This is an author produced version of a paper published in Science of The Total Environment. This paper has been peer-reviewed and is proof-corrected, but does not include the journal pagination.

Citation for the published paper:

Löfgren, S., Gustafsson, J. P., Bringmark, L. (2010) Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden : geochemical modeling of organic matter solubility during acidification recovery. *Science of The Total Environment*. Volume: 409 Number: 1, pp 201-210.

http://dx.doi.org/10.1016/j.scitotenv.2010.09.023

Access to the published version may require journal subscription. Published with permission from: Elsevier

Epsilon Open Archive http://epsilon.slu.se

Decreasing DOC trends in soil solution along the hill slopes at two IM sites in southern Sweden – geochemical modeling of organic matter solubility during acidification recovery. Stefan Löfgren¹, Jon Petter Gustafsson², and Lage Bringmark³ ¹Swedish University of Agricultural Sciences, SLU Department of Aquatic sciences and Assessment P.O. Box 7050 SE-750 07 UPPSALA E-mail: <u>Stefan.Lofgren@vatten.slu.se</u> ²Royal Institute of Technology, KTH Land and Water Resources Engineering Teknikringen 76 SE-100 44 Stockholm E-mail: gustafjp@kth.se ³Swedish University of Agricultural Sciences, SLU Department of Aquatic sciences and Assessment P.O. Box 7050 SE-750 07 UPPSALA E-mail: Lage.Bringmark@vatten.slu.se Corresponding author: Stefan Löfgren Swedish University of Agricultural Sciences, SLU Department of Aquatic sciences and Assessment P.O. Box 7050 S-750 07 UPPSALA E-mail: Stefan.Lofgren@vatten.slu.se Phone: +46 70 69 55 177 Fax: +46 18 67 31 56 Keywords: DOC trends; forest soils; soil water; recovery from acidification; Stockholm Humic Model; integrated monitoring

1 Abstract

2 Numerous studies report increased concentrations of dissolved organic carbon (DOC) 3 during the last two decades in boreal lakes and streams in Europe and North America. 4 Recently, a hypothesis was presented on how various spatial and temporal factors affect 5 the DOC dynamics. It was concluded that declining sulphur deposition and thereby 6 increased DOC solubility, is the most important driver for the long-term DOC 7 concentration trends in surface waters. If this recovery hypothesis is correct, the DOC 8 levels should increase both in the soil solution as well as in the surrounding surface 9 waters as soil pH rises and the ionic strength decline due to the reduced input of SO_4^{2-} 10 ions. In this project a geochemical model was set up to calculate the net humic charge and 11 DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring 12 sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm 13 Humic Model was used to investigate whether the observed DOC solubility is related to 14 the humic charge and to examine how pH and ionic strength influence it. Soil water data 15 from recharge and discharge areas, covering both podzols and riparian soils, were used. 16 The model exercise showed that the increased net charge following the pH increase was 17 in many cases counteracted by a decreased ionic strength, which acted to decrease the net 18 charge and hence the DOC solubility. Thus, the recovery from acidification does not 19 necessarily have to generate increasing DOC trends in soil solution. Depending on 20 changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or 21 indifferent. Due to the high hydraulic connectivity with the streams, the explanations to 22 the DOC-trends in surface waters should be searched for in discharge areas and 23 peatlands.

- 24
- 25

1 **1. Introduction**

2 Numerous studies report increased concentrations of dissolved organic carbon (DOC) 3 during the last two decades in boreal lakes and streams in Europe, Canada and the US 4 (Erlandsson et al., 2008; Evans et al., 2005; Monteith et al., 2007; Skjelkvåle et al., 5 2005). Many different processes have been proposed to explain these trends e.g. 6 hydrometeorological conditions (Erlandsson et al., 2008; Sarkkola et al., 2009), recovery 7 from acidification due to reduced sulphur deposition (Dawson et al., 2009; Monteith et 8 al., 2007), land cover (Laudon et al., 2009; Sarkkola et al., 2009), forest management and 9 land use (Laudon et al., 2009; Löfgren et al., 2009b; Yallop and Clutterbuck, 2009) etc. 10 Recently, Clark et al. (2010) presented a unifying hypothesis on how various spatial and 11 temporal factors affect the DOC dynamics. They concluded that declining sulphur 12 deposition and thereby increased DOC solubility, is the most important driver for the 13 long-term DOC concentration trends in surface waters, but that the variability between 14 sites is influenced by a multitude of spatial and temporal factors (op. cit.).

15

16 Soils and surface waters in the historically most polluted southern Sweden show clear 17 signs of recovery from acidification since the early 1990's (Karltun et al., 2003; Löfgren 18 et al., 2009a; Skjelkvåle et al., 2005). However, if the recovery hypothesis is correct, the 19 DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength decline due to the reduced input of SO_4^{2-} 20 21 ions. In contrast to surface waters, however, the soil waters in forested recharge areas 22 (number of monitoring sites $(n_{sites}) = 68$, 50 cm soil depth, podzols) exhibit no change 23 $(n_{sites}=32)$ or decreasing $(n_{sites}=31)$ DOC concentrations during the period 1986-2008 in 24 southern Sweden, indicating increased coagulation of DOC in the upper soil horizon 25 (Zetterberg and Löfgren, 2009, Löfgren and Zetterberg in prep.). In Norway, similar 26 results were obtained, with no change or decreasing DOC trends during the period 1996-27 2006 in soil water (n_{sites}=18) at 15 and 40 cm soil depth in podzols (Wu et al., 2010). In 28 contrast, increased DOC concentrations were found in soil water at two sites during the 29 period 1994-2007 in the Czech Republic. The latter studies represent soil water under the 30 forest floor at Lysina and in the mineral topsoil at Pluhuv (Hruska et al., 2009). Positive

1 DOC-trends were also found at 5-20 cm soil depth ($n_{sites}=9$, moorlands and forests)

2 during the period 2000-2005 in the UK (Buckingham et al., 2008).

3

4 Hruska et al. (2009) concluded that the DOC trends in both soil and surface waters were 5 explained by changes in ionic strength, rather than acidity, while Buckingham et al. 6 (2008) considered the UK time series too short, for making a coupling to the surface 7 water DOC trends. Wu et al. (2010) proposed that small changes in the atmospheric 8 deposition during the investigation period could explain the diverging DOC trends in soil 9 and surface waters. However, they also put forward the possibility of competition 10 between mineral anions and DOC for adsorption sites on oxide surfaces, causing a simultaneous decrease of the DOC and SO₄²⁻ concentrations. Zetterberg and Löfgren 11 12 (2009) hypothesized that processes in discharge areas and peat lands rather than dry soils 13 uphill govern the surface water DOC trends. 14 15 The solubility of DOC is likely to be determined by a number of different biological, 16 chemical and hydrological processes (see Clark et al., 2010 and references therein), but 17 the acidification recovery theory is primarily coupled to the chemical and physical 18 properties of organic matter in soils and water. According to classical DLVO theory for 19 colloidal stability, the surface potential of a charged colloid may be the single most 20 important factor determining its dispersion into the water phase (e.g. Weng et al., 2002). 21 A high surface potential results in more interactions with water molecules and thus a high 22 water solubility. Therefore, different models have been forwarded that relates the DOC 23 solubility either to the surface potential or to the net charge, which is closely related to

the surface potential.

25

Tipping and Woof (1990) suggested a model for DOC dissolution from soils that assume
a nonlinear relationship between the DOC concentration and the net humic charge.
According to this model, an increased net charge leads to an increasing DOC
concentration. The net charge is calculated using an advanced geochemical model that
accounts for the acid-base and metal complexation properties of the organic matter, such
as WHAM (Tipping and Woof, op. cit.), NICA-Donnan (Weng et al., 2002) or SHM

(Stockholm Humic Model; Gustafsson, 2001). The model of Tipping and Woof (1990)
 was slightly modified by Lofts et al. (2001) for the WHAM model and by Lumsdon
 (2004) for the NICA-Donnan model, and after optimization for individual soils it was
 found to work well in most cases for predicting the DOC concentration, although
 difficulties were observed in particular for some mineral soils (c.f. the Discussion
 section).

7

A slightly different approach was taken by Weng et al. (2002) who instead related the DOC solubility to the value of a Donnan potential calculated by the NICA-Donnan model, assuming that the Donnan potential was closely related to the surface potential of the humic colloids. These authors found that the magnitude of DOC solubility was related to the Donnan potential in five of six soils, but that acid sandy soils seemed to deviate from the general rule.

14

15 If the DOC concentration is related to the net humic charge, it may provide a tool to 16 understand why the DOC concentrations show no trend or decrease in Swedish soil 17 waters simultaneously with acidification recovery.

18

19 The aim of this project was to set up a geochemical model to calculate the development 20 of the net humic charge with time at the Swedish integrated monitoring (IM) sites 21 Aneboda and Kindla, to investigate whether the observed DOC solubility in soils is 22 closely related to the humic charge, and if so, use the model to examine the factors 23 influencing the humic charge and thus the DOC solubility. The SHM model was tested on 24 soil water data from one transect along the hill slope in each catchment, covering the time 25 period 1996-2007. The transects extend from recharge to discharge areas, making it 26 possible to estimate the net humic charge in both podzols and riparian soils.

27

28 2. Site descriptions

Locations and maps of the IM sites Aneboda (19.6 ha, N57°05', E14°32') and Kindla
(19.1 ha, N59°45', E14°54') are shown in Figures 1 and 2, respectively. Both sites are

1 protected Norway spruce (*Picea abies*) forests, not affected by forestry during the last 2 century (Lundin et al., 2001). The bedrock consists of granite and glacial till is the 3 dominant parent material with quartz and feldspar (albite, plagiclase, microcline) as the 4 most abundant minerals. At Aneboda, the annual mean temperature is 5.8°C, precipitation 750 mm and runoff 280 mm. At Kindla, the same figures are 4.2°C, 900 mm and 450 mm 5 6 respectively. Between 1996 and 2008, the S-deposition in throughfall has diminished from 6 to 2 kg S ha⁻¹ y⁻¹ at both sites, while the bulk deposition reductions are from 4 to 3 7 kg S ha⁻¹ y⁻¹ at Aneboda and from 4 to 2 kg S ha⁻¹ y⁻¹ at Kindla. In the late 1980's, the S 8 9 deposition was more than twice these levels (Westling and Lövblad, 2000). Since 1996, the bulk deposition of inorganic N has diminished with ca 1 kg N ha⁻¹ y⁻¹ and is at present 10 approximately 7 and 5 kg N ha⁻¹ y⁻¹ at Anaboda and Kindla, respectively. Compared with 11 the S deposition in the historically, heavily polluted Czech Republic (Lysina and Pluhov 12 Bor), which has experienced total S deposition reductions from 30-40 kg ha⁻¹vr⁻¹ to 7-11 13 kg ha⁻¹yr⁻¹ during the 1990's (Hruska et al., 2009), the S deposition at the Swedish sites 14 15 are low. Regarding N deposition, the differences are much smaller and at present a couple of kg N ha⁻¹yr⁻¹ higher at the Czech sites. At Aneboda, the throughfall of chloride exhibits 16 large between year variations, with the highest loads in 1999 (20 kg Cl ha⁻¹ y⁻¹) and the 17 lowest in 2005 (7 kg Cl ha⁻¹ y⁻¹), respectively. At Kindla, the interannual variation is less 18 or 7-12 kg Cl ha⁻¹ v⁻¹. 19

20

```
21 ***Figure 1***
```

22

23 ***Figure 2***

24 **3. Methods**

25 The soil and surface water sampling is part of the ordinary IM-program (Lundin et al.,

26 2001, http://www.environment.fi/default.asp?node=6329&lan=en). Since 1996, stream

- 27 water is sampled biweekly at each catchment outlet (Figure 2). In both catchments,
- 28 lysimeters (ceramic cups P80, 1 µm cut-off) were installed along a hillslope in 1994
- 29 (Figure 2). In the Aneboda transect, the lysimeters were installed at distances of
- 30 approximately 1-6 m and 20 m from the stream. Additionally, a group of lysimeters was

1 established 90-110 m from the stream close to the intensive soil and vegetation plots 2 (Figure 2). In the Kindla transect, the distances to the stream were 4-8 m, 20 m and 40 m 3 (Table 1). In recharge areas and intermediate zones (recharge area except for at runoff 4 events with high groundwater levels) with podzols, the lysimeters were installed in the 5 mineral soil just below the O-horizon (E-horizon) and in the centre of the B-horizon. The 6 E- and B-horizon lysimeters were installed pair wise, within a distance of <1m. Multiple 7 such lysimeter pairs were installed within a distance of <6m from each other at each 8 location along the transects (and plot). In the discharge areas, the lysimeters were 9 installed in the peat-covered gleysols and histosols (30 cm and 37 cm, respectively) 10 below soil surface. Soil temperature, measured by termistors (Aanderaa, 30 minutes 11 interval), is available from 10, 32, 44 and 58 cm and 5, 10, 20 and 35 cm soil depths at 12 Aneboda and Kindla, respectively. Soil water has been sampled since 1994, but in order 13 to minimize installation effects on the time series, this study includes data only from the 14 period 1996-2007. If available, soil water was collected 3-4 times per year after snowmelt 15 (April-May) and precipitation events in August and October-November. At Aneboda, few 16 data are available from the E-horizons due to dry conditions in the surface soils. 17 Therefore, the E-horizon data is omitted from this study. The transects cannot be 18 considered as representative for the mosaic of hillslope conditions creating the stream 19 water chemistry, but are rather examples of such conditions. 20

21 The samples were analyzed with Swedish standard methods at the Dept. of Aquatic 22 Sciences and Assessment, Swedish University of Agricultural Sciences (SLU). The 23 analytical methods are accredited by SWEDAC (Swedish Board for Accreditation and 24 Conformity Assessment). Ambient pH was analysed in a semi-closed system. Directly 25 after opening the bottle, the sample was pumped (peristaltic pump) through an airtight 26 cuvette equipped with a combination pH-electrode adapted for low ionic strength waters 27 (Metrohm 6.0253.100). Samples for total organic carbon (TOC) analysis were measured 28 using a Shimatzu TOC 5050 analyzer with ASI-502 sample injector following 29 acidification. Major cations, Fe and Al were analyzed on acidified samples (0.5 ml 30 concentrated HNO₃ per 100 ml sample) by ICP-OES (Varian Vista Ax Pro) and strong

1 acid anions by ion chromatography (LDC Conducto Monitor III). Acid neutralizing

2 capacity (ANC) was calculated according to Reuss and Johnson (1986).

3

4 The non-parametric Seasonal Kendall test (Hirsch and Slack, 1984; Loftis et al., 1991)

5 was used for detecting monotonous trends in measured and simulated (see below)

6 chemical time series. It was visually determined whether the trends were monotonous or

7 not. Thiels slope (Helsel and Hirsch, 1992) was used to quantitatively estimate the trends.

8 Throughout the investigation period soil water data were available only from the months

9 April-May, August and October-November. Hence, these months were used for the trend10 analyses.

11

12 **4. Model assumptions**

The software Visual MINTEQ (Gustafsson, 2009) employing the Stockholm Humic 13 14 Model (Gustafsson, 2001) was used to study the acid-base and complexation behavior of organic matter in soils. The overall net charge (Z^{-}) of the soil organic matter was assumed 15 16 to influence the DOC mobilization (see Introduction). At each sampling occasion, the pH value as well as the measured dissolved concentrations of ions (Ca^{2+} , Mg^{2+} , SO_4^{2-} , total 17 Al etc.) were entered as fixed in the model, meaning that the model calculated the 18 19 concentrations of solid-phase organic complexes that were in equilibrium with the given 20 dissolved concentrations. The Z^{-} value can then be calculated as the sum of the charge contributions from various different organic matter species in the solid phase. As an 21 example, in the simple case of fulvic acid and in the presence of Ca^{2+} and Al^{3+} in the soil 22 23 solution, the value of Z^{-} would be given by:

24

$$Z^{-} = RO^{-} - ROCa^{+} - (RO)_{2}Al^{+}$$
(1)

26

, where RO⁻ is a dissociated functional group (usually a carboxylate group), ROCa⁺ is a
monodentate complex involving one functional group and one Ca²⁺ ion, whereas

20 monodentate complex involving one functional group and one cut for, whereas

29 $(RO)_2Al^+$ is a bidentate complex involving two functional groups and one Al^{3+} ion. For

30 more detailed information regarding the assumed complex configurations, see Gustafsson

1	(2001)	or Gustafsson and Kleja (2005). As seen in equation 1, the value of Z^{-} indicates
2	the sur	n of negative charge of the organic matter. Since the negative charge usually
3	predor	ninates, Z^{-} will take a positive value.
4		
5	To set	up the model, a number of assumptions were made:
6		
7	1.	The approximate organic matter content of the soil was estimated from different
8		soil samplings carried out during the experimental period at the two sites (data not
9		shown). Thus for the Kindla E horizon the total organic C (TOC _{soil}) content was
10		set to 1.1 %, whereas it was 2.5 % for the Kindla B horizon, 15 % for the peat
11		soils of the Kindla discharge area (lysimeters 6201-6203) and 1.0 % for the wet
12		soils of the same area (lysimeters 6204-6206). In the case of the Aneboda B
13		horizon the TOC_{soil} content was 1.5 %, for the peat soil (lysimeter 7202) 15 % and
14		for the wet soil (lysimeters 7204-7206) 15 %. The results, however, were not
15		sensitive to these assumptions.
16		
17	2.	The water content (g water / g soil) was assumed to be 1 for the peat soils and 0.1
18		for all other soils. Again, however, this was not crucial for the model outcome.
19		
20	3.	It was assumed that the fraction of "active organic matter" (AOM) amounted to
21		50 % of the total organic matter content in all soils. An earlier study found this
22		figure to range between 17 and 84 %, depending on the soil, with the lowest
23		values recorded for mor layers (Gustafsson et al., 2003). Based on these results, it
24		can be estimated that the AOM percentage needed for the model should probably
25		range from 30 to 84 %. However, the exact choice of the AOM percentage did not
26		matter for the model result, and therefore an intermediate value of 50 % was
27		chosen.
28		
29	4.	In the peat soils, 75 % of the AOM was assumed to consist of humic acid and 25
30		% of fulvic acid, whereas in other soils the percentages were 50 $%$ and 50 $%,$
31		respectively. These figures are based on an earlier detailed evaluation for different

	soils (Gustafsson et al., 2003). Moreover, all dissolved organic matter (DOM) was
	assumed to consist of fulvic acid, to be consistent with earlier model
	optimizations using the SHM (Gustafsson and Kleja, 2005; Gustafsson and van
	Schaik, 2003).
5.	Besides AOM itself, no other reactive phases in the soils were assumed to
	influence the net charge. This means, for example, that Fe oxyhydroxides, which
	could affect the net charge through adsorption of fulvic acid, were disregarded in
	the calculations. The reason for this is mainly that the interactions between
	organic matter and oxyhydroxides are very complex and still not completely
	understood (see e.g. Weng et al., 2007).
6.	The concentration of solid-phase organic matter was assumed to be constant over
	the entire time period (1996-2007). Because of the large pools of soil organic
	matter, a change in this property over only eleven years is not expected.
7.	Since the temperature was not always measured, the temperature was set to 6°C
	for all samples. Preliminary model runs showed that the assumed value was not
	crucial to the model result in the pH (4-6) and temperature ranges (0-14°C)
	investigated.
	 5. 6. 7.

22 **5. Results**

23 The soil solution was highly acidic with pH<5 and negative ANC at all sites except for in the discharge area at Aneboda and in one of the riparian lysimeters (6203) at Kindla 24 (Table 1a and 1b). In both catchments, Na^+ was the dominating cation, while Ca^{2+} and 25 Mg^{2+} were of the same levels and generally less than half the concentrations of Na⁺. The 26 Ca²⁺ and Mg²⁺ concentrations increased downslope and exhibited soil solution 27 28 concentrations close to the stream levels in the riparian soils. Except for the discharge area at Aneboda, exhibiting high concentrations of Cl^{-} , SO_4^{2-} was the dominant anion in 29 soil solution. Compared with the mineral soils, lower SO_4^{2-} concentrations were found in 30

1	the peat (Table 1b). At Aneboda, the Na ⁺ and Cl ⁻ concentration balance varied between
2	lysimeters, while all lysimeters exhibited excess Na ⁺ concentrations at Kindla. The DOC
3	concentrations in soil waters were somewhat lower at Aneboda (5-9 mg l^{-1}) compared
4	with at Kindla (4-18 mg l ⁻¹), while the opposite was true for the streams, 14 compared
5	with 4 mg l ⁻¹ , respectively. Both catchments had slightly higher DOC concentrations in
6	the riparian soils compared with uphill. The same pattern was found for dissolved Fe,
7	while the highest dissolved Al concentrations were found in dry soils with podzols (Table
8	1a).
9	
10	***Table 1***
11	
12	At both sites, several lysimeters experienced decreasing DOC concentrations between
13	1996 and 2007. At Kindla, 7 out of 15 lysimeters had statistically significant decreasing
14	DOC trends (p<0.05), whereas 7 lysimeters did not have any significant change of DOC
15	(Table 2). Only one lysimeter in the discharge area (6202) exhibited an increasing DOC
16	trend. At Aneboda, 3 of 12 lysimeters had statistically significant decreasing DOC
17	concentrations. No lysimeter at any site showed increasing DOC concentrations over this
18	time period (Table 3). As an example, Figure 3 shows the DOC concentrations in the wet
19	soils of the Kindla site for all of which the DOC concentrations decreased.
20	
21	***Table 2***
22	
23	***Table 3***
24	
25	***Figure 3***
26	
27	***Figure 4***
28	
29	For individual lysimeters there was often a strong relationship between the calculated net
30	charge of the AOM (Z^{-}) and DOC, indicating that Z^{-} is related to DOC solubility. In

1 Figure 4 this relation is presented for the lysimeter 6206 from the Kindla site. This

2 relationship was statistically significant (p<0.05) in 11 out of 27 lysimeters.

3

Despite the strong relationship between Z⁻ and DOC, Z⁻ did often not decrease by time to
the same extent as DOC (Table 2 and 3). In 22 out of 27 lysimeters Z⁻ stayed more or less
constant, verified by no statistically significant (p<0.05) trends. Consequently and
especially evident for the Kindla site (Table 2), the ratio of Z⁻ to DOC often displayed a
change in time with increasing trends. This implies that with time, DOC solubility
decreased although the net charge did not change appreciably.
Lumsdon et al. (2005) obtained evidence for an increased hydrophobicity at lower

Lumsdon et al. (2005) obtained evidence for an increased hydrophobicity at lower temperatures, which would have led to an increase in the Z^- to DOC ratio. However in our study there was no statistically significant relationship between the ratio of Z^- to DOC and the measured soil temperature in any of the lysimeters (data not shown), which indicates that temperature differences were unlikely to affect the observed deviations between Z^- and DOC.

17

18 The soils at the two sites are subject to recovery from acidification. Hence 15 of the 27 19 lysimeters display statistically significant increases in pH between 1996 and 2007 (Table 20 2 & 3). However, there was one lysimeter at the Aneboda site (no. 7104) that had a 21 decreasing pH trend (Table 3). For all except 3 lysimeters in Kindla, a decrease in the 22 ionic strength was noticed. Examples of this from the B horizon in the intermediate zone 23 are shown in Figure 5. At Aneboda, however, only 50 % of the lysimeters displayed a 24 significantly decreased ionic strength with time. The ionic strength was heavily dependent on $SO_4^{2^2}$, which in many cases decreased considerably at both sites during the 25 investigated time period, as well as on counter-ions such as Ca^{2+} , which also decreased as 26 27 a result. 28

29 ***Figure 5***

Changes in the simulated total Al pool in the soil were not expected due to the large pools
involved. With Visual MINTEQ we could simulate the total amount of Al bound to active
organic matter. This pool did not change during the time period except for in 6 of the
lysimeters, where calculations suggested a slight increase of the modeled Al pool (Table
2 & 3).

6

The logarithm of the ion activity product of Al(OH)₃(s) was higher than 9 in the Kindla B
horizon, indicating equilibrium with respect to this phase or with imogolite-type materials
(Gustafsson et al., 2001). In other lysimeters this value was lower, which might be taken
as evidence that Al solubility in these soils was controlled primarily by complexation to
organic matter.

12

Organically complexed Fe(III) in the soil was also simulated, but as the size of this pool
was calculated to be < 10 % of the organically complexed Al pool in almost all cases,
Fe(III) is likely to be much less significant than Al in affecting the net humic charge and
DOC solubility; these results are therefore not discussed further.

18 6. Discussion

An objective with this study was to understand the soil water trends in DOC solubility using the Visual MINTEQ geochemical model. Since DOC solubility cannot be simulated directly, the modeled net charge Z⁻ was used as a proxy, using the assumption that Z⁻ would be directly related to DOC. For individual lysimeters there was indeed a rather strong relationship between these two variables (Figure 4). Despite this, the modelgenerated Z⁻ values indicated largely unchanged DOC concentrations for the Kindla site, whereas in reality DOC decreased in most lysimeters.

26

27 Similar results were obtained by Lofts et al. (2001), who used the WHAM model to

simulate DOC solubility in soil suspensions from batch experiments using a modified

29 version of the model of Tipping and Woof (1990). They found that for some mineral soil

30 horizons with a comparably high Al content, the model failed to describe correctly the

DOC solubility at low pH. These data showed a minimum in the observed DOC solubility between pH 4 and 5, whereas the model indicated ever decreasing DOC with decreasing pH. Similar batch experiment results were obtained by Gustafsson et al. (2003). Figure 6 shows batch experiment results from four B horizons in which the pH dependence was varied through additions of acid or base. Similarly to some of the B horizons analyzed by Lofts et al. (2001) a minimum of the DOC concentration was observed between pH 4 and pH 5, depending on the soil.

8

```
9 ***Figure 6***
```

10

```
11 ***Figure 7***
```

12

One of the soils, Tyresta Bs, was analyzed in more detail (for the properties of this soil sample, see Gustafsson et al., 2003). By using the procedures described earlier, Z^{-} was calculated for the different sample points. As Figure 7 shows, the modeled Z^{-} did not follow the DOC curve very well, Z^{-} decreased with decreasing pH until pH < 4. At this point most of the bound Al dissolved, which explains the minimum in Z^{-} at this point. The results are consistent with the ones of Lofts et al. (2001) for the Waldstein Bw and Bs horizons.

20

21 Lofts et al. (2001) hypothesized, based on WHAM modeling, that the increased DOC at 22 decreasing pH below pH 4 could be due to the development of positive charge on the 23 humic colloids. However, the SHM results did not support this hypothesis since the increase in the simulated Z^{-} value at very low pH was caused by Al^{3+} desorption, thus 24 25 leading to a slightly increased net negative charge despite the pH decrease. Interestingly 26 to note is that the increased DOC concentrations in soil solution at the Lysina catchment 27 in the Czech republic (Hruska et al., 2009) occurs at this low pH-interval. Unfortunately, the soil water Al^{3+} concentrations were not reported, but it could be speculated whether 28 29 the positive DOC trend, besides ionic strength, was affected by an increased net negative 30 charge on the AOM due to a changed solid-solution Al chemistry. There was no trend in 31 pH (op.cit.).

2 As a result of the mismatch between DOC and Z^{-} , the Z^{-}/DOC ratio increased 3 considerably with increasing pH between pH 4 and pH 5 (Figure 8). This mirrors the 4 results obtained for the lysimeters, since a close inspection of the results in Table 2 and 3 5 reveals that the Z⁻/DOC ratio usually (11 out of 15 cases) increased when the pH 6 increased. In the one lysimeter that had a pH decrease (nr. 7104) the Z⁻/DOC ratio 7 decreased between 1996 and 2007. This suggests a consistency between the results 8 obtained in equilibrations with soil samples on the laboratory and the lysimeters at the 9 two sites.

10

1

11 ***Figure 8***

12

13 A question that remains unanswered is what causes this deviation between Z^2 and DOC. 14 The model results do not provide any consistent clue to this. However it is clear that the 15 pH value does seem to have an effect such that an increased pH requires a higher net charge for DOC to remain dissolved to the same extent. One possible reason could be 16 related to the coordination of Al³⁺ in organic complexes. If a higher pH causes a higher 17 coordination number for complexed Al^{3+} , then it follows that Al^{3+} could bridge together 18 19 organic matter molecules more efficiently leading to increased aggregation. This would 20 explain the patterns observed since cation bridging as such would not influence the Z⁻ 21 value. This may not be the only possible reason, however.

22

23 Concerning factors influencing Z^{-} , it might be expected that an increased pH value would 24 cause higher DOC concentrations because of increased dissociation of organic matter and 25 hence an increasing net charge. However, other factors affecting the net charge and DOC 26 solubility also need to be taken into account, such as changes in the ionic strength and in 27 the soil Al pool. Figure 9 shows model-generated results for two lysimeters in which the 28 influence of different factors were considered. The scenarios were based on observed data 29 from 1996 and 2006 (see Table 4). An increased pH clearly increased the net humic 30 charge as expected, but the net effect was influenced also by changes in ionic strength 31 and total Al.

1 2 Depending on the soil, the humic charge is dependent on the net result of these different 3 factors. At the Kindla site, Al does not change over time significantly in 13 out of 15 4 lysimeters (Table 2) and therefore the charge is dependent primarily on the changes in 5 ionic strength and pH, which counteract each other to give a largely unchanged value of Ζ⁻. 6 7 8 ***Figure 9*** 9 10 ***Table 4*** 11 12 Figure 9 shows that the concentration of total Al in the soil (mainly as organic 13 complexes) was very important for the net humic charge. This was not unexpected since a 14 larger amount of Al reduces the net charge according to equation 1. At the Aneboda site 3 15 of 12 lysimeters experienced significant increases in the simulated soil Al pool. The 16 modeling results in Figure 9 show that this might have contributed to the observed 17 decreased humic charge and hence presumably to decreased DOC concentrations. It does 18 not seem likely that this is a "real" increase in complexed Al in the soil, because of the 19 very large pools of Al involved. The result might reflect a change in the hydrological 20 pathways over time, i.e. that the water that enters the lysimeter may be drained from 21 slightly different pores. Based on the annual median water volumes collected by 6 22 lysimeters during the period 1994-96 (mean 338 ml) and 1998-2010 (450 ml), there are 23 no signs of clogging in the B-horison lysimeters at Aneboda. 24 25 Based on these observations, it is evident that the well-documented recovery from 26 acidification does not necessarily have to generate increasing DOC trends in soil solution. 27 Depending on changes in pH, ionic strength and soil Al pools, the trends might be 28 positive, negative or indifferent. The variation in DOC trends between lysimeters can be

29 large within a short distance between the sampling devices and, therefore, it is necessary

- 30 to have data from many sampling sites in order to assess the general DOC trends in the
- 31 forested mosaic landscape. The negative DOC trends found in soil solution at many sites

1	in Sweden and Norway (Wu et al., 2010; Zetterberg and Löfgren, 2009) while surface
2	waters in the same regions exhibits positive DOC trends might be explained by non-
3	representative sampling sites, but it might also be a result of other factors as described by
4	Clark et al. (2010). Processes in discharge areas and peatlands seem to be important
5	landscape elements (Köhler et al., 2009; Laudon et al., 2004). Due to the high hydraulic
6	connectivity with the streams, the explanations to the DOC-trends in Scandinavian
7	surface waters should be searched for in such types of landscape elements.
8	7. Conclusions
9	In summary, this model exercise has highlighted the following factors of importance for
10	the observed decrease of DOC in many lysimeters of the Aneboda and Kindla sites:
11	
12	- The increased net charge following the pH increase (because of increased acid
13	dissociation) was in many cases counteracted by a decreased ionic strength, which
14	acted to decrease the net charge and hence the DOC solubility.
15	
16	- Particularly at the Kindla site, the pH increase induced reduced solubility of DOC
17	despite no or little change in the net humic charge, perhaps because of a change in
18	Al coordination that increased cation bridging effects. This effect could not be
19	verified by the model, but is supported by earlier published results from batch
20	experiments with soil samples from B horizons.
21	
22	- At the Aneboda site, an increase in the simulated concentrations of the soil Al
23	pool from 1996 to 2007 was obtained in 3 of 12 cases; the model suggested that
24	this might be a major reason to decreased DOC concentrations at this site. It
25	seems unlikely that this result reflects a "real" increase in the soil Al pool. A
26	possible reason might be differences in the hydrological pathways for the water
27	entering the Aneboda lysimeters.
28	

1	Acknowledgements
2	This research has been financed by the Swedish Environmental Protection Agency.
3	
4	References
5	Buckingham S, Tipping E, Hamilton-Taylor J. Concentrations and fluxes of dissolved
6	organic carbon in UK topsoils. Sci Total Environ 2008; 407: 460-470.
7	Clark JM, Bottrell SH, Evans CD, Monteith DT, Bartlett R, Rose R, et al. The importance
8	of the relationship between scale and process in understanding long-term DOC
9	dynamics. Sci Total Environ 2010; 408: 2768-2775.
10	Dawson JJC, Malcolm IA, Middlemas SJ, Tetzlaff D, Soulsby C. Is the Composition of
11	Dissolved Organic Carbon Changing in Upland Acidic Streams? Environ Sci
12	Technol 2009; 43: 7748-7753.
13	Erlandsson M, Buffam I, Fölster J, Laudon H, Temnerud J, Weyhenmeyer GA, et al.
14	Thirty-five years of synchrony in the organic matter concentrations of Swedish
15	rivers explained by variation in flow and sulphate. Global Change Biol 2008; 14:
16	1191-1198.
17	Evans CD, Monteith DT, Cooper DM. Long-term increases in surface water dissolved
18	organic carbon: Observations, possible causes and environmental impacts.
19	Environ Pollut 2005; 137: 55-71.
20	Gustafsson JP. Modeling the acid-base properties and metal complexation of humic
21	substances with the Stockholm Humic Model. J Colloid Interf Sci 2001; 244: 102-
22	112.
23	Gustafsson JP. Visual MINTEQ ver. 3.0. Web:
24	http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm. Last accessed 2/9
25	2010., 2009.
26	Gustafsson JP, Berggren D, Simonsson M, Zysset M, Mulder J. Aluminium solubility
27	mechanisms in moderately acid Bs horizons of podzolized soils. Eur. J. Soil Sci.
28	2001; 52: 655-665.

1	Gustafsson JP, Kleja DB. Modeling salt-dependent proton binding by organic soils with
2	the MICA-Donnan and Stockholm Humic models. Environ Sci Technol 2005; 39:
3	5372-5377.
4	Gustafsson JP, Pechova P, Berggren D. Modeling metal binding to soils: The role of
5	natural organic matter. Environ Sci Technol 2003; 37: 2767-2774.
6	Gustafsson JP, van Schaik JWJ. Cation binding in a mor layer: batch experiments and
7	modelling. Eur J Soil Sci 2003; 54: 295-310.
8	Helsel DR, Hirsch RM. Statistical measures in water research. Amsterdam: Elsevier
9	Science B.V., 1992.
10	Hirsch RM, Slack JR. A Nonparametric Trend Test for Seasonal Data with Serial
11	Dependence. Water Resour Res 1984; 20: 727-732.
12	Hruska J, Kram P, Mcdowell WH, Oulehle F. Increased Dissolved Organic Carbon
13	(DOC) in Central European Streams is Driven by Reductions in Ionic Strength
14	Rather than Climate Change or Decreasing Acidity. Environ Sci Technol 2009;
15	43: 4320-4326.
16	Karltun E, Stendahl J, Lundin L. Acid-base status and changes in Swedish forest soils.
17	KSLAT 2003; 142: 31-36.
18	Köhler SJ, Buffam I, Seibert J, Bishop KH, Laudon H. Dynamics of stream water TOC
19	concentrations in a boreal headwater catchment: Controlling factors and
20	implications for climate scenarios. J Hydrol 2009; 373: 44-56.
21	Laudon H, Hedtjärn J, Schelker J, Bishop K, Sörensen R, Ågren A. Response of
22	Dissolved Organic Carbon following Forest Harvesting in a Boreal Forest. Ambio
23	2009; 38: 381-386.
24	Laudon H, Köhler S, Buffam I. Seasonal TOC export from seven boreal catchments in
25	northern Sweden. Aquat Sci 2004; 66: 223-230.
26	Loftis JC, Taylor CH, Chapman PL. Multivariate Tests for Trend in Water-Quality.
27	Water Resour Res 1991; 27: 1419-1429.
28	Lofts S, Simon BM, Tipping E, Woof C. Modelling the solid-solution partitioning of
29	organic matter in European forest soils. Eur J Soil Sci 2001; 52: 215-226.

1	Lumsdon DG. Partitioning of organic carbon, aluminium and cadmium between solid and
2	solution in soils: application of a mineral-humic particle additivity model. Eur J
3	Soil Sci 2004; 55: 271-285.
4	Lumsdon DG, Stutter MI, Cooper RJ, Manson JR. Model assessment of biogeochemical
5	controls on dissolved organic carbon partitioning in an acid organic soil. Environ
6	Sci Technol 2005; 39: 8057-8063.
7	Lundin L, Aastrup M, Bringmark L, Bråkenhielm S, Hultberg H, Johansson K, et al.
8	Impacts from deposition on Swedish forest ecosystems identified by integrated
9	monitoring. Water Air Soil Poll 2001; 130: 1031-1036.
10	Löfgren S, Cory N, Zetterberg T, Larsson P-E, Kronnäs V. The long-term effects of
11	catchment liming and reduced sulphur deposition on forest soils and runoff
12	chemistry in southwest Sweden. For Ecol Man 2009a; 258: 567-578.
13	Löfgren S, Ring E, von Brömssen C, Sörensen R, Högbom L. Short-term Effects of
14	Clear-cutting on the Water Chemistry of Two Boreal Streams in Northern
15	Sweden: A Paired Catchment Study. Ambio 2009b; 38: 347-356.
16	Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, et al.
17	Dissolved organic carbon trends resulting from changes in atmospheric deposition
18	chemistry. Nature 2007; 450: 537-U9.
19	Reuss JO, Johnson DW. Acid deposition and acidification of soils and waters. Ecological
20	studies. Vol 59: Springer-Verlag, 1986.
21	Sarkkola S, Koivusalo H, Lauren A, Kortelainen P, Mattsson T, Palviainen M, et al.
22	Trends in hydrometeorological conditions and stream water organic carbon in
23	boreal forested catchments. Sci Total Environ 2009; 408: 92-101.
24	Skjelkvåle BL, Stoddard JL, Jeffries DS, Torseth K, Hogasen T, Bowman J, et al.
25	Regional scale evidence for improvements in surface water chemistry 1990-2001.
26	Environ Pollut 2005; 137: 165-176.
27	Tipping E, Woof C. Humic Substances in Acid Organic Soils - Modeling Their Release
28	to the Soil Solution in Terms of Humic Charge. J Soil Sci 1990; 41: 573-586.
29	Weng L, Temminghoff EJM, van Riemsdijk WH. Interpretation of humic acid
30	coagulation and soluble soil organic matter using a calculated electrostatic
31	potential. Eur J Soil Sci 2002; 53: 575-587.

1	Weng L, Van Riemsdijk WH, Hiemstra T. Adsorption of humic acids onto goethite:
2	Effects of molar mass, pH and ionic strength. J Colloid Interf Sci 2007; 314: 107-
3	118.
4	Westling O, Lövblad G. Deposition trends in Sweden. In: Warfvinge P, Bertills, U.,
5	editor. The environmental recovery from acidification. Report. Swedish
6	Environmental Protection Agency, Stockholm, 2000.
7	Wu YJ, Clarke N, Mulder J. Dissolved Organic Carbon Concentrations in Throughfall
8	and Soil Waters at Level II Monitoring Plots in Norway: Short- and Long-Term
9	Variations. Water Air Soil Poll 2010; 205: 273-288.
10	Yallop AR, Clutterbuck B. Land management as a factor controlling dissolved organic
11	carbon release from upland peat soils 1: Spatial variation in DOC productivity.
12	Sci Total Environ 2009; 407: 3803-3813.
13	Zetterberg T, Löfgren S. Decreasing concentrations of dissolved organic carbon (DOC) in
14	the soil solution in southern Sweden during the 1990's. In: Ukonmaanaho L,
15	Nieminen TM, Starr M, editors. 6th International Symposium on Ecosystem
16	Behaviour BIOGEOMON 2009. 128. Finnish Forest Research Institute, Helsinki,
17	Finland, 2009, pp. 189.
18 19	

Table 1a. Lysimeter installation information regarding hydrology, distance to the stream (ΔD), soil type, soil horizon, humus layer thickness (O-hor), depth below soil surface (ΔL), number of observations (n) and the concentrations (mean ± standard deviation) of DOC, pH, ionic strength, Al and Fe in soil water and stream water at Aneboda and Kindla during the period 1996-2007. nd = no data

Lysimeter	Hydrology*	∆D (m)	Soil	Horizon	O-hor	ΔL	n	DOC	рH	lonic strength	Al 	Fe	
		(m)			(cm)	(cm)		mg/i		mmoi i	μg/i	µg/i	
Aneboda													
7101	Rech	105	Podzol	B-hor	8	38	42	6 4+5 5	4 89+0 33	0 21+0 04	410+207	27+24	
7102	Rech	101	Podzol	B-hor	8	38	42	6 1+4 3	4 59+0 11	0.56+0.15	1520+244	27±24	
7102	Rech	95	Podzol	B-hor	8	38	42	7 1+5 4	4 73+0 14	0.32+0.07	870+263	17+26	
7107	Rech	96	Podzol	B-hor	8	38	42	4 8+2 9	4 77+0 18	0.34+0.14	1083+400	16+13	
7109	Rech	92	Podzol	B-hor	8	38	40	5 7+1 9	4 65+0 08	0 42+0 15	1184+232	29+17	
7113	Rech	101	Podzol	B-hor	8	38	42	7 3+3 9	4 81+0 41	0 40+0 15	1177+346	19+9	
7104	Interm	21	Podzol	B-hor	8	38	42	6 0+3 1	4 66+0 37	1 51+0 34	1874+835	20+18	
7105	Interm	21	Podzol	B-hor	8	38	42	8.9+3.7	4.38+0.06	2.21+0.21	5427+881	24+18	
7204	Disch	6	Glevsol	Mineral	7	37	42	5.6+6.7	4.91+0.16	0.89+0.19	1063+263	26+14	
7205	Disch	5	Glevsol	Mineral	7	37	42	7.7±4.1	5.42±0.21	0.70±0.15	438±203	361±499	
7206	Disch	4	Glevsol	Mineral	7	37	39	8.6±3.7	5.11±0.26	0.79±0.17	566±141	1722±1358	
7202	Disch	1	Histosol	Peat	>50	37	42	25.7±8.2	5.05±0.25	0.60±0.20	681±232	4403±1557	
Stream		-				•	265	13.6±23**	4.50±0.12	nd	1690±2699	488±274	
<u>Kindla</u>													
6004	Rech	40	Podzol	E-hor	15	20	42	18.1±7.2	4.29±0.10	0.40±0.11	1343±328	587±2173	
6104	Rech	40	Podzol	B-hor	15	45	35	6.3±3.2	4.77±0.10	0.36±0.08	1210±273	43±108	
6105	Rech	40	Podzol	B-hor	15	45	40	12.6±12.0	4.46±0.42	0.42±0.21	1271±315	79±94	
6106	Rech	40	Podzol	B-hor	15	45	39	5.2±2.4	4.79±0.07	0.33±0.06	1187±207	36±128	
6001	Interm	21	Podzol	E-hor	8	13	42	10.8±3.8	4.41±0.13	0.38±0.08	1276±327	65±36	
6002	Interm	21	Podzol	E-hor	8	13	36	7.5±3.2	4.60±0.07	0.39±0.07	1315±308	68±125	
6003	Interm	21	Podzol	E-hor	8	13	42	7.0±2.3	4.60±0.05	0.34±0.07	1248±217	25±41	
6101	Interm	21	Podzol	B-hor	8	38	39	6.5±3.5	4.61±0.08	0.41±0.08	1384±217	49±26	
6102	Interm	21	Podzol	B-hor	8	38	36	4.6±1.6	4.67±0.09	0.42±0.07	1310±235	43±53	
6103	Interm	21	Podzol	B-hor	8	38	39	3.8±1.1	4.74±0.07	0.34±0.07	1170±228	30±34	
6204	Disch	7	Gleysol	Mineral	20	50	42	11.6±3.0	4.64±0.27	0.35±0.07	914±264	1035±1125	
6205	Disch	8	Gleysol	Mineral	20	50	42	7.1±2.4	4.85±0.08	0.32±0.04	945±157	302±302	
6206	Disch	5	Gleysol	Mineral	20	50	39	9.5±3.0	4.59±0.07	0.35±0.06	1308±224	72±117	
6201	Disch	4	Histosol	Peat	>50	30	42	9.7±2.1	4.45±0.08	0.33±0.06	873±185	105±106	
6202	Disch	5	Histosol	Peat	>50	30	42	12.0±2.0	4.88±0.31	0.30±0.12	948±163	529±278	
6203	Disch	5	Histosol	Peat	>50	30	42	18.2±3.1	4.58±0.16	0.31±0.13	707±154	716±349	
~							280	3 8+8 0**	4 58+0 14	nd	497+791	736+166	

Lysimeter	Са	Mg	Na	К	SO₄ µeq l [⊂]	1 CI	NO ₃	F*	ANC
Aneboda									
7101	12+5	8+18	74+17	19+7	78+22	76+44	0 8+1 1	5 9+1 7	-31+41
7102	32+11	18+47	128+51	14+9	222+62	153+84	1 3+3 7	4 1+0 9	-154+52
7102	14+6	8+19	68+18	7+7	129+37	75+37	2+4 6	2 2+0 5	-92+26
7107	21+17	13+29	73+19	9+8	137+64	92+51	0 8+1 7	1 6+0 2	-98+59
7109	26 ± 37	22±37	89±22	9±13	145±55	113±61	0.6±1	3±0.6	-98±31
7113	41±16	17±31	69±24	14±17	163±68	97±59	0.4±0.4	1.9±0.4	-104±57
7104	32±13	37±98	778±289	20±10	375±155	824±334	0.3±0.3	7.7±2.3	-251±121
7105	73±14	34±160	771±331	20±12	953±103	682±289	1.1±2.5	7.4±2.5	-614±105
7204	62±27	29±97	451±149	3±2	274±49	391±167	1.1±1.1	10.6±1.1	-52±88
7205	98±27	29±103	314±58	5±3	183±63	299±89	0.7±0.8	9.9±1	40±44
7206	90±30	28±101	351±77	6±3	205±87	364±103	1.2±2.8	12±3.2	-16±105
7202	96±26	31±100	243±36	9±3	114±121	264±51	1.2±2.2	6.9±0.8	79±62
Stream	96±18	88±18	223±20	13±17	153±69	187±28	2.5±4.7	5.4±1.2	78±57
Kindla									
6004	15+7	7+24	108+31	11+7	134+54	83+47	0 5+0 5	2 8+0 5	58+66
6104	15±7	7±24 5±20	01+20	12+7	1/2+37	73+36	0.5±0.5 1±1 7	2.0±0.0	-30±00
6105	10+6	6+17	98+34	5+3	141+42	106+189	0.8+1	2 9+0 7	-111+186
6106	11+4	4+17	88+15	5+1	125+33	71+35	0.0±1	2.0±0.7 4+0.6	-77+29
6001	14+6	9+20	98+23	6+4	145+39	75+27	1 2+4 9	3 3+0 6	-85+34
6002	14+7	6+17	104+26	5+3	152+38	77+39	1+1.5	3 2+0 6	-85+30
6003	10+3	4+15	90+17	4+3	135+31	65+26	0 7+1 1	3 4+0 4	-81+29
6101	21±30	5±18	95±19	5±3	160±33	76±20	0.5±0.5	4.6±0.6	-95±42
6102	18±6	4±19	98±19	5±1	177±34	66±18	0.5±0.7	4.5±1	-107±29
6103	11±4	3±15	86±13	3±1	140±29	57±18	0.7±1.2	4±0.6	-81±30
6204	31±9	8±27	96±12	6±2	141±31	67±44	0.6±0.9	3.4±1	-48±23
6205	32±6	4±23	90±11	4±1	132±21	49±10	0.6±0.7	4.4±0.8	-33±16
6206	17±4	5±20	94±14	4±3	136±29	60±18	0.8±0.8	3.6±0.4	-62±25
6201	26±7	6±24	93±12	3±3	130±27	51±12	0.7±0.8	4.1±0.4	-36±17
6202	29±13	9±24	99±14	4±2	100±84	62±15	0.8±1	1.7±0.3	-3±36
6203	36±23	15±28	102±14	3±2	86±71	61±12	0.9±1.7	4±0.9	22±32
Stream	31±9	26±6	96±11	4 <u>±</u> 8	117±37	58±11	0.8±1.9	5.7±1.4	-19 <u>±3</u> 0

Table 1b. Lysimeter number and the concentrations (mean ± standard deviation) of base cations, mineral acid anions, fluoride and ANC in soil water and stream water at Aneboda and Kindla during the period 1996-2007.

*2005-2007

Table 2. Simulated results and comparisons with observed pH and DOC trends for individual lysimeters at Kindla during the years 1996-2007.

Kindla E hori	izon														
Lysimeter	Mean	pН	Mean	DOC	Mean calc. Z^{-}	Z	Z-/	DOC I	Mean calc.	Al _{tot}	Mea	an log	Ioni	c	
no.	pН	trend ^a	DOC	trend ^a	(mol/kg	trend	^a tr	end	Al_{tot}	trend ^a	IA	AP,	streng	gth	
	-		(mg/l)		AOM)				(mol/kg		Al(O	$H)_3(s)^b$	tren	ł	
					-				AOM)						
6001	4.40	+	10.8	-	0.093	0		+	1.23	0	8	.13	_		
6002	4.61	0	7.2	0	0.065	0		0	1.58	0	8	.93	_		
6003	4.60	+	7.1	-	0.067	0		+	1.55	0	8	.82	_		
6004	4.29	0	17.8	0	0.123	0		0	0.95	0	7	.60	—		
Kindla B hori	izon														
Lysimeter no.	Mean	pН	Mean DOC	DOC	Mean calc.	Z	Z^{-}	Z ⁻ /DOC	Mean ca	lc. Al _{tot}	Altot	Mean log	IAP,	Ionic stre	ngth
	pН	trend ^a	(mg/l)	trend ^a	(mol/kg AO	M) 1	trend ^a	trend	(mol/kg	AOM)	trend ^a	Al(OH)	$_{3}(s)^{b}$	trend	
6101	4.61	+	6.3	-	0.065		0	+	1.5	59	+	8.94		_	
6102	4.68	+	4.7	0	0.059		0	0	1.7	'1	0	9.20)	_	
6103	4.74	+	3.8	-	0.055		0	+	1.7	1.76		9.33		_	
6104	4.78	+	6.1	-	0.067		0	+	1.7	'5	0	9.29)	-	
6106	4.79	0	5.1	0	0.060		0	0	1.7	1.79		9.38		0	
Kindla discha	arge are	ea													
Lysimeter no.	Mean	pН	Mean DOC	DOC	Mean calc.	Z	Z	Z ⁻ /DOC	Mean ca	lc. Al _{tot}	Altot	Mean log	IAP,	Ionic stre	ngth
	pН	trend ^a	(mg/l)	trend ^a	(mol/kg AO	M) 1	trend ^a	trend	(mol/kg	AOM)	trend ^a	Al(OH)	$_{3}(s)^{b}$	trend	
6201	4.46	0	9.7	0	0.078		0	0	0.9	9	0	7.92		_	
6202	4.87	+	11.9	+	0.094		+	+	1.2	21	+	8.46	-)	_	
6203	4.57	0	18.0	0	0.146		0	_	0.5	6	0	7.17	,	0	
6204	4.64	+	11.6	0	0.162		+	+	1.4	8	0	7.91		0	
6205	4.85	+	7.0	-	0.086		0	+	1.7	'4	+	9.14	Ļ	_	
6206	4.59	+	9.5	-	0.079		0	+	0.8	35	0	8.68	:	_	
^a +; Statistically	significar	nt if p<0.0	5 (Mann-Kenda	all); directi	on defined by Th	eil slope	;								
^b : IAP. Al(OH) ₃	(s) define	ed as: {Al ³	$^{+}/{H^{+}}^{3}$												

+; Statistically significant if p<0.05 (Mann-R) b; IAP, Al(OH)₃(s) defined as: $\{AI^{3+}\}/\{H^+\}^3$

Mean DOC Z Lysimeter no. Mean рΗ DOC Mean calc. Z⁻ Z⁻/DOC Mean calc. Altot Altot Mean log IAP, Ionic strength trend^a trend^a trend^a (mol/kg AOM) (mol/kg AOM) trend^a $Al(OH)_3(s)^b$ pН (mg/l) trend trend 7101 4.86 5.1 0.158 1.24 8.15 +0 0 0 0 _ 7102 5.9 0.077 1.59 8.90 4.60 0 +0 0 0 _ 7103 4.73 0 4.9 0.086 0 0 1.60 8.91 0 +_ 7104 4.60 5.2 0.082 9.18 0 0 -1.71 -_ 7105 4.39 0 8.2 0.062 0 1.60 8.91 0 0 0 7107 4.78 4.6 0.071 0 1.72 0 9.19 ++-7109 5.7 0.068 0 0 1.63 9.04 4.65 ++-_ 7113 4.73 +7.4 0 0.095 0 0 1.57 0 8.96 _

Table 3. Simulated results and comparisons with observed pH and DOC trends for individual lysimeters at Aneboda during the years 1996-2007.

Aneboda B horizon

Aneboda discharge area

Lysimeter no.	Mean	pН	Mean DOC	DOC	Mean calc. Z ⁻	Z	Z ⁻ /DOC	Mean calc. Altot	Al _{tot}	Mean log IAP,	Ionic strength
	pН	trend ^a	(mg/l)	trend ^a	(mol/kg AOM)	trend ^a	trend	(mol/kg AOM)	trend ^a	$Al(OH)_3(s)^b$	trend
7202	5.04	0	25.6	0	0.310	+	0	0.52	0	7.53	0
7204	4.90	0	5.0	0	0.130	0	0	0.81	0	9.39	0
7205	5.41	0	7.0	0	0.381	0	0	1.81	0	8.72	0
7206	5.16	0	8.6	0	0.324	0	+	0.98	+	8.55	0

^a+; Statistically significant if p<0.05 (Mann-Kendall); direction defined by Theil slope; ^b; IAP, Al(OH)₃(s) defined as: {Al³⁺}/{H⁺}³

Figure legends

Figure 1. Loction of the two Swedish IM sites Aneboda and Kindla.

Figure 2. Lysimeter transect localizations in the catchments of Kindla (left) and Aneboda (right). Black square = lysimeter plot at Aneboda, grey surface = peat land, solid black line = surface water/stream, hatched line = water divide, solid grey line = equidistance isoline above sea level (m).

Figure 3. DOC concentrations and smoothed trend lines (cubic spline, JMP 8.0.1) in three lysimeters (6204-6206) at the Kindla site between 1996 and 2007.

Figure 4. The relationship between DOC and the modeled net charge (Z^{-}) of the AOM at the Kindla site, lysimeter 6206.

Figure 5. Ionic strength (M) and smoothed trend lines (cubic spline, JMP 8.0.1) in three lysimeters (6101-6103) at Kindla (top) and in three lysimeters (7101-7103) at Aneboda (bottom) between 1996 and 2007.

Figure 6. Solubility of dissolved organic carbon (DOC) as a function of pH for four B horizons from central Sweden. Data from Gustafsson et al. (2003).

Figure 7. Solubility of dissolved organic carbon in Tyresta Bs, and the calculated Z^{-} value, as a function of pH.

Figure 8. The Z⁻/DOC ratio as a function of pH for the Tyresta Bs soil sample.

Figure 9. Average effects of increased pH, decreased ionic strength (IS) and/or increased total Al concentrations on the net humic charge in soils. See Table 4 for model parameters. A) Kindla, lysimeter no. 6206 B) Aneboda, lysimeter no. 7105.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6

Figure 7

Figure 8

Figure 9a

Figure 9b