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Abstract 

The effect of ongoing climate change on sub-arctic and alpine forests has led to increased interest 
in monitoring potential changes in the forest-tundra ecotone. In addition to climate change, insect 
damage, browsing pressure by herbivores such as moose and reindeer, as well as anthropogenic 
impacts will contribute to changes in the forest-tundra ecotone. These changes are difficult to 
monitor with manual methods because of the complex mosaic pattern of the ecotone. In this study, 
the possibility to predict maximum tree height, above ground tree biomass and canopy cover with 
airborne laser scanning (ALS) was therefore tested at a forest-tundra ecotone site near Abisko in 
northern Sweden (Lat. N 68°20’, Long. E 19°01’, 420-700 m a.s.l.). The forest in the area is 
dominated by mountain birch (Betula pubescens ssp. czerepanovii), which has highly irregular 
stem and canopy forms. Predictions from two different laser data acquisitions were compared. The 
first laser data set had 6.1 points m-2 and was obtained in 2008 with a TopEye MKII scanner 
carried by a helicopter flown at 500 m a.g.l. The second laser data set had 1.4 points m-2 and was 
obtained in 2010 with an Optech ALTM Gemini scanner carried by a fixed-wing aircraft flown at 
1740 m a.g.l. Linear regression models were developed for the predictions using data from 73 
sample plots with ten meter radius surveyed in 2009 and 2010. The relative RMSEs obtained for 
the TopEye and Optech data after leave-one-out cross-validation were, respectively, 8.8% and 
9.5% for maximum tree height; 18.7% and 21.2% for above ground tree biomass; and, 16.8% and 
18.7% for vertical canopy cover on plot level. The results were clearly improved by introducing a 
new procedure to compensate for unevenly distributed laser points. In conclusion, ALS has strong 
potential as a data source to map mountain birch biomass in the forest-tundra ecotone, even when 
using sparse point density ALS data.  
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1 Introduction 

The sub-arctic and alpine tree line in northern Scandinavia is most often made up of birch forest 
dominated by mountain birch (Betula pubescens ssp. czerepanovii). These forests are characterized 
by low, often leaning and crooked trees with umbrella-like canopies and slow growth (Fig. 1). The 
trees have limited commercial value and systematic monitoring of them has not been done in the 
past (Tømmervik et al. 2009). 
 
There is a growing interest in monitoring this area, especially the tree line, which is expected to 
change with a warmer climate. Kullman (1998, 2010a, b) predicts that the tree line will advance to 
higher elevations. However, some studies also indicate that the tree line may retreat (e.g., Crawford 
et al. 2003). A large change in the tree line would affect animals and plants, as well as existing land 
uses like reindeer herding and tourism. In addition to climate, the tree line in this area is also 
influenced by other factors (Van Bogaert 2010), such as browsing by moose and reindeer, human 
activities, insect attacks, and possibly bog expansion (Crawford et al. 2003). Of particular 
significance is the autumnal moth (Epirrita autumnata) which defoliates large areas of sub-arctic 
forests on cyclic intervals of about a decade (Babst et al. 2010; Tenow et al. 2007). These factors, 
and in particular the local climate, will contribute to an ecotone between birch forest and alpine 
heath that has a very complex mosaic pattern (Payette et al. 2001). In addition to the tree line 
changes, an increase in the biomass of the forest-tundra ecotone can be expected (Tømmervik et al. 
2009; Hedenås et al. 2011). Such ecosystem changes over large areas in the north would also 
influence global carbon budgets (Sjögersten and Wookey 2009; Tømmervik et al. 2009). 
 
Several definitions of tree line exist (Van Bogaert 2010) which make comparisons between 
different studies problematic. Furthermore, the scattered patches of trees make it difficult to use 
ground based inventories to define a line separating areas with trees from alpine heath. A more 
convenient approach is to use complete predictions of areas based on remote sensing data. Mapping 
the tree line using manual interpretation of aerial photos is impractical and dependent on the 
interpreter (Heiskanen et al. 2008). Medium resolution optical satellite data (e.g., SPOT, Landsat) 
could be used for large area overviews but will not provide a detailed assessment of the structure, 
biomass and height of the forest-tundra ecotone (Heiskanen 2006a, b; Hill et al. 2007; Ranson et al. 
2004; Weiss and Walsh 2009; Zhang et al. 2009). Laser scanning provides the possibility to 
efficiently retrieve 3D data of the forest, including height and canopy cover, which are the two 
parameters used in the FAO definition of forest (FAO 2004). So far only a few other laser scanning 
studies have been done for the forest-tundra ecotone. Ørka et al. (2012) successfully integrated strip 
samples of LiDAR with Landsat imagery to delineate the subalpine zone. Næsset (2009), Næsset 
and Nelson (2007), as well as Rees (2007), showed that scattered trees on the alpine heath above the 
forest could be detected by laser scanning. Earlier studies have shown that laser scanning works 
well for predicting forest features in managed boreal forests in Scandinavia when combined with 
field measurements on sample plots (Næsset et al. 2004). 
 
Until now, laser data have only been available for small areas (often densely scanned), but recently 
several countries, including Sweden, are being laser scanned with sparse point density, mainly for 
the purpose of constructing new national digital elevation models. It is therefore of interest to 
compare biomass predictions from a sparse national laser scanning (about 1 point m-2) to denser 
alternatives (>5 points m-2).  
 
This study investigated the prediction accuracy of above ground tree biomass, maximum tree 
height, and canopy cover of mountain birch forest in the forest-tundra ecotone when using models 
developed from field surveyed sample plot data and corresponding laser data. Results from two 
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different laser data acquisitions with different point densities, flying altitudes and scanner types 
were compared on sample plot level. The first scanning was performed from a helicopter with 
6.1 points m-2 and the second from fixed-wing aircraft with 1.4 points m-2. For both laser data 
acquisitions, the developed models for observed above ground tree biomass were applied to 10 × 10 
m grid cells over the whole area. 
 

2 Materials and methods 

2.1 Study area 

 The study area is about 1 km2 and located 6 km southeast of Abisko in northern Sweden, centered 
on Lat. N 68°20’, Long. E 19°01’ (Fig. 2), with elevations from 420 to 700 m a.s.l. The area is 
characterized by a mosaic pattern of forest and alpine heath vegetation. The vegetation is 
predominantly mountain birch (Betula pubescens ssp. czerepanovii), but Juniper (Juniperus 
communis), Rowan (Sorbus aucuparia), and Willow (Salix spp.) taller than 2 m are also present. 
The birches in the study area are of the multi-stem type with several stems often sharing the same 
root system (polymorphism).  
 

2.2 Laser data acquisitions 

Laser data were acquired under leaf-on conditions at two occasions with different laser scanners 
(Table 1). The first scanning was done on August 1, 2008 with a TopEye MkII (denoted TopEye) 
mounted on a helicopter, and the second scanning was done on August 20, 2010 with an Optech 
ALTM Gemini (denoted Optech), mounted within a fixed-wing aircraft. In both cases, scanning was 
performed with the flying direction orthogonal to the main slope. 
 

2.3 Field data 

The field inventory was carried out over four weeks in August 2009 (88 sample plots) and two 
weeks in June 2010 (16 sample plots), occurring between the two laser data acquisitions. A total of 
104 sample plots were placed systematically in a grid with 100 m spacing, covering a 1.3 × 1.3 km 
area in the forest-tundra ecotone, and each plot center was permanently marked. The grid was 
aligned orthogonal to the main slope direction with a randomly selected starting point. The aim was 
to represent the whole transition zone between closed forest and heath, thus 31 of the sample plots 
had no trees taller than 2 m. Table 2 gives a summary of the 73 forested sample plots used in this 
study. No trees were found to be recently broken in 2009, but in 2010 four trees were found broken 
on the sample plots that were field inventoried in 2009. These trees were therefore removed from 
the field data used with the Optech laser data.  
 
Navigation to the sample plots was made with a handheld GPS. In order to avoid subjective 
selection of sample plot centers, GPS navigation was terminated when 10 m remained to the sample 
plot center and a measuring tape was used to navigate the last 10 m. The center position of the 
sample plot was then measured with sub-dm accuracy using a Real Time Kinematic (RTK) GPS 
(Trimble R7) with the base station placed 6 km away at the Abisko Scientific Research Station. 
 
The sample plots had a radius of 10 m and the distance to the plot border was measured with an 
ultrasonic positioning system (UPS; Lämås 2010). The UPS could be used either with one or three 
ultrasonic senders. One sender was sufficient to measure distance. To measure a coordinate inside 
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the sample plot, three senders were placed in a triangle, 2 m apart, on a tripod in the center of the 
sample plot. The receiver’s position could then be calculated in two dimensions. 
 
In the field, all distances were measured parallel to the ground because this was most convenient 
given the hilly terrain. To achieve the correct horizontal area, a correction factor was calculated and 
applied for each sample plot when processing the field data. For each sample plot a plane was fitted 
to ground-classified laser points from the TopEye data using the least squares method. The area of a 
sample plot was then calculated as the horizontal projection of the fitted plane. This projected area 
was on average 3% and up to 12% smaller than the area of a ten meter radius plot.  
 
When obtaining coordinates for the tree stems, trees with a common root system or overlapping 
crowns were grouped. For each group, position was measured with UPS and maximum tree height 
was measured with a measuring pole. In this study, trees are defined as having a minimum height of 
2 m. DBH was measured for trees by callipering at 1.3 m from the ground along the stem. In groups 
with at least one tree having DBH greater than 30 mm, trees with DBH less than 30 mm were 
counted rather than callipered. If all trees in a group were under 30 mm DBH, the tallest tree in the 
group was callipered. 
 
A measuring tape was used to measure the width and length of an ellipse describing the projected 
area of the canopy for the whole tree group. The width of the ellipse was always measured 
perpendicular to the sample plot’s center. Canopy area ( ) was calculated as the ellipse area for 
each tree group. All tree groups were measured on the first 22 sample plots, but due to time limits, 
measuring of  was reduced to every fifth tree group for the remaining sample plots. To predict 

 for tree groups that were not measured, k Nearest Neighbor imputation (kNN) was used through 
the package yaImpute (Crookston and Finley 2008) in the statistical software R (R Development 
Core Team, 2010). The RandomForest package in R (Liaw and Wiener 2002) was used as a method 
to find neighbors using the following predictors: tree cross-sectional area, height, number of trees in 
the group, and number of trees less than 30 mm DBH in the group. In total, predictors from 488 tree 
groups were used. The number of nearest neighbors (k) was set to three, because it resulted in the 
smallest leave-one-out cross-validated RMSE when varying k from one to ten. A distance weight 
was used to calculate imputed values. Two extreme outliers and four trees with DBH equal to zero 
were removed from the data set. The total vertical canopy cover ( ) for a sample plot was 
calculated as the sum of the area of all tree groups’ ellipses (sum of ) divided by the horizontal 
sample plot area. 
 
Models to predict above ground tree biomass ( , denoted biomass) from measures of the tree 
stems exist from a previous study in the area (Dahlberg et al. 2004). Two of these biomass models 
were used: one model using DBH and tree height as explanatory variables, and the other model 
using only DBH as an explanatory variable. The choice of model was dependent on whether tree 
height had been measured in the field or not. The trees counted in each tree group taller than 2 m 
but less than 30 mm DBH were each assigned a biomass of 1.21 kg. The assigned biomass was 
calculated as the mean biomass of 251 trees fulfilling the conditions taller than 2 m and DBH less 
than 30 mm. Models from Dahlberg et al. (2004) were used to calculate biomass for these trees 
using DBH and height measurements. 
 

2.4 Laser data processing 

The TopEye laser data had a large overlap between the flight lines and therefore several sample 
plots were covered with laser data from two flight lines. To reduce problems with large scanning 
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angles (Holmgren et al. 2003), laser data for each sample plot were selected only from the flight 
line with the lowest mean scan angle. The Optech laser data were collected from a higher altitude 
and therefore a wider area was covered in each flight line. This resulted in only three flight lines 
needed to cover all sample plots in comparison to the TopEye scanning where seven flight lines 
were needed. In the sparse Optech laser data, removal of overlapping data was not undertaken 
because some sample plots (which had sparse cover and short trees) in the overlapping region had 
no hits at all in the vegetation if only one flight line was used. The point densities in Table 1 are 
based only on laser data used in the development of the models. 
 
TerraScan (Soininen 2010) from Terrasolid was used to classify the ALS point cloud into ground 
and non-ground points (Axelsson 1999, 2000). The TerraScan software iteratively builds a 
triangulated surface model by selecting points from the ALS point cloud if they satisfy user 
specified settings. The settings used were (1) maximum terrain angle, i.e., steepest allowed slope in 
ground terrain, set to 88 degrees, (2) iteration angle, i.e., maximum angle between the point, its 
projection on the triangulated plane and closest triangle vertex, set to 6°, and (3) iteration distance, 
i.e., maximum distance from the point to the triangulated plane during iteration, set to 1.40 m. The 
statistical software R (R Development Core Team, 2010) and in-house developed programs were 
used to further process the ALS point cloud. 
 
A digital elevation model (DEM) with 0.5 m grid cell size, representing the ground level, was 
created for each data set. Canopy heights (CH) were calculated by subtracting the DEM from the 
z-value of each laser return. A digital surface model (DSM) with 0.5 m grid cell size was created by 
assigning each grid cell the maximum z-value for laser returns classified as non-ground. A 
normalized digital surface model (nDSM) was calculated by subtracting the DEM from the DSM. 
Metrics used in this paper were created only from CH. All data points above 15 m were omitted in 
the CH to avoid false reflections (the 15 m limit was chosen given that no trees taller than 10.5 m 
were found in the area). 
 
A height threshold (Nilsson 1996) of 1.0 m was used when calculating metrics from the ALS point 
cloud above ground. The threshold was chosen to obtain reliable laser metrics for sample plots with 
trees around two meter tall. The height threshold was varied from 0 to 2.0 m in increments of 0.1 m. 
A threshold around 1 m gave the smallest root mean square error (RMSE) for the biomass 
prediction. 
 
Height percentiles ( ) in increments of 10 were calculated using canopy heights above the height 
threshold. In addition, height percentiles were also calculated for  and  since these are strong 
indicators of the height of vegetation. Ten vertical canopy layers ( ) were estimated following the 
example of Næsset and Gobakken (2008), where the height threshold is used as the lower limit and 

 as the upper limit. Standard deviation ( ) and mean ( ) of the canopy heights were 
calculated on values above the height threshold. A sum of squared canopy heights ( ) was 
calculated by taking the sum of squared laser points’ heights divided by the number of laser points 
above the height threshold (Eq. (1)). 

  (1) 

where  is all laser points within the sample plot above the height threshold. 
 
Several ways to calculate the vegetation ratio ( ) from CH were considered. The common 
approach is based on dividing the number of hits above the height threshold with the total number 
of returns inside the sample plot. However, this approach may not be well suited to the data because 
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the laser points were not evenly spread on the sample plots due to roll and pitch of the aircraft 
during scanning. This was particularly evident in the TopEye scanning (Fig. 5). Vegetation ratio 
was calculated in three ways, either all returns were used (denoted ), only first returns were 
used (denoted ), or it was calculated in an alternative way developed in this study. In the 
alternative way, the points were assigned a weight according to the density of surrounding points, in 
other words, points in areas containing more laser points were given lower weight. This alternative 
is called a point-weighted vegetation ratio ( ), which was calculated as 

   (2) 

where  are all vegetation classified points above 1 m and  are all points inside the sample 
plot.  is the weight of point  and calculated as 

   (3) 

where  is the average point density on the sample plot and determined by 

   (4) 

where  is the total number of points inside the sample plot and  is the area of the sample plot. 
The density of all points in a radius  around the point  is denoted by , such that 

   (5) 

where  is the total number of points inside a cylinder parallel with the z-axis having radius  
centered on the point , and  is the area of a circle with radius . If the circle with radius  falls 
partly outside of the sample plot’s border, then  is set to the area that falls inside the sample 
plot. The radius  was varied from 0.01 to 5 m in 0.01 m increments. For each step, the point-
weighted vegetation ratio ( ) was calculated and models for biomass and vertical canopy cover 
were estimated. For each data set, the radius ( ) resulting in the lowest RMSE for the two models 
was chosen.  
 

2.5 Model development 

Regression models were developed based on data from the sample plots to predict the following 
response variables: maximum tree height ( ), above ground tree biomass ( ) and vertical 
canopy cover ( ). The regression models were based only on field data from trees taller than 
2 m. Candidates for explanatory variables (in total 29 variables calculated from CH) were height 
percentiles ( ), vegetation ratios ( ,  , , ), standard deviation of canopy 

heights ( ), mean canopy heights ( ), sum of squared canopy heights ( ), and height 
densities ( ). 
 
Robust models were required to support the objective of making predictions in the forest-tundra 
ecotone. For each response variable, the physical properties and robustness were analyzed, and 
therefore the following criteria for selecting explanatory variables were used: 

 For maximum tree height – one explanatory variable preferably measuring the higher part of 
the canopies and eventually one explanatory variable measuring the density of vegetation. 
The reason for the latter variable is that percentiles could depend on vegetation density. 
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 For biomass – one explanatory variable measuring the height and one explanatory variable 
measuring the density of vegetation. 

 For vertical canopy cover – one explanatory variable measuring the density of vegetation. 
By using these rules, explanatory variables were selected using the leaps function (Lumley and 
Miller, 2009) in R, which is a best subset regression. Variance inflation factor (VIF) analysis was 
used to check multicollinearity and residuals were checked. Logarithmic transformation was tried 
on both response and explanatory variables; the model without logarithmic transformations was 
selected if the resulting RMSE was not improved and the residuals were well distributed. 
 
The back-transformed response variables were corrected for bias (caused by the logarithmic 
transformation) by multiplying with a correction coefficient (Holm 1977): 

   (6) 

where  is the field measured value and  the predicted value on sample plot . Root mean square 
error ( ), relative RMSE ( ), bias ( ), and relative bias ( ), given in Equations 
(7) – (10), were calculated using leave-one-out cross-validation on sample plot level: 

  (7) 

 

  (8) 

 

  (9) 

 

  (10) 

where  is the mean of the field measured values and  is the number of observations. 
 

2.6 Raster maps 

Raster maps with a pixel size of 10 × 10 m were calculated from the estimated models for 
maximum tree height, biomass and vertical canopy cover. Each pixel’s value was calculated from 
laser data based on a ten meter radius circular area, centered on the pixel. If less than five laser 
points within the ten meter radius circle were above the height threshold (1 m), the value of the 
pixel was set to zero. The models for biomass and vertical canopy cover were applied only when 
maximum tree height was predicted to be at least 2 m, since the models were only valid for trees 
taller than 2 m. 
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3 Results 

Multiple linear regression was successfully used to estimate models to predict above ground tree 
biomass, maximum tree height and vertical canopy cover from ALS data in the forest-tundra 
ecotone. The results showed only a small improvement in the predictions when using the denser 
TopEye data with 6.1 points m-2 compared to the sparse Optech data with 1.4 points m-2 (Table 3).  
 
Metrics used in this paper were created only from CH, as no improvement was achieved when 
metrics were calculated from the nDSM. For the biomass and the vertical canopy cover model, both 
response variables and explanatory variables were transformed by taking the natural logarithm. The 
model used to predict maximum tree height included both a percentile and the vegetation ratio. 
 
The models on sample plot level for prediction of maximum tree height ( ), above ground tree 
biomass ( ), and vertical canopy cover ( ) were different in the two laser data sets. 
Equations (11) - (13) describe the models used with data from the TopEye scanning. 

  (11) 
 (12) 

  (13) 
Equations (14) - (16) describe ,  and  for the Optech scanning. 

  (14) 

 (15) 

  (16) 
The back-transformed values of Equations (12), (13), (15), and (16) were corrected with the 
logarithmic bias correction coefficient (Eq. (6) and Table 3). 
 
Table 3 shows the significance of the selected explanatory variables and the accuracy statistics for 
the developed models. The point-weighted vegetation ratio (Eq. (2)) was used on the TopEye laser 
data with a radius of 0.59 m (Eq. (5)) which improved the relative RMSE for prediction of biomass 
and vertical canopy cover from 19.9% to 18.7% and from 19.1% to 16.8%, respectively. In the 
Optech data the improvement in RMSE was somewhat less using a radius of 1.00 m (Eq. (5)). For 
biomass, the relative RMSE improved from 22.1% to 21.2% and vertical canopy cover improved 
from 19.9% to 18.7%. There was also an improvement of the prediction of maximum tree height, 
but this was almost negligible because the influence of the vegetation ratio in the model was very 
small. A few outliers could be observed for all predicted variables (Figs. 3 and 4). Figure 5 shows a 
sample plot from the TopEye data with an uneven distribution of laser points.   
 
The raster map with predicted values of biomass (Fig. 6) from TopEye laser data shows the mosaic 
pattern in the forest-tundra ecotone. This map is extrapolated outside the area calibrated with 
sample plots. The same map was created for the Optech laser data and there were only small 
differences in the predictions. 
 

4 Discussion 

In this study, maximum tree height, above ground tree biomass, and vertical canopy cover for sub-
arctic mountain birch forest were successfully predicted from the ALS point cloud data. This is, to 
our knowledge, the first time that ALS-based biomass predictions for this type of forest have been 
reported, since earlier ALS studies of mountain birch concentrated on the existence of forested 
areas (Rees 2007), and the existence of pioneer trees (Næsset 2009; Næsset and Nelson 2007). 
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To monitor the wide spectrum of this forest type, from short trees (~2 m) up to tall trees (~10 m) 
often with sparse canopy cover and irregular branching, requires models that will not fail in areas 
with low and/or sparse vegetation. Therefore the models were developed to include few yet highly 
significant variables. Only higher height percentiles (95th and 99th) were used to avoid problems 
with sample plots with low and/or sparse vegetation. The vegetation ratio was included in the model 
for maximum tree height because without it, it was impossible to obtain good predictions in both 
low and high vegetations. 
 
Næsset & Bjerknes (2001) used regression analysis with a stepwise selection procedure to predict 
dominant height of young boreal coniferous forest with average heights similar to those in our 
study. The final model included both the 90th height percentile and the canopy density derived from 
laser data with approximately 0.9 m between footprints. The standard deviation of the difference 
between predicted and observed dominant height was 0.57 m on plot level, which is similar to the 
RMSE of 0.60 m obtained for maximum tree height in our study. Næsset (2011) predicted above 
ground biomass in young forest in south-eastern Norway with metrics derived from ALS data 
having a point density of 0.9 to 1.2 m-2. In Næsset’s study, the mean tree height ranged from 1.77 to 
9.76 m and the plot size was 200 to 232.9 m2. The relative RMSE derived using cross-validation 
ranged from 28.2% to 48.1% for plot level predictions of biomass, which was less accurate than the 
results obtained in our study. Næsset tested different height thresholds (0.5, 1.3, and 2.0 m) but no 
clear effect could be observed on prediction accuracy, in contrast to the findings of our study. 
However, tree species had a significant influence on the models, something we not could observe 
because of the dominance of birch trees. Given the irregular shape and variable distribution of 
mountain birches, our results of 18.7% and 21.2% relative RMSE (TopEye and Optech, 
respectively) for the biomass predictions are surprisingly good. One positive factor in this study 
compared to several earlier studies in boreal forest is that we were able to locate the sample plots 
with sub-dm accuracy due to the use of RTK-GPS technology. The RTK-GPS technology is 
normally difficult to use in boreal forest because the tree canopies disturb the GPS-signal. However, 
the conditions are better in the sub-arctic forest where the trees are low-growing and have sparse 
canopies. 
 
Korhonen et al. (2011) predicted vertical canopy cover for 30 plots in a boreal forest in southern 
Finland using the proportion of vegetation returns in first return airborne laser data and obtained 
highly accurate predictions with a relative RMSE of 3.7% to 7.0%. They used a grid approach 
proposed by Vauhkonen et al. (2008) to correct for effects of uneven distribution of laser points: the 
data were decimated by allocating each laser return to a grid cell based on its XY coordinate and a 
random return was selected for each grid cell. The predictions of  were improved by testing 
this grid approach with different grid cell sizes. In our study we propose a new method to correct 
for uneven distribution of laser points. One advantage of our proposed method is that the data set 
does not need to be decimated but instead the points are assigned a weight. This method of 
weighting the points improved all predictions. In our study, the height percentiles were not 
corrected for the uneven distribution of laser points. Therefore, the improvement of biomass 
prediction was not as large as for vertical canopy cover. There are several reasons why we not could 
obtain the same high accuracy of  predictions as was obtained by Korhonen et al. (2011). In 
our study, crown diameter was only measured for a sample of trees in the field inventory and 
predicted for the remaining trees. The RMSE for this prediction was 3.9 m2 and relative RMSE was 
54% using leave-one-out cross-validation on tree group level. Using the 14 sample plots with all 
tree groups measured, relative RMSE on sample plot level was 17%. It was also difficult to describe 
the canopy area of the irregularly shaped tree crowns using an ellipse. For future studies, another 
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field method should be considered, for example, photographing the crowns from ground or 
terrestrial laser scanning. 
 
Næsset and Gobakken (2008) predicted above- and below-ground biomass in young and mature 
coniferous forest in Norway. They used similar techniques to reduce the number of variables and 
for the above-ground biomass they selected the 90th height percentile and height density 0 (i.e., the 
proportion of points above 2 m to total number of points). In this study we selected the normalized 
squared sum of vegetation hits above 1 m and the proportion of points above 1 m to total number of 
points. 
 
In the maximum tree height model, logarithmic variables were not used since no improvement in 
RMSE was achieved and the residuals were better distributed without logarithmic variables. In 
comparison to the other parameters’ models, the maximum tree height models had the lowest 
RMSE (8.8% for TopEye and 9.5% for Optech). This can be explained by the fact that heights are 
directly measured both by the laser scanner and in the field. The biomass predictions were based on 
the correlation between laser metrics and an allometric biomass model driven by field surveyed 
stem diameter and height measurements. These allometric relationships are not as well behaved for 
mountain birch forest as for normal boreal forest (Dahlberg et al. 2004). Another problem with the 
biomass function is how the tree cross-sectional area is measured. In this study, a tree trunk splitting 
off below 1.3 m was measured as two separate trees, but in Dahlberg et al. (2004) the sum of cross-
sectional areas was measured. The field material in our study, however, included only a few percent 
of trees whose trunks split off below 1.3 m.  
 
Visual inspection revealed that TopEye laser data points were more unevenly distributed than the 
Optech data. This was most likely the reason why the point weight correction had a larger 
improvement on the TopEye data. There can be many reasons why the TopEye data were more 
unevenly distributed than the Optech data, such as acquisition from different platforms (helicopter 
vs. fixed-wing aircraft), weather conditions and scanning patterns. Further research on methods 
compensating for unevenly distributed laser points is needed. 
 
The field inventory method should be further developed before applied in operational use. In this 
study, trees taller than 2 m and DBH smaller than 30 mm were only counted in the field inventory. 
For these trees, the biomass had to be derived based solely on an average of sample trees. Another 
source of error could be a few standing dead trees that were not considered but could affect the laser 
metrics. 
 
The grid cell size of the DEMs varied from 0.25 to 2 m in 0.25 m increments, with the smaller grid 
cell sizes resulting in lower RMSEs (for biomass). The 0.5 m grid cell size was then chosen to 
calculate the mean from several points in each grid cell. In the low density laser data (Optech), the 
0.5 m grid was also used to enable direct comparisons. Since TIN was used to interpolate values 
where no laser points existed, there was no problem in using a smaller grid cell size than the 
distance between laser points. In the Optech data the average point density was 1.4 m-2, which 
means there was always interpolation between grid cells. For the Optech scanning, using a smaller 
grid cell size also resulted in lower RMSE (for biomass). 
 
The foot-print was about 0.5 m with both laser scanners regardless of the difference in flying 
altitude. This causes the Optech scanner with low point density to omit vegetation because the 
ground is not fully illuminated. 
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In June 2010 all sample plots were revisited with the knowledge of the predictions from the TopEye 
laser data. Sample plots with a large difference between field measured and laser predicted biomass, 
maximum tree height, and vertical canopy cover could then be studied to find an explanation for the 
error (Figs. 3 and 4). Some cases of overestimation of biomass and maximum tree height were 
observed. This was most likely due to tall trees occurring on the border of the sample plot, in some 
cases leaning inside the sample plot. By visual inspection of the ALS point cloud it could be 
verified that the highest laser points were located close to the border of the sample plot. 
 
When creating the biomass map, each 10 × 10 m pixel was assigned a value calculated from data 
within a ten m radius circle centered on the pixel. The reason for using circles was to use exactly the 
same area and shape as the field sample plots. The pixel size was chosen to be small enough to 
depict the spatial pattern of the vegetation. Before using the raster map for aggregation or change 
detection, verification of this method to assign pixel values is needed to determine whether or not it 
causes bias. 
 
This study demonstrates that biomass in the sub-arctic mountain birch forest can be accurately 
predicted on plot level from ALS data. Predictions were made using both low and high resolution 
laser data and the results show that high accuracy could be achieved even when using low 
resolution laser data (1.4 points m-2). A method to correct the vegetation ratio for unevenly 
distributed laser points was developed which improved the predictions considerably. A high 
resolution raster map of predicted biomass in the forest-tundra ecotone was created (Fig. 6), useful 
for future monitoring of potential changes in this area.  
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Fig. 1. The sub-arctic birch forest in the Abisko area is characterized by low, often leaning and crooked trees with 
umbrella-like canopies and slow growth. 

 

 
Fig. 2. Map of the Nordic countries, showing the study area in northern Sweden. The regular pattern of dots in the 
enlarged map is the sample plots. © Lantmäteriet, I 2010/0345. 
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Fig. 3. Laser scanning performed in 2008 with TopEye. One-to-one plots of field based data versus laser prediction for 
plot level maximum tree height (left), above ground tree biomass (middle), and vertical canopy cover (right). 
 

 
Fig. 4. Laser scanning performed in 2010 with Optech. One-to-one plots of field based data versus laser prediction for 
plot level maximum tree height (left), above ground tree biomass (middle), and vertical canopy cover (right). 
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Fig. 5. Example of the distribution of laser points on a ten meter radius sample plot from the TopEye scanning. The 
points are unevenly distributed due to pitch and roll during scanning. The size of the dots corresponds to their calculated 
point weight (according to Eq. (5)). By using the point weights in the calculation of vegetation ratio, areas with high 
point density affect the total vegetation ratio on the sample plot in the same magnitude as points in low density areas of 
the sample plot. The values on the axes are the Swedish coordinate system, Sweref99 TM, with units in meters. 
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Fig. 6. Example of a raster map derived from the model (Eq. (12)) for above ground tree biomass (t ha-1). The sample 
plots are marked with circles. 
 
Table 1 
Summary of the laser scanner’s properties and flight parameters of the two laser data acquisitions. 
Parameter TopEye MkII Optech ALTM Gemini 
Flight altitude (above ground) 500 m 1740 m 
Foot-print 0.5 m 0.5 m 
Pulse repetition frequency 50 kHz 70 kHz 
Scan frequency 35 Hz 37 Hz 
Wave length 1064 nm 1064 nm 
Pulse length 4 ns (1.2 m) 6.8 ns (2.0 m) 
Scan type Palmer Oscillating mirror 
Scan width (across flight dir.) ±20° ±20° 
Scan width (along flight dir.) ±14° 0° 
Point extraction Up to 2 per pulse Up to 4 per pulse 
Minimum point density a 2.5 m-2 0.7 m-2 
Average point density a 6.1 m-2 1.4 m-2 
Maximum point density a 17.3 m-2 2.2 m-2 
a based on the laser data from the 73 sample plots used in development of the models. 
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Table 2 
Summary statistics of the 73 forested sample plots (with trees taller than 2 m). 
Definition Unit Abbr. Mina Mean Max N 
Stem diameter b Mm DBH 4 69 266 2351f 
Stem density c ha-1  32 1025 2165 73 
Maximum tree height d M 2.4 6.8 10.5 73 
Biomass e t ha-1 0.08 15.0 42.3 73 
Vertical canopy cover d % 1 40 82 73 
a The lowest non-zero value. 
b On individual tree level instead of sample plot level. 
c Stems taller than 2 m and >30 mm DBH. 
d On sample plot level, trees under 2 m are not measured. 
e Above ground tree biomass on sample plot level for trees taller than 2 m. 
f N=2347 for the Optech data but the other statistics are very similar. 
 
 

Table 3 
Summary of the models (Eqs. (11)–(16)). The last column gives the relative RMSE when the normal vegetation ratio is 
used instead of the point-weighted vegetation ratio. α is the intercept. 

Dependent variable Data Indep. variables, significancea qd R2 adj. BIASr RMSEr RMSEr

without 
pw c 

Maximum tree height  TopEye  α   
 *** *** *** 

- 0.92 0.0% 8.8% 8.9% 

Maximum tree height Optech  α   
 *** *** ***

- 0.91 0.0% 9.5% 9.6% 

Biomass b TopEye  α   
 *** *** *** 

1.018 0.99 0.0% 18.7% 19.9% 

Biomass b Optech  α   
 *** *** *** 

1.021 0.98 0.0% 21.2% 22.1% 

Vertical canopy cover TopEye  α  
 *** *** 

1.023 0.97 0.0% 16.8% 19.1% 

Vertical canopy cover Optech  α  
 *** *** 

1.016 0.96 0.0% 18.7% 19.9% 

a Abbreviation of significance (p): *<0.1, **<0.01, ***<0.001 
b Above ground tree biomass (for trees taller than 2 m). 
c Without point-weighted vegetation ratio. 
d Logarithmic bias correction coefficient according to Eq. (6). 
 


