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Abstract 22 
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The magnitude of nitrogen storage and its temporal change in forest 

ecosystems are important when analysing global change. For example, 

the accelerated growth of European forests has been linked to increased 

nitrogen deposition, but the changes in the N inputs that cause long-term 

changes in ecosystems have not yet been identified.  

We used two Swedish forest optimum nutrition experiments with Scots 

pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) to 

study the long-term fate of N applied to these forest ecosystems. In the 

pine experiment, in addition to fertiliser (NPK) application, soil acidity 

was manipulated by application of lime and dilute sulphuric acid. From 

the spruce experiment, we selected treatments with similar fertiliser doses 

as in the pine experiment and with and without lime addition.  
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We quantified various terms in the N budget 12 years (pine) and 7 years 

(spruce) after the last N addition. In the pine ecosystem, large losses of 

added N occurred, whereas in the spruce ecosystem we recovered more N 

than could be accounted for by inputs. In the pine ecosystem, increases in 

N stocks were mainly in the soil, in contrast to the spruce ecosystem 

where trees accumulated most of the added N. There was no clear pattern 

in the interaction between acidification/liming and N deposition.  
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In a world of global change our society will not survive 

unless the political decisions taken can be defended in a 

holistic environmental perspective  

Tamm, 1995 

 

 

The fate of nutrients deposited to terrestrial ecosystems is a key to understanding their 

impact. Since the early years of forestry, therefore, nutrient relationships in forest 

ecosystems have been subjected to intensive investigations (e.g. Ebermayer, 1876, 

1882; Tamm, 1964; Odén, 1968; Rennie, 1995). More recently, nutrients have been 

studied in the context of air pollution, particularly the effects of sulphur (S) and 

nitrogen (N) deposition on nutrient imbalances and leaching (e.g. Nilsson and 

Wiklund, 1995; Wright et.al., 1995; Mälkönen et al., 1999). Today's urgent issues in 

forest research are studies of the nutrient impact on tree growth induced by a 

changing climate. The sequestration of C and N in forests is also a controversial issue 

in the global change debate (e.g. Tamm et al., 1999; Janzen, 2004) because of the 

strong coupling between C and N (e.g. Rastetter et al., 1992, 1997). The scope has 

also been broadened to become a central goal of ecosystem ecology with 

understanding of how the cycling of nutrients and the growth of organisms are linked 

(Augustine and McNaughton, 2004). Thus, increased N deposition altering forest 

nutrient cycling (Ågren and Bosatta, 1988; Aber et al., 1989, Peterjohn et al., 1996) 

may have a positive or negative impact on forest ecosystems (Mund et al., 2002). 

Accelerated growth of European forests (Spiecker, 1998) is suggested to be linked to 
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this increased nitrogen deposition (Karjalainen et al., 2006). However, the question is 

whether this increased growth rate will also be sustained in the future if nitrogen 

deposition declines.  
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It seems to be tacitly understood that changes in N inputs will cause long-lasting 

ecosystem changes (Holland et al., 1997) and that forest ecosystems where nitrogen 

cycling has been accelerated will be able to maintain an elevated level of biomass 

production even when the external forcing in terms of N influx is decreased (Ingestad 

et al., 1981; Ingestad 1987, 1991). However, this aspect has not been tested.  

 

Nutrient budgeting, which indicates trends in resources at the ecosystem level 

(Ranger and Turpault, 1999), has been widely used to generate quantitative ecological 

data on ecosystem functions (Ranger et al., 2002) and as an accounting method to 

elucidate complex nutrient cycles (Duvigneaud and Denaeyer-De Smet, 1970; Bonito 

et al., 2003). An interest in resource balances in agricultural science dates back to the 

1830s (Wild, 1988) and input-output analyses became a major focus of system 

ecology in the 1950s (Odum, 1968). Many studies of the N budget at forest stand 

level are available (e.g. Nihlgård, 1972; Helmisaari, 1995; Abrahamsen and Stuanes, 

1998; Rolff and Ågren, 1999; Ukonmaanaho and Starr, 2002). However, forests are 

likely to be heterogeneous in their response to N (Wilson and Emmet, 1999) and the 

information obtained from budget calculations is site-specific (Ranger and Turpault, 

1999) and species-specific (van Breemen, 1995). Furthermore, whereas N availability 

can vary substantially from year to year, the nitrogen budget changes only on longer 

time scales (Schimel et al., 1997). This means that the time factor is the greatest 

obstacle in experimental research in forest ecosystems (Tamm et al., 1984) and short-

 5



term studies can give a completely misleading picture of the long-term development 

(e.g. Ågren and Hyvönen, 2003). Moreover, short-term and long-term results may 

differ not only in degree but also in direction, but the literature concerning the long-

term fate of N applied to forest ecosystems is still rather limited (Aber et al., 1989; 

Aber and Magill, 2004). Numerous experiments have been designed to address these 

questions, but it will take years before they yield conclusive evidence. 
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To date, the focus in studies of element cycling has mainly been on single compounds 

(Erisman et al., 2003) and despite the well-known role of multiple element 

interactions in a number of biogeochemical processes, few ecosystem models include 

them explicitly (Ollinger et al., 2003). Nevertheless, elements interact with each other 

(e.g. Melillo et al., 2003; Ågren et al., 2003). Thus, interactions between N and S have 

been documented (Matzner and Murach, 1995; Galloway, 1995, 2003). The N cycle is 

also affected by liming (Persson et al., 1995; Kreutzer, 1995; Ventera et al., 2004), 

but we are still lacking information about its long-term effects (Hüttl and Schneider, 

1998). Moreover, deposition-induced acidity may in fact have enhanced the N cycle 

in multiple ways and further studies are also needed to clarify the role of soil acidity 

in N losses from temperate forest (e.g. Ventera et al., 2004).  

 

The main objective of this study was to explore the long-term nitrogen redistribution 

in a pine and a spruce boreal forest ecosystem. We used two Swedish long-term 

optimum nutrition field experiments to quantify various terms in the N budget several 

years after the last N addition and examined whether retention in different pools 

varied between the two tree systems. The effects of simultaneous acidification and 

liming were also investigated.  

 6



 122 

123 

124 

125 

 

Materials and methods  

 

Study areas 126 

127 

128 

Two forest stands from the Swedish Forest Optimum Nutrition Experiments (Tamm, 

1974a; 1974b), both located in Central Sweden, were studied: E42 with Scots pine 

(Pinus sylvestris L.) at Lisselbo and E26A with Norway spruce (Picea abies (L.) 

Karst.) at Stråsan. In the pine experiment, in addition to fertiliser application (NPK) 

soil acidity was manipulated by application of lime (Ca) and dilute sulphuric acid in 

low (Ac1) and high (Ac2) dosages. Only the plots with the intermediate (N2P2K2) 

level of fertiliser applications were used for the budget calculations here. 
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From the spruce experiment, we selected treatments with similar fertiliser (N2P2K2) 

dosage as in the pine experiment and with and without addition of lime. The sites, 

experimental designs and methods have been described in detail elsewhere (Tamm, 

1974a, 1974b; Tamm and Popovic, 1989; Tamm et al., 1999), and only a brief 

summary of the general characteristics is given in Table 1.  

 

Insert Table 1 here 

 

The pine stand was damaged by heavy snow in late 1988, which caused the loss of an 

unknown number of trees, and the stand was thinned in 2000. However, at most 2% 

and 20% of trees on N and no-N plots, respectively, were damaged (Tamm et al., 

1999). The spruce stand was thinned in 1982 and 1988. However, the thinnings 
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removed the trees with the smallest diameter and thus only a small amount of nitrogen 

was removed; in the spruce stand the increase in average tree diameter as a result of 

the thinning was even large enough to make the allometric functions (see below) 

predict larger tree biomasses. In our calculations of ecosystem level N budget, we 

have therefore not included these events. 
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Nitrogen budgets 153 
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The nitrogen storage in the pine stand was estimated for 1971 and 1997, when the 

first and last soil samplings, respectively, were made. The spruce stand was monitored 

followed from 1972, when the first basal area measurement was made, until 2003, 

when the last diameter measurement was made. When the experiments were started in 

1969 and 1967 in the pine and spruce stands, respectively, the trees were too small to 

allow basal area measurements. 

 

We estimated the total content of N in the three most important compartments in the 

ecosystem [i.e. whole tree biomass, humus layer, and mineral soil 0-20 cm (pine 

stand) and 0-30 cm (spruce stand)]. The inputs of nitrogen that we included were 

inorganic fertiliser, wet plus dry deposition, and biological N-fixation. The changes in 

nitrogen pools were calculated as the differences in nitrogen amounts in trees, humus 

layer, and mineral soil between the beginning and end of the investigation period.  

 

Data acquisition, estimates and calculations  168 

169 

170 

171 

Most of the data for our calculations were taken from previously published data sets. 

However, budget components were not always been measured at the same time, so we 

were obliged to interpolate between observations in several cases. 
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An annual nitrogen fixation rate of 0.3 kg N ha-1 was estimated by Granhall and 

Lindberg (1980) for a comparable pine stand in central Sweden. This gives inputs of 

7.8 and 7.5 kg N ha -1 over the investigation periods for the pine and spruce stands, 

respectively. Atmospheric inputs of oxidised and reduced nitrogen of 191 and 134 kg 

ha -1 for the pine and spruce stand, respectively, were obtained from the MATCH 

modelling system of SMHI (Swedish Meteorological and Hydrological Institute) 

(Cecilia Akselsson, pers. comm.). 

 

Biomass of tree components (needles, branches, stems, and coarse roots plus stumps) 

was estimated from average tree diameter at breast height (dbh) using species-specific 

regression functions (Marklund, 1988). Tree diameter in the pine stand in 1971 was 

calculated from basal area (Tamm and Popovic, 1989), while in 1997 it was 

interpolated from diameter measurements made in 1985 (Tamm and Popovic, 1989) 

and our own diameter measurements made in 2003. Tree diameter data for the spruce 

stand for the years 1971 and 1997 were taken from unpublished diameter 

measurements made in 1972 and 1997 (Linder and Tamm, personal comm.). 

Additional basal area information was taken from Gay et al. (1994). The N stocks in 

the tree components were calculated by multiplying the biomass of each component 

by published nitrogen concentrations (Table 2).  

 

Insert Table 2 here 

 

Initial soil data were missing for the spruce stand and only unpublished soil nitrogen 

from 1994 were available (T. Persson & M. Sjöberg, pers. comm.). Soil nitrogen data 
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for the pine stands for 1997 were from our own measurements. In each plot, eight 

sampling points were systematically distributed in a rectangular grid > 5 m from the 

plot border. The L, F, and H layers (organic layers) were sampled using frames (361 

cm

197 
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199 

200 
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202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

2). The mineral soil was sampled with cores 4.4 cm in diameter in 5-cm increments 

to a depth of 20 cm. Samples were pooled to one composite sample per plot and soil 

horizon. After removal of living plant residue, twigs, etc., soil samples were well 

mixed and sieved fresh: screen mesh 5 mm for organic layers and 2 mm for mineral 

soil. Bulk density values from the samplings were used for L, F, and H layers, while 

the bulk density of mineral soil was estimated from the stoniness index (Tamm and 

Popovic, 1989). Soil N concentrations were determined using dry combustion (NA 

1500, Carlo-Erbe Strumentazione, Milan). In 1971, Tamm and Popovic (1989) 

measured soil nitrogen in the humus layer, which we assumed to correspond to our 

F+H layer. No mineral soil N data were available from 1971 and were replaced by 

samplings from 1985 (Tamm and Popovic, 1989; Hallbäcken and Popovic, 1985).  

 

Statistics 212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

For each stand, the effects of treatments were evaluated using analysis of variance 

(ANOVA). Tukey’s test for post-hoc comparisons of means and least significant 

difference (LSD) multiple comparison, with sub-plot measurements considered as 

treatment replicates, were used for cases in which ANOVA revealed significant 

treatments effects. The results are given as treatment means. The level of significance 

was set to 5%. 

 

 

Results 
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Basal area development 223 
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230 
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234 

235 

The basal area development for the two stands and different treatments is shown in 

Figure 1. There was a small but consistent increase in basal area in all the fertilised 

pine treatments compared to the non-fertilised during the period when fertilisation 

was taking place (up to 1985). After that, all treatments had similar rates of basal area 

growth except the NPK treatment, which had a somewhat more rapid development 

and the untreated, Ca, and Ac1 treatments, which fell behind. In the spruce stand, the 

growth stimulation was so strong in all fertilised plots that by the end of the 

fertilisation period (1990), the basal area in the fertilised plots was about three times 

that in the unfertilised plots. Once fertilisation had ceased, the growth rate on the 

fertilised plots dropped to that of the unfertilised ones. 

Insert Figure 1 here 

 

Nitrogen inputs  236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

The nitrogen budgets for the pine and spruce ecosystems are summarised in Tables 3 

and 4, respectively. The total inputs of N (fertilisation, deposition, and biological 

fixation) to the pine ecosystem over the period 1971-1997 varied from 199 kg N ha-1 

in unfertilised plots to 999 kg N ha-1 in fertilised plots (Table 3). In the spruce 

ecosystem, the corresponding inputs of N over the period 1972-1997 varied from 142 

kg N ha-1 to 1382 kg N ha-1 (Table 4).  

 

Insert Table 3 and 4 here 

 

N pools in ecosystem compartments  246 
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The distribution of N in 1997 between ecosystem compartments in the pine and 

spruce stands for the various treatments is shown in Figure 2. In both stands the 

effects of the N additions could still be observed 12 (pine) and 7 (spruce) years after 

the N additions had ceased. However, there were differences in response. In the pine 

stand, the NPK-treatment was the only treatment that produced a significant increase 

in N in the tree biomass (96% above control). The other fertilised plots also had larger 

amounts of N in the tree biomass, but not significantly so. In the spruce stand, the N 

additions increased tree biomass N in all treatment combinations (207% above control 

in both NPK and NPKCa treatments). In addition, the effect of treatments on N stock 

in spruce biomass was significant already in 1972, four years after the start of 

fertilisation, when the first biomass estimates were made. 

247 
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Insert Figure 2 here 

 

As a result of a significant increase in humus N, the N applications caused significant 

changes in ecosystem N content in three (NPK, NPKAc1 and NPKAc2) of the four 

treatments in the pine experiment (Fig. 2). The increases in humus N for the NPK, 

NPKAc1 and NPKAc2 treatments were also large enough to cause a significant 

increase in total soil N. There was also a significant increase in mineral soil N in the 

NPK and NPKAc2 treatments. In spite of the changes in amounts of N in individual 

compartments, the relative distribution of nitrogen between trees and soil did not vary 

across treatments, with trees containing around 12% of pine ecosystem N (Fig. 3). 

The relative distribution of N between humus layer and mineral soil (0-20 cm depth) 

varied between treatments but there seemed to be no systematic variation with 
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treatment; the humus contained around 46% of soil N (down to a depth of 20 cm in 

the mineral soil). 

271 
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In the spruce stand, the N fertilisation increased N pools in both the trees and the soil 

but the increase in the soil was restricted to the humus layer, whereas the mineral soil 

N pool might rather have decreased (Fig. 3). The uptake of the N fertiliser was 

proportionally larger in the trees such that in the fertilised spruce stands (Table 4), in 

contrast to the pine stand (Fig. 3), the distribution of N shifted in favour of the trees. 

The humus layer also seemed to contain a lower share of the N stock in the spruce 

stand (around 37% of soil N to a depth of 30 cm in the mineral soil) relative to the 

pine stand. 

 

Insert Figure 3 here 

 

In 1997, we found more N in the spruce ecosystem than could be explained by the 

sum of inputs and initial amounts in 1972 (Table 4). The same was true for the 

unfertilised pine plots, whereas some N was unaccounted for in the fertilised plots 

(Fig. 4). The budget for soil N in the spruce stand was based on a comparison between 

control and treated plots in 1997 because initial data were lacking. When we 

compared the pine stand in the same way, the values in the soil N components 

changed only slightly and without consequences for the interpretation. 

 

Acidification and liming also affected N accumulation. In both fertilised and 

unfertilised plots in the pine stand, liming led to a smaller increase in the humus N 

pool. The amount of N unaccounted for in the pine stand in the NPKCa treatment was 
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also larger than in the NPK treatment. Furthermore, there was a difference in the soil 

in the pine stand between high and low doses of acidification, with a higher build-up 

of humus N in the high dosage. There was also an indication that NPK and NPKAc2 

led to a larger increase in mineral soil N than NPKAc1 and NPKCa. 
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Insert Figure 4 here 

 

N unaccounted for 303 
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The N budgets did not match. In the pine ecosystem, we found between 16 and 219 kg 

ha-1 more N in the unfertilised plots in 1997 than in 1971 (Table 3). In the fertilised 

plots, on the contrary, between 254 and 738 kg ha-1 was unaccounted for. This  

unaccounted for N can be represented by the following series: 

 

(NPKAc1, NPKCa) > (NPK, NPKAc2) > (Ca, Ac1, Control, Ac2) 

 

The NPKAc1 and NPKCa treatments were the only treatments with a significant 

increase in the amount of unaccounted for N compared not only to the control, but 

also to all other unfertilised plots (Ca, Ac1, Control, Ac2). The other fertilised plots 

(NPK and NPKAc2) also had higher amount of unaccounted for N than unfertilised 

plots, but the differences were not significant (5% level).  

 

In the spruce stand at the end of the observation period in 1997, there was between 

517 and 591 kg ha -1 more N in fertilised plots compared to control plots and the trees 

in control plots had taken up 250 kg ha -1 more N than our estimated input (Table 4).  
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.1 Discussion  

 

One of the most striking observations from our calculations was the great difference 

in response between Scots pine at Lisselbo and Norway spruce at Stråsan. Long-term 

N additions, alone or in combination with sulphuric acid or lime, must therefore be 

expected to modify N pools in boreal coniferous forest ecosystems in a species-

specific and/or site-specific way. The response is also time-dependent. In both stands 

investigated, the fertilisation increased biomass but this biomass increase was 

sustained only in the NPK-fertilised plots in the pine forest when the fertilisation had 

ceased. However, there was a strong tendency for higher biomass in all fertilised 

spruce plots.  

 

The increased biomass in the spruce stand as a result of fertilisation was accompanied 

by an increased N concentration in the needles (Table 2). This led to increases of 

about 1100 kg ha -1 in spruce tree N in all plots, with no differences between 

treatments. Simultaneously, soil N increased by more than 800 kg ha -1 but with the 

extra N concentrated to the humus layer, while the mineral soil N was likely to even 

have decreased. These increases in spruce ecosystem N pools were larger than the 

estimated inputs. However, the increase in spruce tree N in the unfertilised plots was 

250 kg ha -1 more than estimated from deposition and N fixation. Nevertheless, if this 

extra N is included in the balances for the fertilised plots, there still remains about 300 

kg N ha -1 to be accounted for.   
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In the unfertilised plots in the pine stand, the N content in the stand was 120 kg ha -1 

higher in 1997 than in 1971. If this extra N is included in the N budget for the 

fertilised stands, the NPKAc1 and NPKCa plots then would have lost as much N as 

had been added with the fertiliser, whereas the NPK and NPKAc2 plots retained 

about half the fertiliser added. The allocation of the increases in N differed between 

stands; the pine stand retained more in the soil than in the trees (about 2/3 in the NPK 

and NPKAc2 plots) whereas the spruce stand retained somewhat more in the trees 

than in the soil. 
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The effects of acidification or liming in addition to the fertilisation had no consistent 

pattern. There was no growth and N uptake effect of liming in the fertilised pine and 

spruce stands. With only NPK and NPK in combination with the high acid dosage, 

there was some increase in N stocks in the pine stand. However, in the low 

acidification and lime treatments in the pine stand, fertilisation did not increase the N 

stock. Acidification and liming did not seem to have the same effect without fertiliser 

as with fertiliser. Without fertiliser, acidification and liming seem to be almost 

without long-term effects, although it is possible that the high acid dosage increased 

N stocks somewhat more.  

 

The differences in response between the pine and spruce stands are probably 

attributable to species differences. The potential of spruce to increase its needle 

biomass is much larger than that of pine; Ågren (1983) estimated the maximum 

needle biomasses for pine and spruce to be 20 000 kg DW ha-1 and 49 000 kg DW ha–

1, respectively. Another aspect is the difference in soil texture, since the pine stand 
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was growing on a coarse sandy soil with lower nutrient retention capacity than the 

more fine-textured soil in the spruce stand. 
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We found more nitrogen than could be explained by inputs and initial values in all 

plots except the fertilised pine plots, where large losses occurred. The losses of N in 

the fertilised pine plots can be explained as leaching losses. The extra N in the pine 

stands corresponded only to an extra inflow of 1 to 8 kg ha-1 yr-1 but was between 10 

and 23 kg ha-1 yr-1 in the spruce stand. There are two potential sources for the extra N 

in the other stands. First of all, it is likely that some of the nitrogen derived from 

mineralisation in deeper soil horizons than those included in the budgets. Root 

activity and nutrient availability in deeper soil layers, which remain poorly explored, 

may play an important role in ecosystem functioning (e.g. Richter and Markewitz 

1995, Jackson, 1999; Jobbagy and Jackson, 2001, 2004). Indications exist that 

considerable amounts of plant available nitrogen and other nutrients below 20-30 cm 

depth can be an important resource of nutrients for trees (e.g. Stone and Comerford, 

1994; Kowalenko, 1996). Over decade time scales and longer, the release of N from 

the mineral soil may be a key process for long-term accumulation in both vegetation 

and the organic horizon (e.g. Ross et al., 2002; Ritter et al., 2003; Finzi and 

Schlesinger, 2003; Currie et al., 2004). It is also possible that the spruce control plots 

received N through lateral transport as a result of site topography. In addition, lateral 

root development and soil mining by roots outside the unfertilised plots is a possible 

factor of unexplained N accretion in the unfertilised plots (e.g. Högberg, 1991).  

 

Another possible explanation for the N deficit is the uncertainty in the total input. 

Nitrogen fixation is one uncertain component in the total input because measuring it 
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in natural systems is difficult (Vitousek et al., 2002). There are few studies of 

nitrogen-fixing root surface bacteria on coniferous trees (Timonen et al., 1998; 

Chanway et al., 1994). However, non-symbiotic N fixation can be an important input 

to coniferous forests (Wei and Kimmins, 1998; DeLuca et. al., 2002; Chen and Hicks, 

2003; Brunner and Kimmins, 2003) with an observed range for terrestrial 

cyanobacteria of 1 to 41 kg N ha
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 -1 yr -1 and with the majority of studies ranging 

between 1-10 kg ha -1 yr -1 (West, 1990; Boring et al., 1998; Cleveland et al., 1999). 

Since liming may affect N fixation negatively by reducing the abundance of 

bryophytes (mosses) (Motta et al., 1994; Duliere et al., 2000), which are a major 

nitrogen-fixing component of boreal forests (e.g. Solheim et al., 1996), the 

underestimation of nitrogen fixation could be higher in the non-limed plots than in the 

limed plots. 

 

On average, 56% of the N applied, added alone or in combination with acid in high 

doses, still remained in the soil, which is considerably more than the 30% reported 

previously (Tamm et al., 1999). On the other hand, when N was added in combination 

with low acid or lime, only 13% remained in the soil. As a result of the heterogeneity 

of the soil, one has to be cautious with regard to the reliability of these values. 

However, it is possible that the N retention capacity of an ecosystem is also 

determined by interactions with acidity, which complicates the use of the critical load 

concept (e.g. Pardo and Driscoll, 1996; Emmett and Reynolds, 1996; Augustin and 

Bolte, 2005). 
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.1 1. The response of boreal coniferous forest ecosystems to long-term nitrogen 

addition is time-dependent and modifies N pools in a species-specific and site-specific 

way.  

 

2. When N additions decline or are terminated, some ecosystems are likely to revert to 

pre-treatment N stocks.  

 

3. In pine ecosystems, the soil is the major sink for N. In contrast, in spruce 

ecosystems trees conserve a large proportion of added N.  

 

.2 4. Our results support the statement in the introduction that ‘the accelerated 

growth of European forests is probably linked to increased nitrogen availability’. 

However, the differences in growth responses across fertiliser combinations indicate 

that factors other than nitrogen are of significance.   

 

5. The interaction between N deposition and acidification remains a controversial 

issue.  

 

6. The risk of nitrogen leaching cannot be assessed only on the basis of nitrogen 

deposition, since the ability of the ecosystem to retain N also has to be taken into 

account.  

 

7. Nitrogen budgets for boreal coniferous forest need to include deep mineral soil 

horizons. 
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Table 1. Site characteristics and overview of treatments in the experiments.  1 

2  

Site Lisselbo  Stråsan  

Latitude, Longitude, Altitude b 60°28’N; 16°57’E; 80 m 60°55’N; 16°01’E; 350 m 

Experiment # a E42 E26A 

Tree species b Scots pine (Pinus sylvestris L.) Norway spruce (Picea abies (L.) Karst.) 

Treatment period a 1969-1985 1967-1990 

Soil material b Sediment Till 

Soil b Sandy, iron podzol Glacial till, iron podzol 

Mean annual temperature,°C b 4.8 3.1 

Mean annual precipitation, 

mmb

593 745 

Stand age at start of treatment b 14 9 

Form of N added b Ammonium nitrate (NH4NO3) Ammonium nitrate (NH4NO3) 

Amount of fertiliser N (kg ha-1) 

added a

240 during 1969-1970 

800 during 1971-1985 

520 during 1967-1971 

1240 during 1972-1990  

 3 

4 

5 

a Tamm and Popovic (1995) 

b Gay et. al. (1994) 

 1

Manuscript
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Table 2. N concentration (mg g-1) in biomass components for Scots pine and Norway 

spruce and various treatments and years. In the spruce experiment needle N 

concentrations are given also at the individual plot level.  

1 

2 

3 

4  

Scots pine Norway spruce 

 1971 1997 1972 1997 

Stem wood 0.9a 0.9a 0.94g 0.94g

Stem bark 3.5a 3.5a 5.58g 5.58g

Branches 2.1a 2.1a 4.94g 4.94g

Needles 13.4b 11.8c  Control 

11. 8d  Ac1 

11.8d  Aci2 

11.9c  Ca 

17.8c  NPK 

17.8e  NPKAc1 

17.8e  NPKAc2 

19.0c  NPKCa 

13.1; 11.5; 9.5f  Control 

 

 

 

20.4f  NPK 

 

 

20.4; 20.5f  NPKCa 

 

15.0; 13; 1f  Control  

 

 

 

17.0; 19.0; 20.0; 21.0f  NPK  

 

 

19.8; 18.6f  NPKCa 

 5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

a measured in 1975 (Tamm et al., 1999) 

b measured in 1968 (Aronsson, 1982) 

c measured in 1987 (Nihlgård et.al., 1996) and assumed unchanged (Tamm et al., 

1999) 

d assumed to be the same as for control plots  

e assumed to be the same as for NPK plots 

f S. Linder and C.O. Tamm (pers. comm.)  

g data from the Skogaby Norway spruce stand (G. Ågren, pers. comm.) 
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Table 3. Nitrogen stocks in the Scots pine stand in experiment E42 at Lisselbo in 

1971 and 1997. Data are averaged over plots. A significant difference (P<0.05) 

between control and treatments is marked with (*). 

1 

2 

3 

4  

 

Budget items 

Treatments 

 Control Ac1 Ac2 Ca NPK NPKAc1 NPKAc2 NPKCa 

Plots  55, 60 63,72 69, 57 62, 58 66, 61 70, 64 67, 56 68, 71 

Line N inputs, kg/ha         

1 Fertilizer     800 800 800 800 

2 Fixation 8 8 8 8 8 8 8 8 

3 Total deposition 191 191 191 191 191 191 191 191 

4 Σ Input (1+2+3) 199 199 199 199 999 999 999 999 

 N pools in ecosystem 

compartments, kg/ha 

        

5 Trees 1971   31 23 27 20 35 32 29 34 

6 Trees  1997   126 129 148 127 247** 173 181 167 

7 Humus 1971 a 346 338 373 407 392 564 311 495 

8 Humus 1997 548 418 557 433 795** 754** 751** 596 

9 Mineral 0-20 cm 1985 a 380 511 493 513 702 611 649 540 

10 Mineral 0-20 cm 1997 409 645 606 595 829** 558 802** 567 

11 Total soil 1971 (7+9) 726 849 866 920 1094 1175 960 1035 

12 Total soil 1997 (8+10) 957 1062 1162 1028 1624** 1312** 1553** 1163 

13 Ecosystem 1971 (5+11) 757 872 893 940 1129 1207 989 1069 

14 Ecosystem 1997 (6+12) 1082 1192 1311 1155 1871** 1485** 1734** 1330 

 Pool changes of N, kg/ha         

15 In trees (6-5) 95 106 121 107 212** 141 152 133 

16 In humus (8-7) 202 80 184 26 403 190 440 101 

17 In mineral soil (10-9) 29 134 113 82 127 -53 153 27 

18 In total soil (12-11) 231 214 297 108 530 137 593 128 
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19 In ecosystem (14-13) 326 320 418 215 742 278 745 261 

 Pool changes of N, 

% of Σ input 

        

20 In trees (15/4*100) 48 53 61 54 21 14 15 13 

21 In humus (16/4*100) 102 40 92 13 40 19 44 10 

22 In mineral soil (17/4*100) 15 67 57 41 13 -5 15 3 

23 In total soil (18/4*100) 116 108 149 54 53 14 59 13 

24 In ecosystem (17/4*100) 164 161 210 108 74 28 75 26 

 Unaccounted N , kg/ha         

25 (4-19) -127 -121 -219 -16 257 721** 254 738** 

 5 

6 a Tamm, C.O., Popovic, B. (1989) 

 2



 7 

8  

 3



Table 4. Nitrogen stocks in the Norway spruce stand in experiment E26A at Stråsan in 

1972 and 1997. Data are averaged over plots. Only plots 13, 46, 19, 39, 4, and 48 are 

included in soil data. Pool changes and recovery in soil in N treated plots are by 

difference with control plots. A significant difference (P<0.05) between control and 

treatments is marked with (*). 

1 

2 

3 

4 

5 

6  

 

Budget items 

Treatments 

 Control NPK NPKCa 

Plots  13, 46, 8 4, 38, 22, 48 19, 39 

Line N inputs, kg/ha    

1 Fertiliser  1240 1240 

2 Fixation 8 8 8 

3 Total deposition 134 134 134 

4 ∑ Input (1+2+3)   142 1382 1382 

 N pools in ecosystem compartments, kg/ha    

5 Trees, 1972 53 273** 247** 

6 Trees, 1997 444 1366** 1364** 

7 Humus, 1997a 663 1621 1629 

8 Mineral soil 0-10 cm, 1997a 373 387 386 

9 Mineral soil 10-30 cm, 1997a 920 754 797 

10 Total soil (7+8+9), 1997 1956 2762 2812 

11 Ecosystem (6+10), 1997 2400 4128 4176 

 Pool changes of N, kg/ha    

12 Trees (6-5) 391 1093** 1117** 

13 Humus   958 966 

14 Mineral soil 0-10 cm  14 13 

15 Mineral soil 10-30 cm  -166 -123 

16 Total soil  806 856 

17 Ecosystem (12+16)  1899 1973 
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 Pool changes of N, % of Σ inputs    

18 Trees (12/4*100) 276 79** 81** 

19 Soil (16/4*100)  58 62 

20 Ecosystem (17/4*100)  137 143 

 Unaccounted N, kg/ha    

21 (4-12) Control, (4-17) Treated - 250 - 517 - 591 

 7 

8 

9 

10 

a data from the Stråsan Norway spruce stand in 1994 (T. Persson, pers. comm.) 
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Figure 1. Basal area development for pine and spruce stands and different treatments.                                1 

2                 
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Figure 2. Partitioning of N stores in 1997 between compartments in the pine and 

spruce ecosystem. Significant differences (P<0.05) between control and treatments 

are marked with (*).  
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Figure 3. Relative distribution of N in 1997 in the pine and spruce ecosystems.  1 

2 

3 
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Figure 4. Pool changes of N in pine ecosystem compartments: a) Relative to total 

inputs; b) Relative to change in ecosystem. 

1 

2 

3 

4 

 

 

b)

C
on

tro
l

A
c1

A
c2 C
a

N
PK

N
PK

A
c1

N
PK

A
c2

N
PK

C
a

0

50

100

150

200

250

Mineral 
Humus 
Trees 

a)

Treatments

C
on

tro
l

A
c2

A
c2 C

a

N
PK

N
PK

A
c1

N
PK

A
c2

N
PK

C
a

N
, %

 

-40

-20

0

20

40

60

80

100

120

140

 5 

6 

7 

 

 

 1

Manuscript


