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Preface 

The origin of this report dates back to 1978. At  this time Dr  Peter Diggle 
was employed as a guest-researcher at the College. The aim of Dr Diggle's 
work at the College was to introduce advanced mathematical and statistical 
models in forestry research. 

Dr Diggle was specially employed to develop some biological models for 
a planning system for silvicultural treatments and for various cutting sys- 
tems. To tackle this problem a research-team has been working to develop 
an advanced system for planning the above mentioned activities. Since Dr  
Diggle left Sweden as a guest-researcher he has been working as a consul- 
tant to the project. And we see in this report the results of his effort in this 
field. 

College of Forestry 
Garpenberg, March 1981 
Sten Nilsson 
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1 Introduction 

1.1 General introduction 

Research workers in the department of Operational Efficiency have been 
working for several years to develop a planning system for silvicultural 
treatments and for various cutting options. The goal of this system is to 
provide a long-term silvicultural strategy for a forest company. 

Today in Sweden, the practical consequences of, for example. regenera- 
tion or pre-commercial thinning operations are evaluated by such simple 
criteria as number of living plants one year after planting, number of stems 
after pre-commercial thinning, etc. However, the first income from a stand 
comes some 50 to 80 years after regeneration. It is therefore necessary to 
analyse the effects of a silvicultural treatment on the complete life-cycle of 
a stand. No such complete description is currently available. 

To tackle this problem, a computerised planning system has been devel- 
oped. (Eriksson, L & Eriksson, O in preparation 1981.) The two principle 
components of this system are 
(i) a biological model 
(ii) an economic model. 

The biological model simulates the decelopment of a stand from regen- 
eration to final felling. Parameters in the model can be varied to accommo- 
date various policies for regeneration. pre-commercial cleaning. thinning, 
etc. Principally because of the long time-scale involved, no data are avail- 
able concerning the complete development of a stand. Several different 
kinds of basic biological research data have therefore been used in the 
model-building process. These data-sets relate to investigations carried out 
in different departments of the university, and each such investigation has 
been directed towards answering relatively specific questions concerned 
with particular aspects of stand development. 

The need to link these aspects together in the biological model has 
generated a number of loosely related statistical problems. This report 
presents a number of "sub-models" which are now used within the full 
biological simulation model. and it should therefore be read in conjunction 
with Eriksson, L & Eriksson, O (in preparation). However, we hope that 
some of the statistical problems discussed in the report will prove of wider 
interest in the general context of forestry research. 

1.2 Sources of data 

We make extensive use of data collected in the PTAX investigations 
(HultCn & Jansson 1972). These data include information on the survival or 
death of young planted trees and on the incidence of naturally regenerated 
trees in circular plots of radius 2 m. laid out systematically in a number of 
stands distributed throughout Sweden. The number of plots per stand 
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Figure I .  Typical exarnple of sampling design for PTAX data 

varies considerably. but is typically of the order of 40 per stand, excluding 
plots which are unsuitable for planting. The spacing between adjacent plots 
also varies according to the overall area of the stand, but is typically of the 
order of 30 m.  Figure 1 shows a typical example of the layout of sampling 
plots within a stand. 

We also use typestand data, in particular the typestands for cleaning 
described in Gustafsson (1974). Each typestand consists of a 25 m by 20 m 
rectangle within which the locations and species of each stem are recorded, 
together with additional information including the cleaning grade of each 
stem, from 1 to 7; where: 

grade 1 indicates trees to be removed to get a stand of 2800 stemsiha 
grade 1-2 indicates trees to be removed to get a stand of 2400 stemslha 



grade 1-3 indicates trees to be removed to get a stand of 2000 stemslha 
grade 1 4  indicates trees to be removed to get a stand of 1600 stemslha 
grade 1-5 indicates trees to be removed to get a stand of 1200 stemslha 
grade 1-6 indicates trees to  be removed to get a stand of SO0 stemslha 
grade 7 indicates all remaining trees 

1.3 Plan of report 

In Section 2 we define the concept of spatial interaction for a set of 
observations recorded at  fixed spatial locations, and show how a test for 
spatial interaction can be applied to the PTAX data in an exploratory way. 
to  identify stands with interesting spatial structure. 

In Section 3 we describe a number of probability distributions which arise 
in the analysis of quadrat count data. We motivate the various distributions 
by considering both the mode of regeneration (natural or planted) and the 
possible existence of environmental heterogeneity. We then discuss an 
extension to the bivariate case, based on a class of bivarate distributions 
introduced by Plackett (1965). The PTAX data again provide an illustrative 
application, and we note the difficulties which arise in making a combined 
interpretation of the results from a large number of stands. 

Section 4 investigates a specific problem concerning variation in yield 
within a stand. In young stands. this is conventionally measured by the 
variance-to-mean ratio of the number of individual stems within a sample 
plot. In older stands, the accepted measure is the coefficient of variation of 
the total basal area within a sample plot. We explore the relationship 
between these two quantities, both by theoretical arguments and empirical- 
ly, using typestand data. 

Section 5 discusses the general topic of assessing spatial patterns in forest 
stands, using practicable, distance-based sampling procedures. Topics cov- 
ered includes tests of spatial randomness for a single species, tests for 
association between species and robust estimation of the mean number of 
stems per unit area. 

Section 6 offers a general discussion of the results obtained. We acknowl- 
edge the limitations of our formal analyses, and note some additional 
problems which. through lack of time. have not yet been tackled. Through- 
out the report, we shall assume that the reader is familiar with the basic 
concepts and tern~inology of mathematical statistics. including probability 
distributions, probability density functions, expectation, the likelihood 
function. parameter estimation and hypothesis testing. For detailed discus- 
sion of these, we refer the reader to one of the many intermediate texts 
which are available. such as Lindgren (1968) or Hogg & Craig (1970). 



2 Spatial interaction 

2.1 Introduction 

When measurements are taken at a number of spatial locations it often 
happens that observed values from adjacent locations are relatively more 
similar, or dissimilar, than could resonably be expected to have occured by 
chance. Recognition of this empirical phenomenon leads to the following 
definition of spatial interaction. 

Consider a finite set of random variables Y,: i = 1. . . ., n associated w-ith 
locations _xi: i = 1, . . .. n in some region of the plane. The x, are termed 
sites and the Y, site-variables. The simplest possible structure for the site- 
variables is that they should be mutually independent and identically 
distributed. This defines the state of complete spatial rutadonzness (hence- 
forth CSR) for the system {(Y;, 5, ) :  i = 1, . . ., n);  any form of dependency 
amongst the site-variables defines a state of spatial interaction. 

For CSR it is necessary, but not strictly sufficient, that the following 
hypothesis should hold: 

H: the joint distribution of the Y, is invariant under random permutation of 
the labels i = 1, . . ., n. 

In seeking to establish the existence or non-existence of spatial interaction 
in a given set of data. it is the hypothesis H that we shall test. The 
implication of H is that the sites convey no relevant information about the 
joint distribution of the site-variables. 

It is important to recognise two qualitatively different types of departure 
from CSR; the site variables may be mutually independent but not identi- 
cally distributed, or identically distributed but dependent. Techniques for 
the investigation of CSR are motivated by the latter phenomenon and, for 
example, we would not expect our tests to  be particularly appropriate for 
the investigation of smooth trends in spatial data. If smooth trends are 
suspected, one way to identify them is by a trend surface analysis (Watson 
1971). This is a form of regression analysis in which the basic assumption is 
that the site-variables are nlutually independent. with common variance a' 
and expectations 

where f(.)  is in some prescribed parametric class, typically a low order 
polynomial. Regression methods can also be used when relevant explana- 
tory variables are available at the various sites. In almost all applications, it 
is known a priori that H is untrue. In these circumstances, rejection of H is 
of no intrinsic interest but is a minimal pre-requisite for any serious attempt 
to  interpret the observed spatial distribution. In particular. we note in 
Section 2.2 below that the standard test for spatial interaction takes the 
form of a correlation coefficient between pairs of observations from neigh- 
bouring sites. 



2.2 A test for spatial interaction 

The  form of the hypothesis H suggests that we should carry out a test of CSR 
by comparing the value ul of a statistic u calculated from the data with the 
values u,: i = 2, . . ., m of the same statistic, but calculated under each of 
m - 1 independent random permutations of the Y, amongst the 5,. If u(,, 
denote the ordered u,, 

it is then exactly true under H that 

and the rank of ul  provides an exact test of H. In practice, m = 100 is 
adequate for testing at conventional levels of significance (Marriott 1979) 
and conveniently allows attained significance levels to be quoted in percent- 
ages. For further discussion of this idea of a "Monte Carlo Test", see 
Barnard (1963) and Hope (1968). Besag & Diggle (1977) describe several 
applications to spatial data. 

It follows from our earlier discussion that if a test of H against an 
alternative of spatial interaction is required, the statistic u should reflect 
dependence amongst the site-variables. The standard statistic. due to 
Moran (1950), therefore takes the form of a correlation coefficient between 
pairs of observations from neighbouring sites, in the following precise 
sense. 

Given observations y, from sites 5;: i = 1, . . ., n ,  let 

and write 

Define a connection matrix D to have off-diagonal elements 

1: if sites 5, and 3, are connected 
0: otherwise 

and diagonal elements 

Further define 

and 

Moran's statistic can be written as 



and under H 

These results, due to Cliff & Ord (1973, Ch. 2), can be used to provide an 
asymptotically valid test of H based on a normal approximation to the 
distribution of u under H, without recourse to Monte Carlo randomisation. 
However, the Monte Carlo approach provides an exact test for small n and 
a useful check on the asymptotics for larger n.  

The  discussion so far has begged the question of how connections be- 
tween sites are to be established. In general terms, it would seem reason- 
able to connect pairs of sites whose separation distance di, is relatively 
small. Distance need not be the only criterion, and Cliff 8: Ord (1973) 
discuss further possibilities. Figure 2 shows a system in which connections 
are  established via the Dirichlet tessellation of the sites. This partitions the 
region under examination into polygonal cells Ci associated with the _xi, 

each C, consisting of all points closer to xi than to any other _x,. The 
connections in Figure 2 have been established between all pairs of sites 
whose corresponding cells share a common boundary. Some mathematical 
properties of the Dirichlet tessellation are given by Rogers (1964). Green & 
Sibson (1978) provide a very efficient algorithm for the automatic determi- 
nation of the tessellation, which can cope with n of the order of several 
thousand. 

2.3 Application to PTAX data 

Figure 2. The Dirichlet tessellation of a set of 12 
sites in a rectangular region. Connections are estab- 
lished between sites whose Dirichlet cells share a 
common boundary, and are shown. as dashed lines. 
for one of sites. 

We recall that in the PTAX investigations, a number of circular plots of 
radius 2 m are laid out in a square lattice arrangement within each of a 
number of stands, the spacing between plots being of the order of 30 m. It 
is therefore reasonable to  identify the plot centres as point sites, _x,. 
Amongst the many possible site-variables are 



Y,=number of wild head-plants recorded at inventory 

and 

R,=number of surviving head-plants recorded at inventory, from n, initially 
planted. 

The discussion below relates to 41 stands in central Sweden, planted in 
1972 and subsequently recorded in 1975. The stands are irregular in shape. 
and include areas of land occupied by roads, water etc. and therefore 
unsuitable for planting. The number of plots without such impediment is 
typically of the order of 40 per stand. 

For the site-variables Yi, it is not unreasonable to test H using the 
observed values zi = y, - 7. On the other hand, a more reasonable assump- 
tion for the Ri  is that their marginal distributions are binomial 

Strictly, the hypothesis H is not relevant in this situation: even if the Ri are 
mutually independent and there is no spatial variation in the environment 
so that all the pi are equal, variations amongst the n, may nevertheless 
induce a form of spatial interaction amongst the R,. If the spatial distribu- 
tion of the n, is of interest it should be tested in its own right. We assume 
that the variable of primary interest is the proportion of survivors amongst 
planted trees and therefore base a test on standardised observations, 

where 

is the observed proportion of survivors in the n plots. Under the assump- 
tion pi = p for all i. each zi" is a realisation of a random variable with 
approximately zero mean and unit variance so that H is, in a sense, almost 
satisfied. 

Connections are established between nearest neighbours in vertical, 
horizontal and diagonal directions. Specifically, if d,, denotes the distance 
between sites _xi and _xi, in units of the lattice spacing. we define 

*, =(i: 0 c d i J 5 d  
" 0: otherwise 

2.4 Results 

Despite the attempt to produce a relatively homogeneous selection of 41 
stands, the results vary widely. Figure 3 gives a simple graphical summary. 
based on the fact that under H. the rank of u l  is uniformly distributed on 
the integers 1 to 100 inclusive. The figure shows an excess of low ranks for 
the statistics calculated from the planted survivors, indicative of positive 
spatial interaction - mortality levels in near-neighbouring plots are relative- 
ly similar. In contrast. the overall results for the wild head-plants appear to 
be compatible with H. Formal support for these conclusions is provided by 
the application of the Kolmogorov-Smirnov goodness-of-fit test (see, for 



C u m u l a t i v e  
f requency 

observed cumulative frequency for tests on planted survivors 
. . . . . . . . . observed cumulative frequency for tests on wild head-plants 
- - - - - - - theoretical cumulative frequency under H 

Figure 3. Tests for spatial interaction in 31 stands. 

example, Lindgren 1968, Ch. 6). In the case of the planted survivors, the 
maximum absolute deviation between the observed and theoretical cumula- 
tive frequencies in Figure 3 far exceeds the 1 % critical value, whilst for the 
wild head-plants the corresponding maximum absolute deviation is less 
than the 20 % critical value. 

A more detailed record of the results is given in Table 1. One disappoint- 
ing feature is that there is no discernible relationship between the lattice 
spacing and the observed value of u, (Figure 4). We therefore suggest that 
when spatial interaction is indicated, its probable source is the more or less 
smooth pattern of spatial variation in some relevant, but as yet unidenti- 
fied, environmental variables, rather than any direct stochastic interaction 
between site-variables from neighbouring plots. 

(a) Planted survivors 

. . . . .  
. : .  . .  a spocrny jm) 

I 

40 60 80 

(b) Wild head-plants 

. :  . . .  spacing ( m )  

Figure 4. Values of u, plotted against lattice spacing 



Table 1. Tests for spatial interaction in 41 stands. 

Test of H applied to 
Stand Number Lattice spa- 
number of plots cing (metres) p'"ted survivors wild head-plants 

U I  rank " u I rank' 

" Rank of u ,  amongst u,: i = 1, . . ., 100. Low rank suggests positive spatial interaction, high rank negative 
spatial interaction. 

To provide a specific illustration we examine in detail the planted trees in 
stand 223, for which ul = 0.148 and the Monte Carlo test gave a one-sided 
attained significance level of 4 %, only mildly indicative of positive spatial 
interaction. Figure 5 shows the crude proportions of survivors in the 35 
plots with o indicating less than 0.05, 1 indicating 0.05 to 0.15, and so on 
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Figure 5 .  Proportions of survi- 
vors for each plot in stand 223. in 
tenths. cross indicating at least 
95 % survival. 

until x represents at least 0.95. There appears to be high mortality on the 
left hand side of the stand. and although this could be due to direct 
stochastic interaction between neighbouring plots it seems more plausible 
to interpret it as evidence of smooth spatial variation in some unidentified 
explanatory variable or variables. 

We remark that the interpretation of this type of analysis will often be 
ambiguous. For, given a fixed number of site-variables and a single realisa- 
tion of each, the pattern of observations will usually be compatible either 
with a structure of dependent, but identically distributed site-variables, or 
with one of independent, but non-identically distributed site-variables. The 
ambiguity can be resolved either by identifying relevant explanatory varia- 
bles or by replication under controlled conditions. or by non-statistical 
arguments. 



3 Quadrat count distributions 

3.1 Introduction 

Quadrat count analysis is a long-established tool for the quantitative de- 
scription of biological populations. The basic sampling unit, or quadrat, is a 
small region of prescribed size and shape located in the population of 
interest according to some systematic or random sampling design. Within 
each of a number of such quadrats, the numbers of individuals of one or 
several types are recorded, leading to data of the form 

where the x,, y, etc. denote the numbers of individuals of the specified types 
found in the ith of m quadrats. 

The simplest form of statistical analysis for such data consists of fitting a 
discrete distribution to the counts of individuals of a specified type. More 
complex forms of analysis involve an attempt to describe patterns of 
dependence either between counts of different types of individual within a 
quadrat, o r  between counts of a specified type of individual in spatially 
adjacent quadrats. It  is the former type of generalisation which we discuss 
here. 

W e  remark that a quadrat was originally a one metre square, used by the 
Uppsala school of plant ecologists as the basic sampling unit in fieldwork 
(Du Rietz 1929. 1930). The term is now used to denote any small sample 
area, not necessarily square. 

3.2 Univariate quadrat count distributions 

Formally, any discrete distribution defined on the non-negative integers 
can be  fitted to quadrat count data. However, it is desirable that the actual 
distributions used in a particular application should be compatible with a 
plausible underlying chance mechanism. With this in mind we select four 
classes of distribution for detailed study. For a wider discussion of discrete 
distributions, see Patil (1965) or Patil Kr Joshi (1968). 

3.2.1 The Poisson distribution 

Suppose that seeds are distributed completely at random in the plane, in 
the sense that 

a) the average number of seeds per unit area does not vary over the plane 
and 
b) seeds are located independently of one another. 

These two postulates constitute an informal definition of a planar Poisson 
point process, for which the number of points (i.e. seeds) in an arbitrary 



region of area A follows a Poisson distribution with mean LA, for some 
h > 0; if, furthermore, each seed survives to produce a plant with probabil- 
ity p, independently of all other seeds, the number of plants in A again 
follows a Poisson distribution, with mean phA. 

These remarks suggest that the Poisson distribution provides a natural 
working hypothesis for quadrat counts in naturally regenerated popula- 
tions. The Poisson probability d~stribution is 

where the single parameter y>O is the mean of the distribution. The 
variance of the distribution is also 11; this equality of mean and variance is a 
useful characteristic property. and is used in Section 5.3 as the basis of a 
test of the hypothesis that counts follow a Poisson distribution. 

3.2.2 The negative binomial distribution 

Suppose, rather informally, that (3.2.1) applies locally, but that the mean 
number of plants per quadrat varies over the plane because of environmen- 
tal heterogeneity. If the source of this environmental variation is both 
known and observable, the constant u in (3.2.1) can be  replaced by a 
regression-like equation, 

where the z,, t,, etc., are the values of explanatory variables observed in the 
ith of m quadrats. In the absence of such information, we can instead 
describe variation in y as stochastic; we attach a distribution to y and 
suppose that independent realisations from this distribution determine the 
actual values of 11, for the m quadrats. If 11 is a continuous random variable 
with probability density function f(.), then (3.2.1) is replaced by a mixed 
Poisson distribution. 

In particular, if y has a gamma distribution with 

f ( y ) = ( k ~ h ) ~  yk-I ek""7r(k): yzO, 

then 

which defines the negative binomial distribution. Here, h>O is the mean of 
the distribution and k>O determines the variance via the equation 

Thus, k-I can be regarded as a measure of heterogeneity. Notice that 
Var(X)+ h as k +  a, and in this limiting case (3.2.2) reverts to (3.2.1) with 
p=h. Also, r ( .  ) denotes the gamma function,which is extensively tabulated 
(e.g. Abramowitz & Segun 1965, Ch. 6). 

The  negative binomial distribution therefore provides a second possible 
model for quadrat counts in a naturally regenerated population and has 
often been used for this purpose. Evans (1953) gives a number of ecological 
examples. Eneroth (1945), Tiren (1949) and others describe applications in 
Swedish forestry research. However, it should be appreciated that the 
derivation given here makes no explicit reference to any underlying spatial 



process and it is in fact an open question as to whether any realistic spatial 
process incorporating random heterogeneity can lead to a negative binomi- 
al quadrat count distribution. See. for example, Matern (1971) and espe- 
cially the discussion thereof. 

3.2.3 The binomial distribution 

Suppose that n plants are placed in a given region and that each plant 
survives with probability p ,  independently of all other plants. Then the 
number of surviving plants follows a binomial distribution, defined by 

This suggest that the binomial distribution is a plausible model for quadrat 
counts in an artifically regenerated population for which initial planting 
records are available. 

3.2.4 The beta-binomial distribution 

As in (3.2.2) we can argue that (3.2.3) might apply locally. but that the 
probability p will vary over the plane because of a heterogeneous environ- 
ment. It  might then be reasonable to postulate stochastic variation in p. 
leading to a mixed binomial distribution. In particular. if p has a beta 
distribution with 

we obtain the beta-binomial distribution. 

Px=(:) B ( a + r ,  b t n - x )  ! B(a, b): x=O, 1. . . ., n 

where B(.) defines the beta function. 

Following Griffiths (1973), a convenient re-parameterisation of (3.2.4) is to 

in which case the mean of the distribution (3.2.4) is nx. Also, (3.2.3) is 
obtained as a special case with 0 = 0 ;  thus, O is a measure of heterogeneity. 

General comments made in (3.2.2) about the device of postulating 
stochastic variation in the parameter of a distribution, and in particular the 
warnings about the uncertain relationship of (3.2.2) to any underlying 
spatial process, remain applicable to the distribution (3.2.4). All that can 
be said concerning the choice of the gamma and beta distributions in 
deriving (3.2.2) and (3.2.4) respectively is that each provides a flexible, 
two-parameter class of distributions which can assume many different 
shapes. In the case of the gamma distribution, f ( . )  is a monotone decreasing 
function for k s l ,  is unimodal and positively skewed for k > l ,  and becomes 
symmetric in the limit k - a .  For the beta distribution, f(.) may be mono- 
tone increasing ( a > l ,  b ~ l  or a =  1, b<l ) .  monotone decreasing ( a s l ,  b > l  
o r  a < l ,  b = l ) ,  uniform ( a = b = l ) ,  unimodal (a>l ,  b > l )  or U-shaped ( a < l ,  
b < l ) .  



3.3 Bivariate distributions 

In developing a flexible class of b inr ia te  distributions which could be used 
as models for bivariate quadrat counts, we should like to proceed via 
plausible mechanistic assumptions concerning the way in which dependence 
between two types of individual might arise. This appears to be difficult. 
and we are aware of no successful investigations along these lines. We 
therefore adopt a purely statistical approach, and ask whether we can 
provide a class of bivariate distributions which incorporates two univariate 
distributions of the type discussed in Section 3.2, together with one or more 
additional parameters describing the nature of the dependence between the 
two sets of quadrat counts. 

Let random variables X and Y denote the counts of two types of 
individual in a particular quadrat and suppose that the tnarginul distribu- 
tions of X and Y have been specified as 

and 

Write the rnr~rg~nal  distribution functions of X and Y as 

and 

and define a bivariate distributiotl furactiotz for X and Y by 

W e  require a specification of H(.) which is compatible with prescribed 
forms for F(.) and G(.) ,  i.e. we require H(.) to satisfy 

A solution to this problem has been provided by Plackett (1965). Plackett's 
class of bivariate distributions is defined by 

The joint probability distribution r,,.=P {X=x. Y=y) can be recovered 
from (3.3.2) as 

In evaluating r,? we must remember that for a nonnegative random 
variable X. F(x)=O whenever x<O, and similarly for Y and G(y). Despite 
its complicated form Plackett's family has two attractive features: 



(i) it holds for any prescribed F(.) and G(.) 
(ii) it can embrace perfect positive association ( q ~ + a ) ,  independence 

(Q = 1) and pefect negative association ( 9  =0). 

A simpler-looking class of distributions is obtained by writing a = y - 1 ,  
expanding (3.3.1) as a power series in a and discarding terms in u' and 
higher powers. This gives 

The price paid for the simplicity of this formula is a loss of generality. 
Equation (3.3.2) defines a valid bivariate distribution function H(.) only for 
a < 1 ,  which in turn restricts the strength of the association between X and 
Y. For further discussion, see Mardia (1970). 

3.4 Likelihood analysis 

We have now assembled a fairly wide range of distributions for the descrip- 
tion of bivariate quadrat counts. For naturally regenerated populations. the 
negative binomial distribution (3.2.2) provides a two-parameter class of 
marginal distributions which includes as a limiting case the one-parameter 
Poisson. For artificially regenerated populations, the beta-binomial distri- 
bution (3.2.4) fills a similar role. with the one-parameter binomial as a 
special case. In either event. the parameters of the distribution have a 
natural descriptive interpretation in terms of average values (i. for the 
negative binomial, s for the beta-binomial) and variability or heterogeneity 
(kp'  for the negative binomial, 0 for the beta-binomial). For any combina- 
tion of marginal distributions, Plackett's distribution family (3.3.1) contri- 
butes a fifth parameter to describe the dependence between the two types 
of individuals. in a manner which again admits of a fairly natural descriptive 
interpretation. We now consider the problem of model selection and para- 
meter estimation within this framework. 

Quite generally, consider a set of observations {x,: i=1,  . . ., m) arising as 
an independent random sample from a probability distribution (p,: x=O. 1. 
. . .}, which incorporates a vector of parameters Q = ( e l ,  . . .; 0,) .  The log- 
likelihood function for Q is defined as 

and the value of Q which maximises L(.) is the maximum likelihood 
estimate of Q ,  written as B .  

A useful general result about maximum likelihood estimation is the 
following. Write ~ a r ( 6 )  for the pxp matrix with (i, j)t" element 

Then, asymptotically and under mild regularity conditions. 

where the term in curly brackets is to be interpreted as a pxp matrix with 
(i, j)th element. 



a' L(Q) 
E -- [ mi a,, I 
and the expectation is with respect to the assumed distribution of the xi: 

i = l ,  . . ., m. In practice, if the expectation raises technical difficulties, 
approximate large sample standard errors for 6, are obtained by omitting 
the expectation in (3.4.1) and replacing the unknown 9 by @. 

A second useful result concerns tests of hypotheses. The hypothesis that 
the assumed distribution {p,: x=O. 1, . . .) is appropriate can be written 
symbolically as 

for unspecified values of O,. Suppose that, within HI, we wish to test the 
hypothesis that some of the p parameters are redundant, namely, 

for some q<p. If we then write Li for the maximised log-likelihood under 
the hypothesis Hi ,  we have that if Ho is true the quantity 2(Ll-Lo) is 
distributed approximately as chi-squared on p-q degreees of freedom; 
significantly large values cast doubt on the validity of Ho within the wider 
hypothesis H I .  These ideas extend immediately to the case of bivariate data 
(xi, yi): i = l ,  . . ., m and an assumed distribution {r,,: x, y=0, 1, . . .). For a 
detailed account at a fairly advanced level, see Silvey (1975). 

The application of likelihood analysis to the problem of fitting a bivariate 
quadrat count distribution is illustrated by Figure 6. Note that for each 
marginal distribution we apply a test of Ho against an alternative H1 and 
adopt the appropriate one-parameter or two-parameter marginal distribu- 
tion according as the result of the test is. respectively, nonsignificant or 
significant. These tests determine the prescription for F(.) and G(.) in 
(3.3.1), within which we proceed to test the hypothesis, Hn: v = 0 ,  of 
independence. The reference to "marginal parameters" in Figure 6 refers 
to  the fact that the maximum likelihood estimates of, for example, p and p 
in a bivariate Poisson-binomial distribution with data {(x,, y,): i = l ,  . . ., m) 
are not in general the same as the maximum likelihood estimates from two 
univariate analyses with respective data {x,: i = l ,  . . . , m )  and {y,: i = l ,  . . .. 
m).  It should be noted that in the application described in Section 3.5, the 
actual differences were rather small. For reference, we give here the 
estimation formulae for the various types of univariate distribution under 
consideration. 

3.4.1 Poisson 

The maximum likelihood estimator is 

with estimated variance 
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Figure 6. Flow-chart for likelihood analysis 



3.4.2 Negative bitzonzial 

The  log-likelihood is maximised numerically. using the simplex algoFhm 
of Nelder Oic Mead (1965). Maximum likelihood estimates ' and k are 
uncorrelated. with estimated variances 

and 

where the eqpectation is with respect to x whose distribution is (3.2.2) with 
parameters i: and c. 

The maximum likelihood estimator is 

with estimated variance 

Numerical maximisation of the log-likelihood is again effected by the 
Nelder-Mead algorithm. To evaluate the variance-covariance matrix of (s, 
O )  write 

w-l n-x-1 

d,, (n ,  x ) = C ( ? + j 6 ) - ' +  C ( ~ + j 6 ) - ~  
]=(I 1=0 

and 
h- I n-x-1 n - l  

d2? (n. x ) = C j 2 ( 3 + j 6 ) - ' +  C j 2 ( ~ + j 6 ) - ' + C j 2 ( l + j 6 ) 4  
, = o  I = ( '  1=1 

where we recall that ~ = l - r r .  Also define 

where the expectation is with respect to X whose distribution is (3.2.4) with 
parameters 

Then. 



3.5 Application to PTAX data 

We consider the analysis of counts in circular sample plots within a stand in 
the PTAX investigations. We consider three such variables, 

X=Number of planted survivors 
Y=Number of wild softwood plants 
Z=Number of wild hardwood plants 

This generates three possible bivariate analyses, all of which utilize 
Plackett's class of bivariate distributions with appropriately specified mar- 
ginal distributions: binomial or beta-binomial for X. Poisson or negative 
binomial for Y and for Z. 

Evidently, a complete trivariate analysis would be preferable, but we 
know of no suitable family of trivariate distributions. Another point which 
should be emphasised at the outset is that these analyses ignore the spatial 
arrangement of the sample plots. A new technical difficulty with the 
PTAX-data is that in the case of the wild hardwood plants the count Z is 
recorded exactly only for values less than 10. We therefore group values of 
10 or more, and modify the assumed marginal distribution accordingly: 
thus, po, p,. . . ., p, are specified by the Poisson or negative binomial 
formulae (3.2.1) and (3.2.2) respectively. but the upper tail probabilities 
are replaced by a single probability, 

3.6 Results 

Table 2 shows the results of this analysis for a single stand, number 1202 
which has 46 plots recorded as being suitable for planting. Note that 

( 9  

(ii) 

(iii) 

for planted survivors the binomial distribution is accepted against the 
beta-binomial 
for both wild softwood and wild hardwood the Poisson distribution is 
rejected overwhelmingly in favour of the negative binomial. 
independence is accepted between planted survivors and wild 
softwood. but rejected in favour of dependence in the other two cases. 
The estimated values of y, are greater than 1,  indicating positive 
dependence. 

Result (iii) is somewhat atypical in that for most stands the analysis 
suggested dependence only between wild softwood and wild hardwood. 

This type of analysis has been applied to 185 stands, with somewhat 
mixed results. The proportion of planted survivors in a stand varies be- 
tween 0.11 and 0.98, with a mean and standard deviation of 0.69 and 0.19 
respectively. The binomial is rejected at the 5 72 level of significance on 65 
out of 185 occasions. The average number of wild softwood plants per plot 
varies from 0.02 to 5.18 with a mean and standard deviation of 1.41 and 
1.09, and the Poisson is rejected in favour of the negative binomial on 140 
out of 185 occasions. For wild hardwoods; the corresponding figures are 
0.21 to 12.50. 4.50 and 2.83, 182 out of 185. 



Table 2. Bivariate quadrat count analysis of stand 1202. 
a) Marginal distributions: L,, and L, indicate maximised log-likelihoods for 

appropriate one parameter and two parameter distributions respective- 

ly. 

Variable Lo L1 2(L,-L,)) p-value Conclusion 

X -29.08 -28.89 0.38 0.5221 binomial 
Y -488.63 -10.12 897.02 0.0000 negative binomial 
Z - 132.98 -74.72 116.52 0.0000 negative binomial 

b) Bivariute distributions: L,, and L, indicate maximised log-likelihoods for 
independence (*=I) and general bivariate distribution, using marginal 
distributions implied by table 3a. 

Variables Lo L 1 2(L, -L,,) p-value Conclusion 

x, y -69.20 -69.17 0.06 0.3938 independent 1.21 
x, Z -103.80 -100.67 6.26 0.0120 dependent 6.97 
Y ,  Z -114.84 -112.33 5.00 0.0239 dependent 3.60 

Parameter estimates for rnargirzal distributions 

X: binomial 8-0.73 A 

Y: negative binomial Lb= 1.03. g-0.10 
Z:  negative binomial h=2.64. k=0.21 

The distribution of p-values in testing for dependence between planted 
survivors and wild softwood appears fairly uniform; for example 23 out of 
185 p-values are less than 0.10. which is close to expectation in the absence 
of any genuine dependence. A similar picture emerges with regard to 
planted survivors and wild hardwood, with 23 p-values less than 0.10. 
However, for wild softwood and wild hardwood 59 p-values are less than 
0.10 and 135 stands give 1$>1 so that, overall, there appears to be some 
genuine positive dependence in this case. 

Attempts have been made to relate the estimated values of the various 
parameters to a number of explanatory variables at stand level. We find 
significant, but small, positive correlations between the proportion of plant- 
ed survivors in a stand and the average number of wild hardwood plants per 
plot, and between the average numbers of wild softwood and wild hard- 
wood plants per plot. In conclusion, the PTAX data show enormous 
variation between the various stands, with no clear indications in the 
recorded data of why this should be so. We claim only that the analysis 
indicates in broad terms the type of marginal distributions and dependence 
structures which might reasonably be used in a simulation model. 



4 A relationship between two measures 
of variation in yield within a stand 

4.1 Introduction 

One objective of a silvicultural programme is to achieve a uniform growth, 
in the sense that the "yield per unit area" in different parts of the stand 
should be roughly constant. In young stands, the variation in yield per unit 
area over the stand is measured by first counting the numbers of stems in 
sample plots of a standard size, distributed randomly through a stand, and 
then calculating the sample variance-to-mean ratio of these stem-counts. In 
older stands, a similar sampling procedure is used. but total basal area is 
now a more useful measurement than stem-count and the variation in yield 
per unit area is therefore expressed by the sample coefficient of variation of 
the total basal area per plot. 

In order to establish a theoretical relationship between these two quanti- 
ties we suppose that the number of stems in a sample plot of a specified 
area is a random variable N with mean p, and variance 0:; we write v, = 

a',/u,,. We suppose also that basal area for a single stem is a random 

variable X with mean p, and variance a;; we write c, = oxlux. Then, the 

total basal area per plot is a random variable Y which is related to N and X 

by 

The Xi are assumed to be independent random variables, all with the 
same distribution as X. We use y. 05 and c, = a&, to denote the mean, 

variance and coefficient of variation of Y. 
We shall use the notation of conditional expectation, and require the 

following results concerning two random variables, X and Y: 

Var (Y) =Var, [E, (Y X)] +E, [Var, (Y ' X)] (4.1.3) 

Note that the subscript on the expectation symbol indicates the source of 
the random variation (X or Y) with respect to which the expectation is 
taken. Further discussion can be found in most intermediate texts in 
mathematical statistics, for example Hogg & Craig (1970). 

4.2 Relationships for plots of a single size 

From (4.1.1) we deduce that E(Y N)=N E(X,)=Nu,, and Var (Y N)= 
N ~ a r ( ~ , ) = ~ a t .  Now, using (4.1.2) and (4.1.3) we further deduce that 



These formulae are given in the appendix to M a t h  (1972). 
Note that (4.2.1) assumes only that individual basal areas are indepen- 

dent.  A comparison between (4.2.1) and the corresponding empirical rela- 
tionship, calculated by sampling the typestand data, will be presented in 
section (4.4) in order to provide an indirect check on the validity of this 
assumption. 

4.3 Relationships for plots of different sizes 

To correspond to current silvicultural practice we now extend the discus- 
sion by assuming that the total basal area measurements in older stands 
refer to  larger plots than those used to obtain stem-counts in younger 
stands. We therefore introduce a random variable No. the stem-count in a 
plot of unit area, with mean. variance and variance-to-mean ratio PO. 

oi and v,, = o$uo. If now N refers to stern-count in a plot of area A>1. and 

counts in non-overlapping sub-plots are independent. it follows that 

and these relationships may be substituted into (4.2.1) to give 

A s  before. this theoretical result will be checked empirically by reference 
to  the typestand data. However. we remark that the assumption of inde- 
pendent counts in non-overlapping sub-plots implies quite severe restric- 
tions on the nature of the underlying spatial point process of stem locations. 
In particular, in Section 3 we have already discussed the idea that the local 
environment at a point within a stand may exhibit random spatial variation 
over the stand, and this provided a heuristic justification for using the 
negative binomial and beta-binomial distributions to describe stem-count 
data. If this spatial variation is "smooth", in the sense that adjacent plots 
enjoy similar environmental conditions and hence similar mean number of 
stems per unit area. the assumption of independent stem-counts in non- 
overlapping sub-plots is violated. By the same token. if such spatial vari- 
ation affects vigour of growth, stem basal areas within a plot will be 
positively correlated and this will inflate the variance of the total basal area 
per plot. Conversely. competitive interactions between stems within a plot 
may reduce the variance of the total basal area per plot. 

4.4 Application to typestand data 

Each of ten cleaning stands were sampled randomly by 64 plots of radius 
0.5 m ,  by 16 plots of radius 1.0 m and by 4 plots of radius 2.0 m. and the 
sample analogues of the various quantities in the relationship (4.2.1) were 
calculated. after applying each of the seven possible cleaning regimes as 
described in Section 1.2. This gives a total of 210 pairs of observed and 
predicted values of c, which can be plotted in various ways. 

First, Figure 7 shows a scatterplot of all 210 pairs. which shows no 
systematic departure from equality of observed and predicted values. We 
might expect that any dependence between stem basal areas would be 
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Figure 7. Observed and predicated values of coefficient of variation of total basal 
area per plots (10 stands, 7 cleaning regimes. 3 plot radii). 
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accentuated as the cleaning regime proceeds from 0 to 6. the higher 
numbered regimes being progressively more selective. It  is therefore reas- 
suring that when the 30 pairs for each cleaning regime are plotted separate- 
ly. the approximate equality of observed and predicted values is main- 
tained. Figure 8 shows the scatterplots corresponding to cleaning regimes 0. 
3 and 6. 

Separate scatterplots for the three different plot radii are shown in Figure 
9. These show approximate equality between observed and predicted val- 
ues, although in all three cases there is a slight preponderance of observa- 
tions below the bisector. As noted earlier. two contrary phenomena oper- 
ate to modify the predicted relationship (4.2.1) - smooth environmental 
variation and competetive interactions induce positive and negative corre- 
lation, respectively, between basal areas of neighbouring stems. The impli- 
cation of our results is that in the typestand data. the net effect of these two 
phenomena is small. 

Finally. we note that (4.2.1) and (4.3.1) together imply that c, should be 
inversely proportional to plot radius. The observed values of c!, for plots of 
radius 0.5. 1.0 and 2.0 meters. averaged over ten stands and seven cleaning 
regimes, are 2.79 (0.10), 1.36 (0.07) and 0.48 (0.03). respectively. Figures 
in parentheses are standard errors. The first two of these average values are 
in approximately the predicted ratio of two to one. but the average value 
for the largest plot size is significantly smaller than predicted. Table 3 
presents observed values of c, separately for each of the seven cleaning 
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Figure 8. Observed and predicted values of cocffi- 
cient of variation of total basal area per plot (10 
stands, 3 plot radii). 
(a) cleaning regime 0 (no cleaning). 
(b) cleaning regime 3 (cleaning to 2000 stemslhect- 

are). 
(c) cleaning regime 6 (cleaning to 800 stemslhect- 

are). 
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Table 3. Observed coefficients of variation of total basal area per plot. 
averaged oi7er ten typestands. (Standard errors in parentheses.) 

Plot Cleaning regime 

radius 0 1 2 3 4 5 6 

regimes, and shows that the average values of c, for the largest plots drift 
progressively below the values implicit in the relationship (4.3.1) as the 
cleaning regime changes from 0 to 6. This is not unreasonable. since one 
aim of the cleaning operation is to produce an even spatial distribution of 
good quality stems. Two plausible consequences of this are that the vari- 
ance of the number of stems per plot does not increase in proportion to its 
area and the basal areas of near-neighbouring stems exhibit negative spatial 
autocorrelation. Both these factors would contribute to a reduced coeffi- 
cient of variation of total basal area per plot. 

We should perhaps emphasise that the area covered by each typestand is 
rather small. In practice, problems caused by gross environmental \-arilt' ion 
within a stand may be more acute. with consequent distortion of the 
predicted relationship (1.2.1). 



5 Statistical methods for sparsely sampled point 
patterns 

5.1 Introduction 

The locations of trees in a stand constitute a spatial point pattern, by which 
we mean a set of point locations, henceforth events, in some essentially 
planar region. When the events are of two or more distinguishable types, 
for example trees of different species, we shall call the resulting superposi- 
tion of the several component patterns a multivariate spulial point pattern. 

A parameter of obvious relevance in the assessment of stand quality, at 
least in the early stages of stand development. is the intensity, or mean 
number of stems per unit area. Equally relevant is the spatial distribution of 
stems through the stand, the ideal being an even. or "regular" spatial 
distribution (see Section 5.2 below). In a mixed stand, it is also important 
to understand the nature of any associations which may exist between 
different species. In accord with historical development we first discuss at 
some length the concept of pattern and the use of quadrat counts or 
distance measurements in testing the hypothesis of a completely random 
spatial point pattern. We then describe some methods of intensity estima- 
tion which are intended to be robust against departures from a completely 
random pattern. and conclude with some comments on the problem of 
testing associations in a multivariate pattern. 

Figure 10 shows three fictitious stands which contain the same number of 
stems but display markedly different patterns. The first is a regular pattern, 
the second aggregated and the third completely random, in a sense which 
will be made precise in Section 5.2. We see that the description "regular" 
implies a more or less even distribution of stems over the stand. whilst 
"aggregated" implies the opposite effect. 

One  approach to the analysis of pattern is to envisage a continuous range 
of variation, from regularity through randomness to aggregation. This one- 

(a) a regular pattern (b) an aggregated pattern (c) a random pattern 

Figure 10. Three fictitious stands. each containing 30 stems in the unit square 



(a) heterogeneous environment (high intensity in 
top-right and bottom-left-corners). 

(b) heterogeneous environment as above. plus lo- 
cal competitive interactions. 

Figure 11. Two further fictitious stands, each containing 30 stems in the unit square 

dimensional interpretation is an oversimplification. For example, aggregat- 
ed patterns can arise either through clustering of individual stems or as a 
consequence of environmental heterogeneity; elements of aggregation and 
regularity can be combined when local competitive interactions are super- 
imposed on a heterogeneous environment. Figure 11 gives some more 
fictitious stands which display these features. We conclude that a single 
parameter cannot in general provide an adequate description of pattern. 
and modern statistical techniques recognise this. Thus, for example, Mead 
(1974) discusses the detection of different "scales of pattern", whilst Ripley 
(1977) and Diggle (1978, 1979) are concerned with fitting explicit stochastic 
models. 

In field-work, a complete map of the stand will not be available and these 
modern techniques are inappropriate. Instead, data are extracted from the 
underlying pattern by one of two fundamentally different types of sampling 
technique, usually referred to  as quadrat sampling and distarzce sampling. 
Quadrat sampling consists of recording how many events are in each of a 
number of randomly located plots in the stand, whilst distance sampling 
consists of recording the distances from each of a number of randomly 
located points to  neighbouring events, defined in various ways: a simple 
example would be to record the distance from each point to the nearest 
event. In this context an "index of pattern" will provide a useful, albeit 
limited, description of pattern which might contribute towards the evalua- 
tion of an individual stand. 

Sections 2, 3 and 4 of this report were concerned with particular aspects 
of the analysis of quadrat count data obtained from stands covering a 
relatively small area. The emphasis in the present section is much more on 
the analysis of data obtained from a preliminary survey of a much larger 
area. 



In Section 5.2 we give a precise definition of a completely random 
pattern as a realisation of a homogeneous, planar Poisson process, and 
derive som useful distributional results for this process. In the remainder of 
Section 5 we use the term complete spatial randomness, henceforth CSR, to 
mean that the pattern in question forms a partial realisation of a homogene- 
ous, planar Poisson process. Note that CSR was used in a different, but 
analogous, sense in Section 2. 

Our subsequent discussion of tests of CSR therefore carries the implicit 
assumption that any statistic which is used to test CSR can also be used as 
an index of pattern. We anticipate that a good index will be one which gives 
a powerful test against both regular and aggregated alternatives to the 
Poisson process; whilst a powerful test will not necessarily give good 
discrimination between different degrees of regularity or aggregation it is 
certainly the case that a weak test cannot do so. Unless explicitly stated 
otherwise, we shall always arrange that significantly small values of a test 
statistic indicate regularity, and significantly large values aggregation. in 
the underlying pattern. 

5.2 The Poisson process 

As noted above. the Poisson process is used as an idealised standard of 
complete spatial randomness, relative to which pattern may be assessed. 
Informally, the Poisson process consists of events distributed independently 
and uniformly over the planar region occupied by the stand. Thus, there is 
no spatial variation in iiztensity, defined as mean number of events per unit 
area, nor are there any interactions between events. For the pattern shown 
as Figure lOc, the events were generated as an independent random sample 
from the uniform distribution over the unit square. 

More formally, the Poisson process is defined by a single parameter h ,  
the intensity of the process, such that if p,(A) denotes the probability 
distribution of the number N(A) of events in an area A,  then for small A,  

where o(.) means "of smaller order of magnitude than", and 
(ii) for any two disjoint areas A and B,  N(A) and N(B) are statistically 
independent. 

Then, N(A) follows a Poisson distribution, 

the quadrat count distribution for the Poisson process, and (ii) ensures that 
counts in disjoint areas are independent. The derivation of (5.2.i-Yifgiven 
for a Poisson process in one, temporal dimension by Cox & Lewis (1966, 
Ch.  2). A heuristic justification of the result is obtained by considering a 
large number no of events in a large area A, .  Each event lies within A with 
small probability AIA,, independently of all other events. The number of 
events in A therefore follows a binomial distribution, to which the Poisson 
distribution provides a good approximation for large no and small AIA,. 
The  result (5.2.1) follows, with h=n,IA,. 



Various distance distributions for the Poisson process can be derived by 
simple geometrical arguments, using (5.2.1) and property (ii). For exam- 
ple, let X denote the distance from a randomly located point to the nearest 
event, then 

so the P D F  of X is 

a result which has reappeard many times in the ecological literature since its 
original derivation by Hertz in 1909 (Holgate, 1972). The distribution 
(5.2.2) also applies to the distance from a randomly selected event to the 
nearest other event. Suppose. however, that E is the nearest event to a 
randomly located point P, and F the nearest other event to E .  Clearly. the 
distance X-PE follows the distribution (5.2.2) but Y = E F  does not. Figure 

Figure 12. The nearest evenr to a randomly located point. 
P is a randomly located point. E the nearest event to P and F the nearest event to E. 
Distance PE=x. distance EF=). Shaded area is region searched for event F. 



12 shows that the conditional distribution of Y. given X=x,  is determined 

by 

P {Y>y I X=x)=exp {-i,A(x.y)). 

where A(x,y) is the shaded area in Figure 12. 

cos Q=yl2x and 8=x-2@. The conditional PDF of Y ,  given X=x is 

and the joint PDF of X and Y is 

h(x.y)=f(x)g(y x). 

This distribution. and its use for assessing pattern, is discussed by Cox & 
Lewis (1976). Similar arguments can be used to derive \.arious other 
distance distributions, some of \vhich are discussed in Section 5.3. 

5.3 The quadrat sampling method 

The quadrat sampling method consists of locating rn quadrats of a specified 
size and shape at random within a stand. and observing the numbers n,: 
i = l ,  . . . .  rn of events within each quadrat. Under CSR the n, are an 
independent random sample from the Poisson dimibution (5.2.1) hvhich is 
characterised by the equality of its mean and variance, irrespective of the 
value of i.. Thus. a natural test statistic is the sample variance-to-mean 
ratio, or irzdex of dispersion. 

Under CSR. (rn-1)1 follows a chi-squared distribution with m-1 de- 
grees of freedom and the expectation of I is 1 .  The index of dispersion was 
first used in this context by Fisher. Thornton & Mackenzie (1922): subse- 
quent ecological applications include those reported by Blackman (1935) 
and by Ghent (1963). See also Sections 3 and 4 of this report. 

With regard to implementation, the power of a test of CSR against any 
specified alternative obviously increases with m ,  but also depends in an 
unpredictable way on the size and shape of the indi~idual quadrats. Some 
recent results in this area are given by Perry & Mead (1970). Economic 
considerations will presumably imply some upper limit on rn and on the 
total quadrat area. There will also be some practical constraint on the 
individual quadrat size. 111 forestry work. circular quadrats are presumably 
the easiest to use. and have the advantage that any "edge-effects" are 
thereby minimised. A number of authors. including Ghent (1963) have 
suggested that a systematic bias may be introduced by a tendency to count 
events which in fact lie just outside the quadrats. in the mistaken belief that 
an empty quadrat contains no information. Finally, the total quadrat area 
should be no more than a small fraction of the total area occupied by the 
stand. For further discussion of this last point, see Section 5 . 5 .  



The index of dispersion appears to have no serlous r n  als as a test s t ~ ~ t ~ s t i c  
based on quadrat samplmg For example. Cormack (1979) notes that both 
Lloyd's (1967) "index of crowdmg", {zn,(n,-1))lmii. and Morisita's 
(1959) "index of aggregation", {zn,(n,-l))/{fi(mfi-1)). need to be con- 
verted to (m-1)1 for purpmes of test~ng CSR 

5.4 Distance sampling methods 

A number of distance sampling methods were developed in American 
forestry (e.g. Cottam & Curtis 1949) as a solution to the practical problems 
raised by quadrat sampling in mature forests. Statistical aspects of these 
satnpling procedures have since been investigated by many authors, and the 
large number of distance-based test statistics now available contrasts sharp- 
ly with the situation for quadrat sampling. 

Persson (1964) gives a detailed review of early developments in this field. 
Another useful reference is Holgate (1972) whilst some more recent papers 
are cited explicity in the remainder of this section. 

5.4.1 Further results fbr the Poisson process 

A transformation to U = nX2 in the result (5.2.2) gives the PDF f(u) = &"', 
which defines a chi-squared distribution on two degrees of freedom. More 
generally, we have the following: 

Let Xk,@ denote any distance obtained by searching for the kth nearest 
event in a Poisson process, within a sector of included angle 0 ,  and let 

a) @>x. \, b) OSX, sector directed away from PE 

c) @ % c ,  sector directed towards PE. 

E 
Figure 13. Searching for the nearest neighbour. 
P is a randomly located point, E the nearest event 
to P and F the nearest event to E within the sector 
of included angle O. Shaded area is region searched 
for event F. 



Uk=OhX&. Then U k  is distributed as chi-squared on 2k degrees of 

freedom. 
Note in particular that this applies equally to distances measured from a 

randomly located point or a randomly selected event. It can also apply to 
distances measured from the nearest event to a randomly located point, but 
only if OSX since otherwise the area searched cannot be a sector. Figure 13 
shows why the orientation of the sector is also important in this case. 

In constructing distance-based test statistics we shall need to combine 
distances measured from a number of sample points or events. In doing 
this, we shall use property (ii) of the Poisson process. whereby distances 
obtained by searching disjoint areas are statistically independent. We shall 
further assume, with reservations to be noted in Section 5 .5 ,  that distances 
derived from different sample points or events are also statistically indepen- 
dent. 

5.4.2 Tests based on univariate sarnpling procedures 

Let XI,  . . . , x,, be the distances from each of m randomly located points to 
the nearest event. Under CSR the squared distances U,=x'are an indepen- 

dent random sample from an exponential distribution. which has coefficient 
of variation unity. A possible test statistic is therefore the sample squared 
coefficient of variation, 

c=si  / ii2, (5.4.2.1) 

where u=m-'Cu, and st=(m-1)-'{xu:-(xu;):im). 

Diggle (1973) shows that the large sample mean and standard deviation 
of c under CSR are 1 and 2 1 ~ 2  respectively. Eberhardt (1967) proposed a 
similar statistic, but based on the distances x, themselves. Eberhardt's 
statistic is 

whose large sample mean under CSR is 4/n=1.27. Tables for testing CSR 
are given by Hines & Hines (1979). 

Both the statistics c and e can be adapted easily to sampling procedures 
which involve some restriction on the direction of search for nearest 
neighbours. Two such procedures which deserve mention in view of their 
possible practical advantages are illustrated in Figure 14. In Cottam, Curtis 
& Hale's (1953) "point-centred quarter", four observations are taken at 
each sample point; this is obviously attractive if the effort required to locate 
sample points in the field is non-trivial. Catana's (1963) "wandering quar- 
ter" has a similar advantage in that a single starting point generates a 
sequence of observations as the field-worker traverses the stand. Note, in 
either scheme, the fixed orientation of the sectors within which nearest 
neighbours are sought. 

5.4.3 Tests based on bivariate sampling procedures 

A number of tests exploit the intuitive idea that point-to-event distances 
will typically be smaller than event-to-event distances in regular patterns, 



I '  

(a) point-centred quarter. 

/ 

0 

(b) wandering quarter 

Figure 14. Two distance sampling procedures. 
In each case. x denotes a sample point and solid lines indicate recorded distances 

Dashed lines de lineate areas of search. 

and larger in aggregated patterns. In particular, let x , ,  . . .. x, be distances 
from each of m sample points to the nearest event within a sector of 
included angle 0 ,  and y l ,  . . ., y,, the correspending distances from each of 
m events to  the nearest event within a sector of included angle @. Under 
CSR @hCx? and @?,Ex; are independently and identically distributed as 

chi-squared on 2m degrees of freedom, and the ratio @ C x ? l @ ~ y ~  is distrib- 

uted as F on 2m and 2m degrees of freedom. 
This approach to testing CSR was first suggested by Hopkins (1954), who 

assumed that the distances y, would be measured from randomly selected 
events, with @=@=2n,  giving test statistic 

The random selection of an event requires complete enumeration of the 
stand, which is presumably impractical. Byth & Ripley (1980) suggest a 
complete enumeration within a number of quadrats laid out systematically 
over the stand, giving il distances y,, . . . y, from which a random sample of 
size m can then be drawn. They recommend m quadrats of such a size that 
they will contain a total of about 5 m events. There would seem to be 
considerable difficulties in implementing this procedure in the field. 



Figure 15. T-square sampling. I 
P is randomly located point. E the nearest event to I 
P and F the nearest event to P within the half-plane 
delimited by the perpendicular to PE through E. 
Distance PE=x. distance EF=y.  

Besag & Gleaves (1973) propose a "T-square" sampling procedure which 
is operationally simpler but leads to tests with reduced power. for equal m,  
in comparison with Hopkins' test. The sampling scheme is illustrated in 
Figure 15. We see that 0=2r r ,  @=x and the test statistic is 

Note in particular the orientation of the half-plane of search for the y,- 
distances. A variant of t is 

t i=m-lc{x;/(xf++y~)), (5.4.3.3) 

whose sampling distribution under CSR is approximately Normal. with 
a third mean 4 and variance (12m)-'. Hines & Hines (1979) introduc- 

statistic, which is Eberhardt's statistic (5.4.2.2), but calculated from tne x, 
and the y i i ~ ,  treated as a single sample of 2m observations. 

Holgate (1965) uses distances (xli .  x2,) from each of m sample points to 
the nearest and second nearest events. Two possible test statistics are 

whose sampling distributions under CSR are the same as for the corre- 
sponding T-square statistics t and t*. 

Cox & Lewis (1976) tackle the complicated distribution which arises 
when the xi are distances from sample points to nearest events and the y, 
are distances from those events to their nearest events. They use only the 
m,<m pairs (x,, yi) for which yi<2x, and consider the sequence of transfor- 
mations O = 2sin-' (yi/2x,), w, = {2x - (n + Oi)cosOi + sin@,)-' and r, = 

4(1 - zw,)/3. This leads to a test statistic 



whose distribution under CSR is approximately Normal, with mean + and 
variance (12mJ1. Cormack (1977) shows that pairs (x,, y,) with yi22x, are 
uninformative. 

A number of power comparisons of these statistics. based largely on 
results from simulations of various reguiar and aggregated alternatives, 
have been published. Diggle, Besag & Gleaves (1976) compare the statis- 
tics (5.4.3.1) to  (5.4.3.5). They conclude that Hopkins' a is the most 
powerful, followed by t and t",  whilst Holgate's h and h" are relatively 
weak, especially so against regular alternatives. These findings are con- 
firmed by Hines & Hines (1979) and Byth & Ripley (1980). Hines & Hines 
also suggest that Cox & Lewis' cl has very similar power characteristics to 
t", despite its discarding some of the data, and that Eberhardt's statistic can 
give a very powerful test when used in conjunction with the T-square 
sampling procedure. 

5.4.4 Tests for heterogeneity 

All the tests described so far in this section are sensitive to changes in the 
"small-scale" pattern presented by the events in question. They are less 
effective in detecting departures from CSR in which CSR applies locally, 
but with possibly different intensities in different parts of the stand; this is 
particularly so of the bivariate procedures described in Section 5.4.3. 

A s  a specific example, we first show how the point-centred quarter 
sampling procedure can be used in this context. Let x,,: j = 1,2,3,4 be the 
distances obtained from the ith sample point. Then, 
xhi(x:, + x;, + x:, + xfJ2 is distributed as chi-squared on 8 degrees of free- 

dom and for m sample points the hypothesis of CSR can be expressed as 
A, = = . . . = h,,. The likelihood ratio test of CSR against the alternative 
of unrestricted h, was given, in a different context, by Bartlett (1937). The 
test statistic is 

b=4{m log(Eu,im)-Clog u,} , 

where u = ~ ~ ~ + x ~ ~ + x ~ + x ~ ,  and the approximate sampling distribution of b 

under CSR is chi-squared on m-1 degrees of freedom. A significantly large 
value suggests rejection of CSR. The distributional approximation is im- 
proved if b is multiplied by a correction factor c, = 24m/(25m + 1). The 
same test can be applied to other distance sampling procedures, although 
the correction factor varies according to the particuiar sampling procedure 
used. In particular, Diggle (1977a) recommends a version based on T- 
square sampling, and intended to be used in conjunction with t". The b- 
statistic uses u = x 2 +  iy2, and the correction factor is 12m/(13m+l). In the 
present context, the sampling distribution o f t "  is the same, whether or not 
the h, are equal. Thus, t* can be used to detect regular or aggregated 
patterns, but if t* does not reject CSR, b can be used to detect heterogene- 
ity, giving a four-way classification of patterns as regular, random, hetero- 
geneous or aggregated. 

The  b-statistic has been constructed for the specific purpose of detecting 
spatial variation in intensity, of the type illustrated by Figure l l a ,  whilst the 
tests described in Section 5.4.3 are concerned more with measuring "local" 
effects of aggregation, in the sense illustrated by Figure lob, or regularity. 



as in Figure 10a. The univariate procedures discussed in Section 5.4.2 can 
be thought of as general purpose procedures for which the alternative to  
CSR is left unspecified. Thus the choice of a test statistic may. and indeed 
should, be influenced by the range of alternatives to CSR which are under 
consideration. Further tests could be devised to test other specific classes of 
alternative. See, for example, Brown & Rothery's (1978) discussion of tests 
designed to detect local regularity combined with long-range aggregation. 

5.5 Robust intensity estimation 

The usual approach to intensity estimation is to derive an estimator which 
has attractive statistical properties for the special case of CSR? and then to 
investigate the extent to which its performance deteriorates under various 
types of departure from CSR. Quite generally, we use 1, to denote the mean 
number of events per unit area for a spatial point pattern. consistent with 
its earlier usage as the intensity parameter of a homogeneous planar 
Poisson process. 

Using quadrat sampling, with m quadrats each of area A ,  the natural 
estimator for h is 

For a realisation of CSR, f i  is unbiased, with variance h/(mA). More 
generally, A is always unbiased if the quadrats are randomly located. but its 
variance depends in an unpl-edictable way o r  the size and shape of the 
quadrats, as well as on the total quadrat area. 

As with tests of CSR, practical considerations have led to the develop- 
ment of various distance-based estimators as alternatives to 'h. Using a 
distance-based approach it becomes more natural to estimate the inverse 
parameter y = h - l ,  the mean area per event. 

Under CSR, the maximum likelihood estimator for y based on distances 
x, from each of m randomly located points to the nearest neighbourinp 
event is 

which is unbiased for y with variance y21m. In contrast to a. unbiasedness is 
not guaranteed under any form of departure from CSR; in particular. in 
aggregated patterns the sample points tend to fall in empty spaces between 
clusters of events, leading to large values of x, and positive bias in 3. 

This undesirable situation can be alleviated if estimators based on point- 
to-event and event-to-event distances are combined, essentially for the 
reason given at the beginning of Section 5.4.3. Diggle (1975. 1977b) 
investigates two estimators based on observations (x,. y,): i=l, . . .. m 
obtained by T-square sampling. The estimators are 



Of these, yT is the maximum likelihood estimator under CSR, but simula- 
tion studies suggest that y], enjoys better robustness properties. Byth 

(1980) suggests that a further improvement in robustness can be achieved 
by using 

The  intuitive explanation given for this is that the use of squared distances 
in allows an occasional very large measurement to exert a dispropor- 

tionate influence on the estimate of y. 
In a series of papers reviewed by Warren & Batcheler (1979). C L 

Batcheler develops an estimator whose starting point is a variant of (5.5.1) 
in which distances greater than some pre-determined threshold are 
grouped. An emprically determined correction factor is then applied to this 
estimator (or, strictly, its inverse regarded as an estimator for 1.) in order to 
increase its robustness. Warren & Batcheler report that this estimator has 
worked well in a variety of applications, but Byth (1980) obtains relatively 
poor results from a simulation study. 

Cox (1976) also discusses the use of a correction factor to improve 
robustness. His estimator takes as its starting point the bivariate sampling 
procedure used for the Cox & Lewis test of CSR. Preliminary results for 
this estimator again appear promising. but comparisons have not yet been 
made with other estimators. 

Patil. Burnham & Kovner (1979) devise a distance-based estimator which 
is unbiased for any stationary point process which does not produce coinci- 
dent points. The price paid for this form of robustness is an apparently 
large increase in variance and, again, no comparisons have been made with 
other estimators. 

5.6 Spatial association 

When two species are present in a stand. an analysis of the spatial pattern 
presented by each component species can be supplemented by tests of the 
hypothesis that the two patterns are generated by independent spatial point 
processes. When k species are present, the application of +k(k-1) such 
tests applied to  each pair of species is loosely analogous to the calculation 
of a correlation matrix for conventional multivariate data. As with tests of 
CSR, rejection or acceptance of the hypothesis under test is of limited 
interest per se, but rather should be seen as a means towards the end of 
describing, at least in a qualitative sense. the nature of any spatial associ- 
ations which are detected. 

Given the obvious practical relevance of this problem. the literature on it 
is surprisingly sparse. One possible explanation is that to be useful. a test 
for spatial association must be nun-parametric in the sense that it should 
not make restrictive assumptions about the nature of the component pat- 
terns. In fact, it is not difficult to produce such non-parametric tests, but 
the power characteristics of these tests in a spatial contest have not yet been 
investigated in any depth. The following comments are based largely on 
results in Diggle & Cox (1981), and on the earlier work of Goodall (1965). 

W e  consider a bivariate pattern, i.e. one formed by two species, and wish 
to test the hypothesis that this pattern is generated by two independent, 



stationary, but otherwise unspecified point processes (by "stationary". we 
mean roughly that the intensity does not vary systematically over the area 
in question). Any of the following results can form the basis of a test of this 
hypothesis: 
(i) counts, N, and N2 say, of the numbers of trees of each species in an 

arbitrarily located quadrat are independent random variables. 

(ii) distances. X I  and X2 say, from an arbitrary point to the nearest tree of 
species 1 and species 2 respectively are independent random variables. 

(iii) if El and EZ are the locations of the nearest tree of species 1 and 2 
respectively to  an arbitrary point P. the directed angle E,PE2 is 
uniformly distributed on the interval 0 to 360 degrees. 

(iv) If X I  and Y,  are the distances from an arbitrary point to the nearest 
tree of species 1, and from an arbitrary tree of species 2 to the nearest 
tree of species 1, then X, and Y, are identically distributed random 
variables (and similarly for X? and Yz). 

Diggle & Cox (1981) discuss tests based on results (ii) to (iv) inclusive: 
their recommendation is to  test for spatial association using a rank correla- 
tion coefficient calculated from observed values of XI and X,. 

If a quadrat-based sampling method is adopted, a natural test statistic 
would be the chi-squared based on the two-way frequency table of counts. 
We are aware of no published comparisons of distance-based and quadrat- 
based methods in this context. 

5.7 Sampling in the field 

We have not attempted to compare quadrat-based and distance-based tests 
and estimators, since the choice between these two sampling methods may 
ultimately depend more on practical considerations than on theoretical 
arguments. and such practical considerations will vary between applica- 
tions. With regard to estimation. the guarantee of an unbiased estimator of 
intensity is a persuasive argument in favour of quadrat sampling. but the 
more robust distance-based estimators work well for moderate departures 
from CSR, and may give better results per man-hour in the field. Similarly 
with tests of CSR, the only valid comparison between quadrat-based and 
distance-based procedures would be one made on the basis of equal effort 
in the field. 

All of the distance-based procedures require a number of sample points 
to be located within the stand. Conceptually the simplest scheme, but one 
which may be difficult in practice. is to locate sample points independently 
at random according to a uniform distribution over some designated region 
A .  A n  alternative procedure would be to take points at fixed intervals 
along one or more straight lines drawn through the stand, or even to define 
a regular grid of points. Whichever procedure is adopted, it is vital that the 
field-worker is given precise instructions. Otherwise, there may be a ten- 
dency to avoid "difficult" spots and to choose sample points in relatively 
open areas of the stand, thus biasing the results. Also, the following points 
should be noted. 

Firstly, distances measured from points too near the edge of the stand 
will tend to be larger than those measured from points well within the 



stand. This represents a further source of bias which can be eliminated if 
the sampling region A is chosen to lie well within the region of interest. On 
the other hand, if A is made too small, the analysis may not be relevant to 
the stand as a whole. As a rough guide. A should be chosen so that no 
observed distance is likely to exceed the minimum distance between the 
edge of A and the edge of the stand. 

Secondly, the number of sample points m should be small in relation to the 
number of events n in the sampling region A. Diggle, Besag & Gleaves (1976) 
recommend that the "sampling ratio" mln should not exceed 0.1. Byth & 
Ripley (1980) suggest that for random sampling a value of mlns0.05 
is preferable, but that a larger sampling ratio is acceptable for m points in a 
regular grid. 

A further advantage of a regular grid is that it ensures a "representative" 
sample of points and allows for a retrospective assessment of any "smooth- 
ly varying" spatial phenomena. A possible danger is that the sampling grid 
rnuy coincide with some underlying regularity generated by any manage- 
ment of the stand at an earlier stage of growth. Is this likely to occur in 
practice? 

For quadrat-based methods, it is again important that the area under 
investigation should not be over-sampled. However. we know of no empiri- 
cally determined guidelines for an acceptable sampling intensity. such as 
are cited above for distance-based methods. 



6 Concluding remarks 

Some of the analyses described in this report have proved more successful 
than others, and a recurrent theme has been the difficulty of drawing 
authoritative conclusions from observational data. In experimental work. it 
is often possible to formulate a precise statistical model for the data, and to 
justify the various assumptions by reference to the experimental procedure 
which, inter uliu, attempts to control the effects of potential extraneous 
sources of variation. With observational studies, no such control is possible, 
it becomes less easy to  justify assumptions, and any structure in the 
processes of primary interest may be obscured by apparently unstructured 
variation arising through uncontrolled factors, for example the microenvir- 
onment from which a tree draws nourishment. 

The investigation in Section 2 is essentially exploratory in nature. It is 
valuable only if it points the investigator towards scientifically relevant 
hypotheses concerning the nature of spatial variation in young forest 
stands. 

Section 3 is motivated by the need to provide a collection of quadrat 
count distributions which can then be used in simulations of the biological 
model of stand development. In this respect, it is disappointing that no 
satisfactory class of trivariate distributions has been identified. although the 
empirical evidence from an analysis of PTAX data suggests that univariate 
and bivariate distributions may be adequate in the present context. 

Section 4 also attempts to answer a specific requirement for the biologi- 
cal simulation model. Theoretical relationships between two methods of 
assessing the random variation in plot-yields are derived, and shown to 
correspond reasonably well with empirical relationships observed for type- 
stand data. It would be interesting to investigate further the possible 
explanations for such discrepancies as are revealed between theory and 
data. 

Section 5 is primarily a review of the extensive literature on statistical 
methods for sparsely sampled spatial point patterns. This remains an area 
of considerable research activity. In particular, there is a need both for 
further theoretical study of multivariate patterns and for practical investiga- 
tion of field-sampling techniques to assess their usefulness (or otherwise!) 
t o  the forester. 
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