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Recognition and Modulation of Olfactory Signals in the Noctuid 
moth Spodoptera littoralis 

Abstract 
Food, mates and host plants are essential resources for plant-feeding insects. Optimal 
resource localization that fulfils the physiological need and reproductive goals of an 
insect is of utmost importance. Insects, like most animals, rely largely on the sense of 
smell to locate and evaluate potential resources that enhance their reproductive fitness. 
Confronted with a multitude of stimuli ranging from food to conspecifics, insects 
execute behavioural strategies that are strongly modulated by internal physiological 
factors such as hunger and reproductive status. In this thesis, I address how an insect’s 
reproductive state modulates olfactory perception and ultimately behaviour towards 
adult food, female sex pheromone and larval host plant odours.  

The cotton leafworm Spodoptera littoralis is an appropriate species for studying 
modulation of olfactory perception and behaviour, since the chemical ecology and 
olfactory physiology of mate finding and host seeking is being thoroughly studied. 
Here, I show that mating in female S. littoralis causes transient reduction in the sexual 
receptivity, and a reduction in longevity. Mating induces physiological changes that 
strongly influence olfactory coding and preference in males and females that match 
their current physiological need. Following mating, female S. littoralis switches 
olfactory preference from adult food to egg-laying cues. Unmated female S. littoralis 
are highly attracted to lilac flowers (Syringa vulgaris). After mating, females switch 
their olfactory preference to the host plant cotton (Gossypium hirsutum). Remarkably, 
the behavioural switch from floral to green odours is also mirrored in the primary 
olfactory centre, the antennal lobe (AL). Further, I have identified odorants from cotton 
that elicit robust upwind flight responses in gravid female S. littoralis.   

In male S. littoralis, mating transiently abolishes attraction to pheromone-releasing 
females and cotton volatiles that signal larval habitat and mating sites. This behavioural 
modulation is reflected in the peripheral and central olfactory system, the antenna and 
the AL. In contrast, behavioural and neuronal responses to lilac flowers that signal an 
adult food source are not influenced by mating status. These findings provide an 
excellent substrate to examine how neuronal circuits integrate external sensory 
information with physiological state to shape behaviour. 

Keywords: Spodoptera littoralis, Spodoptera litura, olfaction, modulation, mating, 
antennal lobe, wind tunnel, electrophysiology, optical imaging  
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Graphical Abstract 

  

 
 
Mating-dependent upwind attraction and odour coding in a noctuid moth. 
Flight attraction of unmated and mated (3 h and 24 h after mating) males and 
females of Spodoptera littoralis towards sex (calling females), food (lilac 
flowers), and larval host (cotton plant) odorants in a flight tunnel. Circles 
indicate antennal lobe activity (odour intensity coding); large and small circles 
indicate strong and weak antennal lobe responses, respectively.  
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1 Objectives 
The interplay between an animal’s physiological state and external sensory 
stimuli is the basis for many behavioural decisions which influence 
reproductive fitness. The objective of this thesis was to investigate olfactory-
mediated resource detection which is critical for reproductive success and how 
this process is modulated by the internal physiological state in  S. littoralis. The 
study has been carried out in three consecutive steps. First, the effect of mating 
on the lifespan and reproductive fitness of male and female S. littoralis was 
investigated. Secondly, the question how mating state modulates the olfactory-
driven innate behaviour towards food (Syringa vulgaris), sex (calling female S. 
littoralis) and host plant (Gossypium hirsutum) was addressed. And finally, key 
potential odorants that mediate the attraction of S. littoralis females to cotton, 
G. hirsutum were identified. 
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2 Introduction 

2.1 Insects: From beneficial to harmful disease vectors 

Insects are most abundant with respect to the number of species and biomass: 
80% of the known animal species are insects (Hill, 1997). One of the 
fundamental reasons for the evolutionary success of insects is their adaptability 
to different habitats. Many insects directly or indirectly are beneficial to 
humans. Insects are necessary for pollination of agricultural crops, for the 
production of honey and silk, as animal food, and as biocontrol agents. On the 
other hand, insects are also pests that cause tremendous economic loss to 
humans. Insects are also disease vectors causing millions of deaths both in 
humans and livestock (Hill, 1997). 

Most insects live on green plants, which serve as the primary source of 
energy for heterotrophic organisms. Certainly, insects and plants are 
inextricably linked, and the evolution of plant-insect association has been 
mediated to a large extent by plant chemistry for the majority of insect groups 
(Schoonhoven et al., 2005). The role of secondary plant chemistry has been the 
subject of many discussions on the evolution of the host range of phytophagous 
insects, on speciation and also on the development of sustainable crop 
protection strategies. 

2.2 Resource localization: Physiological state and behavioural 
decisions    

Localization of resources such as food, mate, and host plants is an essential 
component of life history traits that are critical for the growth, development, 
and reproduction of animals, including insects (Bell, 1990). Resources are 
distributed heterogeneously across time and space. Locating optimal resources 
entails costs associated with search time, risk of predation and other 
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environmental factors (Browne, 1993; Bell, 1990). Furthermore, the resource 
requirement by insects varies according to the developmental stage, sex, and 
endogenous factors like nutritional and mating state (Browne, 1993). For 
appropriate resource-oriented behaviour, insects need to keep track of current 
physiological state and external sensory stimuli relevant to the required 
behaviours (Mowrey & Portman, 2012; Browne, 1993).  

In most organisms, including insects, physiology and behaviour are 
inextricably linked and are regulated by a number of factors. Mating is one 
such factor that triggers profound physiological and behavioural changes 
(Anton et al., 2007; Gillott, 2003; Chen, 1984). The common fruit fly 
Drosophila melanogaster, a model species in olfaction research, exhibits a 
repertoire of mating-induced changes such as reduced female receptivity, 
stimulation of oviposition, reduction in longevity, modulation of feeding 
behaviour, and decrease in siesta sleep (Avila et al., 2011; Chapman et al., 
2003). Male and female receptivity in butterflies and moths is also affected by 
mating (Wedell, 2005). In addition, mating reduces immunity (vulnerable to 
infection) in the mealworm beetle Tenebrio molitor (Rolff & Siva-Jothy, 2002) 
and reduces flight activity in the honey bee Apis mellifera (Kocher et al., 
2010). In lepidopteran and dipteran species, the transient or permanent post-
mating changes are largely due to the transfer of male sperm and other seminal 
fluid proteins (SFPs) during copulation (Wedell, 2005; Gillott, 2003; Jin & 
Gong, 2001; Wolfner, 1997; Bali et al., 1996; Chen et al., 1988; Chen, 1984). 
In D. melanogaster, male accessory gland extract contains a sex peptide that 
reduces receptivity and enhances the egg production when injected into 
unmated females (Chapman et al., 2003). In moths, other factors such as 
juvenile hormone and ecdysteriods play a prominent role in such physiological 
and behavioural switches (Wedell, 2005). In the tobacco budworm Heliothis 
virescens males transfer juvenile hormone to the females during copulation that 
stimulate egg maturation (Ramaswamy et al., 2000; Park et al., 1998). 

Mating induced physiological changes strongly influence behavioural 
decisions that further modulate the neural responses to auditory, olfactory and 
tactile sensory stimuli. This sensory gating allows insects to execute 
appropriate behaviour from a repertoire of possible responses (Mowrey & 
Portman, 2012). In the Mediterranean fruit fly Ceratitis capitata, mated 
females switch their odour preference from male pheromone to a host plant 
odour (Jang, 1995). Females of D. melanogaster also undergo a similar dietary 
switch following mating (Vargas et al., 2010). In the male cutworm Agrotis 
ipsilon, mating induces transient behavioural and central nervous system 
inhibition to female sex pheromone (Gadenne et al., 2001). Mating also 
switches olfactory coding and behavioural preference in female S. littoralis 
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(Saveer et al., 2012). Taken together, this suggests that an animal’s behavioural 
decisions are strongly modulated by the internal physiological state allowing 
them to execute appropriate behaviours at the right time and right place to 
enhance their reproductive fitness.   

2.3 Chemical communication 

Animals rely on their sensory systems to perceive the environment in which 
they live. The sensory systems can be classified according to the type of 
stimulus they register; sound (acoustic), light (vision), and chemicals (smell 
and taste) and their relative importance varies from one species to another 
(Dangles et al., 2009). The chemical senses are phylogenetically ancient and 
they are shared by all organisms, from bacteria to mammals (Wyatt, 2003). 
External chemical information is vital to locate and evaluate food, host, shelter, 
mates, and breeding substrates as well as the location of predators. From a 
physiochemical point of view, chemical substances differ in shape, size, 
functional group, carbon chain length, volatility, polarity etc. Natural chemical 
stimuli typically are mixtures of several compounds that vary in composition, 
proportion and aerial concentration. An animal’s olfactory system can detect 
such airborne volatile blends of chemicals and distinguish between them with 
high precision.  

Chemical signals that are used for communication are termed 
semiochemicals, or sometimes infochemicals. Pheromones are a subclass of 
semiochemicals, which are used for communication within the same species 
(intraspecific communication) and are widely used by a variety of organisms, 
from moths to elephants (Wyatt, 2003). Semiochemicals that act between 
individuals of different species are called allelochemicals and are further 
classified based on the cost and benefits to the receiver and the signaller 
(Nordlund & Lewis, 1976). Allelochemicals that benefit the receiver and affect 
the signaller, such as plant volatiles mediating insect attraction, feeding and 
oviposition, are termed kairomones. Allelochemicals that benefit the signaller 
and negatively affect the receiver, such as plant volatiles that act as repellent 
and deterrent against herbivores, are termed allomones. Finally, 
allelochemicals beneficial to both signaller and receiver, such as flower 
volatiles that attract pollinators, are termed synomones. 

2.4 Insect pheromone communication 

Sex pheromones are important chemical signals for intraspecific recognition 
across many taxonomic groups and play a crucial role in speciation events. 
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Recognition of compatible mating partners is an important prerequisite for 
reproductive success. Among other functions, sex pheromones also convey 
information about sex, physiological status and age (Wyatt, 2003). Usually sex 
pheromones are blends of compounds, typically they consist of one major 
component and several minor components that vary in identity or ratio between 
species. In moths, long-range attraction between males and females is mediated 
by female-produced sex pheromone. In addition, males of some moth species 
such as the European corn borer, Ostrinia nubilalis release pheromone through 
hair pencils that act as a short-range signal (Lassance & Löfstedt, 2009; Phelan 
& Baker, 1987). Genetically compatible species recognition occurs mainly due 
to the whole blend emitted by the female, and not to the major component 
alone (Linn & Roelofs, 1989). Presence of minor components gives the signal 
its specificity as shown in the oriental fruit moth, Grapholitha molesta (Linn et 
al., 1987). The role of sex pheromones in the evolution of reproductive 
isolation has, for example, been shown in the small ermine moths, 
Yponomeutidae (Löfstedt et al., 1991). Other factors such as allochronic 
separation of female moth calling behaviour, host plant, and physiological 
factors may also play an important role and enhance the specificity of the 
pheromone communication channel (Groot et al., 2010). 

2.5 Insect food and host location 

To increase the reproductive fitness in terms of longevity and fecundity, insects 
need to efficiently locate suitable food and host sites (Wenninger & Landolt, 
2011; Song et al., 2007). Behavioural and electrophysiological studies on a 
wide range of phytophagous insects have supported the notion that insects use 
blends of volatile compounds to locate their host plants (Riffell et al., 2009; 
Tasin et al., 2006; Bruce et al., 2005), suggesting that insects have sufficient 
specific olfactory receptors (ORs) to detect ubiquitous plant volatiles. Indeed, 
there are numerous examples showing insect olfactory receptor neurons 
(ORNs) specifically tuned not only to the pheromone but also to general plant 
compounds (Bruce et al., 2005; Stensmyr et al., 2001; Hansson et al., 1999). If 
the majority of peripheral receptors of phytophagous insects detects 
compounds that are not unique to their host plants, then the ratio of volatiles 
emitted by the plant becomes a vital component of the olfactory signal, so-
called ‘blend-specific odour recognition’ (Bruce et al., 2005). In this case 
specificity would depend on the particular ratio of components rather than one 
single compound. In addition, any distortion in the natural ratio would result in 
disruption of olfactory orientation to the host plant. Many more studies 
describe that phytophagous insects use blend composition to locate host plants. 
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For example, a 3-component blend of grape volatiles, (E)-β-caryophyllene, 
4,8-dimethyl-1,3(E),7-nonatriene and (E)-β-farnesene in a 100:78:9 ratio at 
remarkably low concentration attracts the female grapevine moth, Lobesia 
botrana, in a laboratory flight tunnel study. Any distortion in the 3-component 
blend abolishes attraction (Tasin et al., 2007; Tasin et al., 2006). A 3-
component blend of peach volatile compounds was attractive to the mated 
female oriental fruit moth, Cydia molesta. Attraction was abolished when the 
single individual compounds were tested (Natale et al., 2003). Another 
behavioural study on C. molesta demonstrates that a 5-component synthetic 
mixture was as attractive to female moths as the natural blend, whereas none of 
the components were attractive when tested separately. When tested 
physiologically, the behavioural active compounds showed unique synergistic 
pattern in the AL (Piñero et al., 2008; Piñero & Dorn, 2007). 

 

2.6 Insect olfactory system: An overview 

2.6.1 Insect peripheral anatomy 

The principle insect olfactory organ is the antenna. Apart from the antenna, 
insects also use maxillary palps in odour detection. Insect antennae vary in 
shape and are divided into three parts; scape (basal segment attached to the 
head capsule), pedicel (attached to the scape with elastic membrane), and 
flagellum (main part of the antenna). The flagellum carries most of the sensilla, 
which show a wide variety of shapes and structures (Keil, 1999). An olfactory 
sensillum houses the dendrites of one to several bipolar ORNs surrounded by 
auxiliary cells. The dendrites of the ORNs are surrounded by sensory lymph 
that is produced by support cells at the base of the sensillum (Keil, 1999). Six 
different types of olfactory sensilla identified in female S. littoralis are: 
basiconic, trichoid (long and short), coeloconica, auricillic and grooved peg 
(Binyameen et al., 2012).  

2.6.2 Odorant receptors 

Odour perception begins when odour molecules are captured by the sensilla 
and diffuse through narrow pores into the sensillum lymph. Here, odour 
molecules bind to the highly abundant odorant-binding proteins (OBPs) that 
transport them to the odorant receptors (ORs) on the dendritic membrane of 
olfactory receptor neurons (ORNs) (Hildebrand & Shepherd, 1997). Insect ORs 
along with gustatory receptors (GRs) and ionotropic receptors (IRs) together 
constitute the insect chemosensory receptors (Benton et al., 2009; Clyne et al., 
2000; Vosshall et al., 1999). These ORs, IRs and GRs are primarily 
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responsible for detecting odorants and tastants, respectively. However, in D. 
melanogaster GRs are also expressed in ORNs that can detect carbon dioxide 
(CO2) (Jones et al., 2007). Insect ORs constitute a highly divergent gene family 
that does not share sequence similarity with the vertebrate and nematode OR 
family (Bargmann, 2006). Insect ORs have a seven transmembrane-domain 
with an inverted transmembrane topology, with an intracellular N-terminus and 
an extracellular C-terminus (Benton et al., 2006). Furthermore, insect ORs 
function as heterodimer complex and typically consist of a single ligand-
binding OR and an ubiquitously expressed OR coreceptor (Orco) (Vosshall & 
Hansson, 2011; Larsson et al., 2004). Studies have shown that the OR-Orco 
heteromer functions as an odorant-gated ion channel and also take part in 
signal transduction (Sato et al., 2008; Wicher et al., 2008). 

2.6.3 Odour coding 

All olfactory stimuli consist of many single odorants that combine to form 
complex odour mixtures. Thus, the olfactory system of insects must code for 
both specific and generic odours. This is mainly achieved by the large OR 
repertoire family expressed in the ORNs. Although ORNs expressing the same 
OR are distributed over the antenna, they converge at the same region of the 
AL, in subunits called glomeruli (Tolbert & Hildebrand, 1981). The functional 
characterization of the OR repertoire studies from D. melanogaster and African 
malaria mosquito Anopheles gambiae reveals several fundamental principles of 
odour coding. The ORs display a varying degree of specificity, with individual 
odorants being perceived by subsets of receptors. Some ORs are narrowly 
tuned to a few odorants, whereas some receptors are broadly tuned, being 
activated by large number of odorants (Carey et al., 2010; Hallem et al., 2004). 
In a combinatorial code, most odour stimuli elicit responses in more than one 
glomerulus. Thus, activity across AL glomeruli corresponds to the activity 
across receptor types. Taken together, the above mentioned studies strongly 
support the combinatorial model of odour coding in the insect olfactory system 
as shown in vertebrates. In addition, insects also use labelled line coding, 
where an odorant activates a single narrowly tuned ORN class. The best-
studied specialist ORNs are those responding to pheromones. In moths, female 
produced sex pheromone activates selectively tuned neurons present in the 
male antenna and their cognate glomerulus (Christensen & Hildebrand, 1987). 
A similar class of narrowly tuned ORNs was also found in D. melanogaster, 
where they were activated by the pheromone cis-vaccenyl acetate (cVA) and 
CO2, respectively (Datta et al., 2008; Jones et al., 2007). 
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2.6.4 Insect antennal lobe  

There are two types of neurons in the AL: local interneurons (LNs) and 
projection neurons (PNs; Figure 1). LNs do not form connections outside the 
AL and receive input from both ORNs and PNs. LNs can be inhibitory or 
excitatory, releasing γ-aminobutyric acid (GABA) or probably acetylcholine 
(Masse et al., 2009), respectively. Both excitatory and inhibitory neurons form 
extensive connections throughout the AL and make inter- and intra-glomerular 
connections. PNs are the output neurons of the AL, which convey odour 
information to higher brain centers in the protocerebrum, the lateral horn (LH) 
and the mushroom body (MB; Figure 1). In D. melanogaster and A. mellifera, 
there are two types of PNs: uniglomerular and multiglomerular. Uniglomerular 
PNs have input synapses within the AL in only one glomerulus, and send their 
axons to MB and LH. Multiglomerular PNs branch in many glomeruli, and 
extend their axons to the LH but bypass the MB (Galizia & Szyszka, 2008). 
Most of the PNs are cholinergic but a small number of them are known to be 
GABAergic (Masse et al., 2009). 

 
 
Figure 1. Overview of insect olfactory system. Olfactory receptor neurons (ORNs) in the 
antennae expressing the same odorant receptor (same colour) send axons to the same individual 
glomerulus in the antennal lobe. In the antennal lobe, ORNs form synaptic contacts with 
projection neurons (PNs) and local interneurons (LNs). PNs either send their axons directly to the 
lateral horn (green axon), or indirectly through Kenyon cells of the mushroom body and then to 
the lateral horn red and blue axons). Reproduced from (Masse et al., 2009) with permission from 
Elsevier. 
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3 The model system 
The cotton leafworm S. littoralis 
(Boisduval) (Lepidoptera, Noctuidae) is 
an appropriate model organism for 
investigations of the neurophysiological 
basis of odour-mediated behaviour, since 
the chemical ecology and olfactory 
physiology of mate finding and host 
seeking has been thoroughly studied 
(Binyameen et al., 2012; Anton et al., 
2011; Anderson & Alborn, 1999; Anderson et al., 1995; Anton & Hansson, 
1995; Anderson et al., 1993). S. littoralis is highly polyphagous and a highly 
destructive agricultural pest on a range of crops (Nagoshi et al., 2011; Brown 
& Dewhurst, 1975; Salama et al., 1971). Having the capacity for extensive 
migration S. littoralis constitutes a great invasive threat and therefore is an 
important model system to study, also from an ecological and pest 
management perspective. Geographically S. littoralis is distributed across 
Africa, southern Europe and the Middle East regions (Staneva, 2009). 

Male and female S. littoralis are active during early and mid-scotophase. 
The calling activity (pheromone release) of female S. littoralis increases 
gradually with most females calling during the mid scotophase, thereafter 
calling decreases sharply (data not shown). Male flight activity was highest 
during early and mid scotophase. Female S. littoralis sex pheromone shows 
considerable variation across geographical regions (Munoz et al., 2008). The 
female pheromone gland of moths from an Egyptian population consists of a 
blend of 11-components (Table 1). Males were highly sensitive and attracted to 
the female pheromone gland extracts in laboratory wind tunnels and field 
(Dunkelblum et al., 1982; Kehat et al., 1976; Paper 1). Male and female S. 
littoralis are polyandrous i.e. they mate multiple times during their lifetime 
(Sadek, 2001; Kehat & Gordon, 1975). Female S. littoralis initiates batch wise 
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egg-laying 2-3 hours after mating. Each female lays 7-8 batches of eggs that 
take 4-5 days to hatch. The larvae pass through six instars and then pupate. The 
longevity of unmated adults is about 12-14 days. 

The oriental leafworm or tobacco cutworm Spodoptera litura (Fabricius) 
(Lepidoptera, Noctuidae) is another most important agricultural pest species in 
the genus Spodoptera. S. litura is also polyphagous and feeds on a range of 
economically important crops. Geographically, S. litura occurs in the Middle 
East, throughout the Indian subcontinent and South-East Asia, Australia and 
the Pacific Islands (International, 1967). The border between the geographic 
distribution of S. littoralis and S. litura is in Pakistan and Southern Iran. 
Although there are no reports showing their overlap, the two species might 
meet at a narrow zone in the southern provinces of Iran (personal 
communication). The S. litura female pheromone consists of a blend of four 
components (Paper 1) and all of them were also found in S. littoralis with 
minor differences in relative amounts.   

 
* Compounds identified for the first time in S. littoralis.; † Z11-14:OAc + 14:OAc 

Table 1. Literature overview of pheromone gland composition in Spodoptera littoralis females 
from different geographical regions. (a) (Nesbitt et al., 1973) (b) (Tamaki & Yushima, 1974) (c) 
(Dunkelblum et al., 1982) (d) (Martinez et al., 1990) (e) (Navarro et al., 1997) (f) (Munoz et al., 
2008) (g) present study (numbers in the table represents the relative amounts). 
 

 
 
 



 20 

4 Summary of results 

4.1 Mate recognition and post-mating physiological changes in 
closely related sibling species S. littoralis and S. litura 
(Paper – I) 

Reproductive success that leads to viable and fertile offspring is the 
culmination of compatible mate recognition and successful fertilization. Here 
we show that the females of S. littoralis, S. litura and hybrids produce sex 
pheromone that differs both in quantity and quality. Four compounds Z9-
14:OAc, Z9,E11-14:OAc (major component), Z9,E12-14:OAc and E10,E12-
14:OAc co-occur in female pheromone glands of both S. littoralis, S. litura and 
their hybrids. Previous work shows a geographical variation in the S. littoralis 
female pheromone composition (Munoz et al., 2008). We identified in S. 
littoralis originating from Egypt for the first time all three geometric isomers 
of the main pheromone compound, E,Z-, E,E and Z9,Z11-14:OAc together with 
three monoenic acetates, which were not found in S. litura female glands. 
Despite the fact that females of S. littoralis and S. litura share common major 
and minor pheromone components, males of S. littoralis discriminate 
conspecific from heterospecific calling females in a dual-choice test in a wind 
tunnel bioassay. However, in a no-choice assay, as many S. littoralis and S. 
litura males responded to conspecific and heterospecific calling females 
(Figure 2). 
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Conspecific and heterospecific matings between males and females of both 
species revealed an asymmetry: matings occur between S. littoralis females 
and S. litura males, while S. litura females do not mate with S. littoralis males. 
The mating duration and mating frequency of three possible mate combinations 
were comparable (Figure 3). Post-mating reproductive fitness was much higher 
when S. littoralis and S. litura females mated with conspecific males, lead to 
90 – 95% egg fecundity. Interestingly, the heterospecific matings, S. littoralis 
(female) x S. litura (male), dramatically reduced the reproductive fitness 
(Figure 4). Furthermore, our findings show the effect of mating on the 
longevity of the female moths. Mating with respective conspecific males 
significantly reduces the lifespan of both female S. littoralis and S. litura post-
mating. However, the life span of female S. littoralis even further reduced after 
mating with S. litura males (Figure 5). Taken together our findings show that 
mating infers a physiological cost in females. Furthermore, hybrid matings 
between these closely related species have a negative fitness effect as 
compared to conspecific matings, emphasizing the importance of compatible 
mate recognition.   

 
 
 
 
 

Figure 2. Upwind flight attraction 
and landing of (A) male 
Spodoptera littoralis (n = 50) and 
S. litura (n = 20) at conspecific and 
heterospecific calling females in a 
no-choice wind tunnel test. (B) 
Male S. littoralis attraction to 
conspecific and heterospecific 
calling females (n = 50, p < 
0.0001, exact binomial test).   

 Figure 3. Percentage of successful 
conspecific and heterospecific 
Spodoptera littoralis and S. litura 
matings (mean ± SE, n = 40 to 50, 
Chi-square test). Mating duration 
(min) in conspecific and 
heterospecific S. littoralis and S. 
litura matings. Letters above error 
bars show significant differences 
(Kruskall-Wallis test). 
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Figure 5. Survival curves of female moths following unmated (grey), conspecific (black) and 
heterospecific (red) matings, in Spodoptera littoralis (A), and S. litura (B). Conspecific matings 
reduced survival significantly at p < 0.0001 (***). Survival after heterospecific mating was 
further reduced in comparison to conspecific mating at p < 0.001 (**).   

 

 

 

 

 

 

. 

 
 
 
 
 

Figure 4. Mean number of egg 
batches and egg hatching per female, 
following conspecific and 
heterospecific matings (mean±SE, n 
= 40 to 50). Differences are 
significant at p < 0.0001, according 
to Mann-Whitney test. 
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4.2 Mating induced behavioural and olfactory shift in female S. 
littoralis (Paper – II) 

Mating triggers dramatic physiological changes in most insects that strongly 
influence behavioural decisions that are driven by sensory stimuli. Here we 
show for the first time that a noctuid female moth S. littoralis switches the 
olfactory preference from food to egg-laying cues following mating.  Through 
a series of behavioural experiments, we demonstrate that unmated female S. 
littoralis are highly attracted to nectar-rich flowers of lilac (S. vulgaris), 
whereas females switch attraction to the larval host plant cotton (G. hirsutum) 
for egg-laying, 24 h after mating. Although unmated and mated females 
initiated flight towards cotton plant and lilac flowers, respectively, significantly 
fewer moths flew up wind and contacted the source (Figure 6A). 

Through gas chromatography-mass spectrometry (GC-MS) and combined 
GC and electroantennographic detection (GC-EAD), we have identified 
compounds in lilac and cotton headspace eliciting an antennal response in 
unmated and mated females. We found 17 active compounds in lilac and six in 
cotton, with benzaldehyde co-occurring in both headspace samples. 
Furthermore, calcium imaging recordings were performed using both the 
headspace extracts of lilac and cotton and synthetic individual GC-EAD active 
compounds to investigate the olfactory representation of lilac and cotton 
odours in the primary olfactory centre, the AL. Remarkably, mating 
significantly modulates the neural input to the AL. Moreover, the behavioural 
switch is mirrored at the AL level where ensembles of AL glomeruli dedicated 
to either lilac or cotton odour are selectively up- and downregulated in 
response to mating (Figure 6B). This olfactory mediated behavioural switch in 
accordance to the mating state is essential to meat the resource requirement in 
female S. littoralis, since mating induces the fertilization process and egg-
laying demands a high quality host.    
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Figure 6. (A) Upwind attraction of unmated and mated cotton leafworm Spodoptera littoralis 
females in a wind tunnel, towards lilac flowers Syringa vulgaris and cotton plant Gossypium 
hirsutum (mean ± SEM, n = 50). (B) Calcium response of AL glomeruli of unmated and mated 
female S. littoralis in response to headspace of S. vulgaris and G. hirsutum. 
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4.3 Mating induced differential modulation of olfactory 
responses to host, sex, and food cues in a male moth 
(Paper – III) 

Mating also induces profound physiological and behavioural changes in male 
S. littoralis. Here, we found that male S. littoralis differentially modulate 
odour-driven flight behaviour to females and host plant odours following 
mating. In a flight tunnel bioassay, unmated males are highly attracted to lilac 
flowers S. vulgaris (food source), calling females S. littoralis (mate) and host 
cotton plant G. hirsutum (mating site). Shortly after mating, the behavioural 
responses to calling females and cotton plants are completely abolished while 
the attraction to lilac flowers is still maintained. However, the flight response 
to calling females and cotton plants was either completely or partially restored 
the following night (Figure 7A). Using GC-MS and GC-EAD, we have 
identified 14, 6 and 3 antennal active compounds from lilac headspace, cotton 
headspace and female pheromone gland extracts, respectively. Furthermore, 
the transient behavioural inhibition to cotton and pheromone odours was 
reflected at the antennae and the ORN input to the ALs (Figure 7B). Ensembles 
of AL glomeruli that are tuned to sex pheromone and cotton odours are 
downregulated immediately after mating and the responses were restored to the 
normal state in the following night (Figure 7B). Transient post-mating 
behavioural and central neurons inhibition towards female sex pheromone has 
been previously reported in males of the noctuid moth A. ipsilon (Gadenne et 
al., 2001). Since male moths probably need time to refill their reproductive 
glands directly after mating, continued search for females during the same 
night would not be adaptive. Male attraction to cotton plants may reflect the 
importance of host plants as mating sites. 

Interestingly, neither behavioural nor neuronal responses towards lilac 
flower odours were affected by mating. This makes biological sense, since 
nectar is a rich energy source that supplies energy and increases life span 
(Wenninger & Landolt, 2011). The lack of modulation to the flower odour 
highlights the differential processing of food and social cues, including 
pheromones and habitat odorants.     
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Figure 7. (A) Upwind flight attraction and (B) calcium responses of AL glomeruli of unmated 
and mated (3 h and 24 h after mating) male Spodoptera littoralis towards cotton plant Gossypium 
hirsutum, calling female S. littoralis, and lilac flowers Syringa vulgaris. 
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4.4 Flight attraction of S.littoralis females to natural and 
synthetic cotton volatiles (Paper – IV) 

Host plant location in a highly complex odorant environment is a daunting task 
and an essential part of female reproductive success (Bruce et al., 2005). 
Natural olfactory stimuli generally are blends of several substances that may 
vary in composition, proportion and aerial concentration. Identification of 
relevant olfactory stimuli that trigger upwind attraction in gravid female insects 
while searching for a suitable host plant for egg laying is a current research 
challenge. After obtaining robust behavioural responses of mated female S. 
littoralis to the host cotton G. hirsutum, we here show behavioural responses of 
mated females to re-vaporized, sprayed natural headspace extracts from cotton. 
Females displayed robust upwind attraction towards sprayed cotton headspace 
when released at 180 ng/h and 1800 ng/h of the main compound 4,8-dimethyl-
1,3(E),7-nonatriene (DMNT) into the wind tunnel (Figure 8). However, at the 
lowest dose of 18 ng/h insect did not fly upwind.   

To identify the behaviourally relevant odorants from the sprayed cotton 
headspace, we tested a complete 11-component blend that we have analysed 
using GC-MS, for comparison with sprayed cotton headspace. The responses 
were indeed comparable to the complete headspace. In an additive approach, 
we tested a subset of 4-compounds (nonanal, (Z)-3 hexenyl acetate, (E)-β-
ocimene and (R)-(+)-limonene; blend II in Figure 8) that had been shown to 
evoke a consistent and strong antennal response in S. littoralis (Saveer et al., 
2012). We found no difference between headspace and 4-component blend. 
Addition of β-myrcene to blend II further increased upwind flight attraction, 
making blend III the most attractive synthetic blend. Remarkably, upwind 
flight of females was strongly inhibited (blend IV) when DMNT was added 
(Figure 8). 

Here we demonstrate that volatile plant compounds mediate the attraction 
of S. littoralis females to their host plant cotton, G. hirsutum. Furthermore, 
behavioural experiments in the wind tunnel confirmed that a subset of few 
compounds is necessary and sufficient to elicit robust upwind attraction in 
female S. littoralis, supporting previous findings on other moths (Sun et al., 
2012; von Arx et al., 2011). A tentative explanation for the antagonistic effect 
of DMNT on female attraction is that it may signal herbivore damage: DMNT 
is one of the key components in the volatile blend released from damaged 
cotton plants (De Moraes et al., 1998; Zakir et al., accepted).  
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Figure 8. Upwind attraction of gravid Spodoptera littoralis females to sprayed cotton plant 
headspace, using a piezoelectric sprayer, at three different doses in a wind tunnel, and to blends of 
synthetic cotton volatiles that were identified by GC-MS and GC-EAD. Headspace was released 
at 18, 180 and 1800 ng/h of the main compound DMNT. Synthetic blend composition matched 
the release rates and proportions found in headspace collections. Sprayed ethanol alone (blank) 
did not evoke an attraction response. Different letters indicate statistical differences between the 
blends according to ANOVA followed by Tukey’s test (N =3 – 5 batches of 10 moths, mean ± 
SEM).   
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5 Conclusion and future perspectives 
 
Noctuid moths rely to a large extent on their sense of smell to successfully 
locate resources that enhance their reproductive fitness. Although numerous 
studies have shown attraction of male and female moths to sex pheromones, 
floral and plant volatiles both in the laboratory and field situations, very few 
studies have linked these behavioural attractions to internal physiological 
factors such as hunger and reproductive state. Therefore, the focus of the 
current study was to investigate the attraction behaviour of the noctuid moth S. 
littoralis towards food, mate and host odours and how such behaviours are 
modulated by the reproductive state. 

In the beginning of the study (paper-I), I have demonstrated that mating 
causes profound changes in the reproductive physiology and egg-laying 
behaviour. Conspecific matings resulted in high reproductive fitness by 
producing large number of fertile eggs and offsrping. Conversely, 
heterospecific matings showed a dramatic reduction in fertile eggs and also 
reduced the lifespan of female S. littoralis. This suggests differential 
physiological responses to con- and heterospeciifc matings. This differential 
cost of matings on the female physiology may be due to non-specific foreign 
seminal proteins transferred during copulation and complex molecular 
interactions taking place in the reproductive tract of females. However, more 
investigation is needed to understand what neuroactive substances are released 
after mating and how this modulates the sensory apparatus.  

In the following part of the study (paper-II and III), I have demonstrated 
that the reproductive state modulates the olfactory responses of both male and 
female S. littoralis towards distinct olfactory signals. These behaviours match 
physiological needs such as foraging, mate finding and oviposition. This 
strongly indicates, that the insect olfactory system is capable of detecting and 
discriminating different odour mixtures and that it responds differentially 
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according to physiological state. Unmated female moths are strongly attracted 
to flower related odours for nectar feeding whereas, after mating, females 
switch the olfactory preference to oviposition substrate cotton (paper-II). 
Unmated male S. littoralis are strongly attracted to female and habitat odors. 
Shortly after mating, the flight response was completely abolished but was 
restored to the normal state in the following night. The male response to food 
odour was not affected by mating (paper-III).  

Remarkably, the behavioural responses were also reflected at the primary 
olfactory centre of the moth brain, the AL. The AL activity of male and female 
S. littoralis is strongly modulated as a result of mating. One of the conundrums 
in insect olfactory physiology is to understand the mechanisms underlying 
olfactory modulation. Taking advantage of pheromone-specific ORNs on the 
male antenna and their cognate glomeruli, this study strongly indicates 
differential coding pattern of ORs as a result of mating, suggesting modulation 
at OR level. Further functional characterization of OR repertoires is needed to 
understand differential coding patterns in the peripheral olfactory system, 
especially ORs that are tuned to floral and plant odours. The primary 
representation of odours is further transformed downstream to the AL and 
modulated before sending the information to higher brain centres. The 
differential odour intensity coding at the AL as a result of mating suggests the 
involvement of neuromodulatory substances in the coding of odours. Further 
studies are needed to understand distribution and the effects of various 
neuropeptides in the ALs of male and female S. littoralis. 

Finally, attraction of mated female S. littoralis to the plant host cotton is 
mediated by a blend of volatile compounds (paper-IV). The current finding 
clearly shows that only a few compounds are necessary and sufficient to evoke 
robust upwind flight attraction in insect herbivores while searching for a 
suitable host plant. Future studies aim at understanding how these 
behaviourally relevant odours are encoded at the primary olfactory centre of 
the moth brain. Identifying behaviourally meaningful odorants that signify 
food and host plants will allow to further examine neuronal coding 
mechanisms and how they are regulated according to physiological state.    
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