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Maximum likelihood estimation in signal analysis of MR spectroscopy

Abstract
Proton magnetic resonance spectroscopy (1H MRS) is used to determine the con-
centration of metabolites in organic tissues, or to study metabolic changes in a
non-invasive way. The complex-valued magnetic resonance spectroscopy signals
are assumed to be disturbed by additive white noise. The distributional properties
of the stochastic noise are studied. A statistical model for the magnitude and phase
of the Fourier transformed magnetic resonance spectroscopy signal is introduced.
Maximum likelihood estimators of the distributional parameters of this model are
derived and asymptotic properties such as consistency, asymptotic normality and
efficiency of the estimators are verified. A simulation study is used to test the
findings and the model is tested on magnetic resonance spectroscopy data from a
spectroscopy phantom and human brain data.

Keywords: magnetic resonance spectroscopy, maximum likelihood estimation, Rice
distribution, phase modeling

Author’s address: Pia Löthgren, SLU, Centre of Biostochastics,
901 83 Umeå, Sweden.
E-mail: Pia.Lothgren@slu.se





Contents

1 Introduction 7

2 Basic principals of magnetic resonance spectroscopy 9

3 Signal modeling 15
3.1 MRS quantitation 19

3.2 Measured MRS signals 20

3.3 Difference signals 23

4 The Rice distribution 25
4.1 ML estimation of the Rice distribution 26

4.1.1 Consistency of the ML estimators for the Rice distribution 28

4.2 Modification to a three parameter Rice distribution 29

5 A Phase-Magnitude model 32
5.1 Phase modeling in MRI 34

5.2 ML estimation in the phase-magnitude model 34

5.3 Asymptotic properties 35

6 Simulation study 38
6.1 Methods 38

6.1.1 Properties of the estimates for different sample sizes and SNR 38

6.1.2 Asymptotic normality 38

6.1.3 Properties of the estimates for different true value of the phase ψ 39

6.1.4 Comparison with estimates for the Rice distribution 39

6.1.5 Comparison with ψ estimates from the phase marginal distribution 40

6.2 Results 40

6.2.1 Properties for different sample sizes and SNR 40

6.2.2 Asymptotic normality 40

6.2.3 Properties for different true value of the phase ψ 43

6.2.4 Comparison with estimates for the Rice distribution 47

6.2.5 Comparison with ψ estimates from the phase marginal distribution 47

6.3 Discussion 47

7 Phantom data study 50
7.1 Method 50

7.2 Results 52

7.2.1 Method I 52

7.2.2 Method II 53

7.3 Discussion 53

5



8 Human brain data study 55
8.1 Method 55
8.2 Results 56
8.3 Discussion 57

9 Final words 58



1 Introduction
Nuclear magnetic resonance (NMR) has become a routinely used method
to determining the structure of organic compounds. While magnetic reso-
nance imaging (MRI) uses the signal from hydrogen protons to form anatomic
and spatio-temporal images in living organisms, proton magnetic resonance
spectroscopy (1H MRS) uses this information to determine the concentra-
tion of metabolites in the tissue examined, or to study metabolic changes in
a non-invasive way. With MRS, we are able to

• study the metabolism and biochemistry of the brain in action,

• observe gene expressions or the activity of a particular membrane
receptor, using molecular imaging with targeted MR contrast agents,

• diagnose certain metabolic disorders, especially those affecting the
brain,

• provide information on tumor metabolism.

MRS signals measured in animals or human beings are called in vivo
signals. They are characterized by a low signal-to-noise ration (SN R), due
to the low concentration of the metabolites and the limited measurement
time, and by overlapping spectral components due to the low magnetic field
strength used. Historically the challenge has been to quantify proton short
echo-time spectra, which exhibit many metabolites and to estimate their
concentrations. Analysis of MRS signals can be conducted either in time-
domain [78] or in frequency-domain [45]. Resent research has shown that
the direct processing of the signal in the native time-domain was as powerful
and sometimes more simple than the traditional processing of the signal in
the frequency-domain. An overview of time-domain and frequency-domain
quantitation methods was given by Poullet et al. [50], where advantages and
drawbacks of these two families of quantitation methods were discussed.

Quantitation in time-domain offers useful features: Missing data points
do not really hamper the quantitation [21] since MR measurements are
made in time-domain, and it also enables one to automatically process wa-
ter and background signals [8] with SVD-based methods. Therefor models
developed for MRS are mostly defined in time-domain [14, 53, 78].

In clinical applications, however, the measured MRS signals are often
visually interpreted in frequency-domain, where the data are transformed
by the discrete Fourier transform (DFT). Frequency-domain methods can
be divided into two classes. The nonparametric methods are based on inte-
gration of the peak area of the frequency-domain signal [44], and paramet-
ric methods rely on a model function for the metabolite peaks, which are
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often based on a time-domain model [52, 66, 79].The model functions in
the frequency-domain are, in general, more complicated than in the time-
domain and necessitate thereby more computation time. On the other
hand, the frequency-domain allows a straightforward selection of a frequency
interval. Only the points in the frequency region of interest are considered
for quantitation, resulting in faster algorithms [51, 61, 68].

The main objective of this thesis is to study the distributional proper-
ties of the stochastic noise in the MRS signals. We consider the asymptotic
properties of the maximum likelihood (ML) estimators of the parameters
in the model function, given some prior knowledge. In Chapter 2 we offer
a brief introduction to the basic principals of MRS. Chapter 3 is devoted to
introduce some commonly used mathematical models with measurement
error for MRS signals. Given the assumption that the complex-valued MRS
signals are disturbed by additive complex-valued white noise we derive that
the magnitude of the signal in frequency-domain follows the Rice [55] dis-
tribution. In Chapter 4 ML estimation of the parameters of this distribu-
tion is discussed, and consistency of the estimates is proved. However, in
the analysis of the magnitude , we loose the original information given by
the complex-valued signal. Thus, we introduce a phase-magnitude model
in Chapter 5. Phase-magnitude modeling has previously been done for dif-
ferent types of MR imaging techniques [59, 60], but not yet for MRS. The
distributional properties of the phase-magnitude model is derived and ML
estimator of the distributional parameters are calculated. Asymptotic prop-
erties of the ML estimators are verified.

In Chapter 6 we conduct a thorough simulation study to verify our con-
clusion for the phase-magnitude model and its ML estimators. The model
is then tested on real MRS scans of an MRS phantom, in Chapter 7, and on
in vivo MRS brain scans from a healthy volunteer in Chapter 8.

This is a EU project financed by the EU Regional Development Fund,
Center of Biostochastics (SLU), and the Center for Biomedical Engineering
and Physics (UmU and LTU).

This research was conducted using the resources of High Performance
Computing Center North (HPC2N).
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2 Basic principals of magnetic resonance spectroscopy

The theory behind magnetic resonance techniques is complex. In this Chap-
ter we will only offer a very brief, and simplified, overview of the basic prin-
ciples. There are many textbooks in the subject. This overview is mostly
taken from [13] and [10].

In any MR technique we are performing experiments on the nuclei of
atoms, not on the electrons. In most MRI and MRS techniques we are
interested in the 1H nuclei, which is a proton, possessing a spin of 1/2. We
can imagine the proton spinning around its axis, which generates a magnetic
field. If protons are placed in an external magnetic field B0, their spins will
either align with B0, with the lower energy state 1/2, or opposite B0, with
the higher energy state −1/2, see Figure 2.1.

Figure 2.1: Protons in the external magnetic field B0 will either align their spin with, or
opposite to, B0.

We can imagine the protons as acting as tiny compass arrows. Let M de-
note the net magnetization [6]. In order to induce an MR signal, a second,
rotation magnetic field, B1, is applied perpendicular to B0, which causes M
to tip to alignment with B1. This process is called an RF pulse and is done
with an RF coil. When B1 is switched off, M spirals back to alignment with
B0 and its original value of M0, a process Bloch [6] denoted relaxation, see
Figure 2.2. He introduced two time components, T1 and T2, for the relax-
ation process. T1 describes the time for Mz to grow from 0 to 1− e−1, about
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Figure 2.2: Relaxation after an RF pulse

63% of M0. T2 represent the time for Mx or My to decay to e−1, about 37%
of M0, see Figure 2.3. However, in practice we measure the decay rate T ∗2 ,
which can be considered as an "observed" T2. The T ∗2 rate is faster than T2,
mostly due to inhomogeneity in the main magnetic field B0. The T ∗2 decay
generates a so-called free induction decay, FID, signal. The signal is detected
in a two channel quadrature coil, leading to two measured signals denoted
real and imaginary.

The MRS signals are acquired in the complex time-domain. In practice
a number of scans are done (usually 64 or 128) and then the means of the
signals are computed. In order to visualize the signal the discrete Fourier
transform (DFT) is taken and then the magnitude, or absolute values, of
the signal. Figure 2.4 shows the real and imaginary part of a typical in
vivo MRS signal and the real and imaginary part of the discrete Fourier
transform of the same signal.

The magnitude spectrum consists of a collection of peaks, where each
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Figure 2.3: Upper: T1 is the time for Mz to grow from 0 to 1− e−1. Lower: T2 is the time
for Mx or My to decay to e−1
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Figure 2.4: Upper left: Real part of MRS signal acquired in a healthy brain. Upper right:
Imaginary part of the MRS signal. Lower left: Real part of the DFT of the MRS signal.
Lower right: Imaginary part of the DFT of the MRS signal.

Figure 2.5: Typical MRS magnitude spectrum of a healthy brain.
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peak may be described as the MR signal from magnetically equivalent pro-
tons [10, 5, 26, 34, 37, 46, 47, 65], for instance the protons in a specific
metabolite. By costume the positions of the peaks in the frequency-domain
are measured by chemical shift, which is the local magnetic field perceived by
the specific proton group divided by the applied magnetic field B0. Chemi-
cal shift is usually measured in p p m relative to a reference compound. For
1H MRS the reference is tetramethylsilane, Si (C H3)4 [13].

Rubæk and Ross [10] gave a table, Table 2.1 for how different peaks
positions may be used to identify the metabolites of the human brain. The
water peak is set to have p p m = 4.76 and hence the position of the other
peaks follows.

Figure 2.5 shows the magnitude spectrum of at typical MRS signal from
a healthy brain with some of the prominent peaks labeled. This Single Voxel
Spectroscopy (SVS) is acquired in a 2× 2× 2 cm3 voxel.

The area under each peak represents the concentration of that specific
metabolite. MRS quantitation aims to calculated these areas. We will return
to this subject in Chapter 3.1. For now we will just note that in in vivo MRS
the widths of the individual peaks are similar [10].

Since the actual scale on the y-axes in the MRS spectrum varies with
different scan hardware peak hight is usually measured in ratio. Most com-
monly, ratios relative to C r = 1 are used.

The concentrations of the most common metabolites in the human
brain are quite well known, as well as the changes in concentration due
to many neurological diseases. Many of these values can be found in [10].
Figure 2.6 show the MRS spectrum from a brain tumor patient. The black
line is the spectrum taken in the tumor. The grey line is the reference spec-
trum, taken in a healthy part of the patients brain. We can, for instance,
see the decrease of the peak around p p m = 2 for the tumor measurement,
which might describe the expected decrease in N-acetylaspartate, NAA, in
the tumor.
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Resonance observed in normal MRS Chemical shift (ppm)
N-acetylaspartate (first peak, N AA1) 2.02
β,γ -Glutamine and glutamate (β,γ -Glx) 2.05 - 2.5
N-acetylaspartate (second peak, N AA2) 2.6
N-acetylaspartate (third peak, N AA3) 2.5
Total Creatine (Cr) 3.03
Total Choline (Cho) 3.22
scyllo-inositol (sI) 3.36
Glucose 3.43
myo-inositol (mI) 3.56
α-Glutamine and glutamate (α-Glx) 3.65 - 3.8
Second peak of Glucose 3.8
Second peak of Gr 3.9
Second peak of mI 4.06

Table 2.1: Chemical shift of metabolites in MRS of the human brain.
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Figure 2.6: MRS measurement from patient with brain tumor. Black line: Tumor. Grey
line: Reference measurement from healthy part of the patients brain.
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3 Signal modeling
The model function most often used to represent the digitized MRS FID
signal is the Lorentzian model, a sum of exponentially damped sinusoids in
time-domain, contaminated with random noise:

y(t ) = s(t )+ ϵ(t ) =
K∑

k=1

ak e iϕk e(−dk+iωk)t + ϵ(t ), (3.1)

where K is the number of sinusoidal components (representing different
resonances) in the signal, ωk ∈ (0,2π] is the (angular) frequency of the kth
sinusoid; ak is its amplitude related to the concentration of the metabolite;
dk > 0 is its damping (decaying) constant providing, among other things ,
information about its mobility and molecular environment; ϕk is its phase;
and i =

p−1. The noise term ϵ(t ) is usually assumed to be a random com-
plex white noise with a circular Gaussian distribution. The term circular
means that the real and imaginary parts of the noise are not correlated and
have equal variance. ϵ(t ) mainly consists of thermal noise, generated from
the sample, coil and preamplifier and noise introduced by the remaining
receiver and electronic components such as the analog-to-digital converter
[24, 25]. The parameters in the model will in general change from voxel to
voxel [23, 67]

The Lorentzian model (3.1) contains a number of parameters. The es-
timation of these is a well studied problem, for which a large number of
solutions have appeared in both the MR literature and the signal process-
ing literature (see e.g. [50] and many references therein). However, in
MRS applications, prior knowledge concerning the spectral components
is often present and needs to be incorporated into the model [69, 77]. As
pointed out in [67], in virtually all spectroscopic imaging applications the
compounds being imaged and their MR spectroscopic structure are known.
More exactly, with reference to [67], the number of components (peaks) K
is known. Although the frequencies and initial phases of the spectral lines
present are not exactly known due to inhomogeneity of the main magnetic
field, their differences are known. In other words we can write

ωk = ω0−∆ωk , k = 1, . . . ,K ,
ϕk = ϕ0−∆ϕk , k = 1, . . . ,K ,

where ω0 and ϕ0 are unknown, but {∆ωk ,∆ϕk , k = 1, . . . ,K} are known.
Moreover, the damping constants dk are also usually known with quite
good accuracy. Based on this prior knowledge, model (3.1) can be simplified
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to

y(t ) = s(t )+ ϵ(t ) =
K∑

k=1

Φk (t )ak e i(ϕ0+ω0 t )+ ϵ(t ), (3.2)

where

Φk(t ) = e−i∆ϕk−(dk+i∆ωk )t

are given for k = 1, . . . ,K .
Certainly, the above assumptions are valid under some conditions which

must be evaluated for individual applications. As an example, Vanhamme
et al. [78] illustrated the prior knowledge using adenosine triphosphate
(ATP), and derived the following relations: a) the damping constants of all
peaks are equal; b) the phases of all peaks are equal; c) the amplitudes re-
lates with a fixed ratio; and d) the frequency differences between individual
resonances are equal and known.

There are two alternative model functions that have received some at-
tention. One is the Gaussian model:

y(t ) = s(t )+ ϵ(t ) =
K∑

k=1

ak e iϕk e (−gk t+iωk )t + ϵ(t ),

and the another is the Voigt model [39, 64]which combines the Lorentzian
and Gaussian model:

y(t ) = s(t )+ ϵ(t ) =
K∑

k=1

ak e iϕk e (−dk−gk t+iωk )t + ϵ(t )

In the frequency-domain, the spectrum of the signal y(t ), Y (ω), is the
Fourier transform (FT) of model (3.1):

Y (ω) =
∫ ∞

0
(s(t )+ ϵ(t )) e−iωt d t ¬ S(ω)+Υ(ω) (3.3)

where the ideal MRS spectrum (i.e., without noise) is a sum of a series of
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Lorentzian functions, one for each peak:

S(ω) =
∫ ∞

0
s(t )e−iωt d t

=
∫ ∞

0

K∑
k=1

ak e iϕk e (−dk+iωk )t e−iωt d t

=
K∑

k=1

ak

dk
e iϕk

 1

1+
�
(ω−ωk )/dk

�2
+ i

(ω−ωk )/dk

1+
�
(ω−ωk)/dk

�2


¬

K∑
k=1

e iϕk
�
Ak (ω)+ i Dk(ω)

�
Here Ak(ω) and Dk(ω) represent the absorption and the dispersion signal,
respectively. This model describes a helix in the three-dimensional space
comprised of the real-imaginary complex plane and the chemical shift/frequency
axis [15]. Note that the bracketed terms are of form 1

1+x2 + i x
1+x2 , repre-

senting a circle. The projection of the helix onto the complex plane forms
a set of parametric equations that describes circles with centers at the real-
imaginary coordinates

�
ak

2dk
, 0
�

and radii ak
2dk

for ϕk = 0. The effect of ϕk is

simply to rotate the circle about the origin of the complex plane and move
the circlet’s center. Thus the model spectrum is a set of circles, one for each
peak, which form a series of nested curves in the complex plane resolved
in the orthogonal dimension by the ω parameter. Gabr et al. [15] sum-
marized the relationships between the peak parameters in time-domain and
frequency-domain as in Table 3.1. Because the trajectory of each peak in the
complex plane is circular, one can model them with active circles that are
contours that adaptively deform to best fit the model spectrum to the mea-
sured spectrum by minimizing a measure of the fit error while preserving
their circular shape in the complex plane [15].

By assuming that phase correction has been applied properly, the disper-
sive part of the spectrum Dk(ω) can be neglected, resulting in the absorption
mode signal:

S(ω) =
K∑

k=1

e iϕk Ak(ω) =
K∑

k=1

ak e iϕk
dk

d 2
k +(ω−ωk)

2
, (3.4)

where dk stands for the half width as half height (HWHH). The height at
the maximum of a Lorentzian function Ak is given as Ak(ωk) = ak/dk , and
the area of Ak equals akπ [31].
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Parameter Time Frequency Circle
ωk Frequency Peak position Location of point density

minimum of circle
ak Amplitude Peak area Radius times number of

points in semicircle
centered atωk

dk Damping constant Linewidth Number of points in
semicircle centered atωk

ϕk Phase shift Mode Circle position/orientation
ak/dk Amplitude/decay Peak height Circle diameter

Table 3.1: Relationship between the peak parameters in different domains

Even in the ideal case of model (3.3), the number of local maxima does
not necessarily equal the number of single Lorentzian functions, due to ef-
fects of overlapping. Koh et al. [31] proposed an approach, called Lorentzian
Spectrum Reconstruction, for peak identification and parameter approxima-
tion in order to automatically model an MRS spectrum as a superposition
of single Lorentzian functions.

The amplitude spectral density, also called the magnitude spectra, of the
signal y(t ) is given by

|Y (ω)|=
Æ

Re(S(ω)+Υ(ω))2+ I m(S(ω)+Υ(ω))2, (3.5)

and the corresponding ideal magnitude spectra of Lorentzian types is

|S(ω)|=
Æ

Re(S(ω))2+ I m(S(ω))2, (3.6)

where

Re(S(ω)) =
K∑

k=1

�
Ak (ω)cosϕk −Dk(ω) sinϕk

�
,

I m(S(ω)) =
K∑

k=1

�
Ak (ω) sinϕk −Dk(ω)cosϕk

�
,

In the special case of the absorption mode, the magnitude spectra is equiva-
lent to the signal itself. Thus modeling the magnitude spectra directly will
be an alternative way to estimate the parameters in the signal. This moti-
vates the investigation of the distributional properties of |Y (ω)|.
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3.1 MRS quantitation

It is well known that characteristics resonance peaks at certain frequencies
correspond to important brain metabolites [5, 10, 26, 34, 37, 46, 47, 65].
These peaks might be used as discriminatory features to distinguish tumor
type, in particular for those regions of the spectrum which are clearly differ-
ent between spectra of different tumor types. Thus, instead of using com-
plete spectra, certain regions of the magnitude spectrum which are assumed
to contain most of the information can be selected. For example, charac-
teristic metabolites can be observed in the following regions of the magni-
tude MRS spectrum [12, 10, 36]: NAA (1.935-2.085 ppm), Cr (2.955-3.105
ppm), Cho (3.115-3.265 ppm), etc. The number of visible metabolites is
larger in short echo time spectra than in long echo time spectra. Note that
the selected regions are based on the metabolites that are assumed to be most
characteristic according to prior knowledge available from field experts, and
therefore the selection is subjective.

Because the amplitude of a resonance is proportional to the integral of
the corresponding peak in the spectrum, the traditional approaches to esti-
mate the metabolite concentration are based on peak integration [44]. The
advantage of these methods is that no assumptions have be made concern-
ing the lineshape of the signal. The major drawback is the low estimation
accuracy. MR data from biological systems usually present severe difficul-
ties for peak area integration, the most pronounced problems often being
the extreme overlap of different resonances of interest, wavy baseline, low
signal-to-noise ratio (SN R), and the discrete nature of the observed spec-
trum. In such cases, it is impossible to utilize straightforward integration
techniques in a reliable manner and one has to make use of lineshape fitting
methods, preferably those able to include prior knowledge [45].

Lineshape fitting methods are based on parametric frequency-domain
models, such as the Lorentzian model . However, a simple exact analyti-
cal expression for the Gaussian or the Voigt model is not available, even if
numerical approximations exist [19, 39]. For example, in [17, 39], approx-
imated Voigt lineshapes have been proposed, and the spectra were fit with
the Levenberg-Marquardt algorithm. In any case, the model functions in
the frequency-domain are, in general, more complicated than in the time-
domain, and necessitate thereby more computational time. Marshal et al.
[38] show that the choice of the lineshape affects the metabolite peak areas
and suggest the use of Gaussian lineshapes instead of Lorentzian lineshapes.
The frequency-domain methods who only use the real part of the spectrum
in their model, such as LCModel [52], require a very good phasing to get
the spectrum in its absorption mode.
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Many frequency-domain methods solve the non-linear least squares (NLLS)
problem by local optimization techniques, in particular using the Levenberg-
Marquardt algorithm (see, e.g. [52, 79]). Vanhamme [77] gave a formal
proof of the statement that the solution of the NLLS problem in the frequency-
domain is the same as that in the time-domain. Hence, time and frequency-
domain fitting are equivalent from a theoretical point of view. But the data
are always presented in the frequency-domain since this enables direct (vi-
sual) interpretation.

There have been other quantitation methods proposed for in vivo MR
spectra, such as artificial neural network (ANN) [22, 30], principal compo-
nent analysis (PCA) [70, 71, 72, 73], independent component analysis (ICA)
[33], analysis of circles (CFIT) [15], time-domain frequency-domain fitting
(TDFDF) [64], single value decomposition (SVD) [61], and the wavelet
transform (WT) [17].

One of the main difficulties in quantitative analysis of MRS is that MRS
signals appear to be contaminated with random noise. A number of work
has been devoted to noise reduction, see e.g. [4, 11, 79]. In general, estima-
tion of NMR spectral parameters, using e.g. maximum likelihood methods,
is commonly based on the assumption of white complex Gaussian noise in
the signal. Grage and Akke [18] tested the validity of this fundamental as-
sumption. They showed that in general the noise in the sampled signal is not
strictly white, even if the thermal noise in the receiver steps prior to digiti-
zation can be characterized as white Gaussian noise. They also showed that
the noise correlation properties depend on the ratio between the sampling
frequency and the filter cut-off frequency, as well as the filter characteristics,
and identified the conditions that are expected to yield non-white noise in
the sampled signal.

3.2 Measured MRS signals

Often the acquisition of the signal is only started after a time delay t0,
the receiver dead time. Therefore, the sampling time instances tn , n =
0, . . . ,N − 1, can be written as tn = n∆t + t0 with ∆t as the sampling in-
terval. The quantity ωk t0 is also called the first-order phase. Without loss
of generality, we can assume that t0 = 0 and ∆t = 1. Thus, model (3.1) and
(3.2) with measurements becomes

yn = sn + ϵn =
K∑

k=1

ak e iϕk e (−dk+iωk )n + ϵn , (3.7)
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and

yn = sn + ϵn =
K∑

k=1

Φk ,nak e i(ϕ0+ω0n)+ ϵn , (3.8)

respectively, where

Φk ,n = e−i∆ϕk−(dk+i∆ωk )n

are given for k = 1, . . . ,K and n = 0, . . . ,N−1. The parameters in the model
can be estimated by minimizing

N−1∑
n=0
|yn − sn |2. (3.9)

The solution of this NLLS problem provides the ML estimates of the pa-
rameters, in the case of circular and white Gaussian noise.

In frequency-domain, the measured data are transformed by the discrete
Fourier transform (DFT),

Yl =
1p
N

N−1∑
n=0
(sn + ϵn)e

−iνl n

=
1p
N

N−1∑
n=0

K∑
k=1

ak e iϕk e (−dk+iωk )n e−iνl n +
1p
N

N−1∑
n=0

ϵn e−i vl n

=
1p
N

K∑
k=1

ak e iϕk
1− e (−dk+i(ωk−νl ))N

1− e−dk+i(ωk−νl ) +Υl

¬ Sl +Υl

where νl = 2πl/N , l = 0, . . . ,N − 1. The magnitude spectra is given by

Zl = |Yl |=
Æ

Re(Sl +Υl )
2+ I m(Sl +Υl )

2. (3.10)

Since the DFT is periodic, one can evaluate Yl for other values of l . The
convention in MRS is to evaluate Yl for l =−N

2 , . . . , N
2 −1 and to display the

spectra from positive to negative frequency. After DFT each exponentially
damped sinusoid gives rise to a (Lorentzian) peak in the obtained frequency-
domain.
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Consider the noise in frequency-domain, we have

Υl =
1p
N

N−1∑
n=0

ϵn e−iνl n

=
1p
N

N−1∑
n=0

�
Re(ϵn)cos (νl n)+ I m(ϵn) sin (νl n)

�
+i

1p
N

N−1∑
n=0

�
Re(ϵn) sin (νl n)+ I m(ϵn)cos (νl n)

�
¬ Re(Υl )+ i I m(Υl )

From this it can be seen that the DFT of a circular complex white noise
sequence with standard deviation σ for the real and imaginary parts is again
circular complex white with the same standard deviation. The Gaussian
distribution is retained because it is a finite linear combination of Gaussian
variables. ThereforeΥl is still circular white Gaussian, with Re(Υl ), I m(Υl )∼
N (0,σ2).

To obtain the parameters, one can minimize the difference between the
DFT of the measured signal and the frequency-domain model function

N−1∑
l=0

|Yl − Sl |2. (3.11)

The solution of this NLLS problem is the same as the one obtained by min-
imizing (3.9) directly in the time-domain [77]. It is worth noting that in
the early stage of model fitting in the frequency-domain, often a sampled
version of the theoretical spectrum obtained by continuous Fourier trans-
formation of a continuous time-domain signal was used to fit the measured
data. Since there are several discrepancies between the DFT spectrum and
the continuous FT spectrum, the results obtained as such are not optimal
(see also [1, 16, 40] for further details). Examples of methods in which
(3.11) is either solved directly or using some approximations can be found
in [9, 22, 32, 48].

SinceΥl is circular white Gaussian, with Re(Υl ), I m(Υl )∼N (0,σ2), it
follows that Yl is complex-valued Gaussian distributed with

Re(Yl ) ∼ N (Re(Sl ),σ
2) (3.12)

I m(Yl ) ∼ N (I m(Sl ),σ
2). (3.13)

Hence, Zl , in (3.10), is Rican distributed [55, 56] with non-centrality pa-
rameter

rl =
q�

Re(Sl )
�2+

�
I m(Sl )

�2 (3.14)
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and scale parameter σ2. This distribution is more generally known as the
non-central χ distribution [29] with two degrees of freedom.

3.3 Difference signals

In the clinical applications, patients are often measured by MRS at several
occasions after the oncological treatments. One would like to analyze the
effects of the treatments through possible changes in tumor metabolism and
then make some diagnoses on the tumor development. For this purpose, we
introduce a quantitation method based on the difference signals. Assume
that two MRS signals, y I (t ) and y I I (t ), acquired from the same patient (and
the same voxel) but at different time occasions, usually a couple of weeks
between:

y I (t ) = s I (t )+ ϵI (t )y I I (t ) = s I I (t )+ ϵI I (t ).

The difference signal:

yD (t ) = y I I (t )− y I (t ) =
�

s I I (t )− s I (t )
�
+
�
ϵI I (t )− ϵI (t )

�
= s D (t )+ ϵD (t )

will be used to analyze the changes in metabolites, such as amplitudes and
phases.

According to model (3.8), if the Lorentzian model is used, the two ac-
quired signals can be represented as follows:

y I
n =

K I∑
k=1

ΦI
k ,naI

k e i(ϕI
0+ω

I
0 n)+ ϵI

n , n = . . . ,N I − 1,

y I I
n =

K I I∑
k=1

ΦI I
k ,naI I

k e i(ϕI I
0 +ω

I I
0 n)+ ϵI I

n , n = . . . ,N I I − 1,

where ϵI
n and ϵI I

n are assumed to be circular and white Gaussian noises with
standard deviation σ I and σ I I respectively.

As mentioned earlier in this Chapter, based on prior knowledge, ΦI
k ,n

and ΦI I
k ,n

are given. We assume that the number of metabolites keeps un-

changed (K I = K I I = K), the length of measured signals is the same (N I =
N I I = N ), and the standard deviations of the noises are constant (σ I =
σ I I = σ/2). Suppose that our main interest is to detect the changes in the
amplitudes (any significant changes in the metabolites will indicate the effect
of oncological treatments). Then we can also assume that the frequency and
the initial phase keep unchanged (ωI

0 =ω
I I
0 =ω0,ϕI

0 =ϕ
I I
0 =ϕ0)), though

they are unknown and need to be estimated.
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Thus, the measured difference signal can be formulated as follows:

yD
n = s D

n + ϵ
D
n , n = 0, . . . ,N − 1

where

s D
n =

K∑
k=1

�
ΦI I

k ,naI I
k −ΦI

k ,naI
k

�
e i(ϕ0+ω0n)

ϵD
n = ϵI I

n − ϵI
n .

By taking the discrete Fourier transform, the difference signal can be mod-
eled in the frequency-domain

Y D =
1p
N

N−1∑
n=0

�
s D
n + ϵ

D
n

�
e iνn ¬ SD +ΥD

where ν = 2πl/N , l = 0, . . . ,N − 1. The magnitude spectra is given by

Z =
���Y D

���=Ç�Re(SD +ΥD )
�2
+
�

I m(SD +ΥD )
�2

(3.15)
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4 The Rice distribution
The next step is to investigate the distributional properties of the Rice dis-
tribution, and the focus will be on maximum likelihood estimation for
the parameters involved in the noise distribution. We start by considering
the non-centrality parameter rl to be a single (unknown) constant, which
means that we will not take the information in Re(Sl ) and I m(Sl ) into ac-
count at the first moment. We will however come back to this later. Since
we are going to study the noise distribution of Zl for each fixed frequency
l , we skip the index l for simplicity.

The probability distribution function for a Rician distributed stochastic
variable Z ∼ Ri ce(r,σ2) is

fZ (z) =
z

σ2
e−(z2+r 2)/2σ2

I0

�
z r

σ2

�
, z ≥ 0 (4.1)

where I0 is the modified Bessel function of the first kind [54, 49] of order 0.
When r = 0 (only noise is present) we obtain the Rayleigh distribution with
mean σ

p
π/2 and variance (2−π/2)σ2, which may be used to estimate the

true noise power σ2. When r is large the distribution can be approximated

by N
�Æ

r 2+σ2,σ2
�

.

It can be shown [63] that the p-th moment of Z is analytically expressed
by

EZ P = (2σ2)p/2Γ
�

1+
p

2

�
1F1

 
− p

2
: 1: − r 2

2σ2

!
where Γ(·) is the Gamma function and 1F1(·) is the confluent hypergeomet-
ric function [49]. The even moments are simple polynomials. For example,

EZ2 = r 2+ 2σ2,
EZ4 = r 4+ 8r 2σ2+ 8σ4.

However, the odd moments of Z are much more complex. For instance

EZ = σ
r
π

2
e−r 2/4σ4

  
1+

r 2

2σ2

!
I0

 
r 2

4σ2

!
+

r 2

2σ2
I1

 
r 2

4σ2

!!
,

where I1 is the modified Bessel function of the first kind of order 1.
The Rice distribution can be well approximated by a Gaussian distri-

bution at high SN R, defined by SN R = r/σ . When SN R ≤ 1, the Rice
distribution is far from being Gaussian. In Figure 4.1, the Rice distribution
density function is plotted for different values of SN R.
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Figure 4.1: The Rice distribution density function for different values of SN R= r/σ .

4.1 ML estimation of the Rice distribution

Given a sample of size N from the Ri ce(r,σ2) distribution, Z1, . . . ,ZN , the
log-likelihood is given by

l (r,σ2) =
N∑

i=1

lnZi −N lnσ2− 1

2σ2

N∑
i=1

(Z2
i + r 2)

+
N∑

i=1

ln I0

�
Zi r

σ2

�
Using the fact that I ′0(x) = I1(x) [49], we can show that the maximum like-
lihood equations are

r − 1

N

N∑
i=0

Zi R(Zi r/σ2) = 0

where we let R(x) = I1(x)/I0(x) and

σ2− 1

2N

N∑
i=1

(Z2
i − r 2) = 0.
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Maximum likelihood estimators usually have good properties but unfortu-
nately the ML equations above are not analytically solvable. They have to
be solved numerically.

ML estimation of the parameters of the Rice distribution has been given
some attention in literature. Meyer [43] looked at the non-central χ distri-
bution for σ2 = 1. He actually looked at the non-central χ 2 distribution
but this does not affect the ML estimates [29]. He showed that there exists
a positive, unique solution to the likelihood equation for r if

1

N

N∑
i=0

Z2
i > 2, (4.2)

otherwise r = 0 is the only solution. He also showed that

lim
N→∞P

(
1

N

N∑
i=0

Z2
i > 2

)
= 1

Anderson [2, 3] considered the non-central χ distribution for a general σ2.
She provided a generalization of Meyer’s condition (4.2)

1

N

N∑
i=1

Z2
i > 2σ2 (4.3)

and stated that there exists a unique solution to the ML equations if σ2

is greater than a small positive number. She provided expressions for the
variance of, and the correlation between, the estimators of r and σ2 and
the Cramér-Rao lower bounds (CRLB) for the estimates. Talukdar and
Lawing [74] compared ML estimations and moment estimations of the
SN R = r/σ , and found them equivalent. Sijbers et al. [63, 62] looked
at MR Imaging data, and using Mean Square Error (MSE) and CRLB they
compared ML estimators of the parameters of the Rice distribution on the
absolute value of the data with estimators of the parameters of the Gaussian
distribution of the complex valued data. They found that for low SN R< 3,
and for images with non constant shift phase it is better to use the mag-
nitude, Rician distributed, data. Gudbjartsson and Patz [20] showed that
for SNR≥ 2 the Rice distribution can be reasonably approximated by the
Gaussian distribution, see Figure 4.1.They also argued that for lower SN R
(< 2) it is better to work with the magnitude data than with the complex
data.
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4.1.1 Consistency of the ML estimators for the Rice distribution

Let Z1, . . . ,ZN be a sample of independent Rician distributed random vari-
ables with the true parameter pair ξ0 = (r0,σ2

0 ), and let bξN be a maximum
likelihood estimator of ξ0. The following theorem is a special case of a result
given in Zhu et al. [80].

Theorem 3.1: Assume that ξ0 is an interior point of Ξ = [a1,a2]× [b1, b2],
where 0 < a1 < a2 < ∞ and 0 < b1 < b2 < ∞. Then bξN converges in
probability to ξ0 as n→∞.

Proof: Let

MN (ξ ) =
1

N

N∑
i=1

log
fξ (Zi )

fξ0
(Zi )

, and M (ξ ) = E

 
log

fξ (Zi )

fξ0
(Zi )

!

By Theorem 5.7 in van der Vaart [75] it is sufficient to show for every ε > 0
that

sup
ξ : ∥ξ−ξ0∥≥ε

M (ξ )<M (ξ0), and sup
ξ∈Ξ
|MN (ξ )−M (ξ )| P→ 0

as N → ∞. The function log fξ (z) is Lipschitz in ξ , i.e., there exists a
measurable function m such that���log fξ1

(z)− log fξ2
(z)
���< m(z)∥ξ1− ξ2∥, for every ξ1,ξ2

and m is integrable. By Example 19.7 in van der Vaart [75] and Theorem
2.4.1 in van der Vaart and Wellner [76], this implies that

¦
log fξ (z) : ξ ∈ Ξ

©
is Glivenko-Cantelli. Thus

sup
ξ∈Ξ
|MN (ξ −M (ξ ))| P→ 0, as N →∞.

The function M (ξ ) is continuous in ξ ∈ Ξ. Hence supξ : ∥ξ−ξ0∥≥ε M (ξ ) is
attained for some ξ ∈ {ξ : ∥ξ − ξ0∥ ≥ ε}. Since M (ξ ) = M (ξ0) if and only
if ξ = ξ0 (Lemma 5.35 in van der Vaart [75]), we have shown that

sup
ξ : ∥ξ−ξ0∥≥ε

M (ξ )<M (ξ0).

This completes the proof. �
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4.2 Modification to a three parameter Rice distribution

Recall that the non-centrality parameter (3.14) contains information both
from Re(S) and I m(S). The two-parameter Rice distribution that we con-
sidered above does not take this into account. We would like to modify the
ordinary Rice distribution so that besides the variance or scale parameter
σ2, both real and imaginary parts of the original complex difference signal
will be presented. We let µ1 = Re(S) and µ2 = I m(S) and suggest a modi-
fied Rice distribution with three parameters µ1, µ2 and σ2. Its probability
density function is given by

f (z |µ1,µ2,σ2) =
z

σ2
e−(z2+µ2

1+µ
2
2)/2σ

2
I0

 z
Æ
µ2

1+µ
2
2

σ2

 , z ≥ 0, (4.4)

and given a sample of size N we obtain the log-likelihood as follows

l (µ1,µ2,σ2|Z1, . . . ,ZN ) =
N∑

i=1

lnZi −N lnσ2− 1

2σ2

N∑
i=1

Z2
i

−N
µ2

1+µ
2
2

2σ2
+

N∑
i=1

ln I0

Zi

Æ
µ2

1+µ
2
2

σ2

 .

Direct optimization of this log-likelihood is not the easiest thing to do.
Also, the three parameter Rice distribution is not identifiable since the pa-
rameters µ1 and µ2 are perfectly interchangeable in the term

Æ
µ2

1+µ
2
2.

This means that we can not find consistent ML estimators of the parame-
ters. However, given reasonable initial values for optimization we might get
some reasonable results.

In [80], a Rician regression model and its related normal models was
introduced to characterize noise distributions in various MRI modalities
and to develop its associated estimation methods and diagnostic tools. The
model is define by assuming that the MRI signal intensity follows a Rice
distribution with a non-centrality parameter linked to the covariates of in-
terest (such as the gradient directions and gradient strengths for acquiring
diffusion tensor images (DTI)), that is,

Zi ∼ Ri ce(mi (β),σ
2) and mi = g (xi ,β) (4.5)

where {(Si , xi ) : i = 1, . . . ,N} denote the N measurements of the MRI inten-
sity, Si , and all the covariates, xi , at a single voxel, β is a p × 1 parameter
vector in Rp , and g (·, ·) is a known link function, which depends on the
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particular MR imaging modalities (e.g., anatomical, functional, DTI, and
so on). Because the density of the Rice distribution does not belong to the
exponential family, the Rician regression model is not a special case of a
generalized linear model [41].

Inspired by this model (4.5) for MR imaging data, we consider it for
our MR spectroscopy data, by formally taking the link function in (4.5) as
mi =

Æ
µ2

1+µ
2
2 for all i = 1, . . . ,N . However, it should be noted that in

model (4.5) the link function is designed for the magnitude and it does not
distinguish the sources on which the magnitude is based.

Rician regression is done via an ECM algorithm, a version of the ex-
pectation maximization (EM) algorithm with a conditional maximization
step, as derived by Meng and Rubin [42], and further developed by Zhu
et al. [80]. The standard EM algorithm consists of two steps: the expecta-
tion (E) step and the maximization (M) step. The ECM algorithm differs
from the EM algorithm in the M-step, where the latter has difficulty to
find the solution in the case when the M-step does not have a closed form.
The latent variable used in this particular ECM algorithm is a phase vari-
ableΘi ∈ (−π,π), introduced for each observed magnitude spectra Zi , such
that the joint density of (Zi ,Θi ) is given by

f (zi ,θi |mi (β),σ
2) =

zi

2πσ2
· exp

 
−mi (β)

2− 2zi mi (β)cosθi

2σ2

!
.

The ECM algorithm works quite well as long as the starting values are
close to the true parameter values. However, if the starting values µ(0)1 and

µ(0)2 are switched, the algorithm will give the wrong answer. This is of

course due to the fact that the link function
Æ
µ2

1+µ
2
2 is non-identifiable.

Also, since the algorithm treats the phase Θ as an unobserved variable, and
due to the particular choice of link function, it can not leave the angle be-
tween the starting values, defined by

ψ(0) = arctan2

µ(0)2

µ(0)1

 ,

where

arctan2
� y

x

�
=



arctan (y/x), if x > 0,
arctan (y/x)+π, if x < 0, y ≥ 0,
arctan (y/x)−π, if x < 0, y < 0,
π/2, if x = 0, y > 0,
−π/2, if x = 0, y < 0,
undefined, if x = 0, y = 0,

(4.6)
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is the quadrant-specific inverse of the tangent, see for instance [27]. The
ordinary arctan function is usually defined on (−π/2,π/2) but arctan2 is
defined on the accurate interval (−π,π).

The angle ψ(0) might be close or far from the true phase between µ10

and µ20
, ψ0 = arctan2

�
µ20
/µ10

�
, and the ECM can not correct for this

error. It tries, but there will always be bias in the estimates. We need to
incorporate the phase in our model in some way.
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5 A Phase-Magnitude model

Figure 5.1: Complex valued signal disturbed by additive complex noise.

What happens when a complex-valued signal is disturbed by additive
complex noise term? As seen in Figure 5.1, the observed signal magnitude
Z and the observed signal phaseΘ, differs from the true, unobserved, signal
magnitude r and phase ψ. That is, given the Gaussian assumptions on the
stochastic noise in (3.12) and (3.13)„ we may suppose that the real and the
imaginary noise corrupted channels are

U = Re(Y ) = r cosψ+Re(Υ),
V = I m(Y ) = r sinψ+ I m(Υ),

where ψ is the true, and unknown, phase between Re(S) and I m(S) such
that ψ= arctan2

�
I m(S)
Re(S)

�
. Hence�

U
V

�
∼N

��
r cosψ
r sinψ

�
,
�
σ2 0
0 σ2

��
,

and thus

fU ,V (u, v |r,ψ,σ2) =
1

2πσ2
e x p

¨
− 1

2σ2

�
(u − r cosψ)2+(v − r sinψ)2

�«
.
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The polar transform gives the measured magnitude spectra Z = |Y |, Z ∈
R+, and the measured phase Θ, Θ ∈ (−π,π), via

Z =
Æ

U 2+V 2

Θ = arctan2
�V

U

�
The joint density of (Z ,Θ) is thus

fZ ,Θ

�
z ,θ|r,ψ,σ2

�
=

z

2πσ2
· exp

¨
− 1

2σ2

�
z2+ r 2− 2r z cos (θ−ψ)�« . (5.1)

Since U and V are independent so are Z and Θ.
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Figure 5.2: The marginal distribution density function ofΘ for different values of SN R=
r/σ .

The marginal distribution of Z is the Rice distribution (4.1) and the
marginal distribution of Θ is

fΘ(θ|r,ψ,σ2) =
1

2π
e−r 2/2σ2

�
1+
p
πρeρ

2
(1+ erf(ρ))

�
(5.2)
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where ρ= r
σ
p

2
cos (θ−ψ) and

erf(x) =
2p
π

∫ x

0
e−t 2

d t .

is the error function [49]. Figure 5.2 shows examples of the marginal distri-
bution fΘ(θ|ψ, r,σ2) for different SN R.

When r = 0, that is when only noise is present, we get that the phase
follows a uniform distribution on (−π,π), fΘ(θ) =

1
2π .

As r gets really large the phase error Θ−ψ becomes small and more
concentrated around 0 and the marginal distribution of the phase may be
approximated by N (0,σ/r ).

5.1 Phase modeling in MRI

In different types of MR phase imaging techniques the phases between the
real and imaginary part of the signals are used to analyze flow in the tissue
at hand. Modeling of both magnitude Z and phase Θ in the analysis of MR
imaging has been addressed by i.e. Bonny et al. [7], Rowe [57, 58] and
Rowe and Logan [59, 60]. Bonny et al. [7] considered ML estimation of σ2

from magnitude measurements in background pixels in the image, where
r = 0 (Rayleigh distribution). They estimated r numerically from the Rice
distribution (with σ2 known) and ψ numerically from the marginal dis-
tribution of Θ. They found that the bias of their r and ψ estimates were
decreasing by increasing N and SN R, and that the standard deviation of the
estimates were decreasing by the factor N−1/2.

Rowe and Logan [59, 60] and Rowe [57, 58] has done extensive work
in phase and magnitude modeling for functional MRI (fMRI) and ML es-
timation of the parameters. They compared estimations from magnitude
only model and from the phase-magnitude model and found that the models
were comparable for larger values of the SN R but that the phase-magnitude
model was superior for lower SN R.

5.2 ML estimation in the phase-magnitude model

Given a sample of size N from the joint distribution of (Z ,Θ)

(Z1,Θ1), . . . , (ZN ,ΘN )∼ f (z ,θ)
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the log-likelihood is given by

l (r,ψ,σ2) =
∑

lnZi −N ln(2πσ2)

− 1

2σ2

∑�
Z2

i + r 2− 2r Zi cos (Θi −ψ)
�

(5.3)

and the likelihood functions

∂ l

∂ r
=

1

σ2

∑�−r +Zi cos(Θi −ψ)
�

,

∂ l

∂ ψ
=

1

σ2

∑
r Zi sin(Θi −ψ),

∂ l

∂ σ2
= −N

σ2
+

1

2σ4

∑�
Z2

i + r 2− 2r Zi cos(Θi −ψ)
�

.

By setting the equations equal to zero we get the following set of solutions

bψ = arctan2

�∑
Zi sinΘi∑
Zi cosΘi

�
, (5.4)

br = 0 or br = 1

N

∑
Zi cos(Θi − bψ), (5.5)

cσ2 =
1

2N

∑�
Z2

i + br 2− 2br Zi cos(Θi − bψ)� . (5.6)

Hence, we have derived simple expressions for the estimates of the param-
eters of the distribution f (z,θ|r,ψ,σ2). Next, we need to verify that these
estimates have the desired asymptotic properties such as consistency, asymp-
totic normality and asymptotic efficiency.

5.3 Asymptotic properties

In order to verify the asymptotic properties for the estimates for ξ = (r,ψ,σ2)
in equations (5.4), (5.5) and (5.6), we choose to follow the regularity condi-
tions stated by Lehman [35] for the multiparameter case:

(A) The distributions f (z ,θ|ξ ) are distinct.

(B) The distributions f (z ,θ|ξ ) have common support.

(C) The observations are independent and identically distributed (iid) with
probability density f (z ,θ|ξ ).
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(D) The parameter space Ξ contains an open subset ζ of which the true param-
eter ξ0 is an interior point

(E) There exists an open subset ζ of Ξ containing the true parameter point
ξ0 such that for almost all (z ,θ) the density f (z,θ|ξ ) admits all third
derivatives (∂ 3/∂ ξ j∂ ξk∂ ξl ) f (z,θ|ξ ) for all ξ ∈ ζ

(F) The first and second logarithmic derivatives of f satisfy the equations

Eξ

 
∂

∂ ξ j
ln f (z ,θ|ξ )

!
= 0, for j = 1,2,3 (5.7)

and

J j k (ξ ) = Eξ

 
∂

∂ ξ j
ln f (z ,θ|ξ ) · ∂

∂ ξk
ln f (z ,θ|ξ )

!
(5.8)

= Eξ

 
− ∂ 2

∂ ξ j∂ ξk
l n f (z ,θ|ξ )

!
(5.9)

(G) The J j k (ξ ) are finite and the matrix J (ξ ) is positive definite for all ξ ∈ ζ ,
and hence the statistics

∂

∂ ξ j
ln f (z,θ|ξ ) j = 1,2,3

are affinely independent with probability 1.

(H) There exist functions M j k l such that����� ∂ 3

∂ ξ j∂ ξk∂ ξl
ln f (z ,θ|ξ )

�����≤M j k l (z,θ), for all ξ ∈ ζ (5.10)

where

m j k l = Eξ0

�
M j k l (Z ,Θ)

�
<∞, for all j , k , l (5.11)

Then this theorem follows [35]:

Theorem 4.1: Let (Z1,Θ1), . . . , (ZN ,ΘN ) be iid each with a density f (z ,θ|ξ )
which satisfies assumptions (A)-(H) above. Then with probability 1 as N →
∞, there exists solutions bξN = bξN (Z1,Θ1, . . . ,ZN ,ΘN ) of the likelihood
functions such that
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(i) bξ j N is consistent for estimating ξ j ,

(ii)
p

N (bξN − ξ ) is asymptotically normal with (vector) mean zero and co-
variance matrix J (ξ )−1, and

(iii) bξ j N is asymptotically efficient in the sense that

p
N (bξ j N − ξ j )→N (0, J (ξ )−1

j j )

The distributions f (z ,θ|r,ψ,σ2) are distinct, identifiable with respect
to the parameters (r,ψ,σ2) and have common support. We have assumed
that the observations are iid from f (z ,θ|r,ψ,σ2), and that we have the pa-
rameter space Ξ= (0,∞)× (−π,π)× (0,∞) for (r,ψ,σ2).

Hence, assumptions (A)-(D) are satisfied.
The verification of assumption (E) is found in Appendix A. All third

derivatives of f (z,θ|r,ψ,σ2) are quite easy to derive and exists for all pa-
rameters in the parameter space Ξ.

The verification of assumption (F) is found in Appendix B. The first part
of the assumption is easily verified and the second part yield the following
Fisher information matrix:

J =

 1/σ2 0 0
0 r 2/σ2 0
0 0 1/σ4

 (5.12)

Since r is finite and σ2 > 0, all elements of J are finite. The eigenvalues
of J are simply

�
1/σ2, r 2/σ2, 1/σ4� and thus all eigenvalues are positive,

and J is positive definite. Assumption (G) is satisfied.
The verification of assumption (H) is found in Appendix C. The ex-

istence of functions M j k l such that m j k l = E
�

M j k l (Z ,Θ)
�
< ∞, for all

j , k , l , is verified.
Consequently the assumptions of Theorem 4.1 are fulfilled and the solu-

tions of the likelihood equations given in (5.4), (5.5) and (5.6) are consistent,
asymptotically efficient and asymptotically normal with (vector) mean zero
and covariance matrix

J−1 =

 σ2 0 0
0 σ2/r 2 0
0 0 σ4

 .
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6 Simulation study

In order to investigate the performance of the estimators ( bψ,br ,cσ2), (5.4),
(5.5) and (5.6), and their properties a thorough simulation study were per-
formed.

The methods for the study are described in Chapter 6.1, the results are
found in Chapter 6.2 and a discussion follows in 6.3.

6.1 Methods

6.1.1 Properties of the estimates for different sample sizes and SNR

We let the true value of r0 mimic the values of the difference of the NAA/Cr
ratio in normal tissues and pathologic tissue of in vitro MRS measurements
[10], that is r0 = 0.4. For a given SN R the true noise standard deviation is
then calculated by σ0 = r0/SN R. The true phase ψ0 is given a randomly
chosen value in (−π,π).

For a given true parameter set (ψ0, r0,σ2
0 ) we look at four different val-

ues of the SN R: 0.25, 0.5, 1.5 and 3. For each SN R we set the sample size
N to 21, then 22, and so on, up to 215.

The observations (Zi ,Θi ), i = 1, . . . ,N , were simulated in two steps.
First, two separate sequences {Rei : i = 1, . . . ,N} and {I mi : i = 1, . . . ,N},
corresponding to the real and imaginary part respectively, were simulated
from the Gaussian distributions N (r0 cosψ0,σ2

0 ) and N (r0 sinψ0,σ2
0 ), re-

spectively. Then the square roots Zi =
Æ

Re2
i + I m2

i and the angles Θi =

arctan2(I mi/Rei )were calculated. The estimators ( bψ,br ,cσ2)were calculated
via (5.4), (5.5) and (5.6).

This procedure was repeated 1000 times for each true parameters (ψ0, r0,σ2
0 )

set, and each value of the SN R and sample size N . Thus, we obtain 1000

estimates ( bψk ,brk ,cσ2
k ), k = 1, . . . , 1000. The bias of the estimates were cal-

culated by

1

1000

1000∑
k=1

bψk −ψ0,
1

1000

1000∑
k=1

brk − r0 and
1

1000

1000∑
k=1

cσ2
k −σ2

0 . (6.1)

Also, the variance and the mean square error of ( bψk ,brk ,cσ2
k ) were calcu-

lated.

6.1.2 Asymptotic normality

In (ii) of Theorem 4.1 we found that
p

N (bξN −ξ ) is asymptotically normal
with (vector) mean zero and covariance matrix J (ξ )−1 where the Fisher ma-
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trix was given in (5.12). In order to verify this we investigate the asymptotic
behaviors of

p
N ( bψN −ψ), where bψN = bψ((Z1,Θ1), . . . , (ZN ,ΘN )),p
N (brN − r ), where brN = br ((Z1,Θ1), . . . , (ZN ,ΘN )),p
N (cσ2

N −σ2), where cσ2
N =

cσ2((Z1,Θ1), . . . , (ZN ,ΘN )),

as N grows.
We have used the same simulated signals as in the previous section, and

we will calculated the sample variances of the vectors ( bψk −ψ0), (brk − r0)

and (cσ2
k −σ2

0 ), k = 1, . . . , 1000.
Additionally, for the largest value of the sample size, N = 215, the simu-

lations are repeated 100 times, and for each of these times we have used the
Jarque-Bera test [28] of the null hypothesis that the vectors

p
N ( bψk −ψ0),p

N (brk − r0) and
p

N (cσ2
k −σ2

0 ), k = 1, . . . , 1000, are Gaussian distributed,
against the alternative that they are not. The test returns the value 1 if the
null hypothesis can be rejected at the 5% significance level and 0 if it can
not.

6.1.3 Properties of the estimates for different true value of the phase ψ
The phase parameter ψ is defined on (−π,π), that is almost the whole cir-
cle with radius r . But what happens when the parameter gets close to the
boundaries of the parameter space? Due to how the estimator bψ is defined
we would expect to get some problems with the estimates. In order to in-
vestigate what those problems are, we conduct simulations as follows:

We fix the true value of r to r0 = 0.4 and chose to work with one sample
sizes, namely N = 25. We choose four different values of the SN R: 0.25,
0.5, 1.5 and 3, and for a given SN R the true noise standard deviation is
calculated by σ0 = r0/SN R. The true phase ψ0 is let to vary in (−π,π).

The observations (Zi ,Θi ), i = 1, . . . ,N , were simulated in the same way

as above. The estimators ( bψ,br ,cσ2) were calculated via (5.4), (5.5) and (5.6),
and the procedure was then repeated until 1000 replicates of the estimates
were obtained. The estimated bias, variance and MSE were calculated as
described above.

6.1.4 Comparison with estimates for the Rice distribution

We would like to compare the ML estimators br and cσ2 from the joint dis-
tribution of the phase-magnitude model f (z ,θ|r,ψ,σ2) with the ML esti-
mators for the marginal distribution of the magnitude, ie Ri ce(z |r,σ2).
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We use the same simulation setup as above, with r0 = 0.4 , ψ0 given
a randomly chosen value in (−π,π) , and with σ0 = r0/SN R for a given
SN R. The sample size is let to vary from 21 up to 212. In order to keep the
computional time down, we use a slightly lower highest value of N here.
1000 replicates of (Zi ,Θi ), i = 1, . . . ,N , are simulated as before. The log
likelihood of the Rice distribution for Zi is optimized with the ordinary

simplex algorithm. The estimators (brk ,cσ2
k), k = 1, . . . , 1000, are calculated.

Bias and MSE of the estimates are calculated.

6.1.5 Comparison with ψ estimates from the phase marginal distribution

We would like to compare the ML estimator bψ from the joint distribution
f (z ,θ|r,ψ,σ2) with the ML estimators for the marginal distribution of the
phase, ie f (θ|ψ, r,σ2).

We use the exact same setup as in the previous section. The log likeli-
hood of the marginal distribution of the phase f (θ) is optimized with the
ordinary simplex algorithm.

6.2 Results

6.2.1 Properties for different sample sizes and SNR

Figure 6.1 shows a typical case of the behavior of the estimated biases (6.1)

of ( bψk ,brk ,cσ2
k ), k = 1, . . . , 1000. For the two lower value of the SN R, 0.25

and 0.5, there is considerable bias for sample sizes N ≤ 5. However, the
biases are decreasing as N is increasing, which supports our conclusion of
asymptotic unbiased estimators from Chapter 5.3. For the higher values of
the SN R, 1.5 and 3, the estimated biases are quite insignificant.

Figure 6.2 shows the estimated variance from the same simulation as in
Figure 6.1. The estimated variances are high for SN R= 0.25 and SN R= 0.5
and the lower sample sizes, but they are decreasing as N increases. For
SN R≥ 1.5 the estimated variances are small.

The estimated mean square errors are dominated by the estimated vari-
ances, and hence follows the same pattern as they do. That is, high MSE for
the lower values of the SN R and smaller N . As N increases, the MSE de-
creases. This supports our conclusions of asymptotic consistent estimators
from Chapter 5.3.

6.2.2 Asymptotic normality

For SN R= 0.25 Figure 6.4 shows the sample variance times N for the vec-

tors ( bψk −ψ0), (brk − r0) and (cσ2
k − σ2

0 ), k = 1, . . . , 1000, and the values of
the inverse of the Fisher matrix J−1 as given by our chosen true parameter
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Figure 6.1: Upper left: Estimated bias for bψ. Upper right: Estimated bias for br . Lower

left: Estimated bias forcσ2.
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values. We can se that N times the sample variances does indeed approach
the diagonal elements of J−1 as N grows. Figures 6.5 and 6.6 shows the same
results for SN R = 0.5 and SN R = 1.5, respectively. For SN R = 1.5 we see
that the convergence of N times the sample variances towards the diagonal
elements of J−1 is quite faster than it was for the two lower values of the
SN R.

Figure 6.7 shows the results from the 100 Jarque-Bera tests that was per-

formed on vectors
p

N ( bψk − ψ0),
p

N (brk − r0) and
p

N (cσ2
k − σ2

0 ), k =
1, . . . , 1000, for N = 215 and SN R= 0.25. The test returns the value 1 if the
null hypothesis can be rejected at the 5% significance level and 0 if it can
not. We can note that only about 5% of the null hypothesizes are reject.
The assumption that the vectors are Gaussian does seem to be verified.

Thus, this verifies that the estimators ( bψ,br ,cσ2) are asymptotically Gaus-
sian distributed.

6.2.3 Properties for different true value of the phase ψ

In Figure 6.8 we see the resulting estimated biases from the simulations.
Note that only the estimated bias of the estimator bψ is affected whenψ0 gets
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close to−π andπ. For SN R≥ 1.5 only the actual boundary is problematic.
Figures 6.9 and 6.10 shows the estimated variance and MSE, respec-

tively. Again, only the properties of the bψ estimator when SN R = 0.25
and SN R= 0.5 are affected when ψ0 gets close to −π and π

6.2.4 Comparison with estimates for the Rice distribution

Figure 6.11 shows the resulting estimated bias and mean square errors when
SN R = 0.25. We see that the estimates from f (z ,θ) have lower bias and

lower MSE. For this value of the SN R the estimators br and cσ2 are more
efficient than those obtain from the Rice distribution. For SN R = 1.5 the
biases of the two estimation methods approach each other. The MSE for
the estimates of the magnitude phase model is still slightly smaller for the
smaller sample sizes.

6.2.5 Comparison with ψ estimates from the phase marginal distribution

Figure 6.13 shows the resulting estimated bias and MSE for SN R= 0.25 and
SN R= 3. We see that the estimates have similar bias. However the MSE is
slightly lower for the lower N for the bψ estimates than for the estimates of
ψ from the marginal distribution of the phase.

6.3 Discussion

Our simulations have shown that the bias, variance and mean square error

of the estimates ( bψ,br ,cσ2) are decreasing as the sample size N or the SN R
is increasing. This indicates that the estimators are asymptotically unbiased
and consistent, which supports our conclusions from Chapter 5.3. We have
seen that the estimators are asymptotically Gaussian distributed.

For SN R < 1 and N ≤ 25 we have considerable bias for the estimates.
In practice this might be a problem since clinical MRS data rarely are large.

If the true value of ψ, ψ0 is close to −π or π, the bψ estimator will have
some issues with increasing bias, variance and MSE. This is probably due to
the circular nature of the ψ parameter. We can note that, for a small value
ε, −π+ ε and π− ε are close to each other, on the circle. The estimators br
and cσ2 are not affected when ψ0 gets close to π or −π.

For low values of the SN R it is better and more efficient to estimate
(r,σ2) from the joint distribution of the magnitude and phase f (z,θ) than
to estimate them from the marginal distribution of the magnitude, ie the
Rice distribution. The biases and mean square errors are smaller. Even
for SN R = 3 the mean square error is smaller for the estimates from the
phase-magnitude distribution f (z ,θ). Estimators of ψ from the marginal
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distribution of the phase f (θ) and from the phase-magnitude distribution
f (z ,θ) have equivalent bias properties, but the estimators from the joint
distribution f (z ,θ) have smaller mean square error.

Also, estimation from the phase-magnitude distribution f (z ,θ) does
not involve any numerical optimization, unlike the estimation from the
Rice distribution or from the marginal distribution of the phase. We have
explicit expressions for the solutions of the likelihood equations and for the
Fisher matrix. This does not exist for neither the Rice distribution, nor the
marginal distribution of the phase.

49



7 Phantom data study
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Figure 7.1: Spectra from MRS phantom.

We have 512 MRS scans from an spherical 1H MRS phantom, taken on
a 1.5T Siemens MR unit. The phantom is filled with an 0.1 M solution of
lithium lactate (C3H5O3Li ) and sodium acetate (C2H3O2Na). The mean
spectra of the scans can be seen in Figure 7.1. The double peaks around
p p m = 1.2 arises from the protons of the methyl group (C H3) of the lactate
molecule. The quartet peaks around p p m = 4.1 arise from the protons of
the methylene group (C H ) of the lactate molecule. Ideally, there should
be only one big peak at p p m = 1.9, from the methyl group of the acetate
molecule. The smaller peak on the left side is an artefact, possibly due to
inhomogeneity of the magnetic field.

The concentrations of the lactate and the acetate are the same and so the
sums of the height of all the lactate peaks should be similar to the height of
the acetate peak. Can our estimations confirm this statement?

7.1 Method

The first thing we would like to verify is whether or not the background
noise in the signal is white. Unfortunately, as we can se from Figure 7.2,
we do not have any region of the measurement without signal. This makes
verification of the white noise assumption quite hard. We will however
return to this matter in Chapter 8. For now, we will assume that the noise
is white and carry on with estimation of the peak heights.
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There are in total seven peaks, for which we wish the estimate the
heights, one peak corresponding the acetate and seven peaks correspond-
ing to the lactate, se Figure 7.3. We let Z j , j = 1, . . . , 7 denoted the observed
peak hight of peak number j , and let the numbering follow the chemical
shift scale (ppm). That it, the lactate doublets at about p p m = 1.2 and
p p m = 1.3, will have the observed peak heights Z1 and Z3, respectively,
and so on for the next five peaks of interest in the spectrum.

Obtaining the peak heights measurements from the 512 different scans
is not trivial. It can in fact be seen as quantitation of each separate scan,
se Chapter 3.1. However, we know the approximate positions of the peaks
and we will use this information to measured the peaks heights. We will do
this in two ways.

Method I: Identify the exact position of each of the seven peaks in the
spectra of the mean of the scans, and then use the values on these positions
in each of the separate 512 scans as measurements for the peak heights.

Method II: Use seven small intervals around the expected peak posi-
tions, and then use the maximum value in each interval as measurements.

The positions of the peaks in this phantom spectra is quite fix within
the separate scans, at least for the larger peaks. For the smaller peaks in the
lactate quartet we have much lower SN R and the visual interpretation of
the peaks positions may shift between the different scans. The signals are
digitalized and the peaks in the spectra are naturally not smooth, see Figure
7.3

For each of the seven peaks we obtain 512 complex, independent ob-
servations. We calculate the observed magnitudes and phases (Z ji

,θ ji
), i =

1, . . . , 512, j = 1, . . . , 7, which are then used to calculated the estimates cψ j
and br j .

In order to further investigate the behavior of our estimates, we use
the ordinary Bootstrap method to resample 10000 replicates of the obser-
vations of (Z ji

,θ ji
). The Bootstrap estimates and confidence intervals are

calculated.

7.2 Results

7.2.1 Method I

The values of cψ j and br j for j = 1, . . . , 7 are found in the third column in
Table 7.1, the Bootstrap estimates in the fourth column and the Bootstrap
confidence intervals in the fifth column. We see little difference in the values
in the third and fourth column.

52



We now sum the peek heights estimates for the lactate peaks and get
that br1 + br2 + br4 + br5 + br6 + br7 = 0.02381. For the acetate peak we havebr3 = 0.03292. These two values are not quite equal, but not completely far
off from each other either.

7.2.2 Method II

The values of cψ j and br j for j = 1, . . . , 7 are found in the third column in
table 7.2, the Bootstrap estimates in the fourth column and the Bootstrap
confidence intervals in the fifth column.

For Method II we have that br1+ br2+ br4+ br5+ br6+ br7 = 9.8855 ·10−3 for
the lactate peaks and br3 = 3.6247 ·10−5 for the acetate peak. The two values
are not close to each other.

7.3 Discussion

The first method of obtaining the measurements, Method I, gives us quite
reasonable results. The phantom spectra has little noise and sharp peaks
that are easy to label and localize. The estimated peak heights of the lactate
and acetate match quite well, specially if we take the variance estimations
from the Bootstrap simulations into account.

Method II, on the other hand, gives us unreasonable results. This is
clearly not the way to go to obtain the peak heights measurements.
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Chemical Estimator Estimated Bootstrap Bootstrap
shift value estimate CI

1.2 cψ1 −0.9509 −0.9509 [−0.9587,−0.9428]br1 0.0097 0.0097 [9.6831,9.7251] · 10−3

1.3 cψ2 2.7103 2.7103 [2.7029,2.7181]br2 1.1467 · 10−2 1.1467 · 10−2 [1.1435,1.1500] · 10−2

1.85 cψ3 −0.3126 −0.3126 [−0.3214,−0.3036]br3 0.0329 0.0329 [3.2887,3.2962] · 10−2

3.9 cψ4 −2.4834 −2.4835 [−2.4971,−2.4694]br4 3.5639 · 10−4 3.5634 · 10−4 [3.5088,3.6190] · 10−4

4.0 cψ5 −2.7780 −2.7780 [−2.7849,−2.7705]br5 0.0011 0.0011 [1.0984,1.1104] · 10−3

4.1 cψ6 1.1890 1.1890 [1.1768,1.2017]br6 6.1136 · 10−4 6.1135 · 10−4 [6.0604,6.1656] · 10−4

4.2 cψ7 1.4558 1.4558 [1.4418,1.4697]br7 5.7281 · 10−4 5.7284 · 10−4 [5.6743,5.7816] · 10−4

Table 7.1: Estimates of ψ and r for the seven peaks in the MRS phantom using Method I.

Chemical Estimator Estimated Bootstrap Bootstrap
shift value estimate CI

1.2 cψ1 −0.9509 −0.9508 [−0.9589,−0.9430]br1 9.7039 · 10−3 9.7040 · 10−3 [9.6831,9.7255] · 10−3

1.3 cψ2 2.3006 2.2996 [2.1640,2.4414]br2 3.6394 · 10−5 3.6511 · 10−5 [3.1322,4.1052] · 10−5

1.85 cψ3 2.1390 2.1398 [2.0027,2.2750]br3 3.6247 · 10−5 3.6370 · 10−5 [3.1540,4.0836] · 10−5

3.9 cψ4 2.0436 2.0429 [1.9017,2.1854]br4 3.6214 · 10−5 3.6314 · 10−5 [3.1372,4.0667] · 10−5

4.0 cψ5 2.2434 2.2425 [2.1105,2.3824]br5 3.7207 · 10−5 3.7311 · 10−5 [3.2276,4.1774] · 10−5

4.1 cψ6 2.0121 2.0113 [1.8822,2.1442]br6 3.6323 · 10−5 3.6405 · 10−5 [3.1507,4.1054] · 10−5

4.2 cψ7 2.1117 2.1133 [1.9760,2.2436]br7 3.5418 · 10−5 3.5489 · 10−5 [3.0864,3.9909] · 10−5

Table 7.2: Estimates of ψ and r for the seven peaks in the MRS phantom spectra using
Method II.
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8 Human brain data study
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Figure 8.1: in vivo MRS spectra from healthy brain.

We have 128 MRS brain scans from a healthy volunteer, taken on a 1.5T
Siemens MR unit, Figure 8.1. There are a great number of peaks present in
the spectrum. We chose to focus our analysis of one of the metabolic ra-
tios that are of interest for tumor diagnosis, namely the NAA/cr ratio. We
would like to estimate this ratio in our spectra. By visual interpretation
it appears to be around 2, which would concur with the value of this ra-
tio in non-pathological grey tissue [10]. Can our estimations confirm this
statement?

8.1 Method

First, we will verify the white noise assumption. As seen in Figure 8.2, we
do have regions without signal in our scans, and hence we can investigate
the distribution of the noise. We use the Jarque-Bera test [28] of the null
hypothesis that the tails of the 128 scanned signals are Gaussian distributed
with unknown mean and variance, against the alternative that they are not.
The test returns the value 1 if the null hypothesis can be rejected at the 5%
significance level and 0 if it can not.

Peak hight measurements for the NAA peak, Z1, and the Cr peak, Z2,
are obtained by Method I, as described in Chapter 7.1. We calculate the
observed magnitudes and phases (Z ji

,θ ji
), i = 1, . . . , 128, j = 1,2, which

are then used to calculated the estimates cψ j and br j . In order to further
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Figure 8.2: MRS signal from healthy brain.

investigate the behavior of our estimates, we use the ordinary Bootstrap
method to resample 10000 replicates of the observations of (Z ji

,θ ji
). The

Bootstrap estimates and confidence intervals are calculated.

8.2 Results

The results from the Jarque-Bera test of tails of the 128 scanned signals are
shown in Figure 8.3. Only about 5% of the null hypothesises are reject. The
assumption that the background noise is white does seem to be verified.

Estimator Estimated Bootstrap Bootstrap
value estimate CI

NAA bψ 1.0670 1.06748 [1.0224,1.1117]br 2.5944 · 10−4 2.5952 · 10−4 [2.4889,2.6984] · 10−4

Cr bψ −2.9945 −2.9932 [−3.0764,−2.9116]br 1.2470 · 10−4 1.2479 · 10−4 [1.1483,13451] · 10−4

Table 8.1: Estimates of ψ and r for the NAA peak and the Cr peak.

The values of cψ j and br j for j = 1, . . . , 2 are found in the third column in
table 8.1, the Bootstrap estimates in the fourth column and the Bootstrap
confidence intervals in the fifth column. Again, there is little difference in
the values in the third and fourth columns.
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Figure 8.3: Upper left: Jarque-Bera test results from the real part of the tails of the 128
signals in time-domain. Upper right: Jarque-Bera test results from the imaginary part of the
tails of the 128 signals in time-domain. Lower left: Jarque-Bera test results from the real part
of the Fourier transform of the tails of the 128 signals. Lower right: Jarque-Bera test results
from the imaginary part of the Fourier transform of the tails of the 128 signals.

We find that ÕrN AA/drC r = 2.0804, which is very near the expected value
of about 2.

8.3 Discussion

Even thou human MRS spectra contains many overlapping peaks from many
different metabolites, even thou we have low SN R and even thou we use a
quite crude method to obtain our peak heights measurements, we do get
reasonable results from our estimates. We have estimated the NAA/Cr ra-
tio as around 2, which was what we expected.
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9 Final words
In this thesis we have studied the distributional properties of the stochas-
tic noise in MRS signals. We have introduced a phase-magnitude model for
MRS signals and derived maximum likelihood estimators of the distribu-
tional parameters of this model. We have explicit expressions for the solu-
tions of the likelihood equations and for the Fisher matrix. Consistency,
asymptotic normality and efficiency of the estimators have been verified.

We have conducted simulation studies to test our findings. We have
found that it is often better and more efficient to estimate (r,σ2) from
the joint distribution of the proposed phase-magnitude model, than the
more conventional way to estimate them from the marginal distribution
of the magnitude, ie the Rice distribution. The estimation from the phase-
magnitude model does not require numerical optimization.

We have analyzed peak heights in MRS data from a MRS phantom and
human brain data. We have found that our model works well for the analy-
sis of these data sets.

Note that in the analysis of the phantom data and the in vivo data we
had the signals from the original separate scans. Unfortunately, this is rarely
the case with clinical patient data. The separate scans are not stored by the
scanning software, only their mean values are. In order to thoroughly ex-
amine the difference signal model proposed in Chapter 3.3 and the ML esti-
mation of the changes in metabolite concentration, we would need original
separate clinical scans, taken at different times during the radiation therapy
period. At this time, we do not have access to these types of data.

Further analysis of the phase-magnitude model for difference signals are
needed when original separate scans are available.

The next step would then be to, not only estimate the peak heights of
the magnitude spectra, but also take the peak widths into account, and also
to incorporate the frequency dependence in our model.
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Appendix A: Verification of Assumption (E)

We have

fZ ,Θ
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z,θ|r,ψ,σ2
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=
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eκ,

∂ 2 f

∂ ψσ2
=

r z2 sin (θ−ψ)
2πσ6

(−σ2−κ)eκ,

∂ 2 f

∂ (σ2)2
=

z

2πσ6
(2+ 4κ+κ2)eκ.
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Hence

∂ 3 f

∂ r 3
=

z

2πσ8

�
τ3− 3σ2τ

�
eκ,

∂ 3 f

∂ r 2∂ ψ
=

z2 sin (θ−ψ)
2πσ8

�
rτ2+ 2σ2τ− rσ2

�
eκ,

∂ 3 f

∂ r 2∂ σ2
=

z

4πσ8

�
σ2(4+ 2κ)− 3τ2− 2κτ

�
eκ,

∂ 3 f

∂ r∂ ψ2
=

z2 cos (θ−ψ)
2πσ6

(−σ2− rτ)eκ+
r z3 sin2 (θ−ψ)

2πσ8
(2σ2+ rτ)eκ

∂ 3 f

∂ r∂ ψ∂ σ2
=

z2 sin (θ−ψ)
2πσ8

�
σ2(−2−κ)+τ(−3− rκ)

�
eκ

∂ 3 f

∂ r∂ (σ2)2
=

z

2πσ8
τ(6+ 6κ+κ2)eκ,

∂ 3 f

∂ ψ3
=

r z2 sin (θ−ψ)
2πσ8

�−σ4− 3rσ2 cos (θ−ψ)+ r 2z2 sin2 (θ−ψ)� eκ,

∂ 3 f

∂ ψ2∂ σ2
=

r z2 cos (θ−ψ)
2πσ6

(2+κ)eκ+
r 2z3 sin2 (θ−ψ)

2πσ8
(−3−κ)eκ,

∂ 3 f

∂ ψ∂ (σ2)2
=

r 2z2 sin (θ−ψ)
2πσ8

(6+ 6κ+κ2)eκ,

∂ 3 f

∂ (σ2)3
=

z

2πσ8
(−6− 18κ− 9κ2−κ3)eκ.

Hence, assumption (E) is satisfied.
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Appendix B: Verification of assumption (F)
With

ln fZ ,Θ

�
z ,θ|r,ψ,σ2

�
= ln z − ln2πσ2− 1

2σ2

�
z2+ r 2− 2r z cos (θ−ψ)�

and
∂ ln f

∂ r
=

1

σ2
(z cos (θ−ψ)− r )

∂ ln f

∂ ψ
=

1

σ2
r z sin (θ−ψ)

∂ ln f

∂ σ2
= − 1

σ2
+

1

2σ4

�
z2+ r 2− 2r z cos (θ−ψ)�

we obtain

E

�
∂ ln f

∂ r

�
=

1

σ2
E (Z cos (Θ−ψ))− r

σ2

=
1

σ2
E (Z cosΘcosψ+Z sinΘ sinψ)− r

σ2

=
1

σ2
(cosψE(Z cosΘ)+ sinψE(Z sinΘ))− r

σ2

=
1

σ2

�
r cos2ψ+ r sin2ψ

�− r

σ2
= 0,

where we have used the fact that E(Z cosΘ) = r cosψ and E(Z sinΘ) =
r sinψ. In a similar way we can conclude that

E

�
∂ ln f

∂ ψ

�
=

r

σ2
E(Z sin (Θ−ψ))

=
r

σ2
(cosψE(Z sinΘ)− sinψE(Z cosΘ))

=
r

σ2
(r sinψcosψ− r sinψcosψ) = 0,

and, by observing that EZ2 = r 2+2σ2 and E(Z cos (Θ−ψ)) = r , we obtain

E

�
∂ ln f

∂ σ2

�
= − 1

σ2
+

1

2σ4
E
�

Z2+ r 2− 2r Z cos (Θ−ψ)�
= − 1

σ2
+

1

2σ4
(r 2+ 2σ2)+

r 2

2σ4
− 2r 2

2σ4
= 0
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Hence the first part of assumption (F) is satisfied.
Now, let’s direct our attention to the calculations of the Fisher informa-

tion matrix J .
With

∂ ln f

∂ r
· ∂ ln f

∂ r
=

r 2

σ4
− 2r

σ4
z cos (θ−ψ)+ 1

σ4
z2 cos2 (θ−ψ)

and using that (Z sinΘ) and (Z cosΘ) are independent, and that E(Z sinΘ)2 =
r 2 sin2ψ+σ2 and E(Z cosΘ)2 = r 2 cos2ψ+σ2, we get

E

�
∂ ln f

∂ r
· ∂ ln f

∂ r

�
=

r 2

σ4
− 2r

σ4
E(Z cos (Θ−ψ))+ 1

σ4
E(Z2 cos2 (Θ−ψ))

=
r 2

σ4
− 2r 2

σ4
+

1

σ4

�
cos2ψE(Z cosΘ)2

�
+

1

σ4

�
sin2ψE(Z sinΘ)2

�
+

2

σ4

�
sinψcosψE(Z2 sinΘcosΘ)

�
= − r 2

σ4
+

1

σ4

�
cos2ψ(r 2 cos2ψ+σ2)

�
+

1

σ4

�
sin2ψ(r 2 sin2ψ+σ2)

�
+

2

σ4
(sinψcosψE(Z sinΘ)E(Z cosΘ))

= − r 2

σ4
+

sin2ψ+ cos2ψ

σ2
+

r 2

σ4

�
sin4ψ+ cos4ψ+ 2sin2ψcos2ψ

�
= − r 2

σ4
+

1

σ2
+

r 2

σ4

�
sin2ψ+ cos2ψ

�2

=
1

σ2
.

Since

∂ 2 ln f

∂ r 2
=− 1

σ2
,

we have that

E

 
−∂

2 ln f

∂ r 2

!
=

1

σ2
,
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that is, that

J11 = E

�
∂ ln f

∂ r
· ∂ ln f

∂ r

�
= E

 
−∂

2 ln f

∂ r 2

!
=

1

σ2
.

We have

∂ ln f

∂ r
· ∂ ln f

∂ ψ
=

r 2

σ4
z sin (θ−ψ)− r

σ4
z2 sin (θ−ψ)cos (θ−ψ).

Note the result from above that E(Z sin (Θ−ψ)) = 0, and the fact that since
(Z sinΘ) and (Z cosΘ) are independent and normally distributed, then (Z sin (Θ−ψ))
and (Z cos (Θ−ψ)) are also independent. Hence

E

�
∂ ln f

∂ r
· ∂ ln f

∂ ψ

�
=

r 2

σ4
E(Z sin (Θ−ψ))− r

σ4
E
�

Z2 sin (Θ−ψ)cos (Θ−ψ)�
= 0− r

σ4
E(Z sin (Θ−ψ))E(Z cos (Θ−ψ))

= 0.

With

∂ 2 ln f

∂ r∂ ψ
=− 1

σ2
z sin (θ−ψ),

we clearly have that

E

 
−∂

2 ln f

∂ r∂ ψ

!
=

1

σ2
E (Z sin (Θ−ψ)) = 0,

that is, that

J12 = J21 = E

�
∂ ln f

∂ r
· ∂ ln f

∂ ψ

�
= E

 
−∂

2 ln f

∂ r∂ ψ

!
= 0.

The next element in the Fisher matrix follows from

∂ ln f

∂ r
· ∂ ln f

∂ σ2
= − z cos (θ−ψ)− r

2σ2

 
z2+ r 2− 2r z cos (θ−ψ)

2σ4
− 1

σ2

!
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By noting above that E(Z cos (Θ−ψ)− r ) = r − r = 0 we obtain

E

�
∂ ln f

∂ r
· ∂ ln f

∂ σ2

�
= − 1

2σ2
E(Z cos (Θ−ψ)− r )

·
 

EZ2+ r 2− 2r E(Z cos (Θ−ψ))
2σ4

− 1

σ2

!
= 0.

With

∂ 2 ln f

∂ r∂ σ2
=− 1

σ2
(z cos (θ−ψ)− r ) ,

we have

E

 
−∂

2 ln f

∂ r∂ ψ

!
=

1

σ2
E (z cos (θ−ψ)− r ) = 0,

that is

J13 = J31 = E

�
∂ ln f

∂ r
· ∂ ln f

∂ σ2

�
= E

 
− ∂

2 ln f

∂ r∂ σ2

!
= 0.

From

∂ ln f

∂ ψ
· ∂ ln f

∂ ψ
=

r 2z2 sin2 (θ−ψ)
σ4

we have

E

�
∂ ln f

∂ ψ
· ∂ ln f

∂ ψ

�
=

r 2

σ4
E(Z2 sin2 (Θ−ψ)

=
r 2

σ4
sin2ψE(Z cosΘ)2+

r 2

σ4
cos2ψE(Z sinΘ)2

−2r 2

σ4
sinψcosψE(Z sinΘ)(Z cosΘ)

=
r 2

σ4
sin2ψ(r 2 cos2ψ−σ2)+

r 2

σ4
cos2ψ(r 2 sin2ψ−σ2)

−2r 4

σ4
sin2ψcos2ψ

=
r 2

σ2
,
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and from

∂ 2 ln f

∂ ψ2
=− r

σ2
(z cos (θ−ψ)) ,

we have

E

 
−∂

2 ln f

∂ ψ2

!
=

r

σ2
E (Z cos (Θ−ψ)) = r 2

σ2
,

that is

J22 = E

�
∂ ln f

∂ ψ
· ∂ ln f

∂ ψ

�
= E

 
−∂

2 ln f

∂ ψ2

!
=

r 2

σ2
.

With

∂ ln f

∂ ψ
· ∂ ln f

∂ σ2
=

r z

σ2
sin (θ−ψ)

 
z2+ r 2− 2r z cos (θ−ψ)

2σ4
− 1

σ2

!
we clearly have

E

�
∂ ln f

∂ ψ
· ∂ ln f

∂ σ2

�
= 0,

and since

∂ 2 ln f

∂ ψ∂ σ2
=− r

σ4
z sin (θ−ψ),

then

E

 
− ∂

2 ln f

∂ ψ∂ σ2

!
= 0.

that is

J23 = J32 = E

�
∂ ln f

∂ ψ
· ∂ ln f

∂ σ2

�
= E

 
− ∂

2 ln f

∂ ψ∂ σ2

!
= 0.

Last, we have

∂ ln f

∂ σ2
· ∂ ln f

∂ σ2
=

1

σ4
− z2+ r 2− 2r z cos (θ−ψ)

σ6

+

 
z2+ r 2− 2r z cos (θ−ψ)

2σ4

!2
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so, since EZ2 = r 2+2σ2, EZ4 = r 4+8r 2σ2+8σ4 and E(Z cos (Θ−ψ))2 =
r 2+σ2, we obtain

E

�
∂ ln f

∂ σ2
· ∂ ln f

∂ σ2

�
=

1

σ4
− 1

σ6
EZ2− r 2

σ6
+

2r

σ6
E(Z cos (Θ−ψ))

+
1

4σ8
EZ4+

r 4

4σ8
+

r 2

2σ8
EZ2

− r 3

σ8
E(Z cos (Θ−ψ))− r

σ8
EZ2E(Z cos (Θ−ψ))

+
r 2

σ8
E(Z cos (Θ−ψ))2 = 1

σ4

and with

∂ 2 ln f

∂ (σ2)2
=

1

σ4
− z2+ r 2− 2r z cos (θ−ψ)

σ6
,

we have

E

 
−∂

2 ln f

∂ (σ2)2

!
= − 1

σ4
+

1

σ6
EZ2+

r 2

σ6
− 2r

σ6
E(Z cos (Θ−ψ))

= − 1

σ4
+

1

σ6
(r 2+ 2σ2)+

r 2

σ6
− 2r 2

σ6
=

1

σ4

Hence the Fisher matrix is

J =

 1/σ2 0 0
0 r 2/σ2 0
0 0 1/σ4


and the second part of assumption (F) is satisfied.

74



Appendix C: Verification of assumption (H)
We let

ζ =
� r0

2
, r0+ 1

�
×
�−π− |ψ0|

2
,
π+ |ψ0|

2

�
×
 
σ2

0

2
,σ2

0 + 1

!
,

and note that (ψ0, r0,σ2
0 ) ∈ ζ .

With

∂ 3 ln f

∂ r 3
= 0,

∂ 3 ln f

∂ r 2∂ ψ
= 0,

∂ 3 ln f

∂ r 2∂ σ2
=

1

σ4
,

∂ 3 ln f

∂ r∂ ψ2
= − 1

σ2
z cos (θ−ψ),

∂ 3 ln f

∂ r∂ ψ∂ σ2
= − 1

σ4
z sin (θ−ψ),

∂ 3 ln f

∂ r∂ (σ2)2
=

2

σ6
(z cos (θ−ψ)− r ),

∂ 3 ln f

∂ ψ3
= − r

σ2
z sin (θ−ψ),

∂ 3 ln f

∂ ψ2∂ σ2
=

r

σ4
z cos (θ−ψ),

∂ 3 ln f

∂ ψ∂ (σ2)2
=

2r

σ6
z sin (θ−ψ),

∂ 3 ln f

∂ (σ2)3
= − 2

σ6
+

3(z2+ r 2− 2r z cos (θ−ψ))
σ8

.

we may chose�����∂ 3 ln f

∂ r 3

�����=
����� ∂ 3 ln f

∂ r 2∂ ψ

�����= 0=M111 =M112 =M121 =M211

for which

m111 = m112 = m121 = m211 = E0= 0<∞
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and ����� ∂ 3 ln f

∂ r 2∂ σ2

�����= 1

σ4
<

4

σ4
0

=M113 =M131 =M311,

where, since σ0 > 0

m113 = m131 = m311 =
4

σ4
0

<∞.

By noting that z ≤ 1+ z2 we let����� ∂ 3 ln f

∂ r∂ ψ2

�����=
�����− 1

σ2
z cos (θ−ψ)

�����≤ 2

σ2
0

z ≤ 2

σ2
0

(1+ z2) =M122 =M212 =M221,

where

m122 = m212 = m221 =
2

σ2
0

(1+EZ2) =
2

σ2
0

(1+ r 2
0 + 2σ2

0 )<∞,

and����� ∂ 3 ln f

∂ r∂ ψ∂ σ2

����� =
�����− 1

σ4
z sin (θ−ψ)

�����≤ 4

σ4
0

z

≤ 4

σ4
0

(1+ z2) =M123 =M312 =M231 =M132 =M213 =M321,

where

m123 = m312 = m231 = m132 = m213 = m321 =
4

σ4
0

(1+ r 2
0 + 2σ2

0 )<∞,

and ����� ∂ 3 ln f

∂ r∂ (σ2)2

����� =
����� 2

σ6
(z cos (θ−ψ)− r )

�����≤ 16

σ6
0

(z + r0+ 1)

≤ 16

σ6
0

(r0+ 2+ z2) =M133 =M313 =M331,

where

m133 = m313 = m331 =
16

σ6
0

(r0+ 2+ r 2
0 + 2σ2

0 )<∞,
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and

�����∂ 3 ln f

∂ ψ3

�����=
�����− r

σ2
z sin (θ−ψ)

�����≤ 2(r0+ 1)

σ2
0

z ≤ 2(r0+ 1)

σ2
0

(1+ z2) =M222,

where

m222 =
2(r0+ 1)

σ2
0

(1+ r 2
0 + 2σ2

0 )<∞,

and

����� ∂ 3 ln f

∂ ψ2∂ σ2

����� =
����� r

σ4
z cos (θ−ψ)

�����≤ 4(r0+ 1)

σ4
0

z

≤ 4(r0+ 1)

σ4
0

(1+ z2) =M223 =M232 =M322,

where

m223 = m232 = m322 =
4(r0+ 1)

σ4
0

(1+ r 2
0 + 2σ2

0 )<∞,

and

����� ∂ 3 ln f

∂ ψ∂ (σ2)2

����� =
�����2r

σ6
z sin (θ−ψ)

�����≤ 16(r0+ 1)

σ6
0

z

≤ 16(r0+ 1)

σ6
0

(1+ z2) =M233 =M323 =M332,

where

m233 = m323 = m332 =
16(r0+ 1)

σ6
0

(1+ r 2
0 + 2σ2

0 )<∞.
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Last, we let�����∂ 3 ln f

∂ (σ2)3

����� =
�����− 2

σ6
+

3(z2+ r 2− 2r z cos (θ−ψ))
σ8

�����
≤ 16

σ6
0

+
48

σ8
0

�
z2+(r0+ 1)2+ 2(r0+ 1)z

�
=

16

σ6
0

+
48

σ8
0

((r0+ 1)+ z)2

≤ 16

σ6
0

+
48

σ8
0

((r0+ 2)+ z)2

=
16

σ6
0

+
48

σ8
0

�
(r0+ 2)2+ 2(r0+ 2)z2+ z4

�
=M333

for which

m333 =
16

σ6
0

+
48

σ8
0

�
(r0+ 2)2+ 2(r0+ 2)(r 2

0 + 2σ2
0 )+ (r

4
0 + 8r 2

0 σ
2
0 + 8σ4

0 )
�
<∞.

Hence, Assumption (H) is satisfied.
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Notations key
B0 External magnetic field of a MR unit

M Net magnetization

B1 Second magnetic field, induced by the RF coil

T1 Relaxation time for Mz to grow from 0 to 1− e−1

T2 Relaxation time for Mx or My to decay to e−1

T ∗2 "Obsereved" T2

FID Free induction decay

in vivo Measurements in living tissue

ppm unit for chemical shift

SVS Single voxel spectroscopy

NAA N-acetylaspartate

Cr Creatine

ak Amplitude related to the concentration of the kth sinusoid

ϕk Phase related to the kth sinusoid

ωk Frequency related to the kth sinusoid

dk Damping constant related to the kth sinusoid

ϵ Circular white noise

Ak(ω) Absorption signal

Dk(ω) Dispersion signal

σ2 Variance of the background white noise

SNR Signal-to-Noise ratio, SN R= r/σ

Ip (x) Modified Bessel function of the first kind of order p

R(x) I1(x)/I0(x)

Z Observed signal magnitude
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Θ Observed signal phase

r Unobserved signal magnitude

ψ Unobserved signal phase

ξ (ψ, r,σ2)

ξ0 (ψ0, r0,σ2
0 ) true parameter value

bξ ( bψ,br ,cσ2) ML estimates of (ψ, r,σ2 from the log likelihood of the mag-
nitude phase distribution
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