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Transfer RNA modifications and genes for
modifying enzymes in Arabidopsis thaliana
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Abstract

Background: In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to
tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies
have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene
expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA
modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in
plant growth and development.

Results: In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant
species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs
were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed
global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in
Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying
enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the
phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority
of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas
most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other
plant species, there was a big variation in the number of genes present for each family.
Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11,

AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U),
respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an
early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique
shape and defects in the generation of secondary shoots.

Conclusions: Using a reverse genetics approach, we successfully isolated and identified five tRNA modification
genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the
identification of tRNA modification genes in a wide variety of plant species.

Background
Transfer RNA (tRNA) is the adapter molecule mainly
responsible for decoding mRNA into the corresponding
peptide sequence. tRNA molecules are generally 75-87
nucleotides long and form clover-leaf shaped structures
through base pairing in the acceptor stem; D-stem, TΨC
stem and anticodon stem (Figure 1A). Modified tRNA
nucleosides are found universally in living organisms.

Some are conserved across all domains of life (e.g. Ψ, D,
m1G, m7G, Cm, Um and Gm), indicating an evolution-
ary ancient enzyme [1]. According to the RNA modifica-
tion database http://library.med.utah.edu/RNAmods/,
107 different modified nucleosides were found in RNA
as at 2008. Among these, 92 are present on tRNA mole-
cules. All modified nucleosides are derivatives of the
four normal nucleosides: adenosine, guanosine, uracine
and cytosine. The modifications vary from a simple
methylation on the ribose or base moiety to complicated
side chain modifications in different positions of the
purine/pyramidine ring (Figure 1B).
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All nucleoside modifications except Q are made on
the polynucleotide level, i.e. they are made post-tran-
scriptionally [2]. Many variations exist, however, in the
regulation of modifications. For example, some eukaryo-
tic tRNA modifications require intron-containing tRNA.
Also, the modification of tRNAs can differ depending
on the intracellular compartment, e.g. using yeast Phe-
tRNA as a substrate in Phaseolus vulgaris, cytoplasmic
and mitochondrial enzymes had m5C modification activ-
ity whereas chloroplast enzymes had m1A modification
activity [3]. Modification pathways vary from a single
methylation to complicated pathways involving multiple
protein complexes, e.g. at least 25 gene products have

been found to be involved in mcm5s2U modification in
S. cerevisiae [4]. In E. coli, no modified nucleosides were
shown to be essential for viability, however, the lack of
certain modifying enzymes can lead to lethality [5]. In S.
cerevisiae, three tRNA modifying enzymes (Gcd10p/
Gcd14p, Tad2p/Tad3p and Thg1p) that modify m1A58
[6], I34 [7] and tRNAHis G-1 (guanine nucleotide to the
5′-end of tRNAHis) [8] are known to be essential. Modi-
fied nucleosides influence the coding capacity of tRNA
by strengthening or weakening anticodon-codon interac-
tions and by influencing codon choice and codon con-
text sensitivity. Deficiency of modified nucleosides can,
therefore, lead to reduced translation efficiency and
increased translation errors, which will affect gene
expression regulation and cell metabolism [9]. Growth
conditions and the environment can affect tRNA modifi-
cations both quantitatively and qualitatively, e.g. bacteria
growing under starvation conditions for certain amino
acids or iron leads to under-modification of tRNA [10].
The link between the synthesis of modified nucleosides
in tRNA and metabolism has been suggested to be a
regulatory device and tRNA modification as a “biological
sensor”. Studies in wheat have shown chromatographic
changes of aminoacylated-tRNAs in different develop-
mental stages [11] and an increase of Phe-tRNA Y
(wybutosine) modification in older leaf tissues than in
young leaf tissues [12]. Studies of different tissue types
of tobacco showed that the abundance and variety of
methylated nucleosides are greater in intact plants than
in habituated and tumorous tissues [13]. tRNA modifi-
cations also differ upon maturation and/or transport
into subcellular compartments such as mitochondria
[14] or chloroplasts. Finally, some tRNA modifications
require the presence of introns [15]. Clearly, therefore,
which modified nucleosides are present on mature
tRNA depends on when and where the modification
occurs on the tRNA molecule.
Nucleoside modifications of tRNA have been exten-

sively studied in bacteria and yeast and most of the bio-
chemical pathways and genes encoding modification
enzymes have been identified. By contrast, the study of
tRNA modified nucleosides in plants has rarely been
documented. As a result of their key role in the transla-
tion machinery, the mechanisms of regulation of tRNA
activity by modified nucleosides are quite well-con-
served. Some modified nucleosides are universally found
in tRNAs from organisms of different domains of life,
presumably because of their essential role for the struc-
tural stability of tRNA interactions with partner mole-
cules during translation. In bacteria and S. cerevisiae
tRNA, tRNA modifications have been suggested to act
as biological sensors, changing quantity and quality
according to the growth conditions. Plants encounter
great environmental changes throughout their life cycles.
This begs the question; do modified nucleosides change

Figure 1 Modified nucleosides in eukaryotic tRNAs and
chemical structures. A: Clover-leaf structure of eukaryotic tRNA.
Each circle represents a nucleotide, numbered from 5’- to 3’- end.
Modified nucleosides found at different positions are shown. B:
Chemical structures of some modified nucleosides.
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at different developmental stages, in different plant tis-
sues or in response to environmental stimuli? How
many modified nucleosides exist in plants, and how are
they synthesized? These are the questions we want to
investigate in order to understand the function of modi-
fied nucleotides in plant development. We chose Arabi-
dopsis thaliana and hybrid aspen (Populus tremula×
tremuloides) for the study because both the Arabidopsis
and the hybrid aspen genomes have been fully
sequenced and because pools of mutants exist for Arabi-
dopsis, facilitating the identification of genes for specific
modified nucleosides. In addition, transgenic methods
for both Arabidopsis and aspen are well-established.
Hybrid aspen complements Arabidopsis because it is a
perennial plant and therefore more suitable for study
wood formation.
The methods used for RNA extraction and subsequent

purification separate small RNAs (including tRNA,
snRNA and miRNA) from high molecular weight RNA
molecules (mRNA and rRNA). snRNA (small nuclear
RNA) are extensively modified post-transcriptionally
mainly by 2′-O-methylation and pseudouradylation at
multiple positions. Modification in U2 snRNA from
yeast and mammals have been shown to be important
for the assembly and function of spliceosomes [16]. 2′-
O-methylation of U2 snRNA has been shown to be con-
served in plants but different from yeast and animals.
The sequences of snoRNA which guide U2 snRNA
modification by complementary sequences were also
shown to be different between rice and Arabidopsis
[17]. Plants have hundreds of miRNA genes and the
abundance of miRNA might exceed tRNA under specific
conditions (e.g. upon fungi infection). A considerable
number of modifications (A to I editing and 2′-O-
methylation of ribose,) are known to exist in plant
miRNA [18]. The presence of modified nucleosides in
plant tRNA is well accepted but modifying enzymes in
plants has rarely been documented. One example of a
modifying enzyme is the ABO1/ELO2 gene. Mutations
in this gene, encoding a homolog of the yeast elongator
complex protein, ELP1, can increase abscisic acid sensi-
tivity and drought tolerance in Arabidopsis [19]. There
are very few plant tRNA sequences available [20] for the
identification of modified nucleosides on different posi-
tions of individual tRNA species, and very few plant
tRNA modifying enzymes have been purified [21] or
identified [22].
In this study we established a method for tRNA purifi-

cation for the analysis of modified nucleosides in Arabi-
dopsis and hybrid aspen (Populus tremula ×
tremuloides). Twenty one known and four novel modi-
fied nucleosides were detected in comparison with mod-
ified nucleosides found in other organisms. A
combination-bioinformatics study and loss-of-function
approach in Arabidopsis was used to identify five genes

involved in modification of four specific modified
nucleosides: m1G, m2G, m7G and ncm5U.

Results
21 modified nucleosides and 4 novel nucleosides were
detected in tRNAs of Arabidopsis thaliana and hybrid
aspen
The model plants, Arabidopsis thaliana and hybrid
aspen (Populus tremula× tremuloides) were chosen for
tRNA isolation and HPLC analysis. Because of the low
yield of tRNA from plant tissues from previous experi-
ence, we used young seedlings of Arabidopsis and young
leaves and shoot apices from hybrid aspen due to higher
abundance of RNA in tissues of early developmental
stages. From 5 g frozen tissue we were able to obtain
approximately 1 mg total RNA using Trizol reagent.
After removal of rRNA and mRNA by LiCl method we
routinely obtained about 200 μg small RNA. From the
last step of DE52 column purification about 40-50 μg
tRNA were used for degradation and subsequent HPLC
analysis. Gradient buffers consisting of three buffers
were used to separate modified nucleosides and the elu-
tion time and spectrum of each peak were used to iden-
tify different modified nucleosides.
Twenty-one modified nucleosides were detected in

Arabidopsis and hybrid aspen, listed according to the
order of elution time from C30 column of HPLC analy-
sis in Table 1. HPLC chromatograms of the two species
were very similar (Figure 2); all modified nucleosides
present in Arabidopsis were also present in hybrid
aspen, with only slight differences for the relative abun-
dance of some peaks. Dihydrouridine (D) is difficult to
detect because it elutes together with Ψ, however D is
well conserved and is the second most widely distribu-
ted modified nucleoside, therefore it should be present
in plant tRNAs. Q was not analyzed because it is
destroyed during the procedure used for tRNA extrac-
tion and digestion in this study. Q is present in E. coli
and mammalian tRNA but absent in yeast tRNA[23].
Because the TGT gene responsible for Q biosynthesis is
found in P. trichocarpa but not in A. thaliana, Q should
be present in tRNA from hybrid aspen but absent in
Arabidopsis. We compared the chromatogram with that
from S. cerevisiae, calf liver and E. coli (Figure 3), certain
prokaryotic tRNA modifications (e.g. s2C, s4U,
mnm5s2U) were not found in plants, however m2A and
ms2io6A which is present in bacteria but not in yeast
and calf liver, was found in Arabidopsis and hybrid
aspen tRNAs (Table 1). We also observed differences in
tRNA modifications between plants, S. cerevisiae and
calf liver. m3C and i6A are present in yeast tRNA but
were not found in Arabidopsis and hybrid aspen. Genes
for m3C modification were not identified. Several modi-
fied nucleosides (mcm5U, ncm5Um and Ar(p)) that were
detected using purified single tRNA species from S.
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cerevisiae were not detected in this study. It is difficult
to conclude whether these modified nucleosides were
absent or of extremely low abundance. Wybutosine (Y)
derivatives were not detected either, however, Arabidop-
sis genes involved in Y synthesis (At4g04670 and
At1g75200) have been proposed [24].
To summarize, four U derivatives, nine A derivatives,

three C derivatives and five G derivatives were detected
in a total of 21 modified nucleosides from Arabidopsis
and hybrid aspen tRNAs. Four novel modified nucleo-
sides were detected (marked with black triangles in Fig-
ure 2) and the identity of these plant-specific modified
nucleosides requires further experimentation.

Using bioinformatics to find tRNA modifying genes in
plants
Many genes for tRNA modifying enzymes have been
identified in yeast and bacteria (Table 2). We decided to
look for tRNA modification genes by homology-based
bioinformatics approaches [25]. We used protein
sequences from S. cerevisiae or E. coli genes for the
modified nucleosides detected in this study to find plant
gene homologs from TAIR (The Arabidopsis Informa-
tion Resource, http://www.arabidopsis.org) and NCBI
databases http://www.ncbi.nlm.nih.gov/. Homologous
genes are listed in Table 3 according to the order of
modified nucleosides eluted from a C30 column from
HPLC analysis. Phylogenetic trees for each family of
genes were constructed using Geneious Basic 4.5.5 Tree
Builder http://www.geneious.com based on protein
sequences (Additional file 1).
Dihydrouridine (D) and pseudouridine (Ψ) modifica-

tion genes belong to dihydrouridine synthase superfam-
ily or pseudouridine synthase superfamily, respectively.
Dus1p-Dus4p are required for D modification at six dif-
ferent positions in yeast tRNA [26]. Dus3p homologs in
plants were well grouped, less well for Dus1p homologs
and no grouping was obvious for Dus2p and Dus4p
(Additional file1). Pseudouridine is the most widely dis-
tributed modified nucleoside. It has been identified at
15 different positions on yeast tRNA [27]. In total,
almost 100 homologous genes were found in plants,
which code for modification enzymes responsible for Ψ
at different locations on plant tRNA (Additional file1).
To completely understand the differences between these
gene homologs requires more phylogenetic and motif
analyses and will not be investigated in this study.
Methylation is the most common RNA modification,

many methylated modified nucleosides exist in plant
tRNA (m1G, m2G, m2

2G, m7G, m5U, m5C, m1A, m1I,
Am, Cm, Um and Gm, etc.). m1G is one of the most
conserved modifications in tRNA. Trm5p and Trm10p
are enzymes involved in the modification of m1G at dif-
ferent positions in S. cerevisiae. Although carrying simi-
lar biochemical activity, these two proteins do not share

Table 1 Modified nucleosides in Arabidopsis, Populus
compared to S. cerevisiae

Nucleosidesa Arabidopsis &
Populus

S.
cerevisiae

Calf
liver

E.
coli

Db +b +b +b +b

Ψ + + + +

C + + + +

cmo5U - - - +

ncm5U + + + +

U + + + +

m3C - + + -

s2C - - - +

m1A + + + -

m5C + + + -

mnm5s2U - - - +

Cm + + + +

m7G + + + +

m5U + + + +

I + + + +

G + + + +

Qg n.a - + +

acp3U - - - +

s4U - - - +

Um + + + +

m1I + + + -

mcm5Uc - + n.a. n.a.

Gm + + + +

m1G + + + +

m2G + + + -

ac4C + + - -

A + + + +

m2
2G + + + -

mcm5s2U - + n.a. n.a.

Am + + + -

t6A + + + +

m2A + - - +

m6A + + + +

m6t6A + - + +

YOH - + + -

io6A - - + +

ms2io6A + - - -f

Y - + - -

Ar(p)d n.a. + n.a. n.a.

ncm5Ume n.a. + n.a. n.a.

a. Nucleosides are listed in the order of retention time in HPLC chromatogram,
threshold for detection is approximately 0.002% of total area in HPLC
chromatogram, any modified nucleoside below this threshold is designated as “-”.

b. D (dihydrouridine) is not easily detected in HPLC system because of the
very early retention time and because of its close elution with Ψ.

c. mcm5U is detected in yeast single tRNA prep but not in bulk tRNA preps.

d. Ar(p) is present on initiator tRNA in S. cerevisiae (Aström SU, 1994), its
position in HPLC is unknown.

e. ncm5Um is detected in yeast single tRNA prep (Glasser AL, 1992), its
position in HPLC is unknown.

f. E. coli has ms2i6A but Salmonella enterica has ms2io6A.

g. Q is not being analyzed because it is destroyed during tRNA extraction and
digestion.

n.a. Data not available.
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homology and are likely unrelated [28]. The Trm5p
enzyme for m1G37 modification is an ancient protein. It
is also involved in m1I modification [29]. Three TRM5
gene homologs and one TRM10 gene homolog were
found in Arabidopsis and gene homologs are widely dis-
tributed in other plant species. Trm11p and Trm112p
are both required for m2G modification in yeast tRNA
[30]. One TRM11 and two TRM112 gene homologs
were found in Arabidopsis. Conserved residues D215 of
motif I and D291 of motif IV which are crucial for
Trm11p catalytic activity [30] were conserved in all

plant TRM11 gene homologs (Figure 4A). TRM1 codes
for tRNA(m2

2G) methyltransferase in S. cerevisiae [31].
Three Arabidopsis TRM1 gene homologs were found.
Plant TRM1 gene homologs were divided into two
groups (Additional file1). Trm8p and Trm82p form pro-
tein complexes required for m7G modification [32]. Two
TRM8 gene homologs were found in Arabidopsis and
plant TRM8 gene homologs can be divided into two
groups. Plant TRM82 gene homologs are recognized as
WD40-domain proteins (the same domain was found in
Trm82p) which confer a wide variety of functions. m5U

Figure 2 HPLC chromatogram of modified nucleosides in tRNAs from Arabidopsis and Poplar. X-scale: retention time of modified
nucleosides in minutes. Y-scale: UV absorbance at 254 nm. Peaks marked with black triangle represent plant-specific modified nucleosides.
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is one of the most conserved modified nucleosides,
Trm2p protein contains tRNA(m5U) methyltransferase
activity in S. cerevisiae [33]. In Arabidopsis, two TRM2
gene homologs were found. The yeast Trm4p protein
catalyzes formation of m5C at positions 34, 40, 48 and
49 [34]. Eight TRM4 gene homologs were found in Ara-
bidopsis belonging to the NOP1/NOP2/Sun protein
family. Trm6 and Trm61 are essential genes coding for
the two subunits of tRNA(m1A58) methyltransferase in
yeast. One homolog was found in Arabidopsis thaliana
for Trm6 and Trm61, respectively. m1I modification
requires two gene products in yeast, Trm5p for methyla-
tion and Tad1p for deamination of A [35]. TRM5 homo-
logs have been mentioned above. The Tad1p protein
contains a deaminase domain and the conserved residue,
E103, is maintained in all plant TAD1 gene homologs
(Figure 4B).
In addition to base methylation, ribose methylation

requires another group of methyl-transferases. Trm13p
is responsible for Am and Cm modification at position
4 in S. cerevisiae [36]. Trm13p does not share obvious
homology with other methyltransferases, plant TRM13
gene homologs all contain the TRM13 superfamily
domain. One Arabidopsis TRM13 gene homolog was
found, however, we failed to detect decreased amounts
of Am in T-DNA knock-out mutants of this gene (data
not shown). The Trm7p protein is responsible for both
Cm32 and Gm34 modification in yeast [37]. Three
TRM7 gene homologs were found in Arabidopsis.
Trm44p was identified recently as tRNA(Um44) methyl-
transferase in S. cerevisiae [38]. Although Um was
detected in Arabidopsis and Poplar tRNAs in this study,

TRM44 gene homolog were not found. TRM3 gene is
responsible for Gm18 modification [39]. One TRM3
gene homolog was found in Arabidopsis; however, once
again we did not find any change of Gm content in a T-
DNA knockout mutant carrying an insertion in an exon
of this gene. This may be due to the presence of Gm at
other positions.
At least 13 proteins have been shown to be involved

in ncm5U modification in S. cerevisiae [4]. Elp1-6 are
components of the elongator complex which are also
involved in ncm5U modification by unknown mechan-
isms. Sit4p, Sap185p, Sap190p and Kti12p are a group
of proteins that affect the phosphorylation status of Elp1
protein [40]. One Elp1 homolog was found in Arabidop-
sis and a few were identified in other plant species.
Interestingly the Arabidopsis abo1(Elp1) mutant has
been shown to be more resistant to drought and oxida-
tive stress [19]. Sit4p belongs to the calcuneurin-like
phosphoesterase protein family and 26 SIT4 gene homo-
logs were found in Arabidopsis. Four Arabidopsis genes
were found to be Sap185p and Sap190p homologs.
Kti11-14 proteins are involved in resistance to K. lactis
killer toxin of S. cerevisiae [41]: Kti13p belongs to the
RCC1 family (regulator of chromosome condensation
family) involved in regulating chromatin partitioning
and cell division; Kti14p belongs to the Casein Kinase I-
like protein family and physically interacts with the
Elongator complex [4]. One Arabidopsis gene was found
for Kti11p, one for Kti12p, six were found for Kti13p
and around 90 homologs were found for Kti14p.
Inosine is a common modified nucleoside found in

tRNAs. In S. cerevisiae Tad2p and Tad3p are subunits
of adenosine deaminase for I34 formation [7]. Both pro-
teins contain a deaminase domain and position E56 in
Tad2p which is important for activity was retained in all
plant TAD2 homologs (Figure 4C). Tan1p is responsible
for ac4C modification in yeast [42] and one Arabidopsis
TAN1 homolog was found. Plant TAN1 homologs can
be divided into two groups (Additional file1). The SUA5
gene has been identified as a tRNA(t6A) synthase [25].
One SUA5 homolog was found in Arabidopsis and sev-
eral were identified in other plants. ms2io6A modifica-
tions have two side chains: the ms2-group requires the
MiaB protein in S. enterica and E. coli [43] and for i6-
group modification, the MOD5 gene is required in
S. cerevisiae [44]. The MiaE protein is required for mod-
ifying i6A to io6A in S. enterica. We found ms2io6A pre-
sent in both Arabidopsis and hybrid aspen tRNAs. Two
MiaB gene homologs were found in Arabidopsis and
nine isopentenyl-transferases (ATIPT) have been identi-
fied in Arabidopsis, however, only two (ATIPT2 and
ATIPT9) use tRNA as substrate [22]. No MiaE homo-
logs were found in Arabidopsis.
Based on the tRNA modification candidate genes found

in Arabidopsis (Table 3), we decide to use publically

Figure 3 Venn diagram showing similarities and differences
of modified nucleosides between A. thaliana, S.cerevisiae and
E. coli. Modified nucleosides were shown with abbreviations,
comments (a)-(g) were the same as in Table 1.
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available T-DNA mutant lines to identify genes specific
for each modified nucleoside in Arabidopsis. We have
chosen the genes of small gene families for which less
than three genes were potentially involved in a certain
modifications. 21 T-DNA insertional mutant lines were
ordered from the European Arabidopsis Stock Center
(NASC, http://arabidopsis.info/) for 13 genes involved in
nine different modified nucleosides. Homozygote lines
were isolated and modified nucleosides in total tRNA
were subsequently analyzed. Twelve homozygous T-
DNA lines were isolated, among them six lines were
defective in four specific modified nucleosides: m1G,
m2G, m7G and ncm5U (Table 4), T-DNA lines and their
insertion sites are shown schematically in Figure 5. T-

DNA lines in gene At5g47680 (Trm10p homolog)
showed a 50% decrease in m1G content compared to
wild type plants (Figure 6A). We named this gene
AtTRM10. No m7G could be detected in plants with a T-
DNA insertion in gene At1g03110 (Figure 6B). This gene
is homologous to Trm82p. At1g03110 was named
AtTRM82. Mutant plants from T-DNA NASC lines
N661341 and N658947 showed no detectable ncm5U
(Figure 6C). The corresponding genes, At5g13680 and
At1g13870 were named AtELP1 and AtKTI12.
At3g26410 was homologous to Trm11pthe gene required
for m2G modification in S. cerevisiae. Only 7.3% of m2G
remained in mutant plants compared to wild type plants
(Figure 6D), At3g26410 was named AtTRM11.

Table 2 tRNA modification genes identified in E. coli and S. cerevisiae

Modified
nucleosides

E. coli genes S. cerevisiae genes

D DusA, DusB, DusC Dus1, Dus2,Dus3,Dus4

Ψ TruA/HisT(Ψ38,39,40), TruB(Ψ55), RluA(Ψ32),
TruD(Ψ13)

Pus1(Ψ24,28,34,36), Pus3 (Ψ38,39), Pus4(Ψ55), Pus6(Ψ31), Pus7(Ψ13, Ψ35), Pus8
(Ψ32), Pus9(Ψ32)

ncm5U Sit4, Kti11-14, Elp1-6, Sap185, Sap190

m1A Trm6, Trm61

m5C Trm4

Cm TrmJ(Cm32) Trm7(Cm32)

m7G YggH Trm8, Trm82

m5U TrmA Trm2

I TadA Tad2, Tad3

Um TrmJ(Um32) Trm44(Um44)

m1I Tad1, Trm5

mcm5U Trm9, Sit4, Kti11-14, Elp1-6, Sap185, Sap190

Gm Trm3(Gm18), Trm7(Gm34)

m1G TrmD Trm5, Trm10

m2G Trm11, Trm112

ac4C TmcA TAN1

m2
2G Trm1

mcm5s2U - Urm1, Uba4,Ncs2, NFS1

Am Trm13(Am4, Cm4)

t6A Sua5

m2A TrmG (genetic name, no sequence)

m6t6A TsaA

i6A MiaA MOD5

ms2io6A MiaA, MiaB, MiaE

Y Tyw1, Tyw2(Trm12), Tyw3, Tyw4

Ar(p) Rit1

Q Tgt, QueC,YbaX, YgcM, YgcF, YqcD

preQ QueF

mnm5s2U MnmE, MnmC, MnmA/AsuE/TrmU

mnm5se2U YbbB

cmo5U CmoA, CmoB

mcmo5U CmoA, CmoB

k2C MesJ/TilS

s2U TusA, TusB, TusC, TusD

s4U ThiI

s2C TtcA Ncs6/Tuc1
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Subcellular localization of tRNA modifying enzymes is
an important issue, tRNA molecules are distributed in
different subcellular compartments therefore modified
nucleosides differ in mitochondria, chloroplast and cyto-
plasm. We performed prediction of protein subcellular
localization using three programs: TargetP, WoLFP-
SORT and ESLpred (Additional File 2). The results from
the three prediction program complement each other
because different algorisms were used. Distribution of
plant tRNA modification in different subcellular orga-
nelles is one of the future work to do, however we need
to be cautious about cross-contamination to avoid false-
positives because some of the modified nucleosides are
present in low abundance.

tRNA modifications are involved in regulating organ
growth, stress responses and flowering time in
Arabidopsis thaliana
Among the five genes identified in this study, two genes
showed phenotype in the knock-out mutants. AtTRM10
and AtTRM82 mutants which showed dramatic decrease
of m1G (Figure 6A) and m7G (Figure 6B) modified

nucleosides respectively, did not show any phenotype
under LD conditions. The AtKTI12 mutant, which car-
ries a T-DNA inserted in an exon of At1g13870 similar
to the previously isolated drl1 mutant [45] showed no
detectable ncm5U (Figure 6C), however, narrow leaves
and meristem defect phenotypes in drl1 mutant were
not observed in the AtKTI12 mutant.
The AtELP1 mutant, which carries a T-DNA insertion

in the third exon of At5g13680, similar to the previously
identified elo2 mutant[46] showed no detectable ncm5U
(Figure 6C). The elo2 mutant belongs to the elongata
mutants that have pleitrophic phenotypes, generally
identified as reduced organ growth: narrow leaf, reduced
growth of primary roots, altered inflorescence architec-
ture and reduced length, delayed seeding growth [46].
The elo2/abo1 mutant also showed increased resistance
to drought and oxidative stress, hypersensitivity towards
ABA and elevated expression of anthocyanin biosynth-
esis genes[19,47]. The AtELP1 protein can complement
the yeast Δelp1 mutant [19] and physically interacts
with AtKIT12 [46]. The AtELP1 mutant in this study
showed a narrow leaf shape (Figure 7A), and also

Table 3 tRNA modification candidate genes in Arabidopsis

Modified
Nucleosides

Homologous genes found in Arabidopsis

D At4g38890(Dus1,Dus2,Dus3), At5g67220(Dus1, Dus2, Dus3), At5g47970(Dus4), At3g49640(Dus1,Dus2,Dus3,Dus4), At3g63510
(Dus1,Dus4)

Ψ At1g76120cyto(Pus1,Pus3), At1g20370(Pus1,Pus3), At1g34150nucl(Pus3,Pus1), At3g06950chlo(Pus3,Pus1), At2g30320(Pus1,Pus3),
At5g35400(Pus1,Pus3),At5g14460chlo(Pus4), At5g51140cyto(Pus6, Pus8, Pus9), At3g04820(Pus7), At3g52260cyto(Pus9,Pus8,Pus6),
At1g76050chlo(Pus8, Pus9,Pus6), At3g19440(Pus9,Pus8,Pus6), At1g56345(Pus9), At1g78910(Pus9,Pus6)

ncm5U At3g19980cyto, At1g50370cyto, At5g55260cyto, At4g26720cyto, At1g69960cyto, At3g58500cyto, At2g42500cyto, At1g10430cyto,
At1g59830cyto (Sit4 family), At1g07990, At2g28360, At3g45190, At1g30470cyto(Sap185, Sap190), At2g15910(Kti11),
At1g13870nucl(Kti12), At1g27060nucl, At5g63860nucl, At3g55580nucl, At5g16040, At3g53830nucl, At3g26100nucl (Kti13 family),
At5g57015, At1g03930, At4g26100cyto, At1g72710 etc.(Kti14 family), At5g13680cyto(Elp1)

m1A At5g14600(Trm61), At2g45730(Trm6)

m5C At2g22400, At4g40000, At5g55920nucl, At4g26600chlo, At3g13180chlo, At1g06560, At5g66180, At5g26180(Trm4)

Cm At5g01230, At4g25730, At5g13830cyto(Trm7)

m7G At5g24840(Trm8), At5g17660chlo(Trm8), At1g03110nucl(Trm82)

m5U At3g21300mito, At2g28450nucl(Trm2)

I At1g48175, At1g68720nucl(Tad2), At5g24670nucl(Tad3)

Um no gene homolog found

m1I At1g01760nucl(Tad1),At3g56120cyto, At4g27340chlo, At4g04670cyto(Trm5)

Gm At4g17610(Trm3), At5g01230, At4g25730, At5g13830cyto(Trm7)

m1G At3g56120cyto, At4g27340chlo, At4g04670cyto(Trm5), At5g47680(Trm10)

m2G At3g26410cyto(Trm11), At1g78190, At1g22270(Trm112)

ac4C At5g12410(TAN1)

m2
2G At3g02320, At5g15810mito, At3g56330chlo(Trm1)

Am At4g01880chlo(Trm13)

t6A At5g60590chlo(Sua5)

ms2io6A At4g36390chlo, At1g72090cyto(MiaB), At5g20040/ATIPT9, At2g27760/ATIPT2cyto(MOD5)

Y At1g75200(Tyw1), At4g04670cyto(Tyw3+Tyw4c+Tyw2)

tRNA modifying genes from S. cerevisiae or E. coli were used for BLAST search in TAIR database to find homologous genes in Arabidopsis thaliana. Arabidopsis
genes for each modified nucleosides detected in this study is listed and gene used in query was shown in bracket. For multiple gene homologs found in
Arabidopsis the query gene is shown in bracket next to the last gene. Genes for m2A and m6A modification were not available, TsaA for m6t6A did not give any
homologous genes in Arabidopsis. Predicted subcellular localization of gene products was shown when at least two prediction programs gave the same result
(Additional file 2).
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reduced leaf numbers compare to wild type plants
(Figure 7B) and serrated leaf edges of the third and
fourth true leaves (Figure 7C). These phenotypes were
also observed under short-day conditions (data not
shown). AtELP1 mutant plants showed reduced root

growth on MS medium plate (Figure 7E) compared to
wild type plants (Figure 7D). AtELP1 mutants had
reduced lateral shoot growth after the removal of the
primary shoot. Lateral shoots had difficulties with
remaining erect due to a defect in vascular tissues

EU967180 (Zea mays)
EU967861 (Zea mays)
Os02g0556400 (O.sativa)
AK327657 (S.lycopersicum)
XP002271199 (V.vinefera)
XP002298196 (P trichocarpa)

A

XP002298196 (P.trichocarpa)
At3g26410 (A.thaliana)
XP001771752 (P.patens)
Trm11p (S.cerevisiae)

ACF86175 (Zea mays)
NP001054302 (O.sativa)

B

XP002273023 (V.vinifera)
XP002320118 (P.trichocarpa)
At1g01760 (A.thaliana)
AK322648 (S.lycopersicum)
XP001777317 (P.patens)
Tad1p (S.cerevisiae)

C ACG33887 (Zea mays)
Os03g0321900 (O.sativa)
At1g48175 (A.thaliana)
X54385 (L.polyphyllus)
XP002308113 (P.trichocarpa)
Tad2p (S.cerevisiae)
XP002312358 (P.trichocarpa)

TAD2
homologs

C

( p )
XP002315970 (P.trichocarpa)
XP002277950 (V.vinifera)
At1g68720 (A.thaliana)
Os06g0489500 (O.sativa)
At5g24670 (A.thaliana)
AC189401 (B.pekinensis)
XP002266270 (V.vinifera)TAD3 XP002266270 (V.vinifera)
NP001062614 (O.sativa)
Tad3p (S.cerevisiae)

homologs

Figure 4 Conserved domain of TRM11TAD1TAD2and TAD3 gene homologs in plants. Part of protein sequence alignments were shown
with numbers above showing position from the first amino acid. A: Motif I within catalytic domain of TRM11 gene homologs, conserved residue
D215 and D291 are marked with arrows. B: Deaminase domain of TAD1 gene homologs, conserved residue is marked with black arrow. C:
Deaminase domain of TAD2 and TAD3 gene homologs, conserved residue is marked with black arrow.

Table 4 Quantification of modified nucleosides in T-DNA mutants

T-DNA line
(NASC line)

Gene m1G/Ψ m7G/Ψ ncm5U/Ψ m2G/Ψ

wt 0.344 0.338 0.014 0.273

N653345 At5g47680 (AtTRM10) 0.185 (53%)

N665836 At5g47680 (AtTRM10) 0.208 (60%)

N658418 At1g03110 (AtTRM82) <0.001 (<0.2%)

N661341 At5g13680 (AtELP1) <0.0002 (<0.01%)

N658947 At1g13870 (AtKTI12) <0.0003 (<0.02%)

N622158 At3g26410 (AtTRM11) 0.020 (7.3%)

Amount of certain modified nucleosides were shown using relative quantification to internal standard (Ψ), percentage of wild type level was shown in bracket.
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(Figure 7G). Finally, silique morphology was aberrant in
this mutant (Figure 7I).
The AtTRM11 mutant, which carries T-DNA inser-

tion in the third exon of At3g26410, showed a small
amount (7.3% of wild type level) of m2G (Figure 6D).
Under LD conditions the AtTRM11 mutant plant
showed an early-flowering phenotype (Figure 7A) as
well as reduced root growth on MS medium plates (Fig-
ure 7C). In S. cerevisiae, Trm112p is needed for m2G
modification by regulating Trm11p activity [30]. No T-
DNA lines are available for the two TRM112 homologs
in Arabidopsis. Modifying enzymes for m2G at other
positions have not been reported.

Analysis of gene expression and phylogeny
We have investigated the expression pattern of all the
Arabidopsis tRNA modification candidate genes identi-
fied in this study using the AtGenExpress database (Fig-
ure 8). 62 tissue samples were included. The candidate
genes were grouped according to predicted function in
specific modified nucleosides and mean-normalized
expression values from the AtGenExpress database were
transformed into log values for heat map construction
using MeV (MultiExperiment Viewer) software. Most

genes had prominent expression in rosette leaves and
apex tissues, except for the D and ncm5U modification
genes. The AtTRM10, AtTRM11, AtTRM82, AtKTI12
and AtELP1 genes identified in this study are marked
with an asterisk. From the Tilviz database, except for
AtKTI12, their expression was highest in apex tissues,
and the expression level was higher in inflorescence
apices than in vegetative apices according to the tiling
dataset (Figure 8). AtKTI12 is only expressed in late
stages of seed development. The expression heat map is
a guideline for developmental and tissue specific expres-
sion of the candidate genes. The expression profile is
very important for functional study. If the phenotype of
the transgenic plants is consistent with the expression
pattern, the following-up experiments will be performed
in the right tissues and at the right developmental
stages.
We searched for homologs for the 21 modified

nucleosides and dihydrouridine present in Arabidopsis
and hybrid aspen. Arabidopsis tRNA modification candi-
date genes are listed in Table 3. An unrooted Neigh-
bour-Joining tree was constructed showing the
phylogeny between plant genes in relation to yeast
genes (Figure 9). The result shows that most gene

Modified 
nucleoside

Gene Salk line 
(NASC line)

T-DNA 
inserted in

Gene model and T-DNA line HPLC 
resulta

ncm5U At1g13870 Salk_140551 
(N658947)

Exon +

ncm5U At5g13680 Salk_005153 
(N661341)

Exon +

m1G At5g47680 Salk_087697  
(N653345)

Exon +

m1G At5g47680 Salk_040303  
(N665836)

Exon +

m7G At1g03110 Salk_133110 
(N658418)

+

m2G At3g26410 Salk_122158 
(N622158)

+

m2G At3g26410 Salk_017983 
(N671378)

-

Gm At4g17610 Salk_014295 
(N659281)

-

Gm At4g17610 Salk_138076 
(N670190)

-

Am At4g01880 Salk_120953 
(N653661)

-

Am At4g01880 Salk_135564 
(N635564)

-

I At5g24670 Salk_009025 
(N665214)

-

a. ”+” Indicates a change of amount of modified nucleosides in HPLC chromatogram; ”-” no change.

N665836

N653345

N658418

N661341

N658947

N622158

N671378

N659281

N670190

N653661

N635564

N665214

Figure 5 T-DNA lines used in this study and corresponding genes. Gene models were shown with dark gray box representing exon and
lines in between as intron. T-DNA insertion was shown as a triangle with NASC line name above. Relevant modified nucleosides for
corresponding gene and HPLC results were indicated: “+” represents a change of amount of modified nucleoside in the mutant; “-” represents
no change.
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Figure 6 HPLC chromatogram of the T-DNA homozygous mutants defective in modified nucleosides. Parts of the HPLC chromatogram
were shown with black triangle indicating position of the relevant modified nucleosides. NASC line number, allele number and modified
nucleosides affected were shown in each panel, numbers above or within peaks represent retention time in minutes.
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Figure 7 Phenotype of mutant plants. A: Early flowering of N622158 mutant plants and narrow leaf phenotype of N661341 mutant plants.
Picture was taken at 21 D under LD condition. B and C: Serrated leaf shape of the third and fourth true leaves of N661341 mutant plant (C,
indicated with arrows) compared to Col.0 (B). Picture was taken 13 D under LD condition. D and E: Reduced root growth of N661341 mutant
plants (E) compared with Col.0 (D). MS plates were incubated vertically in tissue culture room for 8 D before picture was taken. F and G:
N661341 mutant plant had problem of secondary shoot growth (G) compared to wild type (F). Plants were grown in LD conditions, primary
shoots were cut at 3 weeks and picture taken at 6 weeks. H and I: N661341 mutant plant had aberrant silique shape (I) compared with Col.0 (H).
Plants were grown in LD conditions.
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Figure 8 Heat map of Arabidopsis tRNA modification candidate genes. A: All tRNA modification candidate genes in Arabidopsis found in
this study. Data downloaded from AtGenExpress database where information for tissue cluster and sample ID can be found. The five tRNA
modification genes identified in this study were marked with asterisk. B and C: Heat map of AtTRM82, AtKTI12, AtELP1, AtTRM10 and AtTRM11
from Developmental dataset (B) and Tiling dataset (C) from Tileviz database.
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Figure 9 Phylogenetic tree of TRM10, TRM11, TRM82, ELP1 gene homologs in plants and KTI12 tree from all domains of life. Gene
accession number and organism was shown, with branch numbers showing substitution rate per site for sequence alignment. A: Trm10 tree; B:
Trm11 tree; C: Trm82 tree; D: Elp1 tree. E: Kti12 tree (representative of organism from all domains of life).
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families in Arabidopsis also exist in other plants; how-
ever, the number of genes in each family varies. In this
section we will discuss only the homologs for the five
Arabidopsis tRNA modification genes identified in this
study: i.e. the homologs for AtTRM10, AtTRM11,
AtTRM82, AtKTI12 and AtELP1. Trm10p is a con-
served methyl-transferase, but it does not contain a typi-
cal AdoMet-binding domain and shares no homology
with other classical tRNA methyltransferases, e.g.
Trm5p [28]. Fourteen plant TRM10homologs were
found, including one Arabidopsis gene (AtTRM10), two
from M. truncatula and three from P. trichocarpa (Fig-
ure 9A). Trm11p is required for m2G modification in
yeast tRNA. The residues D215 and D291 that are
essential for Trm11p catalytic activity are retained in all
plant TRM11 gene homologs, including AtTRM11 (Fig-
ure 4A). Trm82p belongs to the WD40-domain protein
family. Members of this protein family have different
biological functions. AtTRM82 is clearly responsible for
m7G modification in Arabidopsis thaliana. Elp1 and
Kti12p are well conserved proteins and both are
involved in ncm5U modification. Only a few ELP1
homologs were found in plants (Figure 9D), in contrast
to the KTI12 homologs that are found from archea to
human (Figure 9E).
The majority of tRNA modification enzymes are not

essential, in bacteria only TrmA enzyme has been
shown to be essential, however the lethality is not due
to lack of m5U modification on tRNA but from its effect
on ribosome assembly by association with rRNA. In
yeast three tRNA modifying enzymes/complexes were
found to be essential: Gcd10p/Gcd14p, Tad2p/Tad3p
and Thg1p. At present we could not conclude which
plant genes encoding tRNA modification enzymes are
essential, however during the preliminary screening of
the T-DNA lines for tRNA modification genes in Arabi-
dopsis we were not able to isolate homozygote plant
from some of the lines (n ≥ 24, n represent number of
plants used), which is probably due to essentiality of the
corresponding genes. To confirm this, we will increase
the amount of plants for screening in the next genera-
tion (n ≥ 200), at the same time we will carry out more
comprehensive identification and confirmation of the
tRNA modification candidate genes.

Discussion
In this study we investigated modified nucleosides in
the model plant species Arabidopsis thaliana and
hybrid aspen. Twenty one modified nucleosides were
detected in young tissues from both species. The
method used did not allow for dihydrouridine (D) and
queosine (Q) derivatives to be analyzed. However as D
is much conserved in tRNAs from all domains of life,
we assume that D is also present in plant tRNAs. The
TGT gene responsible for Q modification has been

reported in aspen (GenBank: EEE81588.1) but not in
Arabidopsis, suggesting that Q should be found in
hybrid aspen but not in Arabidopsis. acp3U [48,49] and
k2C [50,51], which have been reported in sequenced
chloroplast tRNA were not detected either in total
tRNA from 14 d whole seedlings of Arabidopsis. This
may be because these modified nucleosides are present
in only a few chloroplast tRNA, meaning that their
abundance is below the detection threshold for the
method used in this study. tRNA enrichment from
chloroplast compartments might allow us to see these
modifications more easily. Generally patterns of modi-
fied nucleosides in plants are similar to those observed
in yeast and calf liver, however, several modified
nucleosides, including mcm5U, mcm5s2U, Y and YOH

that have been detected in yeast individual tRNA spe-
cies were not detected in plant tRNAs, potentially
because of extremely low abundance. Two prokaryotic
modified nucleosides, m2A and ms2io6A, were present
in plant tRNAs. It is likely that these are from chloro-
plast or mitochondria subcellular compartments. m3C
is present in yeast tRNA but was not observed in the
tRNAs in this study. At present we are unable to con-
clude whether this is because m3C is present in low
abundance or that plants lacks genes responsible for
m3C modification. Four novel nucleosides were discov-
ered in plant tRNAs. In subsequent work, we will
further characterize the identities of these compounds
by use of combined LC-MS method.
For the 21 known modified nucleosides mentioned

above, we used a loss-of-function study and identified
five genes responsible for four specific modified nucleo-
sides, m1G (AtTRM10), m2G (AtTRM11), m7G
(AtTRM82) and ncm5U (AtKTI12 and AtELP1). Modi-
fied nucleosides participate in fine-tuning the activity of
tRNAs during translation. For example, defects of cer-
tain tRNA modifications result in decreased translation
efficiency and increased translational error. Depending
on which codon the tRNA recognizes and the codon
context, various aspects of cellular metabolism and sig-
naling pathways may be altered. Two of the Arabidopsis
tRNA modification mutants identified in this study
showed an early flowering phenotype (AtTRM11
mutant) and had reduced organ growth (AtELP1
mutant), respectively. To study the mechanism of early-
flowering of AtTRM11 mutant, we will investigate
expression of some flowering key regulators (e.g. GI, FT,
LFY, FLC and SOC1) to see which pathway is affected
in the mutant. Flowering regulation in Arabidopsis is
rather complicated network but investigating expression
of the key regulators will help to unravel the molecular
mechanism. AtELP1 has been reported being involved
in different developmental processes (leaf and root elon-
gation) and stress response (anthocyanin biosynthesis
and oxidative stress key regulators); we will study gene
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expression and regulation in the different pathways.
With more genes to be identified in the future, we
expect to see a more complex profile of the function of
modified nucleosides in plant growth, development and
stress responses. To understand the molecular mechan-
isms involved, we need to investigate the temporal and
tissue specific expression of tRNA modification
enzymes, to find the targets of genes underlying the
phenotypic changes of each mutant. In addition to regu-
lation on a translational level, certain Arabidopsis tRNA
modifying enzymes might also interact physically with
other proteins.
In this study we have established a method for the

analysis of modified nucleosides in transfer RNA from
plants. With this method we identified five genes
responsible for specific modified nucleosides. The
advantage of the HPLC method is that we could
observe global changes of all the modified nucleosides.
The disadvantage is that the sensitivity of the HPLC
method we are using could not detect very low abun-
dance modified nucleosides that may be present in only
on a few tRNA molecules and the HPLC method alone
could not determine the identity of unknown com-
pounds. However, in future experiments we should be
able to overcome these problems by enriching for indi-
vidual tRNA species using hybridization-based Dyna-
bead technology followed by HPLC analysis; and by
combining the HPLC with LC-MS or by enriching the
compound of interest by HPLC followed by MS or
NMR studies to resolve the structure. With the method
established in this study, more tRNA modification genes
in plants should be able to be identified. Characteriza-
tion of mutants for these genes will reveal the function
of modified nucleosides in plant physiology and gene
expression.

Conclusions
In this study we established a method for analyzing mod-
ified nucleosides of tRNA from plant tissues, described
the amount and recovery efficiency for each step. We
detected 21 modified nucleosides in young seedlings of
Arabidopsis and from young tissues of hybrid aspen
(Populus tremula × tremuloides). More importantly, we
have predicted and summarized the tRNA modification
candidate genes in plants. Through loss-of-function stu-
dies we identified five genes responsible for four specific
modified nucleosides in Arabidopsis thaliana: AtTRM10
for m1G, AtTRM11 for m2G, AtTRM82 for m7G,
AtKTI12 and AtELP1 for ncm5U modification. We con-
clude with the method established here, more modified
nucleosides in plants can be investigated in order to
understand the function of tRNA modifications in plant
growth, development and stress responses. This systema-
tic study on tRNA modification genes in Arabidopsis is
very useful as a tool for those in the same research area

and those who are interested in developing new research
projects related to nucleoside modification on small
RNAs. Also the four novel plant-specific modified
nucleosides will be of great interest for plant researchers.

Methods
Plant growth conditions
For total RNA preparation from young seedlings Arabi-
dopsis thaliana ecotype Col.0 was grown as a lawn in
soil and vermiculite (3:1) in a greenhouse at 22°C/18°C
(day/night temperature), with light intensity of 150 μmol
m-2 s-1 and 60% humidity under long-day conditions (16
h-light/8 h-dark cycle). 3-weeks seedlings were harvested
and frozen in liquid nitrogen for subsequent RNA
extraction. Hybrid aspen (Populus tremula × tremu-
loides; clone T89) were grown in soil in green house at
22/18°C (day/night temperature), with light intensity of
maximum 400 μmol m-2 s-1 from natural daylight (con-
trolled by curtains, supplemented when required with
high-pressure sodium lamps) and 80% humidity under
long-day conditions (16 h-light/8 h-dark cycle). Young
leaves and apical shoot tips within 2 cm from the top of
about 1.5 m high trees were collected and frozen in
liquid nitrogen for RNA extraction.
For phenotypic study, seeds for all lines were stratified

3 days in +4°C before being sown; plants were grown in
LD conditions (16 hr photoperiod, light density 150
μmol m-2 s-1, day temperature 22°C, night temperature
18°C, and 60% humidity). MS (Murashige-Skoog, Duch-
efa Biochemie) medium, supplemented with 0.8% plant
agar (Duchefa Biochemie) and 1% sucrose (Sigma) was
used for Arabidopsis root growth studies under LD con-
ditions (same as above).
All T-DNA mutant lines were purchased from The

European Arabidopsis Stock Center (NASC, http://arabi-
dopsis.info/). Homozygote or heterozygote genotypes
were determined using gene specific primers designed
by T-DNA primer design tool (Salk Institute Genomic
Analysis Laboratory, http://signal.salk.edu/tdnaprimers.2.
html), LBa1 primer (5′-TGGTTCACGTAGTGGGC-
CATCG-3′) was used as left border primer for T-DNA
insertion.

RNA isolation and digestion
Total RNA was extracted using Trizol Reagent (Invitro-
gen), and RNA concentration was determined using
NanoDrop ND-1000 spectrophotometer (Thermo Scien-
tific). sRNAs (including tRNA, miRNA and snRNA)
were separated from rRNA and mRNA using the LiCl
method: rRNA and mRNA were precipitated with 2 M
LiCl final concentration, sRNAs in supernatant were
precipitated with 3 volumes of ethanol, washed once
with 70% ethanol and dissolved in 0.1 M Tris pH7.4, 0.1
M NaCl. tRNA was further purified using DE52 anion
exchange resin: RNA in binding buffer (0.1 M Tris

Chen et al. BMC Plant Biology 2010, 10:201
http://www.biomedcentral.com/1471-2229/10/201

Page 16 of 19

http://arabidopsis.info/
http://arabidopsis.info/
http://signal.salk.edu/tdnaprimers.2.html
http://signal.salk.edu/tdnaprimers.2.html


pH7.4, 0.1 M NaCl) was loaded on DE52 column (bed
volume 2 ml), washed three times with 5 ml binding
buffer each time, eluted with 7 ml elution buffer (0.1 M
Tris pH7.4, 1 M NaCl). tRNA was precipitated with iso-
propanol, washed with 70% ethanol and dissolved in
MQ water. 50 μg tRNA from Arabidopsis or hybrid
aspen were degraded to nucleosides with P1 nuclease
(Yamasa Corporation, Japan) and bacterial alkaline
phosphatase (Sigma) as following: to 50 μg tRNA (in
100 μl MQ) add 10 ul of 20 mM ZnSO4, 10 ul nuclease
P1 (1 mg/ml, 200 units/mg in 30 mM NaAc pH5.3) and
digest at 37°C for at least 24 hrs; add 5 ul bacterial alka-
line phosphatase (about 190 units/ml, 30 units/mg,
diluted 1:100 with water) and 20 ul 0.5 M Tris pH8.3
and digest at 37°C for 2 hrs, the digested nucleosides
are now ready for HPLC analysis.

HPLC analysis
Modified nucleosides were analyzed using Reverse-phase
HPLC (Waters Alliance HPLC system and Waters
Absorbance Detector 2996; Waters, http://www.waters.
com) and C-30 column (Develosil C-30 reverse-phase
column, 250 × 4.6 mm; Phenomex Ltd.). The buffer gra-
dient was as follows: buffer A (0.01 M NH4H2PO4+2.5%
MeOH, pH5.3), buffer B (0.01 M NH4H2PO4+20%
MeOH, pH5.1), buffer C (0.01 M NH4H2PO4+35% Acet-
onitril). 0-12 min, 100% buffer A; 12-20 min, 100% A;
20-25 min 90% buffer A, 10% buffer B; 25-32 min, 75%
buffer A, 25% buffer B; 32-36 min 40% buffer A, 60%
buffer B; 36-45 min 38% buffer A, 62% buffer B; 45-80
min 100% buffer B; 80-87 min 100% buffer C; 87-95
min, 100% buffer A. The threshold level for detection of
modified nucleosides was approximately 0.002% of the
total area. The abundance of each modification was cal-
culated relative to two internal standards (Ψ and t6A),
with similar results.

Bioinformatics analysis of plant tRNA modifying genes
The protein sequences for tRNA modifying genes from
S. cerevisiae or E. coli were used to find homologous
genes in Arabidopsis thaliana using blastp tool (on
TAIR database: The Arabidopsis Information Resource,
http://www.arabidopsis.org), cut-off value 1e-06 (except
for KTI13 and SUA5 where cut-off value is 1e-05).
Other plant homologs were identified using the Arabi-
dopsis genes as query sequence, using the tblastn pro-
gram and the NCBI nucleotide collection (nr/nt)
database with default settings, the cut-off value was
above 60% positives and e-value above 1e-60. All plant
genes were aligned with multiple sequence alignment
using the CLUSTAW program http://align.genome.jp/.
The unrooted neighbour-joining tree was constructed
using Geneious Basic 4.5.5 Tree Builder http://www.gen-
eious.com. Data for Arabidopsis gene expression in dif-
ferent tissues and under different developmental stages

was downloaded from AtGenExpress database http://jsp.
weigelworld.org/expviz/expviz.jsp. The developmental
and tiling datasets were downloaded from the Tileviz
database http://jsp.weigelworld.org/tileviz/tileviz.jsp.
Mean-normalized expression values were transformed
into log values. The heat maps were constructed using
the MeV (MultiExperiment Viewer) v.4.3.02 software
using default parameters.
Subcellular localization of proteins encoded by Arabi-

dopsis tRNA modification candidate genes were pre-
dicted using three different programs: TargetP http://
www.cbs.dtu.dk/services/TargetP/; WoLFPSORT http://
wolfpsort.org/ and ESLpred http://www.imtech.res.in/
raghava/eslpred/ with default settings for plant organ-
isms, hybrid approach were chosen for ESLpred.

Note
RNA modification database http://library.med.utah.
edu/RNAmods/
NCBI database http://www.ncbi.nlm.nih.gov/
European Arabidopsis Stock Center [NASC, http://

arabidopsis.info/]
Arabidopsis microarray database TileViz http://jsp.

weigelworld.org/tileviz/tileviz.jsp
Pfam database http://pfam.sanger.ac.uk/
AtGenExpress database http://jsp.weigelworld.org/

expviz/expviz.jsp
The Arabidopsis Information Resource http://www.

arabidopsis.org
CLUSTAW program http://align.genome.jp/
Waters company http://www.waters.com
TargetP program http://www.cbs.dtu.dk/services/

TargetP/
WoLFPSORT program http://wolfpsort.org/
ESLpred program http://www.imtech.res.in/raghava/

eslpred/
SIGnAL T-DNA Primer Design Tool http://signal.

salk.edu/tdnaprimers.2.html

Additional material

Additional file 1: Phylogenetic trees of plant tRNA modification
candidate genes. All protein sequences were aligned using CLUSTAW
multi-sequence alignment program http://align.genome.jp/, non-rooted
neighbourhood-joining tree was constructed using Geneious 4.5.5
software (see Methods) for each group of plant genes. For query gene
from S. cerevisiae or E. coli, tree is named according to the query gene
(e.g. TRM11 tree). Candidate genes were annotated with accession
number and name of the organism.

Additional file 2: Subcellular prediction of tRNA modification
candidate proteins. Protein sequence of Arabidopsis tRNA modification
candidate genes in Table 3 were used in three different protein
subcellular localization prediction programs: TargetP, WoLFPSORT and
ESLpred. Predicted subcellular localization were also shown in Table 3
when at least two program gave similar predictions.
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BackgroundTransfer RNA (tRNA) is the adapter molecule mainly responsible for decoding mRNA into the corresponding peptide sequence. tRNA molecules are generally 75-87 nucleotides long and form clover-leaf shaped structures through base pairing in the acceptor stem; D-stem, T&Psi;C stem and anticodon stem (Figure 1A). Modified tRNA nucleosides are found universally in living organisms. Some are conserved across all domains of life (e.g. &Psi;, D, m1G, m7G, Cm, Um and Gm), indicating an evolutionary ancient enzyme 1. According to the RNA modification database http://library.med.utah.edu/RNAmods/, 107 different modified nucleosides were found in RNA as at 2008. Among these, 92 are present on tRNA molecules. All modified nucleosides are derivatives of the four normal nucleosides: adenosine, guanosine, uracine and cytosine. The modifications vary from a simple methylation on the ribose or base moiety to complicated side chain modifications in different positions of the purine/pyramidine ring (Figure 1B).All nucleoside modifications except Q are made on the polynucleotide level, i.e. they are made post-transcriptionally 2. Many variations exist, however, in the regulation of modifications. For example, some eukaryotic tRNA modifications require intron-containing tRNA. Also, the modification of tRNAs can differ depending on the intracellular compartment, e.g. using yeast Phe-tRNA as a substrate in Phaseolus vulgaris, cytoplasmic and mitochondrial enzymes had m5C modification activity whereas chloroplast enzymes had m1A modification activity 3. Modification pathways vary from a single methylation to complicated pathways involving multiple protein complexes, e.g. at least 25 gene products have been found to be involved in mcm5s2U modification in S. cerevisiae 4. In E. coli, no modified nucleosides were shown to be essential for viability, however, the lack of certain modifying enzymes can lead to lethality 5. In S.cerevisiae, three tRNA modifying enzymes (Gcd10p/Gcd14p, Tad2p/Tad3p and Thg1p) that modify m1A58 6, I34 7 and tRNAHis G-1 (guanine nucleotide to the 5&prime;-end of tRNAHis) 8 are known to be essential. Modified nucleosides influence the coding capacity of tRNA by strengthening or weakening anticodon-codon interactions and by influencing codon choice and codon context sensitivity. Deficiency of modified nucleosides can, therefore, lead to reduced translation efficiency and increased translation errors, which will affect gene expression regulation and cell metabolism 9. Growth conditions and the environment can affect tRNA modifications both quantitatively and qualitatively, e.g. bacteria growing under starvation conditions for certain amino acids or iron leads to under-modification of tRNA 10. The link between the synthesis of modified nucleosides in tRNA and metabolism has been suggested to be a regulatory device and tRNA modification as a �biological sensor�. Studies in wheat have shown chromatographic changes of aminoacylated-tRNAs in different developmental stages 11 and an increase of Phe-tRNA Y(wybutosine) modification in older leaf tissues than in young leaf tissues 12. Studies of different tissue types of tobacco showed that the abundance and variety of methylated nucleosides are greater in intact plants than in habituated and tumorous tissues 13. tRNA modifications also differ upon maturation and/or transport into subcellular compartments such as mitochondria 14 or chloroplasts. Finally, some tRNA modifications require the presence of introns 15. Clearly, therefore, which modified nucleosides are present on mature tRNA depends on when and where the modification occurs on the tRNA molecule.Nucleoside modifications of tRNA have been extensively studied in bacteria and yeast and most of the biochemical pathways and genes encoding modification enzymes have been identified. By contrast, the study of tRNA modified nucleosides in plants has rarely been documented. As a result of their key role in the translation machinery, the mechanisms of regulation of tRNA activity by modified nucleosides are quite well-conserved. Some modified nucleosides are universally found in tRNAs from organisms of different domains of life, presumably because of their essential role for the structural stability of tRNA interactions with partner molecules during translation. In bacteria and S. cerevisiae tRNA, tRNA modifications have been suggested to act as biological sensors, changing quantity and quality according to the growth conditions. Plants encounter great environmental changes throughout their life cycles. This begs the question; do modified nucleosides change at different developmental stages, in different plant tissues or in response to environmental stimuli? How many modified nucleosides exist in plants, and how are they synthesized? These are the questions we want to investigate in order to understand the function of modified nucleotides in plant development. We chose Arabidopsis thaliana and hybrid aspen (Populus tremula� tremuloides) for the study because both the Arabidopsis and the hybrid aspen genomes have been fully sequenced and because pools of mutants exist for Arabidopsis, facilitating the identification of genes for specific modified nucleosides. In addition, transgenic methods for both Arabidopsis and aspen are well-established. Hybrid aspen complements Arabidopsis because it is a perennial plant and therefore more suitable for study wood formation.The methods used for RNA extraction and subsequent purification separate small RNAs (including tRNA, snRNA and miRNA) from high molecular weight RNA molecules (mRNA and rRNA). snRNA (small nuclear RNA) are extensively modified post-transcriptionally mainly by 2&prime;-O-methylation and pseudouradylation at multiple positions. Modification in U2 snRNA from yeast and mammals have been shown to be important for the assembly and function of spliceosomes 16. 2&prime;-O-methylation of U2 snRNA has been shown to be conserved in plants but different from yeast and animals. The sequences of snoRNA which guide U2 snRNA modification by complementary sequences were also shown to be different between rice and Arabidopsis 17. Plants have hundreds of miRNA genes and the abundance of miRNA might exceed tRNA under specific conditions (e.g. upon fungi infection). A considerable number of modifications (A to I editing and 2&prime;-O-methylation of ribose,) are known to exist in plant miRNA 18. The presence of modified nucleosides in plant tRNA is well accepted but modifying enzymes in plants has rarely been documented. One example of a modifying enzyme is the ABO1/ELO2 gene. Mutations in this gene, encoding a homolog of the yeast elongator complex protein, ELP1, can increase abscisic acid sensitivity and drought tolerance in Arabidopsis 19. There are very few plant tRNA sequences available 20 for the identification of modified nucleosides on different positions of individual tRNA species, and very few plant tRNA modifying enzymes have been purified 21 or identified 22.In this study we established a method for tRNA purification for the analysis of modified nucleosides in Arabidopsis and hybrid aspen (Populus tremula � tremuloides). Twenty one known and four novel modified nucleosides were detected in comparison with modified nucleosides found in other organisms. A combination-bioinformatics study and loss-of-function approach in Arabidopsis was used to identify five genes involved in modification of four specific modified nucleosides: m1G, m2G, m7G and ncm5U.Results21 modified nucleosides and 4 novel nucleosides were detected in tRNAs of Arabidopsis thaliana and hybrid aspenThe model plants, Arabidopsis thaliana and hybrid aspen (Populus tremula� tremuloides) were chosen for tRNA isolation and HPLC analysis. Because of the low yield of tRNA from plant tissues from previous experience, we used young seedlings of Arabidopsis and young leaves and shoot apices from hybrid aspen due to higher abundance of RNA in tissues of early developmental stages. From 5 g frozen tissue we were able to obtain approximately 1 mg total RNA using Trizol reagent. After removal of rRNA and mRNA by LiCl method we routinely obtained about 200 �g small RNA. From the last step of DE52 column purification about 40-50 �g tRNA were used for degradation and subsequent HPLC analysis. Gradient buffers consisting of three buffers were used to separate modified nucleosides and the elution time and spectrum of each peak were used to identify different modified nucleosides.Twenty-one modified nucleosides were detected in Arabidopsis and hybrid aspen, listed according to the order of elution time from C30 column of HPLC analysis in Table 1. HPLC chromatograms of the two species were very similar (Figure 2); all modified nucleosides present in Arabidopsis were also present in hybrid aspen, with only slight differences for the relative abundance of some peaks. Dihydrouridine (D) is difficult to detect because it elutes together with &Psi;, however D is well conserved and is the second most widely distributed modified nucleoside, therefore it should be present in plant tRNAs. Q was not analyzed because it is destroyed during the procedure used for tRNA extraction and digestion in this study. Q is present in E. coli and mammalian tRNA but absent in yeast tRNA23. Because the TGT gene responsible for Q biosynthesis is found in P. trichocarpa but not in A. thaliana, Q should be present in tRNA from hybrid aspen but absent in Arabidopsis. We compared the chromatogram with that from S. cerevisiae, calf liver and E. coli (Figure 3), certain prokaryotic tRNA modifications (e.g. s2C, s4U, mnm5s2U) were not found in plants, however m2A and ms2io6A which is present in bacteria but not in yeast and calf liver, was found in Arabidopsis and hybrid aspen tRNAs (Table 1). We also observed differences in tRNA modifications between plants, S. cerevisiae and calf liver. m3C and i6A are present in yeast tRNA but were not found in Arabidopsis and hybrid aspen. Genes for m3C modification were not identified. Several modified nucleosides (mcm5U, ncm5Um and Ar(p)) that were detected using purified single tRNA species from S. cerevisiae were not detected in this study. It is difficult to conclude whether these modified nucleosides were absent or of extremely low abundance. Wybutosine (Y) derivatives were not detected either, however, Arabidopsis genes involved in Y synthesis (At4g04670 and At1g75200) have been proposed 24.To summarize, four U derivatives, nine A derivatives, three C derivatives and five G derivatives were detected in a total of 21 modified nucleosides from Arabidopsis and hybrid aspen tRNAs. Four novel modified nucleosides were detected (marked with black triangles in Figure 2) and the identity of these plant-specific modified nucleosides requires further experimentation.Using bioinformatics to find tRNA modifying genes in plantsMany genes for tRNA modifying enzymes have been identified in yeast and bacteria (Table 2). We decided to look for tRNA modification genes by homology-based bioinformatics approaches 25. We used protein sequences from S. cerevisiae or E. coli genes for the modified nucleosides detected in this study to find plant gene homologs from TAIR (The Arabidopsis Information Resource, http://www.arabidopsis.org) and NCBI databases http://www.ncbi.nlm.nih.gov/. Homologous genes are listed in Table 3 according to the order of modified nucleosides eluted from a C30 column from HPLC analysis. Phylogenetic trees for each family of genes were constructed using Geneious Basic 4.5.5 Tree Builder http://www.geneious.com based on protein sequences (Additional file 1).Dihydrouridine (D) and pseudouridine (&Psi;) modification genes belong to dihydrouridine synthase superfamily or pseudouridine synthase superfamily, respectively. Dus1p-Dus4p are required for D modification at six different positions in yeast tRNA 26. Dus3p homologs in plants were well grouped, less well for Dus1p homologs and no grouping was obvious for Dus2p and Dus4p (Additional file1). Pseudouridine is the most widely distributed modified nucleoside. It has been identified at 15 different positions on yeast tRNA 27. In total, almost 100 homologous genes were found in plants, which code for modification enzymes responsible for &Psi; at different locations on plant tRNA (Additional file1). To completely understand the differences between these gene homologs requires more phylogenetic and motif analyses and will not be investigated in this study.Methylation is the most common RNA modification, many methylated modified nucleosides exist in plant tRNA (m1G, m2G, m22G, m7G, m5U, m5C, m1A, m1I, Am, Cm, Um and Gm, etc.). m1G is one of the most conserved modifications in tRNA. Trm5p and Trm10p are enzymes involved in the modification of m1G at different positions in S. cerevisiae. Although carrying similar biochemical activity, these two proteins do not share homology and are likely unrelated 28. The Trm5p enzyme for m1G37 modification is an ancient protein. It is also involved in m1I modification 29. Three TRM5 gene homologs and one TRM10 gene homolog were found in Arabidopsis and gene homologs are widely distributed in other plant species. Trm11p and Trm112p are both required for m2G modification in yeast tRNA 30. One TRM11 and two TRM112 gene homologs were found in Arabidopsis. Conserved residues D215 of motif I and D291 of motif IV which are crucial for Trm11p catalytic activity 30 were conserved in all plant TRM11 gene homologs (Figure 4A). TRM1 codes for tRNA(m22G) methyltransferase in S. cerevisiae 31. Three Arabidopsis TRM1 gene homologs were found. Plant TRM1 gene homologs were divided into two groups (Additional file1). Trm8p and Trm82p form protein complexes required for m7G modification 32. Two TRM8 gene homologs were found in Arabidopsis and plant TRM8 gene homologs can be divided into two groups. Plant TRM82 gene homologs are recognized as WD40-domain proteins (the same domain was found in Trm82p) which confer a wide variety of functions. m5U is one of the most conserved modified nucleosides, Trm2p protein contains tRNA(m5U) methyltransferase activity in S. cerevisiae 33. In Arabidopsis, two TRM2 gene homologs were found. The yeast Trm4p protein catalyzes formation of m5C at positions 34, 40, 48 and 49 34. Eight TRM4 gene homologs were found in Arabidopsis belonging to the NOP1/NOP2/Sun protein family. Trm6 and Trm61 are essential genes coding for the two subunits of tRNA(m1A58) methyltransferase in yeast. One homolog was found in Arabidopsis thaliana for Trm6 and Trm61, respectively. m1I modification requires two gene products in yeast, Trm5p for methylation and Tad1p for deamination of A 35. TRM5 homologs have been mentioned above. The Tad1p protein contains a deaminase domain and the conserved residue, E103, is maintained in all plant TAD1 gene homologs (Figure 4B).In addition to base methylation, ribose methylation requires another group of methyl-transferases. Trm13p is responsible for Am and Cm modification at position 4 in S. cerevisiae 36. Trm13p does not share obvious homology with other methyltransferases, plant TRM13 gene homologs all contain the TRM13 superfamily domain. One Arabidopsis TRM13 gene homolog was found, however, we failed to detect decreased amounts of Am in T-DNA knock-out mutants of this gene (data not shown). The Trm7p protein is responsible for both Cm32 and Gm34 modification in yeast 37. Three TRM7 gene homologs were found in Arabidopsis. Trm44p was identified recently as tRNA(Um44) methyltransferase in S. cerevisiae 38. Although Um was detected in Arabidopsis and Poplar tRNAs in this study, TRM44 gene homolog were not found. TRM3 gene is responsible for Gm18 modification 39. One TRM3 gene homolog was found in Arabidopsis; however, once again we did not find any change of Gm content in a T-DNA knockout mutant carrying an insertion in an exon of this gene. This may be due to the presence of Gm at other positions.At least 13 proteins have been shown to be involved in ncm5U modification in S. cerevisiae 4. Elp1-6 are components of the elongator complex which are also involved in ncm5U modification by unknown mechanisms. Sit4p, Sap185p, Sap190p and Kti12p are a group of proteins that affect the phosphorylation status of Elp1 protein 40. One Elp1 homolog was found in Arabidopsis and a few were identified in other plant species. Interestingly the Arabidopsis abo1(Elp1) mutant has been shown to be more resistant to drought and oxidative stress 19. Sit4p belongs to the calcuneurin-like phosphoesterase protein family and 26 SIT4 gene homologs were found in Arabidopsis. Four Arabidopsis genes were found to be Sap185p and Sap190p homologs. Kti11-14 proteins are involved in resistance to K. lactis killer toxin of S. cerevisiae 41: Kti13p belongs to the RCC1 family (regulator of chromosome condensation family) involved in regulating chromatin partitioning and cell division; Kti14p belongs to the Casein Kinase I-like protein family and physically interacts with the Elongator complex 4. One Arabidopsis gene was found for Kti11p, one for Kti12p, six were found for Kti13p and around 90 homologs were found for Kti14p.Inosine is a common modified nucleoside found in tRNAs. In S. cerevisiae Tad2p and Tad3p are subunits of adenosine deaminase for I34 formation 7. Both proteins contain a deaminase domain and position E56 in Tad2p which is important for activity was retained in all plant TAD2 homologs (Figure 4C). Tan1p is responsible for ac4C modification in yeast 42 and one Arabidopsis TAN1 homolog was found. Plant TAN1 homologs can be divided into two groups (Additional file1). The SUA5 gene has been identified as a tRNA(t6A) synthase 25. One SUA5 homolog was found in Arabidopsis and several were identified in other plants. ms2io6A modifications have two side chains: the ms2-group requires the MiaB protein in S. enterica and E. coli 43 and for i6- group modification, the MOD5 gene is required in S.�cerevisiae 44. The MiaE protein is required for modifying i6A to io6A in S. enterica. We found ms2io6A present in both Arabidopsis and hybrid aspen tRNAs. Two MiaB gene homologs were found in Arabidopsis and nine isopentenyl-transferases (ATIPT) have been identified in Arabidopsis, however, only two (ATIPT2 and ATIPT9) use tRNA as substrate 22. No MiaE homologs were found in Arabidopsis.Based on the tRNA modification candidate genes found in Arabidopsis (Table 3), we decide to use publically available T-DNA mutant lines to identify genes specific for each modified nucleoside in Arabidopsis. We have chosen the genes of small gene families for which less than three genes were potentially involved in a certain modifications. 21 T-DNA insertional mutant lines were ordered from the European Arabidopsis Stock Center (NASC, http://arabidopsis.info/) for 13 genes involved in nine different modified nucleosides. Homozygote lines were isolated and modified nucleosides in total tRNA were subsequently analyzed. Twelve homozygous T-DNA lines were isolated, among them six lines were defective in four specific modified nucleosides: m1G, m2G, m7G and ncm5U (Table 4), T-DNA lines and their insertion sites are shown schematically in Figure 5. T-DNA lines in gene At5g47680 (Trm10p homolog) showed a 50% decrease in m1G content compared to wild type plants (Figure 6A). We named this gene AtTRM10. No m7G could be detected in plants with a T-DNA insertion in gene At1g03110 (Figure 6B). This gene is homologous to Trm82p. At1g03110 was named AtTRM82. Mutant plants from T-DNA NASC lines N661341 and N658947 showed no detectable ncm5U (Figure 6C). The corresponding genes, At5g13680 and At1g13870 were named AtELP1 and AtKTI12. At3g26410 was homologous to Trm11pthe gene required for m2G modification in S. cerevisiae. Only 7.3% of m2G remained in mutant plants compared to wild type plants (Figure 6D), At3g26410 was named AtTRM11.Subcellular localization of tRNA modifying enzymes is an important issue, tRNA molecules are distributed in different subcellular compartments therefore modified nucleosides differ in mitochondria, chloroplast and cytoplasm. We performed prediction of protein subcellular localization using three programs: TargetP, WoLFPSORT and ESLpred (Additional File 2). The results from the three prediction program complement each other because different algorisms were used. Distribution of plant tRNA modification in different subcellular organelles is one of the future work to do, however we need to be cautious about cross-contamination to avoid false-positives because some of the modified nucleosides are present in low abundance.tRNA modifications are involved in regulating organ growth, stress responses and flowering time in Arabidopsis thalianaAmong the five genes identified in this study, two genes showed phenotype in the knock-out mutants. AtTRM10 and AtTRM82 mutants which showed dramatic decrease of m1G (Figure 6A) and m7G (Figure 6B) modified nucleosides respectively, did not show any phenotype under LD conditions. The AtKTI12 mutant, which carries a T-DNA inserted in an exon of At1g13870 similar to the previously isolated drl1 mutant 45 showed no detectable ncm5U (Figure 6C), however, narrow leaves and meristem defect phenotypes in drl1 mutant were not observed in the AtKTI12 mutant.The AtELP1 mutant, which carries a T-DNA insertion in the third exon of At5g13680, similar to the previously identified elo2 mutant46 showed no detectable ncm5U (Figure 6C). The elo2 mutant belongs to the elongata mutants that have pleitrophic phenotypes, generally identified as reduced organ growth: narrow leaf, reduced growth of primary roots, altered inflorescence architecture and reduced length, delayed seeding growth 46. The elo2/abo1 mutant also showed increased resistance to drought and oxidative stress, hypersensitivity towards ABA and elevated expression of anthocyanin biosynthesis genes1947. The AtELP1 protein can complement the yeast �elp1 mutant 19 and physically interacts with AtKIT12 46. The AtELP1 mutant in this study showed a narrow leaf shape (Figure 7A), and also reduced leaf numbers compare to wild type plants �(Figure 7B) and serrated leaf edges of the third and fourth true leaves (Figure 7C). These phenotypes were also observed under short-day conditions (data not shown). AtELP1 mutant plants showed reduced root growth on MS medium plate (Figure 7E) compared to wild type plants (Figure 7D). AtELP1 mutants had reduced lateral shoot growth after the removal of the primary shoot. Lateral shoots had difficulties with remaining erect due to a defect in vascular tissues (Figure 7G). Finally, silique morphology was aberrant in this mutant (Figure 7I).The AtTRM11 mutant, which carries T-DNA insertion in the third exon of At3g26410, showed a small amount (7.3% of wild type level) of m2G (Figure 6D). Under LD conditions the AtTRM11 mutant plant showed an early-flowering phenotype (Figure 7A) as well as reduced root growth on MS medium plates (Figure 7C). In S. cerevisiae, Trm112p is needed for m2G modification by regulating Trm11p activity 30. No T-DNA lines are available for the two TRM112 homologs in Arabidopsis. Modifying enzymes for m2G at other positions have not been reported.Analysis of gene expression and phylogenyWe have investigated the expression pattern of all the Arabidopsis tRNA modification candidate genes identified in this study using the AtGenExpress database (Figure 8). 62 tissue samples were included. The candidate genes were grouped according to predicted function in specific modified nucleosides and mean-normalized expression values from the AtGenExpress database were transformed into log values for heat map construction using MeV (MultiExperiment Viewer) software. Most genes had prominent expression in rosette leaves and apex tissues, except for the D and ncm5U modification genes. The AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1 genes identified in this study are marked with an asterisk. From the Tilviz database, except for AtKTI12, their expression was highest in apex tissues, and the expression level was higher in inflorescence apices than in vegetative apices according to the tiling dataset (Figure 8). AtKTI12 is only expressed in late stages of seed development. The expression heat map is a guideline for developmental and tissue specific expression of the candidate genes. The expression profile is very important for functional study. If the phenotype of the transgenic plants is consistent with the expression pattern, the following-up experiments will be performed in the right tissues and at the right developmental stages.We searched for homologs for the 21 modified nucleosides and dihydrouridine present in Arabidopsis and hybrid aspen. Arabidopsis tRNA modification candidate genes are listed in Table 3. An unrooted Neighbour-Joining tree was constructed showing the phylogeny between plant genes in relation to yeast genes (Figure 9). The result shows that most gene families in Arabidopsis also exist in other plants; however, the number of genes in each family varies. In this section we will discuss only the homologs for the five Arabidopsis tRNA modification genes identified in this study: i.e. the homologs for AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1. Trm10p is a conserved methyl-transferase, but it does not contain a typical AdoMet-binding domain and shares no homology with other classical tRNA methyltransferases, e.g. Trm5p 28. Fourteen plant TRM10homologs were found, including one Arabidopsis gene (AtTRM10), two from M. truncatula and three from P. trichocarpa (Figure 9A). Trm11p is required for m2G modification in yeast tRNA. The residues D215 and D291 that are essential for Trm11p catalytic activity are retained in all plant TRM11 gene homologs, including AtTRM11 (Figure 4A). Trm82p belongs to the WD40-domain protein family. Members of this protein family have different biological functions. AtTRM82 is clearly responsible for m7G modification in Arabidopsis thaliana. Elp1 and Kti12p are well conserved proteins and both are involved in ncm5U modification. Only a few ELP1 homologs were found in plants (Figure 9D), in contrast to the KTI12 homologs that are found from archea to human (Figure 9E).The majority of tRNA modification enzymes are not essential, in bacteria only TrmA enzyme has been shown to be essential, however the lethality is not due to lack of m5U modification on tRNA but from its effect on ribosome assembly by association with rRNA. In yeast three tRNA modifying enzymes/complexes were found to be essential: Gcd10p/Gcd14p, Tad2p/Tad3p and Thg1p. At present we could not conclude which plant genes encoding tRNA modification enzymes are essential, however during the preliminary screening of the T-DNA lines for tRNA modification genes in Arabidopsis we were not able to isolate homozygote plant from some of the lines (n e 24, n represent number of plants used), which is probably due to essentiality of the corresponding genes. To confirm this, we will increase the amount of plants for screening in the next generation (n e 200), at the same time we will carry out more comprehensive identification and confirmation of the tRNA modification candidate genes.DiscussionIn this study we investigated modified nucleosides in the model plant species Arabidopsis thaliana and hybrid aspen. Twenty one modified nucleosides were detected in young tissues from both species. The method used did not allow for dihydrouridine (D) and queosine (Q) derivatives to be analyzed. However as D is much conserved in tRNAs from all domains of life, we assume that D is also present in plant tRNAs. The TGT gene responsible for Q modification has been reported in aspen (GenBank: EEE81588.1) but not in Arabidopsis, suggesting that Q should be found in hybrid aspen but not in Arabidopsis. acp3U 4849 and k2C 5051, which have been reported in sequenced chloroplast tRNA were not detected either in total tRNA from 14 d whole seedlings of Arabidopsis. This may be because these modified nucleosides are present in only a few chloroplast tRNA, meaning that their abundance is below the detection threshold for the method used in this study. tRNA enrichment from chloroplast compartments might allow us to see these modifications more easily. Generally patterns of modified nucleosides in plants are similar to those observed in yeast and calf liver, however, several modified nucleosides, including mcm5U, mcm5s2U, Y and YOH that have been detected in yeast individual tRNA species were not detected in plant tRNAs, potentially because of extremely low abundance. Two prokaryotic modified nucleosides, m2A and ms2io6A, were present in plant tRNAs. It is likely that these are from chloroplast or mitochondria subcellular compartments. m3C is present in yeast tRNA but was not observed in the tRNAs in this study. At present we are unable to conclude whether this is because m3C is present in low abundance or that plants lacks genes responsible for m3C modification. Four novel nucleosides were discovered in plant tRNAs. In subsequent work, we will further characterize the identities of these compounds by use of combined LC-MS method.For the 21 known modified nucleosides mentioned above, we used a loss-of-function study and identified five genes responsible for four specific modified nucleosides, m1G (AtTRM10), m2G (AtTRM11), m7G (AtTRM82) and ncm5U (AtKTI12 and AtELP1). Modified nucleosides participate in fine-tuning the activity of tRNAs during translation. For example, defects of certain tRNA modifications result in decreased translation efficiency and increased translational error. Depending on which codon the tRNA recognizes and the codon context, various aspects of cellular metabolism and signaling pathways may be altered. Two of the Arabidopsis tRNA modification mutants identified in this study showed an early flowering phenotype (AtTRM11 mutant) and had reduced organ growth (AtELP1 mutant), respectively. To study the mechanism of early-flowering of AtTRM11 mutant, we will investigate expression of some flowering key regulators (e.g. GI, FT, LFY, FLC and SOC1) to see which pathway is affected in the mutant. Flowering regulation in Arabidopsis is rather complicated network but investigating expression of the key regulators will help to unravel the molecular mechanism. AtELP1 has been reported being involved in different developmental processes (leaf and root elongation) and stress response (anthocyanin biosynthesis and oxidative stress key regulators); we will study gene expression and regulation in the different pathways. With more genes to be identified in the future, we expect to see a more complex profile of the function of modified nucleosides in plant growth, development and stress responses. To understand the molecular mechanisms involved, we need to investigate the temporal and tissue specific expression of tRNA modification enzymes, to find the targets of genes underlying the phenotypic changes of each mutant. In addition to regulation on a translational level, certain Arabidopsis tRNA modifying enzymes might also interact physically with other proteins.In this study we have established a method for the analysis of modified nucleosides in transfer RNA from plants. With this method we identified five genes responsible for specific modified nucleosides. The advantage of the HPLC method is that we could observe global changes of all the modified nucleosides. The disadvantage is that the sensitivity of the HPLC method we are using could not detect very low abundance modified nucleosides that may be present in only on a few tRNA molecules and the HPLC method alone could not determine the identity of unknown compounds. However, in future experiments we should be able to overcome these problems by enriching for individual tRNA species using hybridization-based Dynabead technology followed by HPLC analysis; and by combining the HPLC with LC-MS or by enriching the compound of interest by HPLC followed by MS or NMR studies to resolve the structure. With the method established in this study, more tRNA modification genes in plants should be able to be identified. Characterization of mutants for these genes will reveal the function of modified nucleosides in plant physiology and gene expression.ConclusionsIn this study we established a method for analyzing modified nucleosides of tRNA from plant tissues, described the amount and recovery efficiency for each step. We detected 21 modified nucleosides in young seedlings of Arabidopsis and from young tissues of hybrid aspen (Populus tremula � tremuloides). More importantly, we have predicted and summarized the tRNA modification candidate genes in plants. Through loss-of-function studies we identified five genes responsible for four specific modified nucleosides in Arabidopsis thaliana: AtTRM10 for m1G, AtTRM11 for m2G, AtTRM82 for m7G, AtKTI12 and AtELP1 for ncm5U modification. We conclude with the method established here, more modified nucleosides in plants can be investigated in order to understand the function of tRNA modifications in plant growth, development and stress responses. This systematic study on tRNA modification genes in Arabidopsis is very useful as a tool for those in the same research area and those who are interested in developing new research projects related to nucleoside modification on small RNAs. Also the four novel plant-specific modified nucleosides will be of great interest for plant researchers.MethodsPlant growth conditionsFor total RNA preparation from young seedlings Arabidopsis thaliana ecotype Col.0 was grown as a lawn in soil and vermiculite (3:1) in a greenhouse at 22�C/18�C (day/night temperature), with light intensity of 150 �mol m-2 s-1 and 60% humidity under long-day conditions (16 h-light/8 h-dark cycle). 3-weeks seedlings were harvested and frozen in liquid nitrogen for subsequent RNA extraction. Hybrid aspen (Populus tremula � tremuloides; clone T89) were grown in soil in green house at 22/18�C (day/night temperature), with light intensity of maximum 400 �mol m-2 s-1 from natural daylight (controlled by curtains, supplemented when required with high-pressure sodium lamps) and 80% humidity under long-day conditions (16 h-light/8 h-dark cycle). Young leaves and apical shoot tips within 2 cm from the top of about 1.5 m high trees were collected and frozen in liquid nitrogen for RNA extraction.For phenotypic study, seeds for all lines were stratified 3 days in +4�C before being sown; plants were grown in LD conditions (16 hr photoperiod, light density 150 �mol m-2 s-1, day temperature 22�C, night temperature 18�C, and 60% humidity). MS (Murashige-Skoog, Duchefa Biochemie) medium, supplemented with 0.8% plant agar (Duchefa Biochemie) and 1% sucrose (Sigma) was used for Arabidopsis root growth studies under LD conditions (same as above).All T-DNA mutant lines were purchased from The European Arabidopsis Stock Center (NASC, http://arabidopsis.info/). Homozygote or heterozygote genotypes were determined using gene specific primers designed by T-DNA primer design tool (Salk Institute Genomic Analysis Laboratory, http://signal.salk.edu/tdnaprimers.2.html), LBa1 primer (5&prime;-TGGTTCACGTAGTGGGCCATCG-3&prime;) was used as left border primer for T-DNA insertion.RNA isolation and digestionTotal RNA was extracted using Trizol Reagent (Invitrogen), and RNA concentration was determined using NanoDrop ND-1000 spectrophotometer (Thermo Scientific). sRNAs (including tRNA, miRNA and snRNA) were separated from rRNA and mRNA using the LiCl method: rRNA and mRNA were precipitated with 2 M LiCl final concentration, sRNAs in supernatant were precipitated with 3 volumes of ethanol, washed once with 70% ethanol and dissolved in 0.1 M Tris pH7.4, 0.1 M NaCl. tRNA was further purified using DE52 anion exchange resin: RNA in binding buffer (0.1 M Tris pH7.4, 0.1 M NaCl) was loaded on DE52 column (bed volume 2 ml), washed three times with 5 ml binding buffer each time, eluted with 7 ml elution buffer (0.1 M Tris pH7.4, 1 M NaCl). tRNA was precipitated with isopropanol, washed with 70% ethanol and dissolved in MQ water. 50 �g tRNA from Arabidopsis or hybrid aspen were degraded to nucleosides with P1 nuclease (Yamasa Corporation, Japan) and bacterial alkaline phosphatase (Sigma) as following: to 50 �g tRNA (in 100 �l MQ) add 10 ul of 20 mM ZnSO4, 10 ul nuclease P1 (1 mg/ml, 200 units/mg in 30 mM NaAc pH5.3) and digest at 37�C for at least 24 hrs; add 5 ul bacterial alkaline phosphatase (about 190 units/ml, 30 units/mg, diluted 1:100 with water) and 20 ul 0.5 M Tris pH8.3 and digest at 37�C for 2 hrs, the digested nucleosides are now ready for HPLC analysis.HPLC analysisModified nucleosides were analyzed using Reverse-phase HPLC (Waters Alliance HPLC system and Waters Absorbance Detector 2996; Waters, http://www.waters.com) and C-30 column (Develosil C-30 reverse-phase column, 250 � 4.6 mm; Phenomex Ltd.). The buffer gradient was as follows: buffer A (0.01 M NH4H2PO4+2.5% MeOH, pH5.3), buffer B (0.01 M NH4H2PO4+20% MeOH, pH5.1), buffer C (0.01 M NH4H2PO4+35% Acetonitril). 0-12 min, 100% buffer A; 12-20 min, 100% A; 20-25 min 90% buffer A, 10% buffer B; 25-32 min, 75% buffer A, 25% buffer B; 32-36 min 40% buffer A, 60% buffer B; 36-45 min 38% buffer A, 62% buffer B; 45-80 min 100% buffer B; 80-87 min 100% buffer C; 87-95 min, 100% buffer A. The threshold level for detection of modified nucleosides was approximately 0.002% of the total area. The abundance of each modification was calculated relative to two internal standards (&Psi; and t6A), with similar results.Bioinformatics analysis of plant tRNA modifying genesThe protein sequences for tRNA modifying genes from S. cerevisiae or E. coli were used to find homologous genes in Arabidopsis thaliana using blastp tool (on TAIR database: The Arabidopsis Information Resource, http://www.arabidopsis.org), cut-off value 1e-06 (except for KTI13 and SUA5 where cut-off value is 1e-05). Other plant homologs were identified using the Arabidopsis genes as query sequence, using the tblastn program and the NCBI nucleotide collection (nr/nt) database with default settings, the cut-off value was above 60% positives and e-value above 1e-60. All plant genes were aligned with multiple sequence alignment using the CLUSTAW program http://align.genome.jp/. The unrooted neighbour-joining tree was constructed using Geneious Basic 4.5.5 Tree Builder http://www.geneious.com. Data for Arabidopsis gene expression in different tissues and under different developmental stages was downloaded from AtGenExpress database http://jsp.weigelworld.org/expviz/expviz.jsp. The developmental and tiling datasets were downloaded from the Tileviz database http://jsp.weigelworld.org/tileviz/tileviz.jsp. Mean-normalized expression values were transformed into log values. The heat maps were constructed using the MeV (MultiExperiment Viewer) v.4.3.02 software using default parameters.Subcellular localization of proteins encoded by Arabidopsis tRNA modification candidate genes were predicted using three different programs: TargetP http://www.cbs.dtu.dk/services/TargetP/; WoLFPSORT http://wolfpsort.org/ and ESLpred http://www.imtech.res.in/raghava/eslpred/ with default settings for plant organisms, hybrid approach were chosen for ESLpred.Abbreviationsm1A: 1-methyladenosine; m2A: 2-methyladenosine; m6A: N6-methyladenosine; ms2io6A: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; t6A: N6-threonylcarbamoyladenosine; m6t6A: N6-methyl-N6-threonylcarbamoyladenosine; i6A: N6-isopentenyladenosine; ms2t6A: 2-methylthio-N6-threonyl carbamoyladenosine; Ar (p): 2&prime;-O-ribosyladenosine (phosphate); m3C: 3-methylcytidine; m5C: 5-methylcytidine; ac4C: N4-acetylcytidine; m1G: 1-methylguanosine; m2G: N2-methylguanosine; m7G: 7-methylguanosine; m22G: N2, N2-dimethylguanosine; Y: wybutosine; YOH: hydroxywybutosine; o2Y: peroxywybutosine; I: inosine; m1I: 1-methylinosine; &Psi;: pseudouridine; &Psi;m: 2&prime;-O-methylpseudouridine; D: dihydrouridine; mcm5U: 5-methoxycarbonylmethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine; s2U: 2-thiouridine; acp3U: 3-(3-amino-3-carboxypropyl) uridine; m5U: 5-methyluridine; ncm5U: 5-carbamoylmethyluridine; Q: queuosine; manQ: mannosyl-queuosine; &tau;m5U: 5-taurinomethyluridine; &tau;m5s2U: 5-taurinomethyl-2-thiouridine; Um: 2&prime;-O-methyluridine; Cm: 2&prime;-O-methylcytidine; Am: 2&prime;-O-methyladenosine; Gm: 2&prime;-O-methylguanosineAuthors� contributionsPC carried out the T-DNA mutant screen and phenotype identification, participated in method set up for modified nucleoside analysis of young seedlings of Arabidopsis and hybrid aspen and drafted the manuscript. GJ carried out HPLC analysis of modified nucleosides of all mutants and wild type Arabidopsis and hybrid aspen. BZ conceived of the study, participated in bioinformatic analysis and helped to draft the manuscript. All authors read and approved the final manuscript.NoteRNA modification database http://library.med.utah.edu/RNAmods/NCBI database http://www.ncbi.nlm.nih.gov/European Arabidopsis Stock Center [NASC, http://arabidopsis.info/]Arabidopsis microarray database TileViz http://jsp.weigelworld.org/tileviz/tileviz.jspPfam database http://pfam.sanger.ac.uk/AtGenExpress database http://jsp.weigelworld.org/expviz/expviz.jspThe Arabidopsis Information Resource http://www.arabidopsis.orgCLUSTAW program http://align.genome.jp/Waters company http://www.waters.comTargetP program http://www.cbs.dtu.dk/services/TargetP/WoLFPSORT program http://wolfpsort.org/ESLpred program http://www.imtech.res.in/raghava/eslpred/SIGnAL T-DNA Primer Design Tool http://signal.salk.edu/tdnaprimers.2.html
http://www.biomedcentral.com/content/supplementary/1471-2229-10-201-S2.XLS


Abbreviations
m1A: 1-methyladenosine; m2A: 2-methyladenosine; m6A: N6-
methyladenosine; ms2io6A: 2-methylthio-N6-(cis-hydroxyisopentenyl)
adenosine; t6A: N6-threonylcarbamoyladenosine; m6t6A: N6-methyl-N6-
threonylcarbamoyladenosine; i6A: N6-isopentenyladenosine; ms2t6A: 2-
methylthio-N6-threonyl carbamoyladenosine; Ar (p): 2′-O-ribosyladenosine
(phosphate); m3C: 3-methylcytidine; m5C: 5-methylcytidine; ac4C: N4-
acetylcytidine; m1G: 1-methylguanosine; m2G: N2-methylguanosine; m7G: 7-
methylguanosine; m2

2G: N2, N2-dimethylguanosine; Y: wybutosine; YOH:
hydroxywybutosine; o2Y: peroxywybutosine; I: inosine; m1I: 1-methylinosine;
Ψ: pseudouridine; Ψm: 2′-O-methylpseudouridine; D: dihydrouridine; mcm5U:
5-methoxycarbonylmethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-
thiouridine; s2U: 2-thiouridine; acp3U: 3-(3-amino-3-carboxypropyl) uridine;
m5U: 5-methyluridine; ncm5U: 5-carbamoylmethyluridine; Q: queuosine;
manQ: mannosyl-queuosine; τm5U: 5-taurinomethyluridine; τm5s2U: 5-
taurinomethyl-2-thiouridine; Um: 2′-O-methyluridine; Cm: 2′-O-
methylcytidine; Am: 2′-O-methyladenosine; Gm: 2′-O-methylguanosine
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