Stansted, Essex, UK) plastic 

resin for transmission electron microscopy (TEM). The blocks were cut on an ultramicrotome 

(Reichert, Vienna, Austria). Semi-thin sections (1 µm thick) were routinely stained with 

toluidine blue, and areas representative of each section were selected for TEM, from which 

ultrathin sections (~60 nm thick) were cut and picked up on copper grids, counter-stained with 

uranyl acetate and lead citrate and examined in a Philips EM 420 TEM microscope (Philips 

Electron Optics, Eindhoven, The Netherlands) at 80 kV.  

 

1.2.5 Statistical analysis 

All results are expressed as mean ± SD. Cell countings were log-transformed before analysis. 

Statistical evaluation was undertaken using the SAS statistical package (Statistics Analysis 

Systems Package (SAS Institute, Cary, NC, USA, version 9) by analysis of variance 

(ANOVA, Proc Mixed). The statistical model included the effects of uterine side (Exp. 

1)/group (Exp 2.) and sampling interval, their interaction and the random effect of sow nested 

within group (Exp. 2). Student t-test was used for pair-wise comparisons between control and 

treatment at each time (Exp. 1) or group (Exp. 2) when an overall significance was found. A 

P < 0.05 was considered statistically significant.  

 

1.3 Results 

 

1.3.1 Experiment 1 

The data, depicted in Figure 1 (T cells) and Figure 2 (PMNs), respectively, show the 

intensity of recruitment, based on the relative number of cells counted in the treatment tissues 

taken for biopsy, related to those cell numbers recorded in the control tissues (baseline 0) at 

each time interval (2–120 min). Regarding the IHC, very few cells (3.8 ± 0.5) positive (+) for 

CD2, CD4 nor CD8 were seen in the epithelium or the lamina propria within a unit field 

(0.0625 mm2) immediately after saline infusion in the control uterine horn, and they did not 

significantly increase over time (P > 0.05). Infusion of spermadhesins gave different 

responses (Figure 1A–C). Infusion of PSP-I/PSP-II induced a significant 4- to 7-fold increase 

in CD2+ relative cell numbers from 10 min onwards (P < 0.01), which was not followed by 
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CD4+ cells (P > 0.05). CD8+ relative cell numbers increased significantly (3-fold, P < 0.05) 

after 60 min of the infusion of PSP-I/PSP-II. Infusion of HBPs, on the other hand, did not 

cause any increase in CD2+ cells, until 120 min of the infusion, where a 1-fold increase was 

registered but with large variation among sows (P > 0.05). A late, significant (P < 0.05) 3-fold 

increase was seen in CD4+ cell numbers, however. HBP-infusion showed a sustained 1–2-fold 

increased level of CD8+ cells over time, albeit nonsignificant (P > 0.05). 

  

Compared to control side (saline-infused uteri), exposure to the PSP-I/PSP-II heterodimer 

significantly (P < 0.05) induced the migration of PMNs to the surface uterine epithelium, after 

just 10 min of infusion (Figure 2), a recruitment that was sustained over the experimental 

period, becoming 5-fold by 30 min and 7-fold higher from 60 min onwards (P < 0.001). 

PMNs were detected in the lumen of tissue samples collected at 30 min and thereafter. The 

infusion of a similar dose of HBPs had no significant effect (P > 0.05).  

 

1.3.2 Experiment 2 

The majority of the cells encountered in the flushings were leukocytes (77.3 ± 24.6%), 

followed by erythrocytes (20.2 ± 15.3%) and epithelial cells (5.8 ± 4.2%, mean ± SD), with 

significant differences for the proportions of leukocytes between treatment and control groups 

(96.1 ± 3.35% vs. 57.4 ± 24.7% respectively, P < 0.05). No significant differences were seen 

between sides within each sow (P > 0.05), but individual differences were noted within 

treatment. Among leukocytes, >96% of them were morphological PMNs, while 3.41 ± 1.23% 

were lymphocyte-like cells. As seen in Figure 3, the simple infusion of saline (control) was 

able to elicit migration of PMN into the uterine lumen (5.8 ± 4.62 million PMN/mL, 

mean ± SD). However, a 6-fold higher mean number of PMN/mL (35.4 ± 12.56 million 

PMN/mL, mean ± SD, P < 0.001) was recovered from the uterine lumen of sows inseminated 

with the PSP-I/PSP-II heterodimer (P < 0.001), thus confirming that, at doses 5-fold lower 

than those present in the boar ejaculate, the heterodimer induced in vivo PMN migration in the 

pig. Figure 4 depicts a representative entry of PMNs 3 h after the AI infusion of 

PSP-I/PSP-II.  

 

1.4 Discussion  

 

The results of the present study clearly show that the PSP-I/PSP-II heterodimer (but not 

HBPs) induced a time-dependent influx of PMNs into the uterine lumen of anaesthetized and 
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conscious oestrous sows, at doses 5 times lower than those often present in the SP of boars. 

These effects confirm the results of Assreuy et al. (2002), in which infusion of porcine 

PSP-I/PSP-II into the peritoneal cavity of rats caused a dose-dependent, time-responsive 

migration of PMN and monocyte leukocytes, typical of inflammation. The overall results 

suggest the PSP-I/PSP-II spermadhesin acts as a post-mating inflammation mediator in pigs.  

 

In the pig, as in most mammals studied so far, deposition of semen (via natural mating or by 

AI of neat or extended semen) into the uterine cavity elicits a massive invasion of PMNs 

towards the lumen, followed by NETs formation and sperm phagocytosis. These PMNs are 

originally present in the lamina propria in control, unmated oestrous gilts, their extravasation 

considered related to the high pre-ovulatory oestrous levels of oestrogens in pigs, since 

chemokine expression and increments in T-cell numbers are considered oestrogen-induced 

(Robertson et al., 2009). However, we still need to confirm this as the reason or determine 

other reasons for this PMN accumulation. In the same study by Rodriguez-Martinez et al. 

(1990), where gilts were inseminated with fresh neat semen 12 h after onset of oestrus, the 

PMNs invading the lining epithelium became associated with intra-epithelial macrophages, 

entered the uterine lumen and actively phagocytosed spermatozoa, during a window period of 

3–6 h. Interestingly, such PMN-macrophage interaction was not seen in the oviductal sperm 

reservoir, where spermatozoa had colonized the segment and were conspicuously intact 

(Rodriguez-Martinez et al., 1990). On the other hand, lymphocyte-like cells were present in 

the sperm reservoir (SR). 

 

The rationale for the above-mentioned PMN intra-uterine invasion has been already 

discussed; it acts as a primary inflammatory reaction to cleanse the intra-uterine lumen from 

foreign cells, proteins and eventual pathogens, so that the environment prepares for the 

descending 4-cell embryos. The inflammatory reaction induced by porcine PSP-I/PSP-II in 

rats (Assreuy et al., 2002) showed a PMN peak 4 h after, which corresponds to findings in 

pigs (Rodriguez-Martinez et al., 1990) and in cows (Alghamdi et al., 2009) and, partly, with 

the present results, where a clear trend of sustained entry was registered in the tissues 

collected for biopsy from 60 min onwards. Peak-like PMN numbers would most likely 

correspond to those accounted for in Exp. 2, where sows were euthanized by ~3 h after 

infusion of PSP-I/PSP-II. The PMN numbers, large as they were, were higher than those 

reported by O’Leary et al. (2004), using gilts, but lower than those accounted for by Woelders 

and Matthijs (2001) and Matthijs et al. (2003), most likely due to methodological differences, 
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since these latter authors counted PMNs and spermatozoa in homogenized tissues, thus 

accounting for both luminal PMNs (as we did) and those contained in the uterus diverse 

tissues, while we restricted the volume collected to a fixed volume of saline flushing post-

mortem. In any case, our current results were distinct; infusion of PSP-I/PSP-II induced a 

marked entry of PMNs to the uterine lumen. Although there was also a restricted entry after 

infusion of the common saline vehicle, such effect ought to be caused by the volume-elicited 

distension of the uterine lumen, as shown by Woelders and Matthijs (2001). 

 

Our current results (Exp. 1) also showed the invasion of PMNs did not immediately reach the 

uterine lumen, since PMNs were first seen there by 30 min post-infusion, findings that 

confirm previous studies (Lovell and Getty, 1968; Bischof et al., 1994). Such lag allows a 

window of opportunity for a certain subpopulation of ejaculated spermatozoa to traverse the 

uterine lumen without risking phagocytosis. Spermatozoa deposited by natural mating or AI 

in oestrous pigs reach the oviducts just a few minutes after (Hunter 1981), and basically, they 

should not encounter PMNs along their transit. Once they enter the sperm reservoir in the 

oviduct, they face a safe period prior to eventual migration to the site of fertilization 

(Rodriguez-Martinez, 2007). Interestingly, our own experimental in vivo studies have shown 

that those pig spermatozoa ejaculated in the sperm-peak portion of the SRF (the 1st 10 mL of 

the SRF, the so-called P1; see Rodriguez-Martinez et al., 2009, for a review) appear 

overrepresented in the tubal sperm reservoir by 3 h post-AI (Wallgren et al., 2009). This 

suggests that the primary transport of spermatozoa through the uterus is rather quick, allowing 

some P1 spermatozoa to safely reach the reservoir (which is, thereafter, replenished with other 

spermatozoa than those in the P1). Overall, the findings suggest the function of the 

PSP-I/PSP-II might primarily be related to its pro-inflammatory inductive role. Whether this 

effect is coupled to the relative concentration of PSP-I/PSP-II is yet to be disclosed. The pig is 

one of the species containing a large amount of SP spermadhesins (~35–45 mg/mL), of which 

at least ~20 mg/mL would most likely be PSP-I/PSP-II (Calvete and Sanz, 2007). 

Spermadhesins are present throughout the fractions of the ejaculate, derived from testis or 

epididymides (first portion of the SRF) and from the vesicular glands (i.e. from the SRF 

onwards). The concentration of spermadhesins increases alongside the increasing secretion of 

the vesicular glands, while the sperm-peak portion of the ejaculate (the P1) contains ~1–

1.5 mg/mL of PSP-I/PSP-II, for example, ~20 times less than the relative concentration in the 

bulk ejaculate (see Rodriguez-Martinez et al., 2009). Whether this means that a relationship 

exists between exposure to lower PSP-I/PSP-II amounts and sperm viability of potentially 
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fertilizing spermatozoa (at least in vivo) remains to be proven. Interestingly, highly extended 

boar spermatozoa maintain sperm viability and fertilizing capacity in vitro when exposed to 

similar amounts of PSP-I/PSP-II as those found in the P1 (Caballero et al., 2004a–b, 2005, 

2006), by mechanisms not yet fully understood. Also interestingly, HBPs, which bind to the 

boar sperm membrane, remain on the rostral membrane until capacitation in vivo (Calvete et 

al., 1997), or on the post-equatorial membrane until reaching the zona pellucida in vivo 

(Rodriguez-Martinez et al., 1998) or in vitro (Dapino et al., 2009), but usually fail to preserve 

sperm viability of highly extended boar spermatozoa in vitro (Centurion et al., 2003).  

 

Obviously, there is a need for further studies to discern whether this is a matter of the 

concentration of glycoproteins or their type of attachment to the spermatozoa. In any case, 

HBPs (at the same dosage as PSP-I/PSP-II) were clearly unable to elicit an invasion of PMNs 

to the luminal epithelium, as clearly shown in the present study, even considering there were 

few animals studied. Moreover, we tested only a single dose and only for a period of 120 min, 

which impairs further comments and calls for further experiments. To prolong the sampling 

would imply a longer narcosis period, which would have welfare concerns. Likewise, use of 

several protein doses would require a rather large number of specimens. Studies could be 

done in vitro, of course, but this would lead to the paradoxical results of SP experiments 

present in the literature (Veselsky et al., 1991; Bischof et al., 1994; Rozeboom et al., 2001a–

b; O’Leary et al., 2004, 2006; Taylor et al., 2008, 2009b; Alghamdi et al., 2009), regarding 

the pro-inflammatory respectively  the attenuating effects of the SP. 

 

For how long does the inflammation persist? Few studies have been done to determine the 

exact duration of the inflammation itself, and they focused on the presence of invading PMNs 

(Lovell and Getty, 1968; Rodriguez-Martinez et al., 1990; Bischof et al., 1994; Alghamdi et 

al., 2009). They mostly agree that the PMN-peak is reached somewhere between 3 and 6 h 

after semen deposition. Such interval agrees with the findings by Assreuy et al. (2002), using 

porcine PSP-I/PSP-II in a rodent model, where the PMN invasion to the site of exposure 

peaked at 4 h. Inflammation does not stop there, since it has many other components, and 

PMN presence can still be registered 24 h later (Kaeoket et al., 2003). Moreover, there is 

major individual variation among females in coping with the inflammatory response, and it is 

well established that some pig females develop long-lasting post-mating inflammation that 

evolves into endometritis (De Winter et al., 1992). In any case, intervals between 

conventional AIs are longer than 3–6 h, as praxis in pig breeding, thus allowing the PMN 
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massive presence to resume before a new inseminate is placed. A matter for further discussion 

is whether the inflammatory response is elicited also when extended, liquid preserved boar 

semen or, for that matter, even frozen-thawed semen are inseminated. The answer is at first 

sight, yes, but the reasons differ. For production of liquid AI semen doses, the ejaculate is 

extended with protein-free extenders, and the SP is simply diluted, but not eliminated. 

Depending on the type of ejaculate collected (whole ejaculate or only the SRF), the amount of 

spermadhesins differs, but it is most likely kept at levels around or above 3 mg/mL, thus 

being able to elicit a response similar to the one shown in the current study. Semen collected 

for freezing comprises, most often, the SRF only, where the amounts of spermadhesins are 

not highest. Moreover, the semen is often extended and centrifuged to remove the major part 

of the SP. However, despite this removal, the frozen-thawed semen is able to cause 

inflammation post-AI, but the cause is still disputed, since some extenders include proteins 

that are pro-inflammatory (Taylor et al., 2009a–b). In conclusion, the PSP-I/PSP-II at 

relatively low concentrations is a post-mating (or post-AI) inflammatory mediator in pigs.  

 

However, there are other mechanisms that induce PMN migration to the surface epithelium 

and lumen, via pro-inflammatory soluble cytokines (such as IL-1 or IL-8, Assreuy et al., 

2003; Sharkey et al., 2007; Scott et al., 2009) of macrophage or mast cell origin (Ribeiro et 

al., 1991). These cells are common in the porcine uterus (Kaeoket et al., 2003) and invading 

PMNs have been seen to interact with intra-epithelial macrophages (Rodriguez-Martinez et 

al., 1990). Mast cells are also able to produce IL-4 and IL-10, inhibitory of inflammation 

(Ribeiro et al., 1991). The picture is much more intricate. While PSP-I has been shown to act 

directly on PMN activation, PSP-II activates PMNs indirectly, most likely via macrophages 

(Assreuy et al., 2002). We have used the heterodimer, thus calling for further studies. 

 

Induction of PMN invasion, as a token for inflammation, is not the only effect of the SP on 

the female. The SP also mitigates the immune responses by the female to paternal antigen-

bearing spermatozoa or early embryos in the oviduct (immuno-privileged area) or in the 

uterus (developing embryos/foetuses and their placentae), by eliciting a transient state of 

peripheral immune tolerance (O’Leary et al., 2004; Robertson et al., 2009). Such tolerance is 

apparently partly mediated by regulatory T (Treg) cells, a conspicuous sub-population (5–

10% in rodents) of CD4+ T cells, which are identifiable because they constitutively express 

the interleukin receptor CD25+ and the transcription factor FOXP3 (Zenclussen, 2006). Treg 

cells strongly suppress the generation and effector function of Type I (cell-mediated) immune 
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responses, provided they are activated by antigens, presented by dendritic cells, and 

proliferate (Zenclussen 2006). Very recently, Robertson et al. (2009) clearly demonstrated in 

mice that components of the SP originated in the seminal vesicles induced an expansion of the 

Treg cell pool, which, by inducing a transient state of peripheral immune tolerance, 

suppressed the type-I immune response to male alloantigens. Considering that the conceptus 

is, until eclosion and expansion, covered by the zona pellucida, it appears that the generation 

of paternal antigen-specific tolerance in early pregnancy must be initiated at mating or AI by 

the exposure to semen, and apparently, particularly to the SP (Robertson et al., 2009), causing 

expression of lymphocyte activation markers and of cytokines (Johansson et al., 2004). 

Several of the same antigens expressed from paternal genes by the conceptus are actually 

present in semen, including MHC antigens and minor antigens. Semen deposition is 

associated with the expression of lymphocyte activation markers and cytokines, apparently 

modulated by factors present in the SP. Seminal plasma upregulates MHC class II and 

interleukin-2 (IL-2) receptor expression (Bischof et al., 1994) and stimulates production of 

interleukin-6 (IL-6) by the uterine epithelium within 3 h of SP exposure (Madej et al., 2009). 

As well, SP stimulates expression of granulocyte-macrophage colony-stimulating factor 

(GM-CSF), and the monocyte attractant protein-1 (MCP-1)(O’Leary et al., 2004). This 

cascade of induced changes leads to a transition of leukocyte phenotypes, with PMNs being 

first replaced by monocytes (peaking by 96 h, Assreuy et al., 2002), and later by macrophages 

and dendritic cells (Robertson, 2007). The female uterus is well equipped with antigen-

presenting cells when semen deposition is issued, cells that can take up the antigen, process it 

and present the antigenic peptides to Treg cells. Semen, the SP in particular, induces—by 

eliciting a local inflammatory response—the expression of pro-inflammatory cytokines and 

chemokines in uterine epithelial cells, causing recruitment of macrophages, dendritic cells and 

granulocytes, as indirectly illustrated previously (Rodriguez-Martinez et al., 1990). 

 

In the current study, the infusion of PSP-I/PSP-II into the uterus of sows in vivo significantly 

recruited (more clearly that that of HBPs at the relatively same dosage), some uterine 

lymphocyte subsets (Gerner et al., 2009), such as CD2+ (Tk, NK, cytokine-releasing cluster) 

from 10 min onwards and of CD8+ (cytolytic) cells from 60 min. These findings suggest that 

the PSP-I/PSP-II heterodimer might also participate in the initial reshaping of the T-cell 

component of the immune response towards semen deposition. Infusion of HBPs, on the other 

hand, showed late increases (some not really significant) in CD2+ and CD4+ (helper cells) as 

well as a sustained 1–2-fold increased level of CD8+ cells over time. Recently, Moldenhauer 
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et al. (2009) have shown that murine SP paternal antigens, delivered via female antigen-

presenting cells and immune-deviating cytokines, drive the activation and expansion of the 

paternal antigen–reactive CD4+ and CD8+ T-cell populations to, ultimately, mediate female 

tolerance to embryo presence and attainment and maintenance of pregnancy. Whether the 

findings in the present study represent the only changes occurring or become more definitive 

later on, could not be determined, since Exp. 1 encompassed only 2 h of exposure period. 

Since T cells generally take several days to generate a robust response after stimulation, 

longer periods are needed, but might be difficult to obtain using in vivo protocols.  

 

The SP of the boar contains immune-regulatory molecules, including high concentrations of 

the potent immunosuppressive transforming growth factor-β (TGF-β) multifunctional 

cytokine group (Robertson et al., 2002), which, mediated by Treg (in rodents), induce 

differentiation of suppressor T cell phenotypes, to reach a state of adaptative functional 

immune tolerance to male antigens by the female (O’Leary et al., 2004; Robertson et al., 

2006, 2009; Robertson, 2007), most relevant to early pregnancy and, further, to fertility. The 

SP from different boars varies largely in its contents of cytokines, which in turn leads to 

differential expression of endogenous cytokines in the females (Robertson, 2007). A 

differential SP induction of maternal tolerance might thus relate to the often-observed 

differences in embryo survival among sires (e.g. innate fertility), a real long-lasting effect of 

the SP on the female.  

 

1.5 Conclusions 

 

In sum, the data provided clearly show that PSP-I/PSP-II heterodimer (but not HBPs at the 

same relative dosage) induced influx of PMNs into the uterine lumen of anaesthetized and 

conscious oestrous sows, at doses 5 times lower than those present in the SP of boars. As 

well, the findings confirmed that there is a period of latency for PMNs’ migration to the 

uterine lumen (<30 min), implying that—considering the presence of different signalling 

proteins in the various SP fractions—there might be a window of opportunity for a certain 

subpopulation of ejaculated spermatozoa, bathing in low amounts of PSP-I/PSP-II, to traverse 

the uterine lumen without risking phagocytosis. Moreover, high concentrations of PSP-I seem 

to hamper sperm function (Caballero et al., 2008; Saravia et al., 2009) and, interestingly, a 

recent study by Novak et al. (2009) has marked PSP-I as negatively related to in vivo fertility. 

Infusion of the spermadhesins PSP-I/PSP-II, and also of HBPs, significantly recruited some 
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uterine lymphocyte subsets, after PSP-I/PSP-II for CD2+ from 10 min onwards; after HBPs 

for CD4+ by 120 min; and for CD8+ cells from 60 min after PSP-I/PSP-II infusion, in vivo. 

Thus, spermadhesins might also participate in the initial reshaping of the T-cell component of 

the immune response towards semen deposition, perhaps by providing antigen and cytokine 

signals to expand populations of relevant T-cells (such as Treg). The overall view is that 

spermadhesins, by their temporal appearance and amount, are able to modulate fertility of the 

inseminate and can, therefore, be used as markers for fertility in boars. 
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Figure 1A–C. Rate of recruitment (increase rate of the number of immunostained cells within 

0.0625 mm2 of sectioned tissue in treatment horn above those cell numbers in control horn as 

baseline, means ± SD) of lymphocyte subsets (A: CD2+, B: CD4+ and C: CD8+) to the 

superficial endometrium of oestrous sows (n = 6) at various times (2–120 min) after infusion 

of HBP or PSP-I/PSP-II spermadhesins (3 mg/mL in 100 mL saline). Contralateral uterine 

horns were infused with 100 mL saline. a-bmark significant differences between sampling 

times (P < 0.05). 
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Figure 2. Rate of PMN entry (increase rate in the number of PMNs within 0.0625 mm2 of 

sectioned tissue in treatment horn above those PMN numbers in control horn as baseline, 

means ± SD) to the endometrial lining epithelium of oestrous sows (n = 6) at various times 

(2–120 min) after infusion of HBP or PSP-I/PSP-II spermadhesins (3 mg/mL in 100 mL 

saline). Contralateral uterine horns were infused with 100 mL saline. a-dmark significant 

differences between sampling times (P < 0.05). 
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Figure 3. Mean numbers (± SD) of PMNs flushed from the uterine lumen of oestrous sows 

(n = 8) 3 h after the insemination of 100 mL of saline solution without (control) or with 

spermadhesin PSP-I/PSP-II (3 mg/mL). a-bmark significant differences between sampling 

times (P < 0.05). 
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Figure 4. Transmission electron micrograph showing the entry of polymorphonuclear 

leukocytes (PMNs, arrows) from the lamina propria (lp) into the lining epithelium and 

towards the lumen (lu) of the uterus in an oestrous sow, 3 h after the infusion of PSP-I/PSP-II 

(3 mg/mL). Bar: 10 µm. 

 


