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ABSTRACT

Constitutive and inducible terpene production is involved in conifer resistance against bark
beetles and their associated fungi. In this study 72 Norway spruce (Picea abies) were
randomly assigned to methyl jasmonate (MJ) application, inoculation with the bluestain
fungus Ceratocystis polonica, or no-treatment control. We investigated terpene levels in the
stem bark of the trees before treatment, 30 days and one year after treatment using GC-MS
and two-dimensional GC (2D-GC) with a chiral column, and monitored landing and attack
rates of the spruce bark beetle, Ips typographus, on the trees by sticky traps and visual
inspection. Thirty days after fungal inoculation the absolute amount and relative proportion
of (+)-3-carene, sabinene, and terpinolene increased and (+)-a-pinene decreased. Spraying
the stems with MJ tended to generally increase the concentration of most major terpenes with
minor alteration to their relative proportions, but significant increases were only observed for
(-)-B-pinene and (-)-limonene. Fungal inoculation significantly increased the enantiomeric
ratio of (-)-a-pinene and (-)-limonene one month after treatment, whereas MJ only increased
that of (-)-limonene. One year after treatment, both MJ and fungal inoculation increased the
concentration of most terpenes relative to undisturbed control trees, with significant changes
in (-)-B-pinene, (-)-pB-phellandrene and some other compounds. Terpene levels did not change
in untreated stem sections after treatment, and chemical induction by MJ and C. polonica
thus seemed to be restricted to the treated stem section. The enantiomeric ratio of
(-)-a-pinene was significantly higher and the relative proportions of (-)-limonene were
significantly lower in trees that were attractive to bark beetles compared to unattractive trees.
One month after fungal inoculation, the total amount of diterpenes was significantly higher in
putative resistant trees with shorter lesion lengths in response to fungal inoculation than in
putative susceptible trees with longer lesions. Thus, terpene composition in the stem bark
may be related to resistance of Norway spruce against I typographus and C. polonica.
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1. Introduction

Bark beetles and pathogenic fungi are major threats to conifer forests worldwide. The spruce
bark beetle, Ips typographus, the economically most important insect pest of mature Norway
spruce, Picea abies (Christiansen and Bakke, 1988), is associated with phytopathogenic
blue-stain fungi such as Ceratocystis polonica (Solheim, 1986). This beetle typically
reproduces in fallen trees and timber when the beetle population is below the epidemic
threshold, but can also colonize living trees during epidemics (Christiansen and Bakke, 1988).
Healthy conifers have effective constitutive and inducible defense mechanisms against
invaders (Phillips and Croteau, 1999; Franceschi et al., 2005; Keeling and Bohlmann, 2006a;
Gershenzon and Dudareva, 2007), but biotic and abiotic stressors such as windstorms and
drought may predispose trees to 1. typographus attack (Faccoli, 2009). In order to maintain
healthy forests and develop practical methods to enhance tree resistance a deeper
understanding of conifer defense mechanisms is necessary.

The potential to improve plant resistance through preparative pathogen infections is well
documented in conifers (e.g. Christiansen et al., 1999; Eyles et al., 2010). In Norway spruce
pre-inoculation of C. polonica enhances tree resistance to subsequent C. polonica infection
(Christiansen et al., 1999; Krokene et al., 1999, 2001, 2003). More recently, methyl
jasmonate (MJ), a vital cellular regulator that mediates diverse developmental processes in
plants, has been demonstrated to alter defense responses against biotic and abiotic stresses in
various plant species (Thaler, 1999). In Norway spruce MJ application reduces the
colonization of C. polonica (Franceschi et al., 2002; Zeneli et al., 2006; Krokene et al., 2008)
and the root pathogen Pythium ultimum (Kozlowski et al., 1999). MJ application also reduces
tunneling and oviposition by I typographus (Erbilgin et al., 2006).

MIJ induces many of the same complex responses as pathogen infection in Norway spruce
and other conifers, including traumatic resin duct formation, swelling of polyphenolic
parenchyma cells (PP cells), enhanced resin flow (Franceschi et al., 2002; Hudgins et al.,
2004), increased stem terpene concentrations (Martin et al., 2002; Erbilgin et al., 2006;
Zeneli et al., 2006) and terpene emission from the foliage (Martin et al., 2003). Based on
such observations MJ has been assumed to induce the same chemical response in conifers as
fungal infection. However, there have been no detailed comparisons of the effect of fungal
inoculation and exogenous MJ application on terpene chemistry in conifers.

In Sweden the storm Gudrun felled 75 million m® of mostly Norway spruce trees on 8-9
January 2005 (Anonymous, 2006). The storm disturbance provided ample breeding material
for I typographus, and probably also reduced the resistance of many living trees. In the years
following the storm, ca. 3 million m® of standing spruce forests have been killed by the
spruce bark beetle (Langstrom et al., 2009). The beetle outbreak represented a great



opportunity to learn more about the defense mechanisms in Norway spruce and to test
methods to experimentally improve tree resistance. The aims of the present study were to
investigate the effects of MJ application and C. polonica inoculation on the terpene chemistry
of Norway spruce and how this influences host colonization by I fypographus.

2. Results
2.1. Terpene composition before treatment

Monoterpenes accounted for ca. 70% of total terpenes, with B-pinene and a-pinene as the
dominant compounds, followed by B-phellandrene, limonene, myrcene and 3-carene in order
of decreasing abundance (Table 1). The concentration of sesquiterpenes was low (< 8% of
total terpenes), with (-)-germacrene D, B-caryophyllene, longifolene, germacrene D-4-ol,
-cadinene, and a-longipinene as the major components. More than 10 diterpenes, including
pimaric acid, methyl dehydroabietate, manoy! oxide, and dehydroabietic acid, were detected
in the samples, but only thunbergol, abienol and neoabienol were present in relatively high
concentrations. Both absolute amounts and relative proportions of terpenes varied among
individual trees before treatment, but no significant differences were observed among trees
assigned to different treatments (except for one minor compound, bornyl acetate that was
~2-fold more abundant in trees assigned to MJ treatment because three trees in this group had
relatively high amounts of bornyl acetate) (Table 1).

The enantiomeric composition of a-pinene and limonene was highly variable, with the
(-)-enantiomer making up 35.2 - 83.3% of the total in individual trees for a-pinene, and 28.2
- 93.2% for limonene. No significant differences were observed in mean enantiomeric
composition of trees assigned to different treatments before treatment (Fig. 1). For B-pinene
and B-phellandrene the (-)-enantiomer dominated, making up > 96% of the total, and the
enantiomeric composition varied little between trees.

2.2. Terpene composition in the untreated stem section

To determine if C. polonica (Cp) or MJ treatment induced systemic terpene responses in the
trees, samples were taken 30 cm below the treated stem section on all trees one month and
one year after treatment. The concentrations of some compounds, such as (+)-3-carene,
sabinene and thunbergol, were somewhat higher in trees treated with MJ or Cp than in
control trees 30 days after treatment, but no significant differences were found outside the
treated stem area for absolute amounts (Table 1), relative proportions or enantiomeric
composition (Fig. 1) for any terpene, treatment or sampling date.

2.3. Changes in terpene composition in the treated stem section



2.3.1. One month after treatment

Both fungal inoculation and MJ application changed the terpene composition on day 30
compared with that on day 0. There were no significant changes in control trees over the
same period. Trees from different treatments separated quite well in the PCA plot based on
absolute amounts of terpenes on day 30, but trees treated with MJ or CT did not separate well
in the plot based on relative amounts (Fig. 2).

Fungal inoculation significantly changed the amount of four terpenes (Table 1, Fig. 3).
(+)-3-Carene showed the most remarkable change 30 days after treatment, with 1.8 - 23.2
fold increase in absolute amounts in the analyzed trees (t = 4.83, p < 0.01). The relative
amount of (+)-3-carene also increased significantly compared to day 0 (t = 5.86, p < 0.01),
and by day 30 it was one of the most abundant terpenes in many inoculated trees (data for
relative amounts not shown). Inoculation also increased absolute (Table 1, Fig. 3) and
relative amounts (not shown) of sabinene (ab: t=4.77, p < 0.01; re: t=3.22 p= 0.01) and
terpinolene (ab: t= 5.21, p < 0.01; re: t= 3.48, p < 0.01), whereas (+)-o-pinene became
significantly less abundant 30 days after inoculation (ab: t= 2.83, p = 0.025; re: t=2.58, p=
0.039) (Fig. 3). No significant changes were observed on absolute or relative amounts of
(-)-a-pinene, (-)-B-phellandrene, (+)-limonene, (-)-limonene (Fig. 3) or other terpenes (Table
1) 30 days after fungal inoculation (p = 0.091 - 0.848).

Compared with fungal inoculation, the terpene response to MJ treatment was more variable
between trees. Among the 16 analyzed trees, total terpene levels increased 8.5 fold in one tree,
1.3 - 2.9 fold in eight trees, whereas seven trees showed very little change (data not shown).
The absolute amount of (+)-a-pinene, (-)-B-pinene, (+)-limonene, (-)-limonene,
(-)-B-phellandrene and most other terpenes tended to increase in the treated stem section after
MJ application, but significant increases were only observed for (-)-limonene (t=2.53, p =
0.039) and (-)-B-pinene (t= 2.38, p = 0.048) due to the high individual variation (Table 1, Fig.
3). The relative amounts of (+)-3-carene and (-)-limonene increased in some trees, but there
was no significant change in relative amount of any terpene after MJ application (data not

shown).

Fungal inoculation significantly increased the enantiomeric composition of both a-pinene (t
=9.29, p < 0.01) and limonene (t= 3.81, p < 0.01), while MJ treatment only significantly
increased that of limonene (t= 4.01, p < 0.01). There were no significant enantiomeric
changes for these terpenes in the control trees (Fig. 1). The enantiomeric composition of
B-pinene and B-phellandrene did not change in any treatments (data not shown).

2.3.2. One year after treatment
The terpene profile of MJ and Cp treated trees varied notably from control trees one year
after treatment, and thus separated those trees from controls in PCA plots (Fig. 4). Two Cp



treated trees (3¢ and 21c¢) and one MJ treated tree (14b) with greatly elevated terpene levels
stood out from the others in the PCA plot (Fig. 4A). Most of the MJ treated trees and half the
Cp treated trees had a terpene profile leaning towards an increase in (+)- and (-)-a-pinene,
(-)-B-phellandrene, (-)-p-pinene, myrcene, and (+)-limonene. The remaining Cp treated trees
tended to show an increase of 3-carene, terpinolene, sabinene and thunbergol. In general, the
absolute amount of (-)-B-pinene (F 3 23 = 3.197, p = 0.039) and (-)-B-phellandrene (F 3 25 =
3.094, p = 0.048) differed significantly between treatments. Trees treated with fungus or MJ
had significant higher amounts of (-)-B-pinene (p < 0.01 and p = 0.048, respectively) and
(-)-B-phellandrene (p = 0.012 and p = 0.028) in the treated stem section than undisturbed
control (TC) trees with no previous sampling history. In addition, Cp treated trees had
significant higher levels of (-)-germacrene D (p < 0.01) and MJ treated trees had higher
levels of 8-cadinene (p < 0.01) than the controls. No significant differences were observed
between control trees with and without sampling history for any compound.

The relative amounts of some compounds also differed between treatments one year after
treatment. Proportionally, (-)-a-pinene (p = 0.018 and p < 0.01 for Cp and MJ, respectively)
and camphene (p = 0.016 and p < 0.01) were lower in Cp and MJ treated trees than in TC
trees. (+)-3-Carene was more abundant in fungal inoculated trees than in MJ treated trees (p
= 0.018) and control trees (p < 0.01). These differences separated most of the treated trees
from the controls in the PCA plot based on relative amounts of all quantified terpenes (Fig.
4B). No differences in enantiomeric composition were observed between treatments one year
after treatment.

2.4. Relationship between terpene composition, bark beetle attack and fungal performance

In 2007, beetle flight was monitored using pheromone traps in the vicinity of the study area.
Since beetle flight had culminated before the trees were baited with pheromones, most of the
trees had rather light attacks in 2007 with no significant differences between treatments (no.
of landing beetles: F 5 g9 = 0.23, p = 0.80; no. of beetle entrance holes: F 3 9 = 1.78, p =
0.18). In April 2008, two control trees and one tree each treated with Cp or MJ were recorded
as dead from beetle attack in 2007. In 2008, beetle flight peaked in early May, and hence
some beetles had flown before the trees were furnished with pheromones and sticky traps.
Again, no significant differences in beetle attack were observed between treatments in 2008.

To investigate the relationship between terpenes and beetle attack more closely we selected
six attractive and seven unattractive trees based on the number of beetles that had been
landing on the sticky traps or entered the bark on the lower 4 m of the stem in 2007
(attractive trees had > 20 beetles landing on them and / or > 10 entrance holes up until 17
August; unattractive trees had < 5 beetles landing or entering). There were no significant
differences between the two groups in absolute amounts of any terpene at any sampling date,
but the relative amount of (-)-limonene was significantly higher in unattractive trees than in
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attractive ones on both day 0 (p = 0.047) and day 30 (p = 0.033). Similarly, the enantiomeric
composition of imonene was somewhat higher (p = 0.12 on day 0 and p = 0.08 on day 30),
and that of a-pinene was significantly lower (p = 0.046 on day 0 and p = 0.039 on day 30) in
unattractive trees than in attractive ones (Fig. 5).

Lesion lengths in the 24 Cp treated trees varied between 22 and 73 mm, indicating that the
trees differed in their susceptibility to C. polonica. To investigate possible effects of terpenes
on this fungus we compared terpene levels in putative susceptible trees with long lesions (>
50 mm, n = 3) and putative resistant trees with short lesions (< 30 mm, n = 7). No significant
differences were found between the two groups before treatment, but one month after
treatment the absolute amount of thunbergol and the total amount of all quantified diterpenes
was significantly higher in putative resistant trees with shorter lesions (Table 2).

3. Discussion

Terpenes include many compounds that are toxic to insects and microorganisms, including
monoterpenes such as limonene and 3-carene, and semi-crystalline diterpenes that
polymerize to form a hardened barrier that seals wounds or traps insect invaders (Phillips and
Croteau, 1999; Keeling and Bohlmann, 2006b; Seybold et al., 2006; Gershenzon and
Dudareva, 2007). Different terpenes probably work synergistically to discourage attacking
insects and kill or contain pathogens (Phillips and Croteau, 1999; Gershenzon and Dudareva,
2007). Our results show that both C. polonica inoculation and MJ application change the
terpene content of Norway spruce bark in ways that may directly or indirectly influence the
suitability of the trees to I typographus and C. polonica.

In this experiment, the terpene response to MJ treatment and C. polonica inoculation differed
extensively one month after treatment. Fungal inoculation seemed to induce mainly
qualitative responses, i.e. it only affected levels of (+)-3-carene, sabinene, terpinolene and
(+)-a-pinene, but did not notably change other terpenes. MJ on the other hand tended to
induce quantitative responses in Norway spruce terpenes with minor effects on relative
proportions (although significant quantitative responses were only observed for (-)-B-pinene
and (-)-limonene due to large individual variation). We can distinguish between a
MI-specific induction profile characterized by an increase in (-)-limonene and (-)-B-pinene,
and a fungus-specific induction profile with an increase in (+)-3-carene, terpinolene and
sabinene and a decrease in (+)-a-pinene. This suggests that C. polonica and MJ induce
different changes at a detailed chemical level, probably because they activate different
biochemical pathways. Cell culture studies with Norway spruce also indicate that methyl
jasmonate and C. polonica have differential effects on enzymes involved in defense related
terpene biosynthesis. Methyl jasmonate upregulates one isoform of 1-deoxy-D-xylulose
5-phosphate synthase (DXS), an enzyme catalyzing the first step in the methylerythritol



phosphate (MEP) pathway, whereas treatment with C. polonica or methyl salicylate
upregulates another isoform (Phillips et al., 2007).

(+)-3-Carene, sabinene and terpinolene are products of same multi-product enzyme in
Norway spruce (Fildt et al., 2003) and their quantities were found to be closely correlated in
our study. Interestingly, two compounds that tended to decrease one month after fungal
inoculation, (+)-a-pinene and (+)-limonene, were also positively correlated (Fig. 6),
suggesting that they also may be produced by the same terpene synthase or by different,
co-expressed enzymes. These results indicate that fungal infection upregulates (+)-3-carene
synthase in Norway spruce, inhibits other terpene synthases, whereas some does not seem to
be affected at all.

Terpene accumulation following MJ treatment has been observed repeatedly in Norway
spruce (Erbilgin et al., 2006; Zeneli et al., 2006; Zulak et al., 2009). Zulak et al. (2009)
measured the induction and activity of terpene synthases in a single MJ treated Norway
spruce clone. Their results basically agree with our findings, except that they observed a
strong induction of (+)-3-carene synthase up to 32 days after treatment. Erbilgin et al. (2006)
showed that monoterpene, diterpene and total terpene levels were significantly higher in MJ
treated bark than in control tissue. They suggested that this chemical induction could be
directly responsible for the observed decrease in I fypographus colonization and
reproduction in MJ treated trees. More specifically, in a multi-clone experiment, Zeneli et al.
(2006) demonstrated that the concentration of MJ needed to trigger terpene accumulation, the
speed of the response and the extent of terpene accumulation vary extensively among
Norway spruce clones. We also found considerable variation in response to MJ application
among individual Norway spruce trees. Half of our trees did not respond at all, while the
other half responded strongly. The variable induction may reflect genuine differences in MJ
sensing or signaling systems among the trees or may simply result from differences in the
ability of MJ to penetrate the outer bark (Zeneli et al., 2006).

Long lasting terpene induction after MJ treatment has been observed earlier (Erbilgin et al.,
2006), but no such effect has previously been reported one year after inoculation with C.
polonica. The terpene response of Norway spruce to fungal inoculation tended to be stronger
and more diverse one year after treatment than after one month. This might be due to the
expansion over time of the necrotic lesion induced by fungal infection in the bark and that
our samples thus were collected closer to the lesion after one year. The so called reaction
zone induced by fungal infection is known to contain much higher levels of terpenoids than
normal phloem (Viiri et al., 2001; Faldt et al., 2006). We might speculate that Norway spruce
trees employ different chemical strategies at different stages of fungal invasion. The
increased biosynthesis of (+)-3-carene, terpinolene and sabinene at a cost of decreased
(+)-o-pinene and (+)-limonene production observed one month after inoculation may be the



first step in the chemical response to infection, serving as a prevention strategy in phloem
outside the area colonized by the fungus. A more quantitative chemical response, which
obviously is more energy demanding, may be the next step as the fungus gradually is
approaching the sampling position.

Anatomical studies of Norway spruce have shown that wounding, fungal infection and MJ
treatment induce traumatic resin duct formation in more remote stem tissues (Franceschi et
al., 2000; Krekling et al., 2004; Krokene et al., 2008), and systemic chemical changes in e.g.
phenolics have been observed in other conifers (Bonello and Blodgett, 2003), demonstrating
that conifers possess systemically inducible signalling pathways. However, in the present
experiment chemical changes were restricted to the pretreated areas of the stem. No chemical
changes were induced in the untreated lower stem section, which is in agreement with the
observation that C. polonica pretreatment did not enhance tree resistance to infection outside
the pretreated stem section (Krokene et al., 1999).

Despite distinct chemical changes in the treated stem sections indicating up- or down-
regulated chemical defense reactions in the trees, we found no significant differences in
landing or entry rates by the spruce bark beetle in either inoculated or MJ treated trees. This
is in contrast with the findings of Ergilbin et al. (2006), who demonstrated increased terpene
levels and reduced spruce bark beetle attacks after MJ treatment of Norway spruce. Similarly,
sublethal fungal inoculation has been shown to reduce spruce bark beetle performance in
Norway spruce (Christiansen and Krokene, 1999). A possible explanation for our results may
be that we missed the major part of the flight season in 2007, when the main beetle flight
took place in late April, several weeks earlier than normal. In mid-June, when our experiment
started, the main flight was over and there were already callow adults under the bark of trap
logs at Tonnersjoheden Experimental Forest (B. Langstrom, unpubl. data). Hence, we mainly
attracted sister-brood-flyers in low numbers to our experimental trees, resulting in
insufficient attack rates to overcome tree resistance. Only four of the 72 experimental trees
were successfully colonized and killed by the beetles, whereas 11 out of 20 untreated,
pheromone-baited control trees were killed in a follow - up study in the same stand in 2008
(P. Krokene, unpubl. data).

Induction of 3-carene is repeatedly observed after fungal infection or MJ treatment in
conifers. For example, 3-carene is the major monoterpene induced in Scots pine roots upon
infection with the ectomycorrhizal fungus, Boletus variegatus (Krupa and Fries, 1971).
Infection of Grosmannia clavigera in lodgepole pine (Croteau et al., 1987) and
Leptographium wingfieldii in Scots pine (Féldt et al., 2006) phloem also induce high 3-carene
production. Significantly higher (+)-3-carene accumulation has also been observed in
Norway spruce saplings after MJ treatment (Zulak et al., 2009). Previous investigations have
already associated 3-carene levels with conifer resistance or susceptibility to fungi or insects



(Reed et al., 1986; Rocchini et al., 2000; Pasquier-Barre et al., 2001), indicating that 3-carene
may be a useful chemical marker of conifer resistance.

The enantiomers of plant terpenes may be important for insect-host interactions (Stranden et
al., 2002, 2003; Mustaparta and Stranden, 2005). Olfactory receptor neurons in the large pine
weevil Hylobius abietis respond more strongly to (+)-o-pinene and (-)-limonene than to their
opposite enantiomer (Wibe et al., 1998). The common pine shoot beetle Tomicus piniperda
preferred to enter shoots of trees that emitted higher proportions of (-)-a-pinene (Almquist et
al., 2006). Similarly, I. fypographus had significantly stronger electroantennogram responses
to (-)-o-pinene than to the (+)-enantiomer (Dickens, 1978), and (-)-a-pinene also increased
the attraction of . fypographus to its aggregation pheromone in a field experiment (Erbilgin
et al., 2007), indicating that (-)-a-pinene is attractive to I typographus. More interesting,
since I typographus utilizes (-)-a-pinene as a precursor to biosynthesize its pheromone
component cis-verbenol, the enantiomeric composition of a-pinene in the host may directly
influence the production of aggregation pheromones (Birgersson et al., 1984). In this study
we found that attractive Norway spruce trees had a significantly higher enantiomeric
proportion of (-)-o-pinene and a somewhat lower enantiomeric proportion of (-)-limonene
than unattractive trees. This suggests that the enantiomeric composition of a-pinene and
limonene may directly influence the suitability of Norway spruce to I fypographus. C.
polonica inoculation increased the ratio of (-)-enantiomers of o-pinene and limonene, and MJ
application increased that of limonene one month after treatment. This may alter the
resistance of Norway spruce, but it is difficult to speculate further on the ecological
significance of these changes since beetle attack rates were relatively low in our experiment.

4, Concluding remarks

This study demonstrated that C. polonica inoculation and MJ treatment induced chemical
changes in Norway spruce bark. The induction profile of the two treatments differed
markedly one month after treatment, suggesting that they activate different signal
transduction pathways that affect terpene biosynthesis in different ways. Thus, treatment with
MJ may not always be a perfect mimic for e.g. fungal infection when studying conifer
defence responses. However, the full biological significance of these chemical changes is still
not fully understood and further research needs to be done.

5. Experimental
5.1. Field procedures

The experiment was carried out in a pure stand of 47 - year - old Norway spruce that was
planted in 1964 using 4 - year - old seedlings at Ténnersjoheden Experimental Forest (56°
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41' N, 13°4' E), Halland, Sweden. On 10 - 11 May 2007, 24 triplets of neighboring trees
(mean diameter at 1.3 m height: 218 mm; range 174 - 253 mm) were randomly assigned to
either C. polonica (Cp), methyl jasmonate (MJ), or control (CT) treatment, with eight triplets
(24 trees) per treatment. The Cp trees had the lower parts of their stems (0.8 to 3.8 m above
ground) inoculated with C. polonica at a density of 20 per m? bark surface, using a 5 mm
cork borer. Inoculum consisted of mycelium that had been growing on malt agar (2% malt,
1.5% agar) for one week. The strain used was NFLI 1993 - 208 / 115, which was isolated
from a Norway spruce log inoculated with the bark beetle Polygraphus poligraphus L.
(Krokene and Solheim, 1996). The strain has been used in several previous inoculation
studies (e.g. Christiansen et al., 1999; Nagy et al., 2004; Krokene et al., 2001, 2003; Zeneli et
al., 2006). On trees assigned to MJ treatment the lower stem (0.8 to 3.8 m) was sprayed with
100 mM MIJ in water with 0.1% Tween 20. The bark was kept wet for a minimum of five
minutes by repeated application of MJ, and CT trees received no treatment.

On 11 June, a 10 cm long pheromone dispenser tape (Hercon ® type) was attached at 1.0 m
height on the SW side of all trees. An additional 50 cm dispenser tape was placed at the same
height on a pole in the center of each triplet. To monitor I fypographus landing rates on the
trees one sticky trap (Pherobank ®, 10 x 15 cm) was placed at 1.3 m height on the SW side
of each tree on 11 June and inspected repeatedly until 17 August 2007. We also determined
the number of beetle entrance holes on the lower 4 m of the stem by visual inspection.

In spring 2008, the surviving study trees were again furnished with pheromones and sticky
traps. On 6 May, new pheromone dispensers and sticky traps were put on the stick in the
center of each triplet of trees. On 21 May, all trees were visually inspected between 1 - 2 m
stem height, and the number of beetle attacks was recorded. Beetles were counted and
removed from all sticky traps on 27 May, 11 and 25 June, and 28 August.

Lesion lengths on C. polonica treated trees were measured 19 - 20 October 2009. The outer
bark around each inoculation point was removed and maximum length of visible necrotic
lesions was measured at the outer surface of the phloem.

5.2. Bark sampling and sample extraction

In 2007, bark samples for chemical analyses were taken from all experimental trees on the
day of treatment (10 - 11 May, day 0) and one month later (10 - 11 June, day 30) using a 5
mm cork borer. Five additional unattacked trees of similar size within the experimental stand
were selected and sampled on day 30. Samples consisted of single bark plugs taken from the
four cardinal points of each tree and pooled into a single sample per day. On day 0,
immediately before stem treatment with MJ or Cp, samples were taken 1.3 m above ground.
On day 30, one sample was taken 1.3 m above ground to observe induced chemical changes
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in the treated stem section, and another at 0.5 m to observe possible systemic changes
induced by the treatments. On trees that had been inoculated with C. polonica, samples in the
treated section were taken 5 c¢cm above an inoculation point. To reduce the influence of
previous sampling at the same height, new samples were always taken as far away as
possible from previous sampling sites.

Eight trees with notable chemical induction from each of the Cp- and MJ- treated groups and
eight randomly chosen control trees were re-sampled approximately one year later (day 362),
to determine the durability of the chemical induction. In addition, eight unattacked trees of
similar size within the experimental stand were also selected and sampled on that day,
serving as undisturbed true control trees (TC).

The outer cork bark was removed from the bark plugs and the plugs were submerged in 1.0
ml! of hexane containing 0.30 mg pentadecane (Lancaster synthesis, England) as an internal
standard and 0.12 mg 3-tert-butyl-4-hydroxy-anisol (Fluka, Switzerland) as antioxidant. The
samples were extracted in hexane at room temperature for 48 h before the extract was
transferred to new vials and kept at —25 °C until GC-MS and 2D-GC analyses. The bark
plugs were dried at 80 °C for 6 h, and then weighted on a Sartorius electronic balance for
absolute amount calculation.

5.3. Terpene separation, identification and quantification

The hexane extracts were analyzed by a Varian 3400 GC connected to a Finnigan SSQ 7000
MS to separate, identify and quantify the terpene constituents. A SPB-1 fused silica capillary
column (Supelco, 30 m, 0.25 mm i.d., and 0.25 pm film thickness) was used, and the
temperature program was set as 40 °C for 1 min, increasing to 230 °C at a rate of 4 °C min -,
and then remaining constant at 230 °C for 19 min. A split / splitless injector was used with a
30 s splitless injection at 225 °C. The temperature of the transfer line was set at 235 °C.
Helium was used as the carrier gas at a constant flow of 1 ml min " the temperature of the
ion source was 150 °C, the mass detector was operated with a mass range of 30 - 400, and the
electron impact ionization was 70 eV. One pl hexane extract of each sample was injected
into the GC-MS manually by using a 5 pl syringe. The terpene hydrocarbons were identified
by comparing retention times and mass spectra with available authenticated standards, or by
comparing retention indexes (RIs) and mass spectra with Massfinder 3 (Hochmuth Scientific
Consulting, Germany) and the reference libraries of NIST (National Institute of Standards
and Technology). The absolute amounts of terpenes were calculated relative to the internal
standards and expressed as mg (or ug) g ! dry wt. and expressed as pentadecan equivalents.
The relative amounts of terpenes were calculated as the ratio of the area of each peak to the
sum of all the areas of terpene hydrocarbons in a defined GC fraction, and expressed as
percentages.
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The enantiomeric composition of the four major monoterpenes (o-pinene, P-pinene,
B-phellandrene and limonene) was analyzed by 2D-GC. 3-Carene was considered to be
present as pure (+)-enantiomer and germacrene D as pure (-)-enantiomer according to
previous studies (Persson et al., 1996; Stranden et al., 2003). Ten pl hexane extract was
added to a filter paper (size: 2 mm x 20 mm) within a 3.5 ml vial, the solvent was evaporated
for 30 s, and the vial was sealed with aluminum foil and equilibrated for 1 min. A SPME
fiber (65 pm PDMS - DVB coating, Supelco, USA) was used to trap the volatiles in the
headspace for 10 min at room temperature and then injected directly into the 2D-GC. The
2D-GC system consisted of two Varian 3400 GCs with flame ionization detectors (FID). The
first GC was equipped with a DB-Wax column (J & W Scientific ™, 30 m, 0.25 mm i.d. and
0.25 mm film thicknesses). Volatiles were separated by the following temperature program:
40 °C for 1 min, increasing at a rate of 7 °C min ' to 220 °C, and then remaining at 220 °C
for 5 min. Injections were performed with an injector temperature of 220 °C in 30 s of
splitless mode. Enantiomeric proportions of the four selected monoterpenes were analyzed
by sending the components into the second GC, which was equipped with a B-cyclodextrin
column (J & W Scientific ™, 30 m x 0.25 mm x 0.25 pm). The enantiomers were separated
with a temperature program starting from 60 °C for 0.1 min, followed by 0.5 °C min ™ up to
90 °C. Helium was used as the carrier gas at a pressure of 34 psi for the first GC and 22 psi
for the second GC. The temperature of the Fl-detectors was 225 °C. The enantiomeric
composition of a specific enantiomer was defined as the percentage of (-)- enantiomer to the
sum of the (+)- and (-)- enantiomers of the respective monoterpene. The absolute amount of
the enantiomer was calculated by multiplying the proportion of the enantiomer by the
absolute amount of the respective monoterpene obtained by GC-MS.

5.4. Data analyses

The absolute amounts and relative proportions (normalized to 100%) of all the quantified
compounds were subjected to Principal Components Analysis (PCA) to evaluate the
influence of treatments on terpene composition, using the multivariate data analysis software
Canoco 4.5 (Biometris Plant Research International, The Netherlands). Changes in individual
compounds between time points were compared by paired t-tests (n = 16 for nonchiral data,
and n = 8 for chiral data) and the differences among treatments were tested by one way
ANOVA. If treatments were significantly different (p < 0.05), means were separated using
LSD at p = 0.05 (Statistica 6.0, Statsoft, Inc. USA). Correlation analysis was conducted by
means of Pearson product-moment correlation coefficient. The relative proportions of
terpenes were arcsin-transformed and the absolute amount data were square-root transformed
to correct for unequal variance and departures from normality.
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Table 2. Terpene concentration (ug gl dry wt equivalent to pentadecane) in stem phloem of putative
susceptible Norway spruce trees with long lesions (> 50 mm, n = 3) and putative resistant trees with short
lesions (< 30 mm, n = 7) following inoculation with Ceratocystis polonica. Terpene concentrations were
measured one month after inoculation and 5 cm above the inoculation site. Data are expressed as means =
1 SD and compared by t-test.

Lesion length <30 mm _ Lesion length > 50 mm p
Total monoterpenes 1396.2 £24.0 1321.7+71.6 0.907
Total sesquiterpenes 93.1+24.0 70.0+13.2 0.693
Total diterpenes 412.4£27.7 133.1+5.8 0.023
Thunbergol 175.5+£22.7 143+54 0.011
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Percentages of (-)-enantiomer

Fig. 1. Enantiomeric composition (mean + 1 SD) of o-pinene and limonene before
treatment with methyl jasmonate (M) or Ceratocystis polonica (Cp) (black bars) and one
month after treatment (white bars: treated stem section; hatched bars: untreated stem
section). CT denotes untreated control trees that were also sampled at the start of the
experiment; TC is untreated control trees with no previous sampling history. Data are
expressed as the percentage of the (-)-enantiomer to the sum of both enantiomers. n = 8
trees (except for TC where n = 5). No difference in enantiomeric composition was observed
before treatment or in the untreated stem section after treatment between trees assigned to
different treatments. Stars indicate enantiomeric composition significantly changed in
treated stem section after treatment by t-test (p < 0.05).
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Fig. 2. PCA plots for absolute amounts (A) and relative proportions normalized to 100% (B) of
all the quantified terpenes in treated Norway spruce phloem 30 days after stem treatment with
Ceratocystis polonica (circles) or methyl jasmonate (triangles). Crosses represent untreated
control trees. Each symbol represents one tree. Tree no. is indicated next to the symbols. The
terpene position indicates its approximately contribution to the principal component. In panel A
the first principal component (PC1) explained 67.7%, and the second component (PC2) 10.8%
of the sample variation. In B, PC1 explained 85.0%, and PC2 explained 4.4% of the sample
variation.
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Fig. 3. Absolute amounts of selected monoterpenes in Norway spruce phloem before (day 0,
black bars) and 30 days after (white bars) stem treatment with methyl jasmonate (MJ) or
inoculation with the bluestain fungus Ceratocystis polonica (Cp). CT denotes untreated
control trees. Data are from the treated section of the stem and is expressed as means + 1 SD.
n = § trees, except for the three lower panels where n = 16 trees. Bars with stars were
significantly different by t-test (p < 0.05).
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Fig. 4. PCA plots based on absolute (A) and relative amounts normalized to 100% (B) of all the
quantified terpenes in Norway spruce phloem 362 days after stem treatment with Ceratocystis
polonica (circles) or methyl jasmonate (triangles). + = untreated control trees that were also
sampled at the start of the experiment; x = untreated control trees with no previous sampling
history. Each symbol represents one tree. Tree no. is indicated next to the symbol. The terpene
position indicates its approximately contribution to the principal components. In panel A the
first principal component (PC1) explained 74.5%, and the second component (PC2) explained
14.5% of the sample variation. In B, PC1 explained 36.5%, and PC2 explained 21.6% of the
sample variation.
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Fig. 5. Enantiomeric composition of a-pinene and limonene in six relatively attractive (black bars)
and seven relatively unattractive Norway spruce trees (white bars). Attractive trees had > 20
spruce bark beetles landing on them and/or > 10 beetles entering; unattractive trees had < 5
beetles landing or entering. Data are expressed as mean + 1SD. Bars with stars were significantly
different by t-test (p < 0.05).
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Fig. 6. Comelation between absolute amounts (mg g dry wt equivalent to pentadecane) of
different monoterpenes in Norway spruce. Data includes all the analyzed trees before treatment
and 30 days after treatment (n = 32 for (+)-3-catene, sabinene and terpinolene; n= 43 for (+-o-
pinene and (+)-limonene).



