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How Sexual Reproduction Affects the Population Biology of 
Phytophthora infestans 

Abstract 
Phytophthora infestans is a rapidly evolving and highly adaptable pathogen. It is the 
cause of late blight, one of the most devastating diseases in potato production. 
Depending on whether both mating types are present or not, P. infestans can undergo 
both asexual and sexual reproduction. In most parts of the world the asexual part of the 
life cycle is the dominant reproduction system resulting in dominant clonal lineages. 
However, earlier reports indicate that sexual recombination of the late blight pathogen 
occurs in the Nordic countries. This thesis includes studies on how this will affect the 
population biology of P. infestans. The results show that the genotypic variation of P. 
infestans in the Nordic countries is high. The highest variation was observed within 
fields, and no dominating clonal lineages were found. In a field trial planted with 
artificially inoculated seed, the genotypes originating from the infected tubers had a 
minor impact on the population biology of P. infestans during the season. Immigrating 
genotypes, which probably originated from potato crops infected by oospores, proved 
to be more important for the epidemiology of the disease.  The presence of the 
alternative host (hairy nightshade) was shown to result in an increased oospore 
production and a higher aggressiveness of late blight on potato. From the results it can 
be concluded that oospores play a major role in the population biology of the late blight 
pathogen in the Nordic countries. Furthermore, in a study of the variation in effector 
genes of P. infestans, indication of selection pressure towards losing intact Avr4 genes 
was found. In all studied isolates this frame shift mutation was observed which means 
that all isolates would be able to infect plants with the R4 resistance gene.  

The population biology of the late blight pathogen in the Nordic countries is 
complex and differs from that in many other parts of the world. The difficulties to 
control this disease are numerous and the nature of the Nordic population of P. 
infestans threatens to further add to this problem.   
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1 Introduction 

Agriculture today feeds 6,000 million people. Plant production and yields 
have increased tremendously during the last 40 years due to irrigation, progress 
in plant breeding, and inputs such as fertilizers and pesticides. Potato 
production has increased in many developing countries during the last years 
but decreased during the same period in the industrialised world. In total, 
however, it is becoming more important as a staple crop. Globally, potato is the 
third main food crop after wheat and rice (Nations). In Europe potato is the 
second most important arable crop. It is cultivated in scales ranging from just a 
few square meters in back-yard gardens to large scale production on hundreds 
of hectares. However, even after decades of improvements in potato production 
in the form of resistance breeding efforts and fungicide development, there are 
still major constraints to overcome. For example, late blight on potato remains 
to be one of the most devastating plant diseases. The annual cost of this disease 
in control efforts and yield loss is estimated to M € 4800 globally (Haverkort et 
al., 2008). 

It is a challenge to study this organism since it is rapidly evolving, has a 
complex genome and varying population structures in different parts of the 
world. This thesis contributes to the understanding of the population biology of 
the late blight pathogen in a sexually reproducing system. It will cover areas 
such as how the population structure in the Nordic countries differs from other 
areas, how an alternative host affects the aggressiveness of P. infestans, 
population development during the season and variation in pathogenicity genes 
(effectors).  
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2 History and background to the late blight 
pathogen 

“In the wake of the famine agronomists and plant pathologists faced the task of coming 

to understand the disease and devising ways to combat it. That effort goes on today. It 

has not, in the main, been a heroic tale of scientific triumph; on the contrary, late blight 

has allegedly broken the hearts of more agricultural scientists than any other single crop 

disease” (Turner, 2005). 

2.1 History of the pathogen 

Late blight caused by Phytophthora infestans has caused one of history’s most 
well-known plant disease epidemics, leading to the Irish potato famine in the 
1840’s and mass emigration and death of millions of people in Ireland. The 
first occurrence of the disease was reported from the east coast of the U.S 
around 1843. In 1845, the first outbreaks in Europe were discovered in 
Belgium. Later the same year it spread to Holland, Germany, England and 
Ireland (Bourke, 1991). The Irish population was dependent on potato as a 
main food source and therefore the blight in Ireland caused a famine resulting 
in a demographic disaster with a population decline of twenty-one percent 
(Large, 1946, Turner, 2005), one from which Ireland still has not recovered.  

There were widespread speculations if the weather was the cause behind the 
blight epidemic. A Belgian mycologist named Marie-Anne Libert was the first 
to describe the cause of the blight as a fungus and proposed the name Botrytis 
vastatrix (Zadoks, 2008). About the same time another scientist, Jean Francis 
Camille Montagne, described the fungus and it was agreed to name it Botrytis 
infestans. At that time, however, it was a general belief that spores, germs and 
bacteria were not a cause but a consequence of diseases. ‘The potato murrain’ 
remained a mystery, and it was only when Anton de Bary described the life 
cycle of the potato blight pathogen in 1861 it was accepted and established that 
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a fungus was responsible for the disease. It was also de Bary who named the 
pathogen Phytophthora infestans, which means ‘infectious plant destroyer’ 
(Large, 1946).  

Historically, there has been a longstanding controversy if potato late blight 
has its origin in Mexico or in the Andes (Andrivon, 1996). Due to the high 
genotypic and phenotypic variation and the presence of both mating types of P. 
infestans, central Mexico has been proposed as the centre of origin for the late 
blight pathogen. However, recently another theory has been suggested with the 
Andes as the centre of origin based on the mitochondrial and nuclear loci in P. 
infestans and its close relative P. andina (Gómez-Alpizar et al., 2007). 

2.1.1 Migrations  

The first known migration of late blight took place from the U.S to Europe, 
which caused the Irish famine in the 1840’s. Once the pathogen was introduced 
in Europe it was distributed by international seed trade to the rest of the world 
(Fry et al., 1993). Between the 1840’s and 1970’s there is no clear evidence of 
any migrations of P. infestans taking place. The populations of P. infestans in 
the world (except Mexico) before 1970 consisted of only the A1 mating type 
and were dominated by a single clonal lineage, US-1 (Goodwin et al., 
1994).The second global migration of P. infestans can be divided in two parts 
and this is also the event that changed the population structure of this pathogen 
since this migration carried both mating types. 

The first part of this second migration occurred in 1976 via a shipment of 
potato tubers from Mexico to Europe (Niederhauser, 1991). This shipment was 
meant to cover a shortage of potatoes in Europe. Import of potato tubers from 
Mexico was normally not allowed because of the fear of the A2 mating type 
(Fry et al., 2008). However, this shipment probably carried both the A2 mating 
type and also other novel alleles. This relocation was not discovered in Europe 
until 1984 when the A2 mating type was found in Switzerland (Hohl & Iselin, 
1984). The “new” population displaced the old one (Spielman et al., 1991, 
Drenth et al., 1994, Fry & Goodwin, 1997) and was spread to the rest of 
Europe and other parts of the world. 

The second migration event of P. infestans brought new genotypes of P. 
infestans from Mexico to the U.S and Canada in the 1980’s (Fry et al., 1993). 
It has been confirmed that the genotypes found in the U.S correspond to 
genotypes found in northwest Mexico. Both mating types are present in the 
U.S and Canada but the population consists of only a few dominating 
genotypes (Fry & Goodwin, 1997).   
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take place between the oogonium (female organ) and the antheridium (male 
organ) resulting in the formation of thick-walled and robust oospores. The 
oospores are formed within the plant tissue and when the infected plant debris 
fall to the ground, the oospores become incorporated into the soil where they 
can survive for years (Pittis & Shattock, 1994, Drenth et al., 1995). When the 
oospores germinate a germ tube is formed which produces a sporangium, 
which will either produce infectious zoospores or infect the host directly 
analogous to asexual infection. The factors that govern the germination of 
oospores in the soil are still mostly unknown. The effect of oospores on the 
epidemiology of late blight is also to a large extent unexplored (Andrivon, 
1995, Widmark et al., 2011). 

2.3 The hosts 

The host range of P. infestans is mainly restricted to the family Solanaceae, of 
which potato (Solanum tuberosum) and tomato (S. lycopersicum) are the most 
important agricultural crops (Erwin & Ribeiro, 1996). In many places, potato 
and tomato are grown all year around. In colder climates, like, in Sweden, 
where only one growing season per year is possible, all commercial tomato 
cultivation is conducted in green houses which reduces the risks of late blight 
infections. There are a few wild Solanum spp. that are reported as hosts for P. 
infestans in Sweden. The most widespread are S. nigrum (black nightshade, a 
common weed in potato crops), S. dulcamara (bittersweet) and S. 
physalifolium (hairy nightshade). However, attacks by P. infestans on S. 
dulcamara and S. nigrum are very rare and must be considered to have no or 
very limited effect on late blight epidemics (Cooke et al., 2002, Flier et al., 
2003). In contrast, another Solanum species, S. physalifolium has been found to 
be highly susceptible to P. infestans (Grönberg et al., 2012). 

2.3.1 Potato  

The cultivation of potato has a long history. Potato originates from South and 
Central America. The Europeans first discovered the potato in 1537 when the 
Spanish conquistadors invaded the villages in the Andes (Robertson, 1991).   
The potato was probably brought to Sweden by the natural scientist Olof 
Rudbeck around 1655. The first years it was only used as an ornamental plant 
in different botanical gardens. During the 18th century, Jonas Alströmer started 
to cultivate potato on his farm in Alingsås. Despite his many efforts to 
establish the potato as a staple crop, the Swedish farmers were not too 
impressed. However, from the second half of the 18th century the potato 
increased in popularity. This was aided by soldiers returning from the 
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European continent bringing the habit of eating potato. Another contributing 
factor to the increased acceptance was the discovery of the possibility of 
producing alcohol from potato (Osvald, 1965).  

Potato is not a major crop in Sweden today. Including both table and starch 
potato the total area of cultivated potato in Sweden in 2011 was 27 100 ha. 
This can be compared to the total area of cultivated land in Sweden which is 
2.6 million ha. The average yield per hectare in Sweden is 30 tonnes. France 
and Belgium have an average yield of around 43 tonnes per hectare whereas 
Poland and Romania have yields of approximately 16 tonnes per hectare. In an 
international perspective the Swedish potato cultivation is efficient. The 
farmers have good knowledge, the potato is produced on suitable soils and 
most commonly with access to an adequate supply of water. However, more 
information to the customers linked to continuous product development is 
needed to maintain potato consumption (Rölin et al., 2012). 

2.3.2 Hairy nightshade  

Hairy nightshade (Solanum physalifolium Rusby var. nitidibaccatum (Bitter) 
Edmonds (1986)) (in this thesis, referred to as  S. physalifolium  or hairy 
nightshade) is a summer annual plant native to South America, but has been 
widely introduced elsewhere in the world. Problems with hairy nightshade as a 
weed occur mostly in row crops with low competitive ability such as potato, 
sugar beet, and carrot (Edmonds, 1986). In South America it is a weed which is 
present all year around. However, it is important to be aware of the 
taxonomical uncertainty within the Solanaceae family. It is common with 
naturally occurring hybrids between different species of Solanum. For 
example, some studies report Solanum sarrachoides as a host for P. infestans 
(Deahl et al., 2005). As hairy nightshade is used as the trivial name for both S. 
physalifolium and S. sarrachoides the confusion is a fact. Edmonds (1986) also 
mentions that S. physalifolium is often misidentified as S. sarrachoides.   
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2.4 Population structure of Phytophthora infestans in the world 

The coexistence of both mating types allows P. infestans to reproduce sexually. 
This will increase the genotypic diversity and affect the population structure 
(Shaw, 1991). In central Mexico, which is considered as the centre of origin for 
late blight, both mating types coexist and the genotypic diversity of P. 
infestans is high (Grünwald & Flier, 2005). One might suspect that the late 
blight population in the U.S would also be highly diverse due to the migration 
pattern, from Mexico to the U.S, and presence of both mating types. However, 
the populations of P. infestans in the U.S appear to be asexual and highly 
clonal (Hu et al., 2012). Also in Central America the populations of the late 
blight pathogen are clonal (Blandón-Díaz et al., 2012). The number of clonal 
lineages and common genotypes are limited enough to make it possible to give 
them individual names, i.e, US-8 and NI-1. 

During recent years there have been many attempts to characterise the 
population structure of P. infestans in the Asian countries. The population in 
Siberia belongs to a clonal lineage (Elansky et al., 2001) and this lineage can 
also be found in China and Japan (Akino et al., 2004). In a recent study from 
China, all isolates sampled belonged to the same unique SSR genotype (Guo et 
al., 2009).  

In northern Africa, both mating types of P. infestans have been reported 
(Baka, 1997, Shaat, 2002) and there is a potential for sexual reproduction in 
Morocco since the mating types have been found in the same field (Hammi et 
al., 2001). This is in contrast to countries further south; Rwanda, Uganda, 
Kenya, Tanzania, Burundi and Ethiopia, which historically have had only the 
A1 mating type present, which was the clonal lineage US-1.  More recent 
collections have shown substantial variation in Ethiopia (Daniel Shimelash, 
personal communication) and the presence of new genotypes on potato in 
Uganda and Kenya (Annie Njoroge, personal communication). In South 
Africa, the US-1 clonal lineage is predominant (McLeod et al., 2001, Pule et 
al., 2008).  

An infamous clonal lineage is the so called “blue_13” or “13_A2”, which 
has been dominant in the U.K population of P. infestans. During the mid-
1990s, A1 was the most common mating type. In 2005/2006 the population 
switched to a dominance of the A2 mating type, and the isolates sampled were 
mainly of the specific clonal lineage “blue_13”. This clonal lineage has been 
shown to persist between seasons, dominate the pathogen population 
throughout the epidemic, and has spread to several other European countries 
(Lees et al., 2008, Montarry et al., 2010). In a report from 2011 (Gisi et al., 
2011) it is stated that the population structure of P. infestans in Europe today is 
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largely clonal with a few dominating genotypes. It is further assumed that 
sexual reproduction is rare.  

However, in the Nordic countries the late blight pathogen has a different 
population structure compared to in most other parts of the world. Several 
reports indicate that sexual reproduction and production of oospores occurs and 
that the oospores can survive for several years in the soil and cause early 
infections (Andersson et al., 1998, Brurberg et al., 1999, Lehtinen & 
Hannukkala, 2004, Widmark et al., 2007, Brurberg et al., 2011).  

In conclusion, it seems that the population of the late blight pathogen in the 
Nordic countries is rather unique in the world with a level of genotypic 
variation shared only with the centre of origin for this pathogen.    

2.5 Control methods 

There have been made and still are many attempts to control the late blight 
disease. Many breeders have been occupied with trying to obtain the perfect 
cross, in order to breed the perfect resistant potato, but with this fast evolving 
pathogen it has proven difficult to control it without the use of fungicides.  

2.5.1 The use of fungicides 

Preventive application of fungicides is a main approach to control potato late 
blight (Fry & Doster, 1991). In Sweden, approximately one third of the 
fungicides used in agriculture are applied against this disease. Seen in relation 
to the small proportion of arable land used for potato production (~1%) this 
reflects the scale of the problems with late blight. Late blight fungicides are 
normally applied according to a routine based schedule, but efforts to achieve a 
more need-based control of late blight by using forecasting systems have been 
made. However, these systems are often met with scepticism by the growers 
due to the aggressive behaviour of the disease in the field.  

Even though spraying with fungicides is still the main control strategy 
against late blight, a more desirable way is to use resistant potato cultivars. 
Resistant cultivars will delay the onset of the disease and/or reduce the rate of 
disease development, resulting in a reduced need for fungicide applications.  

2.5.2 Breeding for resistance 

The breeding of disease resistance in potato has a long history, and one of the 
most important diseases to breed against is late blight caused by P. infestans. 
The breeders usually divide the resistance of P. infestans into general 
resistance (also known as field or horizontal resistance) and race-specific 
resistance (vertical resistance). Most breeding efforts have been made to 



20 

develop cultivars with race-specific resistance against P. infestans. Breeding 
for race-specific resistance started in the beginning of the 20th century with 
crossing potato (S. tuberosum) with a wild Solanum species, S. demissum. 
Eleven different resistance genes from S. demissum were recognised, and a 
system of so called R-genes was set up by Black (1953). For example, if a 
cultivar possesses the resistance gene R4, race 4 of P. infestans can infect the 
plant. This is a gene-for gene relationship (Van der Plank, 1968) where the 
avirulence gene product is recognised by a dominant R-gene in the host, which 
triggers the hyper-sensitive response (HR) (Kamoun et al., 1999). Today, P. 
infestans has managed to overcome all of the resistance genes that have been 
introduced by breeders (Fry, 2008).  

Compared to race-specific resistance, general resistance is assumed to be 
more stable since the pathogen has to change in several loci to be able to infect 
the host (Umaerus et al., 1983). The plant is not totally immune and the 
pathogen is exposed to less selection pressure. However, breeding for general 
resistance is a method which has been proven to be challenging since the basic 
chemical and physical factors leading to this type of resistance are unknown.  

New breeding efforts have again focused on wild Solanum species and new 
resistance genes found in Solanum bulbocastanum. The R genes found (Rpi-blb1, 
Rpi-blb2, Rpi-blb3) have shown to confer resistance against all of the genotypes 
tested. It is assumed that these R genes will be more durable since they seem to 
be effective against the population of P. infestans from central Mexico (Song et 
al., 2003, van der Vossen et al., 2003). However, there are some strains today 
that have overcome this resistance, but these strains have not yet appeared in 
field tests so optimism and hope about these R genes are still retained (Fry, 
2008).  

2.6 The genome of P. infestans and its effectors  

The genome of Phytophthora infestans was recently sequenced (Haas et al., 
2009). Compared to other related Phytophthora pathogens such as, P. sojaea 
and P. ramorum, P. infestans has by far the largest genome (240 Mb compared 
to 65-95 Mb for the other Phytophthora species). The big difference in genome 
sizes is probably due to the large amount of repetitive DNA and transposons in 
P. infestans. The genome also consists of an extensive expansion of specific 
families of secreted disease pathogenicity effector proteins which are coded in 
the mobile element of the genome. The genome of P. infestans codes for a 
large number of effector proteins (>700) (Haas et al., 2009).  

Effectors are proteins that can be seen as the pathogens key weapon to 
defeat the defence mechanisms of the host (Tyler, 2008). However, effector 
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proteins can both facilitate the infection (virulence factors or toxins) of a host 
and/or trigger defence responses (avirulence factors). The pathogen effector 
which is a product of an avirulence (Avr) gene interacts with the corresponding 
R protein in the plant. If either the Avr gene or the R is absent or non-
functional the interaction is compatible and the host susceptible (Vleeshouwers 
et al., 2011). If the plant is resistant a HR response occurs. Some of the 
effectors act in the apoplast while others act in the host cell.  The effector 
proteins can target different sites in infected host plant tissue (Kamoun, 2006).  

These protein-effector interactions are studied to better understand the 
underlying mechanism of late blight resistance on a molecular basis. All 
oomycete avirulence genes discovered today have an RXLR-motif 
(RXLR=arginine, any amino-acid, leucine, arginine) (Poppel et al., 2008). The 
P. infestans effectors Avr3a, Avr4 and Avr-blb1 are the most studied effectors 
and belong to the RXLR group (Armstrong et al., 2005, Poppel et al., 2008, 
Vleeshouwers et al., 2008). The RXLR motif defines a domain that enables 
translocation of the effector proteins into the host cell (Whisson et al., 2007). 
The discovery of the effector proteins is a major breakthrough in the 
understanding of the P. infestans - S. solanum interaction, but more knowledge 
is needed to fully understand the underlying mechanisms.  
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3 Objectives 

The main goal and everyone’s dream when working with late blight is to find a 
solution that will control the disease and thereby decrease the amount of 
fungicides used. After having worked with this pathogen for a while you 
discover that this organism is quite complex and the main goal feels further and 
further away. However, with small steps and more knowledge of the 
underlying mechanisms of this pathogen and disease the goal might eventually 
be reached. The objectives for this thesis are to study how sexual reproduction 
affects the population biology of Phytophthora infestans. This was done by 
answering the questions: 

 
 How is the population of the late blight pathogen in the Nordic 

countries structured? Is a predominant clonal lineage present as in 
other European countries? Is there a migration pattern between the 
Nordic countries? Is the reproductive mode primarily sexual or 
asexual? 
 

 Do the first genotypes of P. infestans in a field persist during the 
season and do they have any epidemiological advantage? Can the 
first genotypes compete against the genotypes coming in from 
outside? 

 
 Is the Swedish population of P. infestans differentiated with respect 

to the two different hosts, hairy nightshade and potato? Can the 
pathogen be more aggressive on any of the hosts? 

 
 Are there any differences in effector variation in a clonal 

population of P. infestans compared to a sexually reproducing one?  
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4 Methods for studying population biology 
of plant pathogens 

With a more intensive agriculture, more environmental awareness and the 
goals to feed the world, new strategies must be developed to understand more 
about plant-pathogen interaction and population biology of plant pathogens. 
Many of these are fast evolving organisms that easily adapt to environmental 
changes (McDonald, 1997) and it is therefore important to study and monitor 
their population genetics in order to develop good control strategies. 

Plant pathogenic organisms can have several stages, a sexual or/and asexual 
life cycle and a diploid or haploid phase. Knowledge about these traits is a 
prerequisite when studying many basic processes in population biology 
(Stukenbrock & McDonald, 2008). Samples of plant pathogens are easy to 
collect in large numbers and relatively easy to culture and maintain in the 
laboratory. When studying the genetics of plant pathogens it is important to 
have genetic markers that give relevant information. Traditionally, plant 
pathologists have used fungicide resistance and virulence as markers. These 
functional markers have of course been important in agriculture and very 
useful for chemical companies and breeders. However, virulence and fungicide 
resistance factors are under strong selection pressure in agricultural systems 
and the results might be biased if using only these factors. It is sometimes 
problematic to collect a representative sample of the population in question, 
and choose the right method of analysis. What is observed in the field can 
sometimes be hard to study with laboratory methods and analyses. Especially 
when studying the population biology of plant pathogens, the definition of a 
population can be difficult to interpret. In the case of potato and P. infestans, 
the host plant is usually cultivated only during a certain period of the year and 
the pathogen is subjected to man-mediated movement of inocula, both of 
which complicates the definition of the pathogen population.   
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4.1 Field work 

In population biology, it is important to start with an appropriate sampling of 
the material in question when studying allele frequencies. The sampling 
depends on the question you want to answer and what is known about the 
population beforehand. A stratified sampling (paper I) is considered to be a 
good strategy since it can deal with several aspects and levels of the pathogen  
population in question (McDonald, 1997). With this method, all levels from 
single leaflets, plants, disease foci, field, region and country can be covered. 
The sampling of a plant pathogen can be challenging since the life cycle and 
dispersal of the pathogen is highly influenced by the weather conditions.  

The traditional way of sampling plant pathogens is to collect living material 
and then transfer it to a suitable artificial medium. This method is time 
consuming and limits the sample size. It is moreover a selective method since 
some isolates might be lost during culturing. During the last years, FTA-cards 
used in forensic science have become popular also in plant pathology. The 
method is easy to use and simplifies transport of material between labs and 
across borders. Another method that is simple and inexpensive is to dry 
infected leaflets and extract the pathogen DNA directly from them. With this 
method it is possible to collect and analyse a large number of samples. This 
approach also reduces the risks of getting a biased result due to loss of isolates. 

4.2 Characterising phenotypes  

There are important traits for plant pathogens that still cannot be measured 
with genetic markers. These traits are often put together in the term 
aggressiveness. Originally, Vanderplank (1963) was first to define the term 
aggressiveness as the quantity of disease caused by a pathogen on a compatible 
host. Traits commonly used as components of aggressiveness are latency 
period (the time between infection and spore production), lesion growth (how 
fast the lesion expands) and sporulation capacity (number of spores formed per 
lesion). In the interaction between host and pathogen the environment is an 
important factor which also influences the disease severity. Usually, when 
assessing aggressiveness the environmental and host traits are kept constant 
when determining and measuring the pathogen dependent characters. 
Aggressiveness of P. infestans has been extensively studied by comparing 
different potato cultivars (Carlisle et al., 2002), various growing regions (Day 
& Shattock, 1997, Flier & Turkensteen, 1999) and alternative crops (Lebreton 
et al., 1999). However, less work has been done on aggressiveness of this 
pathogen on non-crop Solanaceae species (Platt, 1999, Fontem et al., 2004, 
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Olanya et al., 2005). In paper III the aggressiveness of P. infestans is compared 
on potato and the weed hairy nightshade (S. physalifolium) (Grönberg et al., 
2012). 

When assessing aggressiveness, the size of the experiment depends on if it 
is performed on detached leaflets or whole plants, in growth chambers or in the 
field. In order to have a representative sample of the natural variation in a 
population it is necessary to avoid selection caused by loss of “weak” isolates. 
This can be a potential risk during isolation on artificial media and can cause 
biased results from aggressiveness tests. Also, long term storage on artificial 
media will affect the aggressiveness of individual isolates. Usually, the 
aggressiveness tends to decrease when a plant pathogen is continuously 
cultured in the laboratory. Another important source of error is the condition of 
the plant material used for inoculation (Lehtinen et al., 2009).  To improve the 
validity of the results in paper III, sporangia from all isolates used in the 
aggressiveness tests were harvested directly from the sampled leaves, and all 
test-leaves used for inoculation were taken from field grown plants of potato 
and hairy nightshade. Phytophthora infestans can infect both potato tubers and 
foliage. However, the resistance levels in foliage and tubers within a cultivar 
are usually not correlated and therefore the aggressiveness is best tested 
separately for tubers and foliage.  

There can sometimes be confusion between the term aggressiveness and 
virulence. Virulence is another phenotypic characteristic in plant pathogens 
and is defined as the ability of a pathogen to infect a particular host genotype 
(Van der Plank, 1968). For P. infestans the virulence refers to the ability of a 
specific genotype to overcome specific R-genes (resistance genes) in the plant. 
There are differential potato lines where each clone contains one of the eleven 
R-genes. These can be used to define the virulence/avirulence of isolates from 
a population. The virulence is not correlated to the aggressiveness. For 
example, populations of P. infestans can display different unlinked levels of 
variation in genotypes, aggressiveness and virulence spectra.  

4.3 Characterising genotypes  

During the last decade the methods for studying population biology of plant 
pathogens have developed tremendously. Monitoring of late blight is common 
today and changes in population structure and biology occur since P. infestans 
is a fast evolving pathogen. Detecting and identifying genotypes will answer 
the questions about genetic drift, migration and recombination, which will give 
a good overview of the population biology. However, no single marker system 
is perfect (Milbourne et al., 1997) and can fulfil all the requirements and 
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aspects of P. infestans research. Before development of the DNA-based 
molecular methods isozyme variation was used. The isozymes give a low 
resolution and the analysis is very time consuming. Another time consuming 
method is RFLP (restriction fragment length polymorphism) with the probe 
RG57 (Goodwin et al., 1992). This gives a fingerprint and has been a valuable 
tool for detecting genetic variation. The disadvantage is that the data is difficult 
to interpret and a large amount of DNA is required. After the mitochondrial 
genome of P. infestans was sequenced, mitochondrial DNA markers were 
developed. However, the variation in mitochondrial haplotypes for P. infestans 
is very limited and the resolution is also for these markers low. Furthermore, to 
address questions with respect to population genetics such as recombination, 
genetic drift etc., markers from the nuclear genome are required. AFLP 
markers (amplified fragment length polymorphism) have a high resolution 
since they yield many loci per primer combination (Van der Lee et al., 1997). 
This method is however also time-consuming and it is difficult to compare 
results between laboratories. In addition, these markers are dominant, i.e. 
cannot distinguish between heterozygotes and homozygotes, and therefore not 
very suitable for a diploid organism like P. infestans. 

At present, the most used markers are SSRs (simple sequence repeats) also 
called microsatellites. The SSR-markers are ideal for studying population 
structure since they are highly polymorphic, well-defined and easy to score 
(Cooke & Lees, 2004). Additionally, the markers are co-dominant which gives 
the possibility to track both alleles at the same locus. Another benefit is that 
only small amounts of DNA are required. In this thesis all the genotyping 
(paper I, II and III) has been done with SSRs developed by Knapova et al 
(2001) and Lees et al (2006). In paper I, six SSRs were used to identify the 
population structure in the Nordic countries. The number of unique multilocus 
genotypes found (paper I) was high compared to the total number of isolates 
sampled. This indicates that the number of SSRs was sufficient since the 
genotype saturation was reached with a low number or markers. However, 
neutral markers like SSRs cannot reveal the race structure of an isolate. A 
marker which shares most of its advantages with SSRs is SNPs (single 
nucleotide polymorphism). Mutation rates are easier to score with SNPs 
compared with SSRs. However, the SNPs have so far not been used in 
population studies of P. infestans but with developing techniques and more 
investigation from the genome this could be markers to use in the future. 

Due to the wide range of markers used in the different laboratories it is 
difficult to compare population genetic data of P. infestans between research 
groups. 
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4.4 Sequencing  

With the genome of P. infestans sequenced, new possibilities of studying 
population biology has arrived. The sequencing of different species and 
isolates makes it possible to perform powerful phylogenetic studies. With a 
high throughput method it will be possible to estimate the type and extent of 
selection pressure on functional genes. 

Population studies can be taken to new levels by sequencing and comparing 
the whole genomes instead of specific regions. With the discovery of effector 
genes the evolutionary drivers of pathogenicity can now be explored. 
Hopefully, these methods will increase the knowledge of observed phenotypes 
and available resistance genes.    

4.5 Analysing population genetic data 

When studying population biology one of the most important attributes to 
investigate is the genetic diversity. With constantly changing environments the 
genetic diversity is necessary for a population to continuously evolve and adapt 
to new situations. The majority of the estimates for genetic diversity are based 
on the allele frequencies. Most of the population genetic analyses are designed 
for a diploid or haploid organism. However, for P. infestans the occurrence of 
more than two alleles in a locus has been reported (Brurberg et al., 2011). It 
has proven to be challenging to analyse populations comprised of a mixture of 
isolates with different ploidies (Cooke et al., 2011). However, there is a recent 
method (Bruvo et al., 2004) for dealing with the problem of ploidy mixture in a 
population which has been further developed and implemented in the statistical 
program R as the package POLYSAT (Clark & Jasieniuk, 2011). This will 
hopefully improve the genetic analyses and interpretation of P. infestans 
populations. 

Moreover, when studying population genetic data most analyses are 
developed for populations at Hardy-Weinberg equilibrium. However, plant 
pathogens under agricultural conditions are often not likely to be at 
evolutionary equilibrium. The definition of a population for a plant pathogen 
can be challenging (McDonald & McDermott, 1993). For P. infestans, it is the 
host (potato) which sets the boundaries for the definition of a population. In 
addition, the man-mediated movement of inoculum of P. infestans (seed 
tubers) and introduced selection (e.g. fungicide use), means that common 
analyses for population genetic data are not fully applicable for P. infestans on 
potato. In order to test for sexual recombination, it may be sufficient to check 
for the presence of sexual structures of the pathogen, if mating types are in 
equal proportions and if there is high genotypic diversity. A simple and fast 
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method to check for genotypic diversity is to divide the number of unique 
multilocus genotypes with the total number of samples (Paper I and II). A 
population with high genotypic variation results in a ratio close to one which 
would indicate that sexual recombination takes place.  
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5 How sexual reproduction affects the 
population biology of Phytophthora 
infestans 

5.1 Population structure and migration patterns of P. infestans 
in the Nordic countries (paper I) 

The late blight agent Phytophthora infestans has been extensively studied 
throughout the world and many population studies have been conducted. 
During the past several decades there have been major changes in the 
population structures of P. infestans. Sexual reproduction occurs outside 
central Mexico but still most populations are dominated by asexual 
reproduction. These changes are probably due to migration, sexual 
reproduction and mutation/selection. The clonal lineage “blue_13”, which is 
dominant in Europe seems likely to have resulted from sexual reproduction 
followed by selection (Fry et al., 2009).    

The population of the late blight pathogen in the Nordic countries does not 
have this dominant clonal lineage and is one of the regions outside Mexico 
where sexual reproduction and production of oospores occur (Andersson et al., 
1998, Brurberg et al., 2011, Widmark et al., 2011). These studies suggest that 
sexual reproduction in P. infestans does take place in the Nordic countries but 
the question of how common it is still remains open. The migration patterns 
between the different Nordic countries have also been unknown but it is 
hypothesized that the migration rates are linked to the geographical distances.  
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1958, Fay & Fry, 1997). However, as infections from tubers are a rare event, 
even a limited inoculum load from the oospores could have a considerable 
effect on the population biology of P. infestans. Oospores can infect all 
through the season, and in this way constantly introduce new genotypes, reduce 
the limiting effect of selection on the genotypic variation during the season. It 
is also possible that the population of P. infestans in the Nordic countries has 
adopted another strategy of survival than in other regions. With distinct 
growing seasons with cold winters in between and no other host present than 
potato tubers, the pathogen increases the chances of survival with the ability to 
form oospores instead of only clonal overwintering in tubers.  

It is, however, unlikely that infections originating from oospores cause the 
high genotypic variation in all fields. Sometime in the past there must have 
been a change in the population from solely clonal to more sexual reproduction 
of P. infestans in the Nordic countries, but it is not known how long sexual 
reproduction has been present. It can be assumed that the high genotypic 
variation resulting from sexual reproduction will be reflected and accumulated 
in the population that overwinters in infected tubers. Consequently, planted 
infected seed tubers may already have a high genotypic diversity of P. 
infestans which later will also be seen in the foliage.  

As seen from our results, the export-import of seed tubers between the 
Nordic countries was not correlated to the migration patterns. It was believed 
that the migration rates between closely related countries would be high, and a 
low migration rate between countries situated further away from each other. 
However, the differences in migration rates are most likely caused by a higher 
degree of genetic similarity between the pathogen populations as can be seen 
for the populations in Sweden and Denmark compared to Denmark and 
Finland. The analysis of the maximum likelihood indicates that the populations 
of P. infestans in Sweden and Denmark are genotypically very similar when 
compared to the rest of the Nordic countries. Moreover, the exchange of 
airborne inoculum between Sweden and Denmark is possible since the 
cultivation of potato is concentrated to two geographical areas situated close to 
each other. 

The sexual reproduction of the late blight pathogen in the Nordic countries 
affects the population biology in different ways. The additional source of 
inoculum makes disease control based on crop rotation problematic and high 
genotypic variation gives the pathogen increased adaptive capacity to new 
conditions, e.g. climate, fungicides and cultivars. 
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5.2 Immigration and persistence of P. infestans in a single field 
(paper II) 

In Sweden, the population of P. infestans is highly diverse and oospores act as 
an important source of inoculum, however, it is difficult to predict the 
epidemiological consequences of such a population. Infected tubers have  been 
considered as the most common way for the pathogen to overwinter 
(Zwankhuizen et al., 1998), however it is important, to be aware of that only a 
low proportion of infected tubers will produce infected plants (van der Zaag, 
1956, Hirst & Stedman, 1960, Inglis et al., 1999). As mentioned earlier, only a 
small proportion of all crossings between an A1- and an A2 P. infestans isolate 
will produce infectious oospores. However, even if very few oospores infect 
the crop they could be of importance as primary inoculum since a restricted 
number of successful infections could have a big impact on the epidemiology 
of late blight.  

In this study, tubers were inoculated with known genotypes of P. infestans 
(originating from foliage or tubers) and planted in a field trial. The population 
of the late blight pathogen was monitored during the season to investigate if the 
isolates causing the first infections will affect the population structure 
throughout the season. The field trial was situated on an experimental farm and 
was surrounded by potato fields treated with fungicides. The hypothesis was 
that the isolates used for the inoculation of the tubers would give the first 
symptoms and have an advantage compared to airborne immigrating genotypes 
from the surrounding fields.  

In contrast to the hypothesis, the immigrant genotypes dominated the 
population of the late blight pathogen and were continuously introduced into 
the field. As a result, the isolates used to inoculate the seed tubers had very 
little impact on the P. infestans population in the trial. The genotypic variation 
was high and the population gradually shifted during the season. This indicates 
the lack of dominating clonal lineages of P. infestans in the infected fields in 
the region, unlike what can be seen in other European countries (Lees et al., 
2008, Montarry et al., 2010). Genotypes from the seed tubers do not 
necessarily start the epidemic of late blight.  In Sweden, oospores act as an 
additional inoculum source. In this particular field trial it is unlikely that the 
first infections originated from oospores due to the stringent late blight control 
on the research farm. Therefore, it can be assumed that the first infections were 
caused by immigrant inocula from surrounding fields. This inoculum load must 
have a high genotypic diversity, which probably originates from germinating 
oospores and/or infected tubers carrying of a variety of genotypes. The first 
observed infections in the field came relatively early in the season and showed 
a high diversity, implicating oospores as inoculum source. The oospores must 
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It has been reported that different strains of P. infestans vary in their ability 
to infect tubers (Lambert & Currier, 1997) and possibly also have different 
abilities to start new epidemics. The origin of the isolates used for inoculation 
of the seed tubers could have played a role in the infection rate. Genotypes 
originating from tubers must have had the ability to infect the plant and persist 
in the foliage to sporulate and infect the tubers. The P. infestans isolates 
originating from tubers have therefore been selected for epidemiological fitness 
(the ability to compete with other genotypes). In the field trial, however, no 
effect of isolate origin was detected.  

In a clonal population of P. infestans a high aggressiveness is not 
necessarily the best trait for an isolate to be able to overwinter in tubers 
(Montarry et al., 2007). Genotypes with less aggressiveness sporulate for a 
longer period during the season and the chances of infecting tubers increase. 
With high aggressiveness the genotype can dominate the epidemic during the 
season. However, highly aggressive genotypes present in the tubers will 
increase the risk of rotting in the soil before emergence. This will result in a 
bottleneck giving a negative selection for aggressive isolates of P. infestans 
(Shattock, 1976). 

In an earlier report, the aggressiveness of P. infestans in the sexually 
reproducing population in the Nordic countries was analysed, and only small 
differences were found in isolates from Sweden, Denmark, Norway and 
Finland. This could be explained by sexual reproduction breaking up 
favourable sets of alleles in more aggressive genotypes and “diluting” the 
overall aggressiveness in the population (Lehtinen et al., 2009). However, in 
our field trial one genotype showed higher competitiveness indicating that 
some variation in epidemic fitness exists in the Swedish population of P. 
infestans. With a sexually reproducing population the additional source of 
inoculum in the form of oospores plays an important part in the epidemiology 
of the late blight. The oospores can survive in the soil between seasons without 
any host present. Also, unlike infections originating from tubers, oospores can 
germinate and infect the crop all through the growing season. Sexually formed 
oospores can introduce new genotypes with a higher epidemic fitness 
compared to old genotypes (Day & Shattock, 1997). This can result in 
increased epidemic growth rates (Zwankhuizen et al., 2000) and add to the 
already immense problems of controlling late blight in potato. 
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5.3 Population differentiation of P. infestans on two different 
hosts (paper III) 

In the south of Sweden two hosts of late blight, hairy nightshade (Solanum 
physalifolium) and potato (Solanum tuberosum) are present. These two hosts 
co-exist with a sexually reproducing population of P. infestans present, which 
led to the hypothesis that there is a population differentiation of the late blight 
pathogen on the two hosts. The genotypic variation of P. infestans was high on 
both hosts, however no genetic differentiation using the SSR-markers could be 
found between the two hosts. It was assumed that if the two hosts would have 
been in allopatry, the populations would have been more differentiated since 
other studies have shown genetic differentiation of P. infestans on different 
hosts (Lebreton & Andrivon, 1998, Erselius et al., 1999, Knapova et al., 2001).  

However, the phenotypic data showed differentiation of the pathogen on 
hairy nightshade and potato. Isolates originating from hairy nightshade had a 
shorter latency period and higher sporulation capacity when inoculated on 
potato compared to isolates originating from potato. Additionally, the 
nightshade isolates could more easily infect nightshade plants compared with 
the potato isolates but this difference was not seen on potato plants. The results 
suggest that only parts of the P. infestans population in the sampled field were 
able to infect the hairy nightshade and also that it is easier for the pathogen to 
infect potato than hairy nightshade. This will mean that “weaker” isolates 
restricted to potato will be outcompeted by the isolates coming from 
nightshade. In this way, the population of P. infestans will be filtered towards 
an increased aggressiveness on the potato crop. 

One can speculate why P. infestans will infect the hairy nightshade at all? 
During the sampling, all of the hairy nightshade plants observed in the region 
were infected even though the late blight epidemic probably starts on the 
potato since it would be established before the weed. One explanation could be 
that the sexually reproducing population of P. infestans in this region 
(Widmark et al., 2007, Brurberg et al., 2011) generates new genotypes that can 
infect new hosts at a higher rate compared to in a clonal population. However, 
it is not only the pathogen which has a sexual reproduction but also the 
nightshade, which can increase the selection pressure towards more aggressive 
genotypes of the pathogen.  

Oospore formation of P. infestans has been reported in S. physalifolium 
(Andersson et al., 2003). In an additional study (Björling, 2012) the same 
isolates of P. infestans collected from hairy nightshade and potato were used to 
investigate if the isolate origin could affect the ability to produce oospores. The 
group where both isolates of P. infestans originated from hairy nightshade 
(NN) produced significantly more oospores per cm2 on potato compared to the 
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5.4 Variation in effectors (paper IV)  

Phytophthora infestans is notorious for overcoming and adapting in response 
to R genes (Wastie, 1991). To understand more about the pathogen-plant 
interaction more knowledge is needed regarding the function and variation in 
effector proteins. The durability of an R gene is highly dependent on the 
stability or the role of its corresponding effector. This means that if an Avr 
gene can mutate without decreasing the fitness, the pathogen can avoid 
recognition and overcome the resistance. However, there is no knowledge of 
how or if the effectors vary between different population of P. infestans. Most 
populations of the late blight pathogen in the world are clonal (Akino et al., 
2004, Guo et al., 2009, Blandón-Díaz et al., 2012, Hu et al., 2012). Nicaragua 
is one example of a country where the population of P. infestans belongs to one 
dominant clonal lineage. Nevertheless, the population in Nicaragua is very 
variable with regard to functional characters such as the virulence spectra and 
fungicide resistance.  

In this study, the diversity in the PiAvr4 effector gene in a clonally 
reproducing population of P. infestans was investigated with regard to any 
possible mutations or deletions. The sexually reproducing population of P. 
infestans from Sweden was used as an outgroup. Our hypothesis is that since 
the R4 resistance is rarely seen, P. infestans in Nicaragua has a mutation or 
deletion in the PiAvr4 locus. A second objective was to look for any 
indications of recent population expansion in the Nicaraguan population of P. 
infestans.  

The results revealed that all isolates from the Nicaraguan and Swedish 
population of P. infestans had a frame shift at the same position resulting in 
that the PiAvr4 is not recognised and that all genotypes therefore can infect 
plants with the R4 gene. These results are in agreement with a previous study 
from Nicaragua where a high phenotypic variation was found. The population 
most frequently overcame resistance genes R1, R3, R4, R7 and R11 and the 
most complex races of the pathogen overcame eight and nine resistance genes, 
respectively. The high virulence diversity in a clonal population can be 
explained by the fact that the Avr genes encoding effectors are located in 
highly variable regions of the genome (Jiang et al., 2008). The selection 
pressure is much higher on the PiAvr4 diversity compared to the neutral 
microsatellite diversity. The results from this study also indicate that the 
population of P. infestans in Nicaragua has undergone a population expansion 
and/or selection. This can be an explanation why the present genotype NI-1 has 
replaced the “old” genotype(s) and is now the dominating one as suggested by 
Blandón-Díaz (2012).  
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The sexually reproducing population of P. infestans in this study is only 
represented by three isolates. Further sequencing is needed to be able to draw 
any conclusions about the effector diversity in a recombining population. 
However, the results indicate that the reproduction system in a population of P. 
infestans does not necessarily reflect the variation in virulence factors. The 
phenotypic variation in the Swedish population of the late blight pathogen is 
high as could be expected in a recombining population. An earlier study 
showed that all virulence genes except the one corresponding to R9 could be 
found in the Swedish population. The lack of virulence to R9 can be explained 
by the absence of selection pressure since R9 has never been introduced in 
commercial cultivars (Lehtinen et al., 2008). The use of cultivars in Sweden 
carrying the R4 gene is at present unknown.  

Effectors are examples of good genes to study since they might increase the 
knowledge of the pathogen-plant interaction. Of course, further studies of other 
clonal and sexually reproducing populations of P. infestans need to be done to 
clarify the possible differences in effector variation. However, it is still 
important to observe how the pathogen behaves in field situations as well as 
pursuing functional studies of P. infestans effectors in order to increase the 
knowledge of control methods.  
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6 Conclusions 

The population biology of P. infestans in the Nordic countries is complex and 
is similar to the pattern seen in the centre of origin in central Mexico.  

 
 The late blight pathogen is reproducing sexually in the Nordic countries. 

As a result, the pathogen population has a high genotypic variation and no 
dominating clonal lineage. The lack of dominant clonal lineages might be 
explained by the cold winters and discrete growing season. 

 The sexual reproduction of the pathogen also influences the migration 
patterns between the Nordic countries. The geographical distances, 
however, are not linked to the gene flow. 

 Genotypes of P. infestans originating from tubers do not always start the 
epidemic and are not able to dominate the pathogen population during the 
season. New immigrants, which probably originate from oospore derived 
infections from outside, are more important for the epidemiology of the 
disease.  

 The alternative host, hairy nightshade selects the P. infestans population 
towards increased aggressiveness on potato. Additionally, crosses 
between mating types of P. infestans collected from hairy nightshade 
produce more oospores than crosses between isolates collected from 
potato. The presence of an alternative host will have major consequences 
for the control of late blight in potato production.   

 All isolates of P. infestans from Nicaragua and Sweden had a frame-shift 
mutation in the Avr4 locus resulting in that all isolates can infect R4 
plants. This indicates the presence of a selection pressure for P. infestans 
to loose intact Avr4 genes. The population from Nicaragua has undergone 
a recent population expansion which can be explained by the replacement 
of the “old” genotype(s) to the new dominating NI-1. 



42 

  



43 

7 Future perspectives 

The late blight pathogen has been studied for more than 170 years and there are 
still many question marks to be straightened out. During this time there have 
been major changes in the population structure of P. infestans. Most 
populations are still dominated by asexual reproduction but in some parts of 
the world sexual reproduction is more common. This is probably due to 
migration, selection and local conditions. The changes in population structure 
have a huge impact on the epidemics and the control of late blight. However, 
there is still a knowledge gap in how important oospores are for the 
epidemiology of late blight and if the oospores can germinate during the 
season. The Swedish population of P. infestans is excellent for studying these 
questions. The genome of P. infestans has been sequenced and the discovery of 
the large collection of effector genes has increased the knowledge of the 
pathology of the late blight pathogen. In the Swedish population of P. infestans 
it would be interesting to investigate the effector variation in genotypes 
infecting potato and the alternative host, hairy nightshade. Will similar 
effectors have distinct function in different pathogen-host interactions?  

Can the alternative host hairy nightshade, present as a weed in the South of 
Sweden select for a higher aggressiveness compared to newly introduced 
nightshades further north?  Climate change can influence the population 
biology of P. infestans in the Nordic countries. That hairy nightshade is 
spreading further north is already a fact. Another effect from milder winters in 
Sweden could be an increased clonal survival of the pathogen. All this will 
have an effect on the population structure of P. infestans.  

Phytophthora infestans has been shown to be evolving quickly and can 
easily overcome resistance genes. The genomes of both the host and the 
pathogen are sequenced, and this knowledge can be used in combination with 
high throughput methods to study potato late blight. However, in the future, the 
monitoring of genotypic and phenotypic changes in the pathogen will still be 
very important to increase the understanding of how the disease behaves in 
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field situations. This will hopefully lead to improved breeding of cultivars with 
durable resistance.  
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