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| ntroduction

What is typical for ecology and ecological systeme?ne, one of the first things that spring
to mind is complexity and variation. These topiesdilong been acknowledged in ecology,
and have been targeted as two of the reasons whgatoriously hard to produce universal
general theory in ecology (Lawton, 1999; Belovskgle2004). Lawton (1999) pinpointed
complexity within and variation between communitiegether producing numerous
contingencies for each law-like statement, as themmeason that generalities are hard to
come by in community ecology. In population bioldgynm & Redfearn (1988) studied
series of population censuses longer than 50 yaadsgcame to the conclusion that variability
increased continuously with time. Variation in exgtal systems arise on many levels,
ranging from large scale environmental fluctuatianBng over hundreds or thousands of
years, to small scale variations in individual fprey efficiency. In between of these extremes
we find, for instance, spatial and temporal vaoiain environmental conditions in a
landscape, differences in performance between ichaéNs, which can stem both from genetic
or environmental causes, and variation betweenssexsurvival rates. The two
characteristics | have mentioned, complexity amiatian, make it notoriously hard to fully
understand and accurately predict how ecologicstesys will develop over time.

In any model, conceptual or mathematical, we sahfaries to the system under study, and
thereby choose what to include explicitly in thedalband what to treat as external
environment (Olsson & Sjostedt, 2004). Therefdne,dxternal environment and its
influences can include anything from abiotic fluations to biotic factors such as predators or
ecosystem processes. Under this view, environmeatgltion can be seen as the aggregated
influence from multiple paths, for which the degdilworkings are mostly unclear. Since we
often lack in knowledge on the causes of much egpcdb variation, this also introduces
randomness into our systems. Even if we have gafodnnation on the range, correlation
structure and time scale of the variation, we s&ithinot predict exactly how the environment
will change over time. Therefore probabilistic staents are often necessary, and this
transcends into our population and ecosystem mofgise much of Conservational Biology
deals with small populations, the randomness dtleetaiscreteness of population numbers
must also be included in population models (May, 3t $haffer, 1981), and this introduce
another source of variation.

The need for stochastic models in population dysamias recognised in the late 60’s
(Lewontin & Cohen, 1969; May, 1973; Soulé & Wilcd980), and it has developed as being
an essential part of Population Viability Analy&®/A), where the prospects of future
survival of populations are evaluated (Boyce, 1¥ssinger & Westphal, 1998; Beissinger
& McCullough, 2002). The use of stochastic modeals been questioned by Caughley (1994)
and Ludwig (1999), and these authors claim thamach focus on aspects important for
small and fragmented populations can detract ftogoften deterministic reasons for
population declines. The following discussion fillllne middle ground between these
opposing viewpoints, and acknowledges that botlsthall population paradigm and the
declining population paradigm should contributedoservation efforts (Hedrick et al., 1996;
Boyce, 2002).

In this essay | will focus on the theoretical framoek for handling complexity and variation
in single population dynamics, and more specificaft how this variation affects the
probability of population extinction. The scalewvafriation in the following pages will deal
with populations and species, in contrast to edesys and species communities. | will cover
definitions of environmental and demographic stetbdy; give a brief overview of
techniques used for modelling stochasticity; arviere the general results that have been



obtained. | will also touch upon methods on howntasure variation. Finally, | will mention
other aspects of stochastic models not treated aedediscuss the problems and possibilities
of stochastic population dynamics in conservaticoliay.

Sources of random variation

As touched on in the introduction there exist miaggors that introduce randomness in
population models. | will now define and discuss tWwo main components; environmental
and demographic stochasticity.

Environmental stochasticity

The most obvious form of variation that individuale exposed to is temporal fluctuations in
their living environment (temporal component) ardiation in living conditions between
different habitat types (spatial component). Similetween these two forms of variation is
that they constitute variability in external factpthe environment, that influence the
performance of individuals.

Environmental variation can be either deterministicandom. All natural populations exhibit
both a deterministic and a random part in theirytaon dynamics (Lande et al., 2003), but
their relative magnitude can differ. Examples diedeinistic variation are cyclical
environmental states, for example from season&t@ns or long term climate cycles, or
deterministic trends. The characteristic of rand@mation, or random processes, is that the
next state of the system is not fully determinedhgyprevious steps. In more technical terms
a stochastic process can be described as a sttf@tienomenon that evolves in time
according to probabilistic laws (Chatfield, 200Rglating to population dynamics, this means
that random variation in the environment introdugesertainty into the fate of individual
populations, and this uncertainty is what is mégneénvironmental stochasticity. In the
ecological literature, environmental stochasti@tysually reserved for the uncertainty
introduced by temporal variation, while the uncettastemming from spatial variation in the
environment is labelled environmental heterogenaitypatial heterogeneity (Begon et al.,
1996). However, some authors use the term “envisoriat variation” to represent a
combination of temporal and spatial variation (VéhR2000).

Environmental stochasticity can be realized addlations around a mean or coupled to
deterministic cycles or trends. Stochastic procesaa also have a non-stationary mean and
therefore exhibit apparent trends or cyclic behawidf true stochasticity exists is an open
philosophical question. The stochastic componeatpnocess can either be seen as lack of
information, where the stochastic noise compongprtasents an error term to our knowledge,
or as an inherent part of the process. If we belibat stochasticity is an inherent part of the
process, we are also subscribing to a stochastve of the world, as opposed to a
deterministic one. As a side note it can also betimeed that deterministic chaotic systems
can, from a practical point of view, be indistingjuable from genuine stochasticity (Chatfield,
2004). It is also important to keep in mind thatismnmental stochasticity can be considered
on multiple scales (Pimm, 1991), even if the defaupopulation models, for practical
reasons, often is seasonal or yearly fluctuations.

Before we can go into the question on how enviramaiestochasticity is related to extinction
risk, another clarification is in place. The vapatthat cause environmental stochasticity by
definition stems from factors external to the spsdiself, and can include climatic factors



such as rainfall or temperature, but also biotatdes such as predators (Begon et al., 1996) .
However, the variation most often measured and tsegpresent environmental variation is
in population growth rate or in species traits sas birth rates or survival (Morris & Doak,
2002). This means that the measured variationtisallg the environmental variation filtered
through the biology of the species, with its typighysical tolerances and behavioural
responses (Hubbell, 1973; Roughgarden, 1975; Lagikab, 2001). This is often reasonable
and even preferable, since it means that many typesvironmental fluctuations, some of
which we might not even be aware of, are integratetitranslated into the parameters
relevant for the population growth of the specielsaad. However, it has been shown
(Laakso et al., 2001) that this filtering can tfans the noise signal, so it cannot be taken for
granted that the type of variation observed ingheironment, with regards to temporal
correlation structure and amplitude, is the samaedhn be found in the vital rates.

Demographic stochasticity

Variation in vital rates or population sizes dudltwtuations in the environment is easy to
grasp. We can all see how seasons come and gbpandnvironments change over time.
From that point the step is quite short to undedsthat these fluctuations will influence the
organisms that inhabit this environment, and thatfluctuation will, at least partly, transcend
into the population dynamics of these organismsn@graphic stochasticity might not be as
intuitive.

Demographic stochasticity is usually defined asvidw@ation in population growth rate, or
other measures of population performance, causedrimom variation in individual fates
within a year (May, 1973; Soulé & Wilcox, 1980; ldmn1993; Morris & Doak 2002; Kendall
& Fox, 2002). The classic example is to comparadividual fate to a coin toss, and that the
demographic stochasticity corresponds to the variah the number of heads and tails
obtained from a fixed number of coin flips. Analegdo coin flips, an individual either
survives or dies with a certain probability, but gosmall sample the outcome may deviate
substantially from the expectation. Therefore tinength of demographic stochasticity is
inherently dependent on population size, becomirmnger with decreasing population size.
A simple example can be constructed by envisioaipgpulation of 5 individuals, each with
a chance of surviving of p=0.6 The expected nunebsurvivors the next year is 3 (0.6*5).
However, there is still a possibility that the ptgiion goes extinct due to chance with a
probability of about 1% (0°4, and a probability of about 32% that the popolativill be
smaller than the expected number of 3. With a et of 2 individuals the probability of
extinction is 16%. Several years of bad luck cao &llow in a row, and cause population
extinction. Variation in reproduction naturally alsesults in variation in population growth
rate, but in contrast to survival the individuat@ame does not necessarily have to be an all
or nothing affair. Taking the example of a bird théise expected clutch size might be six
eggs, but with a range between two and eight eggjs.each possible outcome having a
certain probability. Thus, in the same way as salyipure chance can cause the annual
reproduction in a population to deviate from theentation, and this is more likely in small
populations.

When demographic stochasticity is compared to flia (Morris & Doak, 2002) another
aspect is ignored, namely explicit individual véioa in demographic rates. This is
sometimes labelled individual heterogeneity (Cor&&Yhite, 1999). If demographic
stochasticity in the first case corresponds toatemn due to coin flips with fixed probabilities
of outcomes, this second case would corresponditofiips with varying probabilities. These
two aspects of demographic stochasticity corresportie difference between variation due



to sampling and variation due to structured diffiees between individuals. More generally,
structural differences appear when an individuaémographic traits is not independent and
identically distributed (idd). This is the situatiboth when there are correlations among
individuals at a certain time or within individuadser time (Kendall & Fox, 2003). One
example of correlations among individuals is congagion in survival rate due to how other
individuals in the population are doing. Correlagavithin individuals over time occur when
some individuals are fundamentally “better” thahews over the course of their lives (Conner
& White, 1999). Naturally, structured differencemaccur in fecundity or other traits as
well.

Other aspects of the life cycle where demograpioichasticity can manifest are variation in
sex ratio and in the mating system. Examples irechalr formation and territoriality. Gabriel
& Ferriere (2004) label these sorts of interactibrigraction stochasticities distinguish
them from the stochastic effects arising only freaniation in individual fate. Engen et al.
(2003) proposed a method to calculate the effentaifng system on the magnitude of
demographic stochasticity.

Stochastic population models

My aim here is not to give a full account of allsgible models that can be used to study
stochastic population growth. The cliché statesttiere are as many models as there are
modellers, which would make it hard, to say theteto give a full account of how to model
stochasticity! will rather present some common approaches talptipn modelling, and
show how they differ from each other. Importanteamember is that many applications of
stochastic models use simulations, where each nmodeinly represents one possible
outcome, and therefore many replications are netdfmm probabilistic statements of e.g.
population viability or which traits are most impanmt for the population growth rate
(Beissinger & Westphal, 1998). Which modelling aygmh will fit a particular study depends
on the aim, the research questions posed, andawlé&adge of the system. For fuller accounts
of stochastic population models see, for examplgapurkar & Caswell (1997), Caswell
(2001), Morris & Doak (2002) and Lande et al. (2003

(1) Diffusion approximations

The use of diffusion approximations (DA) (Cox & Mit, 1965) to model population
dynamics were introduced in the 70’s (May, 1973¢\Wwig, 1976 ; Leigh, 1981; Tuljapurkar,
1982; Lande & Orzack, 1988). The basic premishas & stochastic population in discrete
time can be adequately described by a diffusiocgs® that is continuous in population size
and time (Lande et al., 2003). This representsoavBian motion with drift. The diffusion
approximation is a powerful way to derive anahtigpproximations of the distribution of
guasi-extinction times and the cumulative distiidmutof extinction times, and models can
include both environmental and demographical stettity. It has mainly been used for
unstructured models built on count data (Ludwig/@9 eight, 1981), but Lande & Orzack
(1988) showed that the diffusion approximation veoii&irly well for describing structured
models, even if the age or stage-structure prodagesorrelation in N(t), which violates
assumptions of independence. An assumption insddffumodels is that the environmental
influences are small to moderate, and that the latipn size changes in small increments, so
these conditions must be checked. The two parameésded to derive the DA for the
population,u andczp, can be estimated by linear regression from a latipn time series at

to, t, ... tk, @s shown by Dennis et al (1991).



Using the DA the probability density function f@aching the quasi-extinction threshold at
time=t can be obtained by (From Lande & Orzack 838d Morris & Doak (2002)):

2
Glt| 102, Xg.¢)= X07C ox =, C2+|’u|t)
21t 207t
Where Xis the starting population size, c is the quasirexibn thresholdy is the
population growth rate, an:tfH is the variance in. A visualization of this function is shown
in Fig 1,a. The probability density function canibtegrated to obtain the cumulative
distribution function for the time to quasi-extimwst (Fig 1,b).
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Fig. 1. Quasi-extinction times using the DA. a) Bability of hitting the quasi-extinction threshatltime=t. b)
Cumulative probability of quasi-extinction=-0.05, 6°=0.04, N0=100, Nx=10.

Even though DA models make many simplifying assummst Sabo et al. (2004) showed that
they still can produce fairly accurate estimatesxainction risk. It their study, Sabo et al.
simulated population trajectories from stochastodels with different assumptions on the
form of density dependence, and then estimated &Arpeters from the first half of these
trajectories. The extinction risk from the DA modeds then compared to the observed
extinction risk. The DA was most successful in eedg extinction risk for simple forms of
density dependence (ceiling model) and high ris&xtiinction (75%), and less so with more
complex forms of density dependence (Beverton-BldRicker). The DA also produces
biased estimates of extinction risks, generallyanastimating risk at lower levels of actual
extinction risk (50%) and overestimating risk agtrer levels actual of extinction risk (75%).
The largest errors occurred when populations shatredg recoveries and started far from
carrying capacity, which yielded overtly optimiséistimates of extinction with the DA.
However, Sabo et al. conclude that DAs is stilsaful tool, especially when there is a lack of
detailed population data, preferable used to meletive comparisons between populations
or species. Many of these issues with the DA h#selzeen pointed out by other authors (e.qg.
Lande et al., 2003; Holmes, 2004).

(2) Unstructured population models (Count or cermsed models)

Models tracking population counts have been uséshsiely to study population dynamics
(May, 1973; Dennis, 1991; Morris & Doak, 2004), arath include stochastic factors. They
are often the choice when there only are count afgp@pulation sizes, and no explicit



demographical information, or when there is nooeas believe that groups of individuals
differ in their vital rates. One large advantagé&winstructured models, compared to e.g.
structured matrix models (see below), is that tinegy relatively few parameters, i.e. are
simpler, and therefore require less data to benpeterized. For endangered species for which
we lack information, they are often the only optibimstructured models can easily be made
to include environmental variation, and there esesteral ways to include density
dependence as well. Engen et al (1998; also Lanale 2003) has developed methods for
including both environmental and demographic stetibisly in unstructured population
models, by partitioning the variance in populatgvowth rate by their relative contributions.
However this approach requires a demographic meagépture study, beside the count data.

Unstructured models can be based on discrete elifferequations, such as the discrete
version of the logistic equation or the Ricker egurg or on continuous differential equations.

(3) Structured population models

In populations where the individuals differ in theontribution to population growth a
structured model is suitable. The structure imptiad be in age, life stage, size or other
population structures. The classical way to de#h wiis is through matrix models (Leslie,
1945; Caswell, 2001). The basic form of a stochasttrix model is:

nt+1) = At)CA(Y)

Where A(t) is the transition matrix at time t andepresents the population vector at time t. If
the transition matrix is the same at all time stepd demographic stochasticity is omitted, the
model is fully deterministic. Otherwise, if theisation matrices vary, this can represent
periodic fluctuations in the environment, enviromae stochasticity or other factors. For
deterministic or periodic models there exist anefytmethods, but for stochastic matrix
models the solution is usually simulation. They bawever be accompanied by analytical
tools such as the diffusion approximation (Land®&ack, 1988; Caswell, 2001). Matrix
models can incorporate almost any population psyaesd can therefore be built to depict
highly complex population models. Beside environtakand demographic stochasticity,
factors such as density dependence, correlationclegt vital rates and spatial heterogeneity
can all be included in a matrix model. Howevennaost cases the limiting factor for building
complex models is the availability and quality eta (Burnham & Anderson, 1998; Morris &
Doak, 2002)

Either way, matrix models are suitable for buildstgchastic simulation models that include
both demographic and/or environmental stochastiEityironmental stochasticity can be
included by using a Markov chain model of environtaéstates (expressed as fixed
matrices), by drawing independent and identicaliyribhuted sequences of environmental
states, as AR(I)MA models, or as a Monte Carlo $atnn of vital rates at different time
steps. Demographic stochasticity can be considaraanultitude of ways, from the relatively
simple case of drawing survival outcomes from aiiial distribution to complex individual
based models (i-state configuration models).

There also exist other analytical tools to deahvpibpulation structure. Partial differential
equations describe individuals as a continuoustiomof e.g. age or size (Caswell, 2001).
Delay-differential equations are more similar tatmixamodels, since they also divide the
individuals into discrete states, and use sevengpled differential equations with time lags
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to model the population dynamics (Caswell, 2001 yrsly, 2002). Both these modelling
approaches are based on differential equationshemefore function in continuous time,
compared to the discrete time approach of matrigetsy and are therefore more suitable for
populations with continuous growth and overlappyegerations. Stochastic differential
equations (SDE) are the random counterpart of réiffiial equations, and can be also be used
to model structured populations (Caswell, 2001).

(4) Branching processes

Branching processes is an analytical method thmbeaused for studying demographic
stochasticity. The methods were discovered by ksdBalton and Henry Watson in 1874,
when they examined the extinction of family nanirsnching processes are basically a way
to study the proliferation and extinction of lineagwhere individuals produce new
individuals according to a probabilistic rule (Catw2001). In the case of Galton & Watson
they were interested in the extinction of lineagasying a family name (descendents from
one ancestor), while we are more interested irefti@ction of all lineages at the same time,
i.e. population extinction. The analytical resuhiat can be obtained from branching
processes include expected population size, stbclsasitivity of extinction probability

from changes in vital rates, and lineage extincfioobability over time. Two examples of use
of branching processes can be found in Kokko & Bheth (1996) and Fujiwara (2007).

M odelling environmental variation

If a population model is to include environmentatigtion there are several decisions to
make, no matter the model specification, or ifiedel is structured or unstructured. First of
all it must be decided how and where environmerddhtion enters in the model. If the
variation is measured in the population growth maten vital rates, it is natural to model the
environmental stochasticity in these traits as widlis can be accomplished by randomly
picking population growth rates (Lande, 1993), mas (Menges & Dolan, 1998; Fieberg &
Ellner, 2001), matrix entries and vital rates (Dedlal, 1994; Oro et al., 2004; Kriger, 2007),
or other traits that describe the environmentalatian expressed by the population to be
modelled. However, other possible ways to inclugdrenmental stochasticity exist, for
instance to express it through variation in theysag capacity (e.g. Roughgarden, 1975;
Morales, 1999) or by directly manipulating expegiegulation size (lwasa, 1988). Another
option is to model the environmental variation dileand link this to population traits

through functional relationships (Meyer et al., 800asseur, 2007). Environmental
stochasticity can also be expressed through capdstr events and bonanzas at certain
frequencies (Lande, 1993; Mangel & Tier, 1993), levkither including or excluding

“normal” variation. It has however been argued ttatistrophic events should be seen as part
of a continuum of environmental variation, and agta separate process (Lande et al., 2003).
How and if catastrophes are to be included depenplart on the time span considered, but
also on the question you are trying to answer eimegal, the imperative to model catastrophes
increase with longer time spans, since it is likélgt they will be an important part of the
dynamics.

It must also be decided if the environmental vaosrats modelled as correlated or
uncorrelated. Uncorrelated variation implies tlma énvironmental states are independent and
identically distributed (iid), and this type of Vaion corresponds to a white noise process. If
the environmental variation is correlated, eittmethie form of periodic cycles or in the form
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of random correlations (or a mix of the two), moomsiderations are needed. If the system
exhibit periodic cycles it must be decided if thase to be modelled purely deterministically,
or if there is a random factor as well. For randamrelated variation it must be established
what form of correlation structure is appropri&@errelation structure of time series can both
be analysed with regression techniques and byrsppactalysis of the correlogram and the
spectral density function (Chatfield, 2004; Lantlale 2003). There exist a number of ways
to model correlated temporal variation, each witfetent assumptions. The simplest way is
probably to use an autoregressive function (Rifgau&dberg), but recently P/hoise has

been claimed to better capture the characteristiogatural environmental variation (Halley,
1996). In 1/f noise the contribution (power) of different freqaies to the total variance is
scaled through the f/felationship, where f represents the frequencypaisdhe spectral
exponent. Time series mainly determined by lowdsswy fluctuations is representedfby

0, and withp =0 the fluctuations are frequency independentl@yall996). It should be noted
that in opposition to autoregressive variation (andorrelated white noise), ii§ non-
stationary, so the variance of the time seriesim®e with time and the time series does not
have a mean value around where it fluctuates (all@96; Halley & Inchausti, 2004).

There exist many statistical tools to estimate mmental variation from empirical data. For
census data, variation in population size can bmated by linear regression methods
(Dennis, 1991). These methods can be extendedrbyimear regression to separate
influences from density dependence and environrheatetion (Morris & Doak, 2002). It is
generally claimed that not taking density dependento account when present, will
overestimate the environmental variation and urslenate the population growth rate
(Ginzburg et al., 1990; Morris & Doak, 2002), howethe relationships might be more
complicated (Henle et al., 2004). In structured etsdthe environmental variation should be
estimated for all matrix elements or vital ratéshe data set is large enough to do so.
Depending on the type of data and census thera rmmenber of methods to choose from to
measure survival and its variance, ranging fronstagregression or log-linear models
(Morris & Doak, 2002) to maximum likelihood methofis mark-recapture data (Lebreton et
al., 1992; White et al., 2002). In matrix models estimate of environmental variation can
also be introduced by letting each year’'s matrpresent an environmental state, and by
randomly picking matrices (Caswell, 2001; Fiebergl&er, 2001). An advantage with this
method is that the within year correlation struetbetween vital rates is preserved, however
very rigidly (Morris & Doak, 2002). A disadvantagethat if the number of yearly transition
matrices is few it is likely that the variationvital rates is underestimated, and hence
persistence overestimated (Akcakaya, 2000).

To allow the vital rates to vary continuously istauctured simulation model, a parametric
approach should be used (Fieberg & Ellner, 200byvéver, this introduces another problem.
To generate single random vital rates from the gqmpate distributions is fairly
straightforward, but then the covariation structisrkost. To impose a within year covariance
can other the other hand change the probabilityibiigions of the vital rates (Caswell, 2001;
Morris & Doak, 2002). Morris & Doak (2002) presentnethod that uses the mapping of
multivariate normal distributions onto beta distitibns, to construct correlated vital rates.

Since raw estimates of environmental variationigitaenced by sampling variation, this
component should be subtracted to obtain an unbiest@mate of environmental variation.
Engen et al (1998) presents a method to partitierenhvironmental and demographic
variance, and since demographic variance is adfgampling variation this method works in
both cases. White (2000) extended this methodnhmve sampling variation, by allowing the
sampling variance to differ between years. A furttiscussion of this can be found in Morris
& Doak (2002). For binomially distributed vital est such as survival Kendall (1998)
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developed a method to remove sampling variatiorgdmgbining a beta distribution for the
survival rate with the binomial distribution forelthance of seeing a certain number of
survivors. However, while estimates of environmewngaiation can be inflated by not
separating sampling variance, a larger problensusily that most population studies are too
short to properly estimate the environmental vagairind & Pimm (1995) examined a
large number of long-term population counts anahébthat for most of them the variance in
annual numbers increased with the length of thmgersed to estimate variance. This has
two main consequences; the first being that fortsieom studies we underestimate the
variability in demographic traits and populationighility. Secondly, long term studies are
needed if we want to pick up cyclic behaviour agrporal correlations of long period. Also,
rare events, both in the form of catastrophes améibzas, are often not included in the
observation series or with poorly estimated fre@igs) which leads to underestimation of the
environmental variation (Pimm, 1991; Ludwig, 19€®ulson et al., 2001).

M odelling demogr aphic stochasticity

As | mentioned earlier, demographic stochastigtysually modelled simply as a sampling
effect, and by using the appropriate statisticsiritiution. For survival this usually equates to
the binomial distribution (Caswell, 2001), for reduction there are a number of distributions
to choose from. The application is straightforwandg most PVA models use this
formulation of demographic stochasticity (Beissinged McCullough 2002; Morris & Doak,
2004). Demographic stochasticity can also be medalirectly on population size by making
it a Poisson variable, with the expected populasiae as mean (lwasa, 1988).

If demographic stochasticity is modelled as a sargp@ffect for fixed vital rates, the second
aspect of demographic stochasticity, i.e. individuwiation in vital rates, is ignored. This is
usually the case for stage or age structured mauoictels (e.g. Gaona et al, 1998; Heino &
Sabadell, 2003), where individuals within groups esnsidered homogenous (Caswell,
2001). However some individual variation is accednfor by dividing individuals into
several classes, which is one of the main advastagh structured models compared to
unstructured ones. Individual heterogeneity caeXpicitly modelled by using an individual
based model (i-state configuration model) (GrimmaleR006) where the vital rates for each
individual are drawn from probability distributiotisat describe the variation within the class
(Letcher et al, 1998; Schiegg et al, 2006).

In the case of individual survival the outcomedulk a binomial distribution, since survival
has a binary outcome. With traits such as repraaiucivhere there is an expected mean
number of offspring with individual variation araadithis mean, a Poisson lognormal or
negative binomial distribution is usually more agmiate. Which distribution to use for
reproduction depends on the system though, and #rerseveral candidates to consider
(Morris & Doak, 2002). A careful examination of emmgal data may here act as a guide to
which distribution to assume. It should also beeddhat the reproduction function can be
composed of several parts, each connected toarcéype of randomness (Caswell, 2001).
For birds, the number of offspring produced camheeproduct of the underlying vital rates;
breeding probability, clutch size, fledgling sucesd first year survival. Then it might be
suitable to explicitly model the number of breedsnd first year survival as binomial
processes, and the number of chicks as a Poiseoasgs; however this can greatly slow down
a simulation program.
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Stochastic extinction dynamics

Environmental variation and extinction risk

Environmental stochasticity increase the extinctisk compared to a constant environment.
The most immediate effect of environmental varai®that populations can go extinct by
chance, even if the stochastic population growtth isapositive, as seen in fig?. Secondly,
since population growth is a multiplicative procdsg stochastic mean population growth
rate is estimated by the geometric mean and narittenetic mean. From this follows that
the stochastic mean population growth rateié less that the deterministic population
growth rate for the mean environment. In shortiemmental variation decrease population
growth rate, compared to a constant environmentstoctured populations, the same result
can be seen from Tuljapurkar’s approximation (Tuujkar, 1982) of the stochastic growth
rate Q). If the environmental states are independent.then

1.2

log A =logA, o0

1

where

r’ =

S S S S

ZCOV(aij 1y )§u gd

i=1 j=1k=11=1

Here), is the deterministic population growth rate fog thean environment, Coy(aq) is
the covariance between matrix entriggad & and § is the sensitivity of matrix entry i,).
Since r? cannot be negative this formula shows us that enwiental variation decrease the
stochastic growth rate, compared to the averageament.

Using diffusion models Lande (1993) showed thafisitive growth rates, the average time
to extinction scales to carrying capacity as a pdaw by T(K) = 2K°/(V.c?), where
c=2r/V, -1, the mean population growth rateris and environmental variance ig.\For
negative growth rates the approximation is:

T(K) = —In K_—l/c

This means that the mean time to extinction scalkscale faster than linearly to K if /V,
is above 1, and slower if it is below 1.

As mentioned above, catastrophes are often viewasg@arate from “normal” environmental
variation, or environmental variation is modelledyoas catastrophes (Lande, 1993; Mangel
& Tier, 1993). It has been pointed out that thdusion of catastrophes have a tremendous
effect on the persistence time of species’ (Ma&gé&ler, 1993), but that is often in
comparison to models that only consider demogragtioichasticity. Then it is not very
surprising that the extinction risk increase draoadly. Lande (1993) shows that the average
extinction time scales as a power law with carrysagacity, both for models with
environmental stochasticity or catastrophes, aatttieir relative importance depend on the
magnitude of environmental variance and the streagt frequency of catastrophes. Maybe a
more interesting comparison is between extinctisk in models with environmental
variation obtained from short time series, and egping “normal” variation, and models with
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environmental variation from long time series, @gsing the full scope of variation and rare
catastrophic events. The general observation thatlption persistence is strongly influenced
by rare events is however an important one.

In structured models the impact of environmentaiateon on population extinction risk as
mediated through particular vital rates, is comdiéd on the life history. This means that
general quantitative statements of how importamt\ariation in fecundity is to determine
extinction risk cannot be made. For instance, laighit survival between years lessens the
impact of environmental variation in fecundity ooppilation growth rate (Saether et al,
2002), and resembles an iteroparous, “slow” lifgdry. This stems from the fact that adult
survival buffer population size during years of [@eundity, and the pattegan also be
understood by noting that the population growtle reds a low sensitivity to changes in
fecundity. On the other hand a semelparous “faf& 'hiistory is most sensitive to variation in
juvenile survival and developmental rate (Jonssdib&nman, 2001). Similar arguments can
be made for other vital rates, and species aradneixpected, at least to some extent, to
evolve life history syndromes to lessen the impéd¢émporal variation in certain vital rates.

So far | have only considered how environmentaiati@n per se will influence population
growth rate, and hence extinction risk. What alabifierent types of environmental variation?
Environmental variation can be distributed in salerays (Fig. 2), ranging from temporally
uncorrelated white noise to highly correlated blaokise. The variation can also exhibit
negative autocorrelation, which correspond to bloise. The first studies on extinction risk
that included environmental variation assumed widtise (Lewontin & Cohen, 1969;
Feldman & Roughgarden, 1975; Leigh, 1981; Tier &stan, 1981; Lande & Orzack, 1988;
but see Tuljapurkar, 1980), probably since it isa@sonable null hypothesis and it does not
require many other assumptions. When temporal letioa was started to be acknowledged,
it was usually deemed detrimental to populatior@svtion (1988) presented this argument:
since consecutively bad years are more likely witirelated noise, this will increase the risk
of extinction, since a population is less likelystarvive a series of years with bad conditions,
compared to single bad years. Therefore, noisesttat positive temporal correlation should
result in a higher extinction risk compared to wmbise (Lawton, 1988; Halley, 1996). More
recent concerns have been raised that the assumgbtimcorrelated environmental variation
might seriously influence the estimates of extmatiisk (Johst & Wissel, 1997; Halley &
Kunin, 1999), especially in relation to PVA:s. tiiet assumption of white noise indeed cause
bias in the estimates of extinction risk, then bwious question arise; what sort of bias? Does
white noise result in overtly pessimistic or opstig estimates of extinction risk?

Some theoretical studies that have compared ramnddta noise to correlated noise has
supported the view that temporally correlated noisecase the risk of extinction (Johst &
Wissel, 1997; Inchausti & Halley, 2003), but otsbow contradictory results (Ripa &
Lundberg, 1996). It is apparent that the modelipgroach (Morales, 1999), the strength and
type of density dependence (Petchey et al, 1997aM®s, 1999, Heino et al, 2000), the time
scale (Halley & Kunin, 1999) and the scaling ofigace (Heino et al, 2000; Wichmann et al,
2005) all interact with noise colour when influemgithe extinction risk, but to complicate
things further, so does life history (Heino & Sabhd2003). Many researchers have shown
that in a population model with overcompensatorgydation dynamics, a reddened noise
spectrum will decrease the extinction risk compaoedhite noise, while it will increase with
undercompensatory dynamics (Petchey et al, 199@¢iGgton & Yodzis, 1999; Heino et al,
2000). Johst & Wissel (1997) assumed constant ptipul growth rate up to a population
ceiling, which implies undercompenstory dynamicstreeir result is in line with this
observation as well. Red noise also increasesahability in population fates, which
suggests that the fate of particular populatiorishei harder to predict (Cuddington &

15



Yodzis, 1999). Heino & Sabadell (2003) examined llogvlife history interacts with noise
colour, using a structured population model. Thegdeatled four simplified life histories
ranging from annual, semelparous biennial, iteropsubiennial, and perennial, and came to
the conclusion that the extinction risk of annwddsrease with temporally correlated noise.
The opposite pattern was found for iteroparousrbas and perennials, with the semelparous
life history somewhere in between. This means‘tiatver” life histories, such as iteroparous
modes, are negatively affected by a reddened emvieotal variation. However, the approach
of Heino & Sabadell is very simplified, and does differentiate between iteroparous species
in the fast-slow continuum. From a conservatioridgy viewpoint it would be interesting to
know how different life-history types, categorized. by survival, fecundity, age at first
reproduction and population growth rate are afi@ttg different noise colours.

White noise Reddened noise
0.1} 1 0.2y ]
0.05+
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-0.15¢ 1 04! 4
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Fig. 2. Time series with increasing amounts of terapautocorrelation, constructed with Zfhoise. From top
left to bottom right th¢g values are 0, -0.5, -1, -2.

Recently it has been noted that the frequencyibligion of the environmental noise is an
important factor in determining extinction risk {8eager et al, 2006). They point out that the
risk of catastrophic events and the risk of a rubaal years must be considered separately to
understand the effect of noise colour. If catastespare viewed as part of the continuum of
environmental variation, then on a fixed time sd¢hterisk of catastrophes decrease with
increasing noise colour, while the risk of a rurbafl years increase (in line with Lawton’s
argument). This is due to the fact that while thabgbility of “catastrophic conditions” at
time t+1 is the same at all time steps under winise, it is depending on the conditions at
time t under correlated noise. A catastrophe carchlly strike at once under white noise
conditions, while it tends to approach by drift entemporally correlated conditions. This
also explains why the risk of a run of bad yeacsaases with increasing noise colour. Many
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of the previous studies have made different assomgpbn these two factors, and this
probably explains some of the contradictory results

The next obvious question is whether reddened dewloise is most common in nature?
Naturally this differs depending on what environinentrait that is under study. The reason
why the relation between noise colour and extimctiek has been studied so much lately, is
the strong evidence that time series of environalesatriation are generally temporally
correlated (Pimm & Redfern, 1988; Arifio & Pimm, 598 chausti & Halley, 2002). In a
comparison between several time series of envirotahgariables Vasseur & Yodzis (2004)
show that the temporal correlation seems to didegween environments, with marine
environments having red-brown spectra and tere¢ginvironments showing pink spectra.
They also find a difference between coastal arehihkerrestrial environments, with coastal
areas having redder spectra. That there are ditfeseare not unexpected, but the observation
is important since it forces researchers to consiudiat type variation can be found in their
system. However coloured environmental noise doesecessarily lead to coloured
population dynamics. Conversely many mechanismisi®esloured environmental noise can
lead to coloured population dynamics, e.g. timayglstochastic density dependence, and
spatial interactions (Lundberg et al, 2000; Gream&aenton, 2005; Vasseur, 2007). In an
experimental study on ciliates Petchey (2000) shibtivat the dynamics of all populations
showed reddened dynamics, regardless of envirorainesibur. This indicates that the colour
of population dynamics depend on intrinsic factdere research is needed in this area to
separate the effects of environmental forcing aernal factors.

Demogr aphic stochasticity and extinction risk

The basic effect of demographic stochasticity ismtwduce the risk of population decline or
population extinction, even in a population witrspiwe growth rate. Populations naturally
consist of discrete entities, and demographic stsintity is the consequence of small
population size and discreteness (Halley & lwa888). Since it is a problem of small
populations, demographic stochasticity has beatiesiiextensively in relation to species
conservation (e.g. May, 1973; Richer-Dyn & Goel729Lande, 1993). However, the effect
of demographic stochasticity decrease fast withuajon size, and Richter-Dyn & Goel
(1972) noted that in a population with a ceilingd6findividuals and positive population
growth, the mean extinction time is in the ordetasfs of thousands to millions of
generations. When the population growth is positirean time to extinction in a model with
demographic stochasticity scales exponentially wétrying capacity (Richter-Dyn & Goel,
1972; Leigh, 1981; Lande, 1993). Early studies taded that demographic stochasticity can
be ignored for population sizes larger than 10hflega 1993), which has subsequently often
been used as a quasi-extinction threshold (Morri3ofik, 2002). The reasoning is then that
demographic stochasticity can be ignored in theehatdthe quasi-extinction threshold is set
high enough. It has however been pointed out tretut-off is somewhat arbitrary (Morris &
Doak, 2002), and that depending on the life-historgl breeding system of the species
demographic stochasticity can play a role at lapggulation sizes (Kokko & Ebenhard,
1996; Gilpin, 1992). Kokko & Ebenhard (1996) lauadthe concept of demographic
effective population size (Y to determine the range of population sizes wderaographic
stochasticity cannot be ignored. Fluctuations engex ratio will also increase the
demographic stochasticity, and this effect is enbdnn long-lived species where there is a
temporal correlation in the sex ratio (Engen et2803). It should be noted that both these
studies include interaction stochasticities, ad ag&brdinary demographic stochasticity.
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The next step is to consider the stochastic eff@etsxtinction risk from differences between
individuals. As mentioned above, there are two sypieindividual differences to consider;
unstructured and structured differences. Remenhiagithe distinction corresponds to
assuming that individuals are either the same reispect to survival rate and fecundity, or
with fundamental differences. Kendall & Fox (20@Rpw that for survival, which is a
binomial process, unstructured differences in saiviloes not affect demographic variance
(the variance in population growth rate that isseslby demographic stochasticity), and
hence extinction risk, compared to assuming tHamdividuals are the same. This does not
hold for fecundity, where unstructured individuakmation can affect demographic variance
(Robert et al., 2003; Kendall & Fox, 2003). The @xalationship depends on which trait
distribution that is assumed, but in Poisson-distad fecundity unstructured variation will
increase the demographic variance and thereforextiction risk (Kendall & Fox, 2003).

Turning to structured differences, the situatioa Isit different. For survival, assuming
binomial variance, it has been shown analyticdibt structural differences leads to lower
levels of demographic variance (White, 2000; Kehdldfox, 2003). However this is not true
for fecundity, when a Poisson distribution is usedssign individual trait values. In that case
the demographic variance, and hence extinction isskot affected by structured individual
variation (Kendall & Fox, 2002).

To conclude and summarise the discussion on demploigratochasticity and individual
differences, it can be said that the affect onnetitbn risk from individual variation in
demographic traits depends on the model speciicsatiFor survival, unstructured variation
does not affect extinction risk, while structureatiation decrease it. For fecundity,
unstructured variation increase extinction riskd ahthe same time structured variation does
not affect extinction risk. This does only hold fwoisson distributed fecundity though, so for
models that utilise other distributions the relasbip can be different.

Variation in sengtive traits

As mentioned earlier, a common generalisationaohsstic demography is that temporal
variation in vital rates will decrease the popuatgrowth rate compared to a static
environment (Pfister, 1998; Doak et al, 2005), tredeby increase the extinction risk.
Therefore it has been postulated that species dmmilvary much in the vital rates that are
sensitive to population growth, so matrix elememitk the largest sensitivity values should
also be under the strongest selection for low naegPfister, 1998; Caswell, 2001; Jonsson
& Ebenman, 2001). This generalisation is also baseduljapurkar’'s approximation (1982;
1990) for the stochastic log growth rate, from whiicllow that:

0(logA,) .l
dvarlg,,) 217

d(logA,) -1 (S )
0COVE Eyn) 247

where ¢ is matrix element (i,j)SeKI IS the sensitivity of matrix elemeny; éor the mean

matrix, andd(loghs)/ovar(e;) is the sensitivity of ok to changes in the variance f. &ince
the sensitivities of matrix elements are alwaystp@s the sensitivity of logs to variances
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or covariances are always negative. This meanghbaiopulation growth rate, lambda, will
always decrease with increasing variances and iemas in the matrix elements.
Sensitivities are generally perceived as selegradients (Lande, 1982; Johnson &
Ebenman, 2001), so traits for which the sensitigitjog A to the trait variance is large and
negative, should be under strong selection foredesad variance. This prediction has been
tested by Pfister (1998), and she found a negatimelation between the sensitivities and the
variances of matrix elements. This means that spesgem to be demographically buffered
against environmental variation. On the other hanthnsequence of such a relationship is
that species, in response to changes in theirgigonditions, will have problems to evolve in
the vital rates that influence their populationwtto rate the most. This can lead to difficulties
for species to adapt their life-history to chanigetheir habitat, for example due to
anthropogenic influence.

It has later been pointed out that Tuljapurkar’pragimation assumes that the variance and
covariance terms of matrix elements are indepen(ddk et al., 2005). This is clearly
incorrect for many natural systems. Doak et alased uljapurkar’'s approximation in terms of
the actual vital rates and show that the sengjitofilogAsto the variance in a vital ratgig
dependent on both the deterministic sensitivitiegh® vital rates and the correlation between
viand other vital rates.

a(log/is) - -1
aog? A

S +Y5,§, 0, corry >}

j#i

Whereo,; represent the standard deviation in tragnd corr(y v;) is the correlation between
traits v and y. The expression found after the summation showbkatsf v has sufficiently
strong negative correlations to other vital ratés Wigh variances and sensitivities, then the
sensitivity of logks to variance in ycan be positive. This means that selection wibia

high variation in that vital rate, and that the plapion growth rate is higher with high
variation in y. The condition that governs if the sensitivityMaié positive is:

->.§, 0, corr(v,v) >, 0,

j#i

As a result the population growth rate can incredie increased variation in vital rates
under the right circumstances. Doak et al (200p)yaihis corrected formula to Desert
tortoise data, and show that selection for highedmlity in vital rates can indeed occur.

Experimental support for theoretical predictions

There is no doubt that environmental and demogcagtbichasticity influence populations,
and the question is rather how large their relatiyeortance and influence are, compared to
other factors. Since the experimental investigatibtine effects of stochasticity needs many
replicate populations, they are very hard to stlidhe need for multiple replicates also means
that these studies cannot be performed on ratereatened populations. However, a number
of experimental studies have tried to partitioneffects of stochastic factors on population
extinction risk.

Drake (2006) and Drake & Lodge (2004) studied Dagpbpopulations in mesocosms and
found a pronounced peak in the distribution ofretton times early in the experiment, but no
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long exponential tail which has been predictedheotetical studies (Mangel & Tier, 1993;
Lande et al., 2003). It is however notable thatititeal population size in the experiment was
n=4, which leads to an extremely strong influentcdeznographic stochasticity early on in
the experiment. They also found higher extinctisks for populations under high
environmental variation, measured as variatioroodfavailability, compared to populations
living under medium or low environmental variatidxe mentioned earlier, the general
theoretical prediction is that high environmentatiation increases the risk of extinction
(Lande, 1993), so Drake’s result fits nicely intestframework.

A similar experiment was also performed by Belovekwgl. (1999; 2002), where they
assessed the effect on brine shritagémia franciscanpextinction risk of initial population
size, carrying capacity and the size of environmerdriation. In line with theoretical
predictions, lower environmental variation, greabéial population size and larger carrying
capacity decrease extinction risk, but with smadléects from initial population size than
from the other two factors. Belovsky et al. (19880 mention that “deterministic oscillations
in population size due to inherent nonlinear dyrenaind overcrowding” are as important, or
more so, as the previously stated factors in deténgn extinction risk, which could suggest
that density dependent effects is an essentialopdnis system. The importance of including
density dependence in population models has beetcatbd by several authors (Boyce,
1992; Dennis & Taper, 1993; Sabo et al., 2004).

Schoener et al (2003) tested extinction modelspaedictions on an island system of two
species of orb spiders. They used age structurettimand observed extinction probabilities,
and studied which model factors that were neededtain a good fit between predictions
and observations. All three factors consideredh@irtmodel, i.e. environmental stochasticity,
demographic stochasticity and population ceilingengeeded to explain the observed
probabilities. The age structured model was alsoes superior to an unstructured
counterpart. Schoener et al. therefore concludestbahastic factors play a large role in
empirical extinctions and that, at least for quatitre predictions, inclusion of extinction
factors and life history traits is preferable tmplification.

Not a test of theoretical predictions concerninggnetion risk, but rather an attempt to test
stochastic population models in the form of PVAdicgons was performed by Brook et al.
(2000). They assembled data sets for 21 populatindssplit them in half, using the first part
for parameterisation and the second part for etvialuan their test they used five generic
PVA packages, and tested whether the proporti@ciofal declines below threshold levels
matched the predictions of the PVA software. Theatations between predictions and
realized risk was generally fairly higtf setween 0.63 — 0.94), and without bias, so Brdok e
al. (2000) concluded that PVA is a valid and actautaol for categorizing and managing
endangered species. That study has subsequentlystreagly criticised (Coulson et al.,
2001; Ellner et al., 2002), with authors emphagisire lack of a power analysis, the lack of
confidence intervals for the extinction risk estiesa and the fact that Brook et al. (2000) is
comparing the average extinction risk over an ede@f species.

Applying stochastic population modelsin conservation

The previous pages have hopefully hinted on the agstochastic population models in the
practical conservation of species. There are a eumwmioverlapping uses that span the area
between basic and applied questions, where populaibdels have a place to fill. Boyce
(1992), Beissinger & Westphal (1998) and Beissi&étcCullough (2001) review

Population viability analyses (PVA), and highligiibchastic models as a way to gain deeper
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understanding on which processes have lead toespdeclines and how these declines can be
reversed. However they caution the use of compledaats that cannot be supported by
guality data, as does Ludwig (1999) and Coulsal.€2001). Since the risk of extinction in
absolute terms is very sensitive to the param@teasnodel and the model structure, the
general advice is to mainly use PVA'’s for qualtatcomparisons between management
scenarios or to prioritize between populationscfumservation, instead of using the
guantitative results as absolute estimates of pdipul extinction risk (Beissinger &
Westphal, 1998). Some authors argue that due torger and model uncertainty, reliable
predictions of extinction risks can only be madetime periods approximately 10-20% of
the period used to estimate model parameters (fgeb&liner, 2000). PVAs can however be
used to obtain absolute estimates of risk, butthesults must be interpreted with caution.
The use of PVA methods in the International Red in<riterion E (IUCN, 2006), aims
precisely at absolute estimates of risk. Many asthave also questioned the development of
complex models, at least as a first step, sincenst@nding of deterministic processes and
knowledge of the overall population growth ratefi©iuge importance for a population’s risk
of extinction (Caughley, 1994). To perform a PVAuyean either build a custom model, or
use one of the many canned software that are alaile.g. RAMAS (Akcakaya, 1998),
VORTEX (Lacy et al., 1995; Lacy, 2000) and ALEX €Bmgham & Davies, 1995). Either
way, it is important to know exactly what assumpsithe model makes, and to check that
these are reasonable, given the system. BesideRYA models, stochastic models can be
used to assess populations in a more general wayh@v different management options will
affect the population or which life-history stagee most important for population growth or
extinction risk (Caswell, 2001).

Other uses of stochastic population models candre general, and not geared towards the
conservation of a certain population or specigs,as in trying to find patterns between
population traits and extinction risk. These aeetifpes of models covered mostly in this
essay, and also the ones that aim toward gene@itlas opposed to specific applications.

Concluding remarks

Populations are subject to one final stochastitofagvhich | have not mentioned so far in this
essay, and that is genetic stochasticity. Gentgahasticity is similar to demographic
stochasticity since its effects also depend ordibereteness of individuals. The main
stochastic processes that are connected to geaeticgenetic drift and founder effect.

Genetic drift can be defined as changes in allelguency caused by the inherent randomness
in births and deaths. This means that allele frages evolve by chance, and not mediated by
selective advantages (Futuyma, 1998). This caritriesiixation of (deleterious) alleles and
nonadaptive evolution, both of which can be detrtakto populations and increase
population extinction risk.

The founder effect is connected to colonizatior &rthe result of the randomness inherent
in the genetic composition of the founder populatid the individuals founding a new
population are few, the genetic composition ofribe/ population can deviate substantially
from the founding population (Futuyma, 1998). Timpact of founder effects on extinction
risk is hard to predict, and it can have both veegative and very positive effects on the
persistence of the newly founded population, depgnoin the genetic composition of the
founded population and how this interacts withlifegic and abiotic conditions in the new
site. The direct result is however random changbergenetic composition of the founded
population compared to the founding population, @nsl can lead to fixation, changes in
allele frequency and (most likely) a decrease imegje variation. Frankham (2005) argues
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that most populations are not driven to extincbefore genetic factors have a chance to act,
so they must be seriously considered in model®ptijation extinction.

Positive feedback loops between demographic sttichgs®nd genetic factors such as
inbreeding and genetic drift cause these factorsitdorce each other. Such feedback loops
have been termed the ‘extinction vortex’ (Gilpins&ulé, 1986), here exemplified by the
growth-vortex and the inbreeding-vortex, and cal l® continuous population deterioration.
There is convincing logical arguments surroundhmg¢oncept of extinction vortices, but
their relative importance and commonness in aex@hctions needs to be established (Fagan
& Holmes, 2006). Another source of variation, dgighentioned above, that also affect
population viability is spatial heterogeneity. Wgtochastic temporal variation in the
environmental conditions, spatial variation gerlgraécreases the risk of extinction,
compared to a static landscape (White, 2000). iBHiecause bad years at some locations,
with possibly local extinctions, are balanced bftdreconditions elsewhere. Assuming
migration, the locally depleted or extinct popudas can be recolonized from surviving
populations, which decrease the risk of total papoih extinction (Hanski, 1999). The effect
of spatial heterogeneity depends on many factansgh, such as migration, spatial
autocorrelation and isolation (Hanski, 1999; Feerigt al., 2004).

Environments are random and population numberdiaceete. Add to this the
unpredictability of genetic drift, and the randoongonent of spatial variation, and it should
be very clear that stochastic population modelsaressential tool to analyse populations.
This essay have touched upon many aspects of stozpapulation models, and has still
only brushed the surface of what is possible, amiesimes reasonable, to include in a
population model. It might seem impossible to cdesall possible aspects, not least from the
perspective of available data, and that the maugbixercise itself is therefore futile.
However models should never model reality, onlyrtigest important aspects of it, and there
can still be important lessons to learn from madglspecific systems. There is yet a gap
between theoretical models of extinction and erogivalidation of the relative importance
of factors causing extinction. The number of stadiet try to tease apart the contributions to
extinctions from environmental and demographicatisasticity are still few (see above), and
then factors such as genetics, spatial configuratia density dependence still remain. You
can also question how far it is possible to proceild general statements. The general
patterns we can hope to find will surely be riddth conditional statements that constrict
their scope and influence. To continue exploring fpace of interactions between life
history, variation and randomness is however odipaunt importance to further ecological
understanding and to guide species conservation.
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