This is an author produced version of a paper published in Forest Ecology and Management. This paper has been peer-reviewed and is proof-corrected, but does not include the journal pagination.

Citation for the published paper:

Ladanai, S., Ågren, G., Hyvönen, R., Lundkvist, H. (2007) Nitrogen budgets for Scots pine and Norway spruce ecosystems 12 and 7 years after the end of longterm fertilization. *Forest Ecology and Management*. Volume: 238 Number: 1-3, pp 130-140.

http://dx.doi.org/10.1016/j.foreco.2006.10.005

Access to the published version may require journal subscription. Published with permission from: Elsevier

Epsilon Open Archive http://epsilon.slu.se

Elsevier Editorial System(tm) for Forest Ecology and Management

Manuscript Draft

Manuscript Number:

Title: Nitrogen budgets for Scots pine and Norway spruce ecosystems 12 and 7 years after the end of long-term fertilisation

Article Type: FLA Full Length Article

Section/Category:

Keywords: Tree growth; Soil nitrogen; Nitrogen budget; Pinus sylvestris; Picea abies; Long-term fertilisation; Nitrogen retention; Acidification; Liming.

Corresponding Author: Mrs Svetlana Ladanai, PhD

Corresponding Author's Institution: Swedish University of Agricultural Sciences

First Author: Svetlana Ladanai, PhD

Order of Authors: Svetlana Ladanai, PhD; Göran I Ågren, Professor; Riitta Hyvönen, PhD; Helene Lundkvist, Professor

Manuscript Region of Origin: SWEDEN

Abstract:

1	
2	Nitrogen budgets for Scots pine and Norway spruce ecosystems 12
3	and 7 years after the end of long-term fertilisation
4	
5	
6	Svetlana Ladanai
7	Göran I. Ågren
8	Riitta Hyvönen
9	Helene Lundkvist
10	
11	Department of Ecology and Environmental Research
12	Swedish University of Agricultural Sciences
13	P.O. Box 7072
14	SE-750 07 Uppsala
15	Sweden
16	
17	Tel. +46 18 673401
18	Fax. +46 018 673430
19	E-mail: Sveta.Ladanai@eom.slu.se
20	
21	Submitted to Forest Ecology and Management/2006-03-28

22 Abstract

The magnitude of nitrogen storage and its temporal change in forest ecosystems are important when analysing global change. For example, the accelerated growth of European forests has been linked to increased nitrogen deposition, but the changes in the N inputs that cause long-term changes in ecosystems have not yet been identified.

We used two Swedish forest optimum nutrition experiments with Scots 28 pine (*Pinus sylvestris* L.) and Norway spruce (*Picea abies* (L.) Karst.) to 29 study the long-term fate of N applied to these forest ecosystems. In the 30 pine experiment, in addition to fertiliser (NPK) application, soil acidity 31 was manipulated by application of lime and dilute sulphuric acid. From 32 the spruce experiment, we selected treatments with similar fertiliser doses 33 as in the pine experiment and with and without lime addition. 34 We quantified various terms in the N budget 12 years (pine) and 7 years 35 (spruce) after the last N addition. In the pine ecosystem, large losses of 36 added N occurred, whereas in the spruce ecosystem we recovered more N 37 than could be accounted for by inputs. In the pine ecosystem, increases in 38 N stocks were mainly in the soil, in contrast to the spruce ecosystem 39 where trees accumulated most of the added N. There was no clear pattern 40 in the interaction between acidification/liming and N deposition. 41

42

- 45 Keywords: Tree growth; Soil nitrogen; Nitrogen budget; *Pinus sylvestris; Picea*
- *abies*; Long-term fertilisation; Nitrogen retention; Acidification; Liming.

47 Introduction

49	In a world of global change our society will not survive
50	unless the political decisions taken can be defended in a
51	holistic environmental perspective
52	Tamm, 1995
53	
54	
55	The fate of nutrients deposited to terrestrial ecosystems is a key to understanding their
56	impact. Since the early years of forestry, therefore, nutrient relationships in forest
57	ecosystems have been subjected to intensive investigations (e.g. Ebermayer, 1876,
58	1882; Tamm, 1964; Odén, 1968; Rennie, 1995). More recently, nutrients have been
59	studied in the context of air pollution, particularly the effects of sulphur (S) and
60	nitrogen (N) deposition on nutrient imbalances and leaching (e.g. Nilsson and
61	Wiklund, 1995; Wright et.al., 1995; Mälkönen et al., 1999). Today's urgent issues in
62	forest research are studies of the nutrient impact on tree growth induced by a
63	changing climate. The sequestration of C and N in forests is also a controversial issue
64	in the global change debate (e.g. Tamm et al., 1999; Janzen, 2004) because of the
65	strong coupling between C and N (e.g. Rastetter et al., 1992, 1997). The scope has
66	also been broadened to become a central goal of ecosystem ecology with
67	understanding of how the cycling of nutrients and the growth of organisms are linked
68	(Augustine and McNaughton, 2004). Thus, increased N deposition altering forest
69	nutrient cycling (Ågren and Bosatta, 1988; Aber et al., 1989, Peterjohn et al., 1996)
70	may have a positive or negative impact on forest ecosystems (Mund et al., 2002).
71	Accelerated growth of European forests (Spiecker, 1998) is suggested to be linked to

this increased nitrogen deposition (Karjalainen et al., 2006). However, the question is
whether this increased growth rate will also be sustained in the future if nitrogen
deposition declines.

75

It seems to be tacitly understood that changes in N inputs will cause long-lasting
ecosystem changes (Holland et al., 1997) and that forest ecosystems where nitrogen
cycling has been accelerated will be able to maintain an elevated level of biomass
production even when the external forcing in terms of N influx is decreased (Ingestad
et al., 1981; Ingestad 1987, 1991). However, this aspect has not been tested.

81

82 Nutrient budgeting, which indicates trends in resources at the ecosystem level 83 (Ranger and Turpault, 1999), has been widely used to generate quantitative ecological data on ecosystem functions (Ranger et al., 2002) and as an accounting method to 84 85 elucidate complex nutrient cycles (Duvigneaud and Denaever-De Smet, 1970; Bonito et al., 2003). An interest in resource balances in agricultural science dates back to the 86 87 1830s (Wild, 1988) and input-output analyses became a major focus of system ecology in the 1950s (Odum, 1968). Many studies of the N budget at forest stand 88 level are available (e.g. Nihlgård, 1972; Helmisaari, 1995; Abrahamsen and Stuanes, 89 1998; Rolff and Ågren, 1999; Ukonmaanaho and Starr, 2002). However, forests are 90 91 likely to be heterogeneous in their response to N (Wilson and Emmet, 1999) and the 92 information obtained from budget calculations is site-specific (Ranger and Turpault, 93 1999) and species-specific (van Breemen, 1995). Furthermore, whereas N availability 94 can vary substantially from year to year, the nitrogen budget changes only on longer 95 time scales (Schimel et al., 1997). This means that the time factor is the greatest 96 obstacle in experimental research in forest ecosystems (Tamm et al., 1984) and short-

term studies can give a completely misleading picture of the long-term development
(e.g. Ågren and Hyvönen, 2003). Moreover, short-term and long-term results may
differ not only in degree but also in direction, but the literature concerning the longterm fate of N applied to forest ecosystems is still rather limited (Aber et al., 1989;
Aber and Magill, 2004). Numerous experiments have been designed to address these
questions, but it will take years before they yield conclusive evidence.

103

To date, the focus in studies of element cycling has mainly been on single compounds 104 (Erisman et al., 2003) and despite the well-known role of multiple element 105 interactions in a number of biogeochemical processes, few ecosystem models include 106 them explicitly (Ollinger et al., 2003). Nevertheless, elements interact with each other 107 (e.g. Melillo et al., 2003; Ågren et al., 2003). Thus, interactions between N and S have 108 109 been documented (Matzner and Murach, 1995; Galloway, 1995, 2003). The N cycle is 110 also affected by liming (Persson et al., 1995; Kreutzer, 1995; Ventera et al., 2004), but we are still lacking information about its long-term effects (Hüttl and Schneider, 111 112 1998). Moreover, deposition-induced acidity may in fact have enhanced the N cycle in multiple ways and further studies are also needed to clarify the role of soil acidity 113 in N losses from temperate forest (e.g. Ventera et al., 2004). 114 115 The main objective of this study was to explore the long-term nitrogen redistribution 116

in a pine and a spruce boreal forest ecosystem. We used two Swedish long-term
optimum nutrition field experiments to quantify various terms in the N budget several
years after the last N addition and examined whether retention in different pools
varied between the two tree systems. The effects of simultaneous acidification and

121 liming were also investigated.

122	
123	
124	Materials and methods
125	
126	<u>Study areas</u>
127	Two forest stands from the Swedish Forest Optimum Nutrition Experiments (Tamm,
128	1974a; 1974b), both located in Central Sweden, were studied: E42 with Scots pine
129	(Pinus sylvestris L.) at Lisselbo and E26A with Norway spruce (Picea abies (L.)
130	Karst.) at Stråsan. In the pine experiment, in addition to fertiliser application (NPK)
131	soil acidity was manipulated by application of lime (Ca) and dilute sulphuric acid in
132	low (Ac1) and high (Ac2) dosages. Only the plots with the intermediate (N2P2K2)
133	level of fertiliser applications were used for the budget calculations here.
134	
135	From the spruce experiment, we selected treatments with similar fertiliser (N2P2K2)
136	dosage as in the pine experiment and with and without addition of lime. The sites,
137	experimental designs and methods have been described in detail elsewhere (Tamm,
138	1974a, 1974b; Tamm and Popovic, 1989; Tamm et al., 1999), and only a brief
139	summary of the general characteristics is given in Table 1.
140	
141	Insert Table 1 here
142	
143	The pine stand was damaged by heavy snow in late 1988, which caused the loss of an
144	unknown number of trees, and the stand was thinned in 2000. However, at most 2%
145	and 20% of trees on N and no-N plots, respectively, were damaged (Tamm et al.,
146	1999). The spruce stand was thinned in 1982 and 1988. However, the thinnings

removed the trees with the smallest diameter and thus only a small amount of nitrogen was removed; in the spruce stand the increase in average tree diameter as a result of the thinning was even large enough to make the allometric functions (see below) predict larger tree biomasses. In our calculations of ecosystem level N budget, we have therefore not included these events.

152

153 <u>Nitrogen budgets</u>

The nitrogen storage in the pine stand was estimated for 1971 and 1997, when the first and last soil samplings, respectively, were made. The spruce stand was monitored followed from 1972, when the first basal area measurement was made, until 2003, when the last diameter measurement was made. When the experiments were started in 1969 and 1967 in the pine and spruce stands, respectively, the trees were too small to allow basal area measurements.

160

We estimated the total content of N in the three most important compartments in the ecosystem [i.e. whole tree biomass, humus layer, and mineral soil 0-20 cm (pine stand) and 0-30 cm (spruce stand)]. The inputs of nitrogen that we included were inorganic fertiliser, wet plus dry deposition, and biological N-fixation. The changes in nitrogen pools were calculated as the differences in nitrogen amounts in trees, humus layer, and mineral soil between the beginning and end of the investigation period.

167

168 *Data acquisition, estimates and calculations*

169 Most of the data for our calculations were taken from previously published data sets.

- 170 However, budget components were not always been measured at the same time, so we
- 171 were obliged to interpolate between observations in several cases.

173	An annual nitrogen fixation rate of 0.3 kg N ha ⁻¹ was estimated by Granhall and
174	Lindberg (1980) for a comparable pine stand in central Sweden. This gives inputs of
175	7.8 and 7.5 kg N ha ^{-1} over the investigation periods for the pine and spruce stands,
176	respectively. Atmospheric inputs of oxidised and reduced nitrogen of 191 and 134 kg
177	ha ⁻¹ for the pine and spruce stand, respectively, were obtained from the MATCH
178	modelling system of SMHI (Swedish Meteorological and Hydrological Institute)
179	(Cecilia Akselsson, pers. comm.).
180	
181	Biomass of tree components (needles, branches, stems, and coarse roots plus stumps)
182	was estimated from average tree diameter at breast height (dbh) using species-specific
183	regression functions (Marklund, 1988). Tree diameter in the pine stand in 1971 was
184	calculated from basal area (Tamm and Popovic, 1989), while in 1997 it was
185	interpolated from diameter measurements made in 1985 (Tamm and Popovic, 1989)
186	and our own diameter measurements made in 2003. Tree diameter data for the spruce
187	stand for the years 1971 and 1997 were taken from unpublished diameter
188	measurements made in 1972 and 1997 (Linder and Tamm, personal comm.).
189	Additional basal area information was taken from Gay et al. (1994). The N stocks in
190	the tree components were calculated by multiplying the biomass of each component
191	by published nitrogen concentrations (Table 2).
192	
193	Insert Table 2 here

Initial soil data were missing for the spruce stand and only unpublished soil nitrogen
from 1994 were available (T. Persson & M. Sjöberg, pers. comm.). Soil nitrogen data

for the pine stands for 1997 were from our own measurements. In each plot, eight 197 sampling points were systematically distributed in a rectangular grid > 5 m from the 198 199 plot border. The L, F, and H layers (organic layers) were sampled using frames (361 cm²). The mineral soil was sampled with cores 4.4 cm in diameter in 5-cm increments 200 201 to a depth of 20 cm. Samples were pooled to one composite sample per plot and soil horizon. After removal of living plant residue, twigs, etc., soil samples were well 202 mixed and sieved fresh: screen mesh 5 mm for organic layers and 2 mm for mineral 203 soil. Bulk density values from the samplings were used for L, F, and H layers, while 204 the bulk density of mineral soil was estimated from the stoniness index (Tamm and 205 Popovic, 1989). Soil N concentrations were determined using dry combustion (NA 206 1500, Carlo-Erbe Strumentazione, Milan). In 1971, Tamm and Popovic (1989) 207 208 measured soil nitrogen in the humus layer, which we assumed to correspond to our F+H layer. No mineral soil N data were available from 1971 and were replaced by 209 210 samplings from 1985 (Tamm and Popovic, 1989; Hallbäcken and Popovic, 1985). 211

212 <u>Statistics</u>

For each stand, the effects of treatments were evaluated using analysis of variance (ANOVA). Tukey's test for post-hoc comparisons of means and least significant difference (LSD) multiple comparison, with sub-plot measurements considered as treatment replicates, were used for cases in which ANOVA revealed significant treatments effects. The results are given as treatment means. The level of significance was set to 5%.

219

220

221 **Results**

223 Basal area development

224	The basal area development for the two stands and different treatments is shown in
225	Figure 1. There was a small but consistent increase in basal area in all the fertilised
226	pine treatments compared to the non-fertilised during the period when fertilisation
227	was taking place (up to 1985). After that, all treatments had similar rates of basal area
228	growth except the NPK treatment, which had a somewhat more rapid development
229	and the untreated, Ca, and Ac1 treatments, which fell behind. In the spruce stand, the
230	growth stimulation was so strong in all fertilised plots that by the end of the
231	fertilisation period (1990), the basal area in the fertilised plots was about three times
232	that in the unfertilised plots. Once fertilisation had ceased, the growth rate on the
233	fertilised plots dropped to that of the unfertilised ones.
234	Insert Figure 1 here
235	
236	<u>Nitrogen inputs</u>
237	The nitrogen budgets for the pine and spruce ecosystems are summarised in Tables 3
238	and 4, respectively. The total inputs of N (fertilisation, deposition, and biological
239	fixation) to the pine ecosystem over the period 1971-1997 varied from 199 kg N ha ⁻¹
240	in unfertilised plots to 999 kg N ha ⁻¹ in fertilised plots (Table 3). In the spruce
241	ecosystem, the corresponding inputs of N over the period 1972-1997 varied from 142
242	kg N ha ⁻¹ to 1382 kg N ha ⁻¹ (Table 4).
243	
244	Insert Table 3 and 4 here
245	
246	N pools in ecosystem compartments

247	The distribution of N in 1997 between ecosystem compartments in the pine and
248	spruce stands for the various treatments is shown in Figure 2. In both stands the
249	effects of the N additions could still be observed 12 (pine) and 7 (spruce) years after
250	the N additions had ceased. However, there were differences in response. In the pine
251	stand, the NPK-treatment was the only treatment that produced a significant increase
252	in N in the tree biomass (96% above control). The other fertilised plots also had larger
253	amounts of N in the tree biomass, but not significantly so. In the spruce stand, the N
254	additions increased tree biomass N in all treatment combinations (207% above control
255	in both NPK and NPKCa treatments). In addition, the effect of treatments on N stock
256	in spruce biomass was significant already in 1972, four years after the start of
257	fertilisation, when the first biomass estimates were made.
258	
259	Insert Figure 2 here
260	
261	As a result of a significant increase in humus N, the N applications caused significant
262	changes in ecosystem N content in three (NPK, NPKAc1 and NPKAc2) of the four
263	treatments in the pine experiment (Fig. 2). The increases in humus N for the NPK,
264	NPKAc1 and NPKAc2 treatments were also large enough to cause a significant
265	increase in total soil N. There was also a significant increase in mineral soil N in the
266	NPK and NPKAc2 treatments. In spite of the changes in amounts of N in individual
267	compartments, the relative distribution of nitrogen between trees and soil did not vary
268	across treatments, with trees containing around 12% of pine ecosystem N (Fig. 3).
269	The relative distribution of N between humus layer and mineral soil (0-20 cm depth)
270	varied between treatments but there seemed to be no systematic variation with

treatment; the humus contained around 46% of soil N (down to a depth of 20 cm inthe mineral soil).

274	In the spruce stand, the N fertilisation increased N pools in both the trees and the soil
275	but the increase in the soil was restricted to the humus layer, whereas the mineral soil
276	N pool might rather have decreased (Fig. 3). The uptake of the N fertiliser was
277	proportionally larger in the trees such that in the fertilised spruce stands (Table 4), in
278	contrast to the pine stand (Fig. 3), the distribution of N shifted in favour of the trees.
279	The humus layer also seemed to contain a lower share of the N stock in the spruce
280	stand (around 37% of soil N to a depth of 30 cm in the mineral soil) relative to the
281	pine stand.
282	
283	Insert Figure 3 here
284	
285	In 1997, we found more N in the spruce ecosystem than could be explained by the
286	sum of inputs and initial amounts in 1972 (Table 4). The same was true for the
287	unfertilised pine plots, whereas some N was unaccounted for in the fertilised plots
288	(Fig. 4). The budget for soil N in the spruce stand was based on a comparison between
289	control and treated plots in 1997 because initial data were lacking. When we
290	compared the pine stand in the same way, the values in the soil N components
291	changed only slightly and without consequences for the interpretation.
292	
293	Acidification and liming also affected N accumulation. In both fertilised and
294	unfertilised plots in the pine stand, liming led to a smaller increase in the humus N
295	pool. The amount of N unaccounted for in the pine stand in the NPKCa treatment was

296	also larger than in the NPK treatment. Furthermore, there was a difference in the soil
297	in the pine stand between high and low doses of acidification, with a higher build-up
298	of humus N in the high dosage. There was also an indication that NPK and NPKAc2
299	led to a larger increase in mineral soil N than NPKAc1 and NPKCa.
300	
301	Insert Figure 4 here
302	
303	<u>N unaccounted for</u>
304	
305	The N budgets did not match. In the pine ecosystem, we found between 16 and 219 kg
306	ha ⁻¹ more N in the unfertilised plots in 1997 than in 1971 (Table 3). In the fertilised
307	plots, on the contrary, between 254 and 738 kg ha ⁻¹ was unaccounted for. This
308	unaccounted for N can be represented by the following series:
309	
310	(NPKAc1, NPKCa) > (NPK, NPKAc2) > (Ca, Ac1, Control, Ac2)
311	
312	The NPKAc1 and NPKCa treatments were the only treatments with a significant
313	increase in the amount of unaccounted for N compared not only to the control, but
314	also to all other unfertilised plots (Ca, Ac1, Control, Ac2). The other fertilised plots
315	(NPK and NPKAc2) also had higher amount of unaccounted for N than unfertilised
316	plots, but the differences were not significant (5% level).
317	
318	In the spruce stand at the end of the observation period in 1997, there was between
319	517 and 591 kg ha ⁻¹ more N in fertilised plots compared to control plots and the trees
320	in control plots had taken up 250 kg ha ⁻¹ more N than our estimated input (Table 4).

322 .1 Discussion

323

324	One of the most striking observations from our calculations was the great difference
325	in response between Scots pine at Lisselbo and Norway spruce at Stråsan. Long-term
326	N additions, alone or in combination with sulphuric acid or lime, must therefore be
327	expected to modify N pools in boreal coniferous forest ecosystems in a species-
328	specific and/or site-specific way. The response is also time-dependent. In both stands
329	investigated, the fertilisation increased biomass but this biomass increase was
330	sustained only in the NPK-fertilised plots in the pine forest when the fertilisation had
331	ceased. However, there was a strong tendency for higher biomass in all fertilised
332	spruce plots.
333	
334	The increased biomass in the spruce stand as a result of fertilisation was accompanied
335	by an increased N concentration in the needles (Table 2). This led to increases of
336	about 1100 kg ha ⁻¹ in spruce tree N in all plots, with no differences between
337	treatments. Simultaneously, soil N increased by more than 800 kg ha ⁻¹ but with the

338 extra N concentrated to the humus layer, while the mineral soil N was likely to even

have decreased. These increases in spruce ecosystem N pools were larger than the

340 estimated inputs. However, the increase in spruce tree N in the unfertilised plots was

250 kg ha⁻¹ more than estimated from deposition and N fixation. Nevertheless, if this
extra N is included in the balances for the fertilised plots, there still remains about 300

343 kg N ha⁻¹ to be accounted for.

344

In the unfertilised plots in the pine stand, the N content in the stand was 120 kg ha⁻¹ 345 higher in 1997 than in 1971. If this extra N is included in the N budget for the 346 fertilised stands, the NPKAc1 and NPKCa plots then would have lost as much N as 347 had been added with the fertiliser, whereas the NPK and NPKAc2 plots retained 348 349 about half the fertiliser added. The allocation of the increases in N differed between 350 stands; the pine stand retained more in the soil than in the trees (about 2/3 in the NPK and NPKAc2 plots) whereas the spruce stand retained somewhat more in the trees 351 than in the soil. 352

353

The effects of acidification or liming in addition to the fertilisation had no consistent 354 pattern. There was no growth and N uptake effect of liming in the fertilised pine and 355 spruce stands. With only NPK and NPK in combination with the high acid dosage, 356 there was some increase in N stocks in the pine stand. However, in the low 357 acidification and lime treatments in the pine stand, fertilisation did not increase the N 358 stock. Acidification and liming did not seem to have the same effect without fertiliser 359 360 as with fertiliser. Without fertiliser, acidification and liming seem to be almost without long-term effects, although it is possible that the high acid dosage increased 361 N stocks somewhat more. 362

363

364 The differences in response between the pine and spruce stands are probably

365 attributable to species differences. The potential of spruce to increase its needle

biomass is much larger than that of pine; Ågren (1983) estimated the maximum

- needle biomasses for pine and spruce to be 20 000 kg DW ha⁻¹ and 49 000 kg DW ha⁻¹
- ³⁶⁸, respectively. Another aspect is the difference in soil texture, since the pine stand

was growing on a coarse sandy soil with lower nutrient retention capacity than themore fine-textured soil in the spruce stand.

371

We found more nitrogen than could be explained by inputs and initial values in all 372 plots except the fertilised pine plots, where large losses occurred. The losses of N in 373 the fertilised pine plots can be explained as leaching losses. The extra N in the pine 374 stands corresponded only to an extra inflow of 1 to 8 kg $ha^{-1} yr^{-1}$ but was between 10 375 and 23 kg ha^{-1} yr⁻¹ in the spruce stand. There are two potential sources for the extra N 376 in the other stands. First of all, it is likely that some of the nitrogen derived from 377 mineralisation in deeper soil horizons than those included in the budgets. Root 378 activity and nutrient availability in deeper soil layers, which remain poorly explored, 379 380 may play an important role in ecosystem functioning (e.g. Richter and Markewitz 1995, Jackson, 1999; Jobbagy and Jackson, 2001, 2004). Indications exist that 381 382 considerable amounts of plant available nitrogen and other nutrients below 20-30 cm depth can be an important resource of nutrients for trees (e.g. Stone and Comerford, 383 384 1994; Kowalenko, 1996). Over decade time scales and longer, the release of N from the mineral soil may be a key process for long-term accumulation in both vegetation 385 and the organic horizon (e.g. Ross et al., 2002; Ritter et al., 2003; Finzi and 386 Schlesinger, 2003; Currie et al., 2004). It is also possible that the spruce control plots 387 received N through lateral transport as a result of site topography. In addition, lateral 388 389 root development and soil mining by roots outside the unfertilised plots is a possible factor of unexplained N accretion in the unfertilised plots (e.g. Högberg, 1991). 390

391

Another possible explanation for the N deficit is the uncertainty in the total input.Nitrogen fixation is one uncertain component in the total input because measuring it

394	in natural systems is difficult (Vitousek et al., 2002). There are few studies of
395	nitrogen-fixing root surface bacteria on coniferous trees (Timonen et al., 1998;
396	Chanway et al., 1994). However, non-symbiotic N fixation can be an important input
397	to coniferous forests (Wei and Kimmins, 1998; DeLuca et. al., 2002; Chen and Hicks,
398	2003; Brunner and Kimmins, 2003) with an observed range for terrestrial
399	cyanobacteria of 1 to 41 kg N ha ^{-1} yr ^{-1} and with the majority of studies ranging
400	between 1-10 kg ha ^{-1} yr ^{-1} (West, 1990; Boring et al., 1998; Cleveland et al., 1999).
401	Since liming may affect N fixation negatively by reducing the abundance of
402	bryophytes (mosses) (Motta et al., 1994; Duliere et al., 2000), which are a major
403	nitrogen-fixing component of boreal forests (e.g. Solheim et al., 1996), the
404	underestimation of nitrogen fixation could be higher in the non-limed plots than in the
405	limed plots.
406	
407	On average, 56% of the N applied, added alone or in combination with acid in high

doses, still remained in the soil, which is considerably more than the 30% reported 408 previously (Tamm et al., 1999). On the other hand, when N was added in combination 409 with low acid or lime, only 13% remained in the soil. As a result of the heterogeneity 410 411 of the soil, one has to be cautious with regard to the reliability of these values. 412 However, it is possible that the N retention capacity of an ecosystem is also 413 determined by interactions with acidity, which complicates the use of the critical load concept (e.g. Pardo and Driscoll, 1996; Emmett and Reynolds, 1996; Augustin and 414 Bolte, 2005). 415 416

417	Artikel II. Conclusions
418	.1 1. The response of boreal coniferous forest ecosystems to long-term nitrogen
419	addition is time-dependent and modifies N pools in a species-specific and site-specific
420	way.
421	
422	2. When N additions decline or are terminated, some ecosystems are likely to revert to
423	pre-treatment N stocks.
424	
425	3. In pine ecosystems, the soil is the major sink for N. In contrast, in spruce
426	ecosystems trees conserve a large proportion of added N.
427	
428	.2 4. Our results support the statement in the introduction that 'the accelerated
429	growth of European forests is probably linked to increased nitrogen availability'.
430	However, the differences in growth responses across fertiliser combinations indicate
431	that factors other than nitrogen are of significance.
432	
433	5. The interaction between N deposition and acidification remains a controversial
434	issue.
435	
436	6. The risk of nitrogen leaching cannot be assessed only on the basis of nitrogen
437	deposition, since the ability of the ecosystem to retain N also has to be taken into
438	account.
439	
440	7. Nitrogen budgets for boreal coniferous forest need to include deep mineral soil
441	horizons.

444	Acknowledgements.
445	We thank Cecilia Akselsson at the Swedish Meteorological and Hydrological Institute
446	for giving us access to long-term atmospheric deposition data. Special thanks to
447	Tryggve Persson who contributed soil data. This work was supported by a grant from
448	The Royal Swedish Academy of Agriculture and Forestry.
449	
450	References
451	
452	Aber, J.D., Magill, A.H., 2004. Chronic nitrogen additions at the Harvard Forest
453	(USA): The first 15 years of a nitrogen saturation experiment. For. Ecol.
454	Manage. 196, 1-5.
455	Aber, J.D., Nadelhoffer, K.J, Steudler, P., Melillo, J.M., 1989. Nitrogen saturation in
456	northern forest ecosystem - hypotheses and implications. BioScience 39, 378-
457	386.
458	Abrahamsen, G., Stuanes, A., 1998. Retention and leaching of N in Norwegian
459	coniferous forests. Nutrient Cycling in Agroecosystems 52, 171-178.
460	Ågren, G.I., 1983. Nitrogen productivity of some conifers. Can. J. For. Res. 13, 494-
461	500.
462	Ågren, G.I., Bosatta, E., 1998. Theoretical Ecosystem Ecology. Understanding
463	Element Cycles. Cambridge University Press, Cambridge.
464	Ågren, G.I., Hessen, D.O., Anderson, T.R., Elser, J.J., De Reuter, P., 2003. Element
465	interactions: Theoretical considerations. In: Melillo, J.M., Field, C.B.,
466	Moldan, B. (Eds.), Interactions of the Major Biogeochemical Cycles. Global

- 467 Change and Human Impacts. SCOPE 61, Island Press, Washington, pp. 135468 150.
- Ågren, G.I., Hyvönen, R., 2003. Changes in carbon stores in Swedish forest soils due 469 470 to increased biomass harvest and increased temperatures analysed with a semiempirical model. For. Ecol. Manage. 174, 25-37. 471 Aronsson, A., Tamm, C.O., 1982. Effects of irrigation on young stands of pine (Pinus 472 sylvestris L.) and spruce (Picea abies Karst.). In: Ranneby, B. (Ed), Statistics 473 in Theory and Practice Essays in Honour of Bertil Matérn. Swedish University 474 of Agricultural Science, Section of Forest Biometry, Umeå, pp. 53-69. 475 Augustin, S., Bolte, A., 2005. Exceedance of critical loads of nitrogen and sulphur 476 and its relation to forest conditions. Eur. J. For. Res. 124, 289-300. 477 478 Augustine, D.J., McNaughton, S.J., 2004. Temporal asynchrony in soil nutrient dynamics and plant production in a semiarid ecosystem. Ecosystems 7(8), 479 480 829-840. Bonito, G.M., Coleman, D.C., Haines, B.L., Cabrera, M.L., 2003 Can nitrogen budget 481 482 explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient? For. Ecol. Manage. 176, 563-574. 483 Boring, L.R., Swank, W.T., Waide, J.B., Henderson, G.S., 1998. Sources, fates and 484 impacts of nitrogen inputs to terrestrial ecosystem. Review and synthesis. 485 Biogeochem. 6, 119-159. 486 487 Brunner, A., Kimmins, J.P., 2003. Nitrogen fixation in coarse woody debris of *Thuja* plicata and Tsuga heterophylla forests on northern Vancouver Island. Can. J. 488 For. Res. 33, 1670-1682. 489 490 Chanway, C.P., Shishido, M., Holl, F.B., 1994. Root-endophytic and rhizosphere
- 491 plant growth-promoting rhizobacteria for conifer seedlings. In: Ryder, M.M.,

492	Stephens, P.M., Bowen, G.D. (Eds.), Improving Plant Productivity with
493	Rhizosphere Bacteria. CSIRO Division of Soils, Adelaide, pp. 72-74.
494	Chen, H., Hicks, W., 2003. High asymbiotic N_2 fixation rates in woody roots after six
495	years of decomposition. Controls and implications. Basic Appl. Ecol. 4, 479-
496	486.
497	Cleveland, C.C., Townsend, A.R., Schimel, D.S., Fisher, H., Howarth, R.W., Hedin,
498	L.O., Perakis, S.S., Latty, E.F., Von Fischer, J.C., Elseroad, A., Wasson, M.F.,
499	1999. Global patterns of terrestrial biological nitrogen (N-2) fixation in natural
500	ecosystems. Global Biochem. Cycles 13(2), 623-645.
501	Currie, W.S., Nadelhoffer, K.J., Aber, J.D., 2004. Redistribution of ¹⁵ N highlight
502	turnover and replenishment of mineral soil organic N as a long-term control on
503	forest C balance. For. Ecol. Manage. 196, 109-127.
504	DeLuca, T.H., Zackrisson, O., Nilsson, M-C., Sellstedt, A., 2002. Quantifying
505	nitrogen-fixation in feather moss carpets of boreal forests. Nature 419(31),
506	917-920.
507	Duliere, J-F., De Bruyn, R., Malaisse, F., 2000. Changes in the moss layer after
508	liming in Norway spruce (Picea abies (L.) Karst.) stand of Eastern Belgium.
509	For. Ecol. Manage. 136, 97-105.
510	Duvigneaud, P., Denaeyer-De Smet, S., 1970. Biological cycling of minerals in
511	temperate deciduous forests. In: Reichle, D.E. (Eds.), Analysis of Temperate
512	Forests. Ecosystems 14, 199-225.
513	Ebermayer, E., 1876. Die gesamte Lehre der Waldstreu mit Rucksicht auf die
514	chemische Statik des Waldbaues. Springer, Berlin, 416 pp.
515	Ebermayer, E., 1882. Physiologische Chemie der Pflanzen.Springer, Berlin. 861 pp.

516	Emmett, B.A., Cosby, B.J., Ferrier, R.C., Jenkins, A., Tietema, A., Wright, R.F.,
517	1997. Modelling the ecosystem effects of nitrogen deposition. Simulation of
518	nitrogen saturation in a Sitka spruce forest, Aber, Wales, UK.
519	Biogeochemistry 38, 129-148.
520	Emmett, B.A., Reynolds, B., 1996. Nitrogen critical loads for spruce plantations in
521	Wales. Is there too much nitrogen ? Forestry 69 (3), 205-214.
522	Erisman, J.W., Grennfelt, P., Sutton, M., 2003. The European perspective on nitrogen
523	emission and deposition. Environ. Internation. 29, 311-325.
524	Finzi, A.C., Schlesinger, W.H., 2003. Soil-nitrogen cycling in a pine forest exposed to
525	5 years of elevated carbon dioxide. Ecosystems 6, 444-456.
526	Galloway, J.N., 1995. Acid deposition: Perspectives in time and space. Water, Air and
527	Soil Pollut. 85, 15-24.
528	Galloway, J.N., 2003. Acid depositions: S and N cascades and elemental interactions.
529	In: Melillo, J.M., Field, C.B., Moldan, B. (Eds.), Interactions of the Major
530	Biogeochemical Cycles. Global Change and Human Impacts. SCOPE 61,
531	ISLANDS PRESS, Washington, pp. 259-272.
532	Gay, C., Tamm, C.O., Aronsson, A., Flower-Ellis, J., Linder, S., 1994. A User's
533	Manual for the Ecologen Database System. Swedish University of
534	Agricultural Science. Dept. Ecology and Environmental Sciences, Uppsala,
535	Report No.59.
536	Granhall, U., Lindberg, T., 1980. Nitrogen input through biological nitrogen fixation.
537	In: Persson, T. (Ed.), Structure and Function of Northern Coniferous Forests-
538	An Ecosystem Study. Ecol. Bull. 32, 333-340.

539	Hallbäcken, L., Popovic, B., 1985. Markkemiska effecter av skogsmarkskalkning.
540	Revision av skogliga kalkningsförsök (in Swedish). Naturvårdsverket, Report
541	1880.
542	Helmisaari, H.S., 1995. Nutrient cycling in Pinus sylvestris stands in eastern Finland.
543	Plant and Soil 168-169, 327-336.
544	Högberg, P., 1991. Development of ¹⁵ N enrichment in a nitrogen-fertilized forest soil-
545	plant system. Soil Biology and Biochemistry 23, 335-338.
546	Holland, E.A., Braswell, B.H., Lamarque, JF., Townsend, A., Sulzman, J.M.,
547	Muller, JF., Dentener, F., Brasseur, G., Levy, H., Penner, J.E., Roelofs, G.,
548	1997. Variations in the predicted spatial distribution of atmospheric nitrogen
549	deposition and their impact on carbon uptake by terrestrial ecosystems. J.
550	Geog. Res. Atmosph. D13, 15849-15866.
551	H?ttl, R.F., Schneider, B.U., 1998. Forest ecosystem degradation and rehabilitation.
552	Ecol. Engin.10, 19-31.
553	Ingestad, T., 1987. New concepts on soil fertility and plant nutrition as illustrated by
554	research on forest trees and stands. Geoderma 40, 237-252.
555	Ingestad, T., 1991. Nutrition and growth of forest tress. Tappi Journal 74, 55-62.
556	Ingestad, T., Aronsson, A., Ågren G.I., 1981. Nutrient flux density model of mineral
557	nutrition in conifer ecosystems. Studia Forestalia Suecia 161, 61-72.
558	Jackson, R.B., 1999. The importance of root distribution for hydrology,
559	biogeochemistry, and ecosystem functioning. In: Tenhunen, J.D., Kabat, P.
560	(Eds.), Integrating Hydrology, Ecosystem Dynamics and Biogeochemistry in
561	Complex Landscapes. John Wiley and Sons, New York, USA, pp. 217-238.
562	Janzen, H.H., 2004. Carbon cycling in earth systems - a soil science perspective.
563	Agriculture, Ecosystems and Environment 104(3), 399-417.

564	Jobbagy, E.G., Jackson, R.B., 2001. The distribution of soil nutrients with depth:
565	Global patterns and the imprint of plants. Biogeochem. 53, 51-77.
566	Jobbagy, E.G., Jackson, R.B., 2004. The uplift of soil nutrients by plants:
567	Biogeochemical consequences across scales. Ecology 85(9), 2380-2389.
568	Karjalainen, T., Schuck, A., Prietzel, J., Mellert, K-H., Kahle, H-P., Spiecker, H.,
569	Ågren, G.I., van Oijen, M., Kellomäki, S. (Eds.), 2006. Causes and
570	Consequences of Forest Growth Trends in Europe - Results of the
571	RECOGNITION Project. European Forest Institute, Joensuu.
572	Kowalenko, C.G., 1996. Interpretation of autumn soil tests for hazelnut. Can. J. Soil
573	Sci 76, 195-202.
574	Kreutzer, K., 1995. Effects of forest liming on soil processes. Plant and Soil 168-169,
575	447-470.
576	Mälkönen, E., Derome, J., Fritze, H., Helmisaari, H.S., Kukkola, M., Kyto, M.,
577	Saarsami, A., Salemaa, M., 1999. Compensatory fertilization of Scots pine
578	stands polluted by heavy metals. Nutrient Cycling in Agroecosystem 55(3),
579	239-268.
580	Marklund, L.G., 1988. Biomass Functions for Pine, Spruce and Birch in Sweden.
581	Swedish University of Agricultural Science. Dep. of Forest Survey, Uppsala,
582	Report 45.
583	Matzner, E., Murach, D., 2003. Soil changes induced by air pollutant deposition and
584	their implication for forests in Central Europe. Water, Air and Soil Pollut. 85,
585	63-76.
586	Melillo, J.M., Field, C.B., Moldan, B., 2003. Element interactions and the cycles of
587	life. An overview. In: Melillo, J.M., Field, C.B., Moldan, B. (Eds.),

588	Interactions of the Major Biogeochemical Cycles. Global Change and Human
589	Impacts. SCOPE 61, ISLANDS PRESS, Washington, pp. 1-14.
590	Motta, R., Brang, P., Frehner, M., Ott, E., 1994. Copertura muscinale e rinnovasione
591	di abeteroso (<i>Pice abies L.</i>) nella pecceta subalpina di Sedrun (<i>Grigioni</i> ,
592	Svizzera). Monti e Boschi 3, 49-56.
593	Mund, M., Kummetz, E., Hein, M., Bauer, G.A., Schulze, ED., 2002. Growth and
594	carbon stocks of a spruce forest chronosequence in central Europe. For. Ecol.
595	Manage. 171, 275-296.
596	Nihlgård, B., 1972. Plant biomass, primary production and distribution of chemical
597	elements in a beech and a planted spruce forest in South Sweden. Oikos 23,
598	69-81.
599	Nihlgård, B., Popovic, B., Fransman, B., Bramryd, T., 1996. Kalkningseffekter på
600	trädens näringtillstånd. In: Staff, H., Persson, T., Bertills, U., (Eds),
601	Skogsmarkskalkning. Resultat och slutsatser från Naturvårdsverkets
602	försöksverksamhet (in Swedish). Naturvårdsverket, Report 4559, pp. 111-121.
603	Nilsson, LO., Wiklund, K., 1995. Indirect effects of N and S deposition on a Norway
604	spruce ecosystem. An update on findings within the Skogaby project. Water,
605	Air and Soil Pollution 85, 1613-1622.
606	Od?n, S., 1968. The acidification of air and precipitation and its consequences for the
607	natural environment (In Swedish). Bull. Ecol. Comm. Stockholm No 1, pp 1-
608	86.
609	Odum, E., 1968. Energy flow in ecosystems: A historical review. Am. Zoologist 8,
610	11-18.
611	Ollinger, S., Sala, O., Ågren, G.I., Berg, B., Davidson, E., Field, C.B., Lerdau, M.T.,
612	Neff, J., Scholes, M., Sterner, R., 2003. New frontiers in the study of element

613	interactions. In: Melillo, J.M., Field, C.B., Moldan, B. (Eds.), Interactions of
614	the Major Biogeochemical Cycles. Global Change and Human Impacts.
615	SCOPE 61, Islands Press, Washington, pp. 63-92.
616	Pardo, L.H., Driscoll, C.T., 1996. Critical loads for nitrogen deposition: Case studies
617	at two northern hardwood forests. Water, Air and Soil Pollution 89, 105-128.
618	Persson, T., Rudebeck, A., Wiren, A., 1995. Pools and fluxes of carbon and nitrogen
619	in 40-year-old forest liming experiments in Southern Sweden. Water, Air and
620	Soil Pollut. 85, 901-906.
621	Peterjohn, W.T., Adams, M.B., Gilliam, F.S., 1996. Symptoms of nitrogen saturation
622	in two central Appalachian hardwood forest ecosystems. Biogeochemistry 35,
623	507-22.
624	Ranger, J., Allie, S., Gelhaye, D., Pollier, B., Turpault, M.P., Granier, A., 2002.
625	Nutrient budgets for a rotation of Douglas-fir plantation in the Beaujolais
626	(France) based on chronosequence study. For. Ecol. Manage. 171, 3-16.
627	Ranger, J., Turpault, M.P., 1999. Input-output nutrients budgets as a diagnostic tool
628	for sustainable forest management. For. Ecol. Manage. 122, 139-154.
629	Rastetter E.B., Ågren G.I., Shaver, G.R., 1997. Responses of N-limited ecosystems to
630	increased CO ₂ : A balanced-nutrition, coupled-element-cycles model.
631	Ecological Applications 7, 444-460.
632	Rastetter E.B., McKane R.B., Shaver G.R., Melillo J.M., 1992. Changes in C storage
633	by terrestrial ecosystems: How C-N interactions restrict responses to CO2 and
634	temperature. Water, Air, and Soil Pollution 64, 327-344.
635	Rennie, P.J., 1995. Uptake of nutrients by mature trees. Plant and Soil, 7:49.
636	Richter, D.D., Markewitz, D., 1995. How deep is soil ? BioScience 45, 600-609.

637	Ritter, E., Vesterdal, L., Gundersen, P., 2003. Changes in soil properties after
638	afforestation of former intensively managed soils with oak and Norway
639	spruce. Plant Soil 249, 319-330.
640	Rolf, C., Ågren, G.I., 1999. Predicting effects of different harvesting intensities with a
641	model of nitrogen limited forest growth. Ecol. Modelling 118, 193-211.
642	Ross, D.J., Tate, K.R., Scott, N.A., Wilde, R.H., Rodda, N.J., Townsend, J.A., 2002.
643	Afforestation of pastures with <i>Pinus radiate</i> influences soil carbon and
644	nitrogen pools and mineralization and microbial properties. Aust. J.Soil Res.
645	40, 1303-1318.
646	Schimel, D.S., Braswell, B.H., Parton, W.J., 1997. Equilibration of the terrestrial
647	water, nitrogen and carbon cycles. Proc. Nat. Acad. Sci. USA 94, 8280-8283.
648	Solheim, B., Endal, A., Vigstad, H., 1996. Nitrogen fixation in Arctic vegetation and
649	soils from Svalbard, Norway. Polar Biol. 16(1), 35-40.
650	Spiecker, H. 1998. Overview of recent growth trends in European forests. Water, Air
651	and Soil Pollut 116(1-2), 33-46.
652	Stone, E.L., Comerford, N.B., 1994. Plant and animal activity below the solum. In:
653	Whole Regolith Pedology. Proceedings of a Symposium, Minneapolis, p. 57-
654	74. Soil Sci. Soc. Am. Spec. Publ. 34. Madison, WI.
655	Tamm, C.O., 1964. Determination of nutrient requirements of forest stands. Int. Rew.
656	For. Res. 1, 115-160.
657	Tamm C.O., 1995. Towards an understanding of the relations between tree nutrition,
658	nutrient cycling and environment. Plant and Soil, 168-169, 21-27.
659	Tamm, C.O., Aronsson, A., Burgtorf, H., 1974a. The optimum nutrition experiment
660	Stråsan. A brief description of an experiment in a young stand of Norway

661	spruce (Picea abies Karst.). Dept of Forest Ecology and Forest soils, Royal
662	College of Forestry, Stockholm, Research Note 17.
663	Tamm, C.O., Nilsson, Å., Wiklander, G. 1974b. The optimum nutrition experiment
664	Lisselbo. A brief description of an experiment in a young stand of Scots pine
665	(Pinus silvestris L.). Dept of Forest Ecology and Forest soils, Royal College of
666	Forestry, Stockholm, Research Note 18.
667	Tamm, C.O., Aronsson, A., Popovic, B., 1984. Is field experimentation a relevant
668	method to study the effects of changes in chemical climate on forest
669	ecosystems. In: Ågren, G.I. (Eds.), State and Change in Forest Ecosystems -
670	Indicators in Current Research. Report 79. Proceedings from the ESF
671	workshop, Uppsala, Sweden, 21-24 March 1983. Swed. Univ. Agri. Sci. Dept.
672	Ecology and Environmental Research, pp. 111-119.
673	Tamm, C.O., Aronsson, A., Popovic, B., Flower-Ellis, J., 1999. Optimum nutrition
674	and nitrogen saturation in Scots pine stands. Studia Forestalia Suecia 206.
675	Tamm, C.O., Popovic, B., 1989. Acidification Experiments in Pine Forests. Swedish
676	Environ. Protect. Board, Solna, Report 3589.
677	Tamm, C.O., Popovic, B., 1995. Long-term field experiments simulating increased
678	deposition of sulfur and nitrogen to forest plots. Ecological Bulletins 44, 301-
679	321.
680	Timonen, S., Jorgensen, K.S., Haathela, K., Sen, R., 1998. Bacterial community
681	structure of <i>Pinus sylvestris-Suillus bovinus</i> and <i>Paxillus involutus</i>
682	mycorrhizospheres in dry pine forest soil and nursery peat. Can. J. Microbiol.
683	44, 499-513.

684	Ukonmaanaho, L., Starr, M., 2002. Major nutrients and acidity: Budgets and trends at
685	four remote boreal stands in Finland during the 1990s. Sci. Total Environ.
686	297(1-3), 21-41.
687	van Breemen, N., 1995. Nutrient cycling strategies. Plant Soil 169, 321-326.
688	Ventera, R.T., Groffman, P.M., Verchot, L.V., Magill, A.H., Aber, J.D., 2004. Gross
689	nitrogen process rates in temperate forest soils exhibiting symptoms of
690	nitrogen saturation. For. Ecol. Manage. 196 (1), 129-142.
691	Vitousek, P.M., Cassman, K., Cleveland, C., Crews, T., Field, C.B., Grimm, N.B.,
692	Howarth, R.W., Marino, R., Martinelli, L., Rastetter, E.B., Sprent, J.I., 2002.
693	Towards an ecological understanding of biological nitrogen fixation.
694	Biogeochem. 57 (1), 1-45.
695	Wei, X., Kimmins, J.P., 1998. Asymbiotic nitrogen fixation in harvested and wildfire-
696	killed lodgepole pine forests in the central interior of British Colombia. For.
697	Ecol. Manage. 109, 343-353.
698	West, N.E., 1990. Structure and function of microphytic soil crusts in wildland
699	ecosystems of arid and semi-arid regions. Adv. Ecol. Res. 20, 179-223.
700	Wild, A., 1988. Russell's Soil Conditions and Plant Growth, 11 th ed. Longmans,
701	Harlow.
702	Wilson, E.J., Emmett, B.A., 1999. Factors influencing nitrogen saturation in forest
703	ecosystems: Advances in our understanding since the mid 1980s. In: Langan,
704	S.J. (Eds.), The Impact of Nitrogen Depositions on Natural and Semi-natural
705	Ecosystems. Kluver Academic, Dordrecht, pp. 123-152.
706	Wright, R.F., Roelofs, J.G.M., Bredemeier, M., Blanck, K., Boxman, A.W., Emmett,
707	B.A., Gundersen, P., Hultberg, H., Kjonaas, O.J., Moldan, F., Tietema, A.,
708	Van Breemen, N., Van Duk, H.F.G., 1995. NITREX: responses of coniferous

- forest ecosystems to experimentally changed deposition of nitrogen. For. Ecol.
- 710 Manage. 71 (1-2), 163-169.

1 Table 1. Site characteristics and overview of treatments in the experiments.

2

Site	Lisselbo	Stråsan	
Latitude, Longitude, Altitude ^b	60°28'N; 16°57'E; 80 m	60°55'N; 16°01'E; 350 m	
Experiment # ^a	E42	E26A	
Tree species ^b	Scots pine (<u>Pinus sylvestris L</u> .)	Norway spruce (<i>Picea abies</i> (L.) Karst.)	
Treatment period ^a	1969-1985	1967-1990	
Soil material ^b	Sediment	Till	
Soil ^b	Sandy, iron podzol	Glacial till, iron podzol	
Mean annual temperature,°C ^b	4.8	3.1	
Mean annual precipitation,	593	745	
mm ^b			
Stand age at start of treatment ^b	14	9	
Form of N added ^b	Ammonium nitrate (NH ₄ NO ₃)	Ammonium nitrate (NH ₄ NO ₃)	
Amount of fertiliser N (kg ha ⁻¹)	240 during 1969-1970	520 during 1967-1971	
added ^a	800 during 1971-1985	1240 during 1972-1990	

3

4 ^a Tamm and Popovic (1995)

^b Gay et. al. (1994)

Manuscript

- 1 Table 2. N concentration (mg g^{-1}) in biomass components for Scots pine and Norway
- 2 spruce and various treatments and years. In the spruce experiment needle N
- 3 concentrations are given also at the individual plot level.
- 4

Scots pine		Norway spruce		
	1971	1997	1972	1997
Stem wood	0.9 ^a	0.9 ^a	0.94 ^g	0.94 ^g
Stem bark	3.5 ^a	3.5 ^a	5.58 ^g	5.58 ^g
Branches	2.1 ^a	2.1 ^a	4.94 ^g	4.94 ^g
Needles	13.4 ^b	11.8 ^c Control	13.1; 11.5; 9.5 ^f Control	15.0; 13; 1 ^f Control
		11. 8 ^d Ac1		
		11.8 ^d Aci2		
		11.9 ^c Ca		
		17.8° NPK	20.4 ^f NPK	17.0; 19.0; 20.0; 21.0 ^f NPK
		17.8 ^e NPKAc1		
		17.8 ^e NPKAc2		
		19.0° NPKCa	20.4; 20.5 ^f NPKCa	19.8; 18.6 ^f NPKCa

5

- ^a measured in 1975 (Tamm et al., 1999)
- ⁷ ^b measured in 1968 (Aronsson, 1982)
- ^c measured in 1987 (Nihlgård et.al., 1996) and assumed unchanged (Tamm et al.,
- 9 1999)
- ^d assumed to be the same as for control plots
- ¹¹ ^e assumed to be the same as for NPK plots
- ¹² ^f S. Linder and C.O. Tamm (pers. comm.)
- ^g data from the Skogaby Norway spruce stand (G. Ågren, pers. comm.)

- 1 Table 3. Nitrogen stocks in the Scots pine stand in experiment E42 at Lisselbo in
- 2 1971 and 1997. Data are averaged over plots. A significant difference (P<0.05)
- 3 between control and treatments is marked with (*).
- 4

		Treatments							
Budget	items								
		Control	Ac1	Ac2	Ca	NPK	NPKAc1	NPKAc2	NPKCa
Plots		55, 60	63,72	69, 57	62, 58	66, 61	70, 64	67, 56	68, 71
Line	N inputs, kg/ha								
1	Fertilizer					800	800	800	800
2	Fixation	8	8	8	8	8	8	8	8
3	Total deposition	191	191	191	191	191	191	191	191
4	Σ Input (1+2+3)	199	199	199	199	999	999	999	999
	N pools in ecosystem								
	compartments, kg/ha								
5	Trees 1971	31	23	27	20	35	32	29	34
6	Trees 1997	126	129	148	127	247**	173	181	167
7	Humus 1971 ^a	346	338	373	407	392	564	311	495
8	Humus 1997	548	418	557	433	795**	754**	751**	596
9	Mineral 0-20 cm 1985 ^a	380	511	493	513	702	611	649	540
10	Mineral 0-20 cm 1997	409	645	606	595	829**	558	802**	567
11	Total soil 1971 (7+9)	726	849	866	920	1094	1175	960	1035
12	Total soil 1997 (8+10)	957	1062	1162	1028	1624**	1312**	1553**	1163
13	Ecosystem 1971 (5+11)	757	872	893	940	1129	1207	989	1069
14	Ecosystem 1997 (6+12)	1082	1192	1311	1155	1871**	1485**	1734**	1330
	Pool changes of N, kg/ha								
15	In trees (6-5)	95	106	121	107	212**	141	152	133
16	In humus (8-7)	202	80	184	26	403	190	440	101
17	In mineral soil (10-9)	29	134	113	82	127	-53	153	27
18	In total soil (12-11)	231	214	297	108	530	137	593	128

19	In ecosystem (14-13)	326	320	418	215	742	278	745	261
	Pool changes of N,								
	% of Σ input								
20	In trees (15/4*100)	48	53	61	54	21	14	15	13
21	In humus (16/4*100)	102	40	92	13	40	19	44	10
22	In mineral soil (17/4*100)	15	67	57	41	13	-5	15	3
23	In total soil (18/4*100)	116	108	149	54	53	14	59	13
24	In ecosystem (17/4*100)	164	161	210	108	74	28	75	26
	Unaccounted N , kg/ha								
25	(4-19)	-127	-121	-219	-16	257	721**	254	738**

^a Tamm, C.O., Popovic, B. (1989)

1 Table 4. Nitrogen stocks in the Norway spruce stand in experiment E26A at Stråsan in

- 2 1972 and 1997. Data are averaged over plots. Only plots 13, 46, 19, 39, 4, and 48 are
- 3 included in soil data. Pool changes and recovery in soil in N treated plots are by
- 4 difference with control plots. A significant difference (P<0.05) between control and
- 5 treatments is marked with (*).
- 6

		Treatments			
Budge	t items				
		Control	NPK	NPKCa	
Plots		13, 46, 8	4, 38, 22, 48	19, 39	
Line	N inputs, kg/ha				
1	Fertiliser		1240	1240	
2	Fixation	8	8	8	
3	Total deposition	134	134	134	
4	Σ Input (1+2+3)	142	1382	1382	
	N pools in ecosystem compartments, kg/ha				
5	Trees, 1972	53	273**	247**	
6	Trees, 1997	444	1366**	1364**	
7	Humus, 1997 ^a	663	1621	1629	
8	Mineral soil 0-10 cm, 1997 ^a	373	387	386	
9	Mineral soil 10-30 cm, 1997 ^a	920	754	797	
10	Total soil (7+8+9), 1997	1956	2762	2812	
11	<i>Ecosystem</i> (6+10), 1997	2400	4128	4176	
	Pool changes of N, kg/ha				
12	<i>Trees</i> (6-5)	391	1093**	1117**	
13	Humus		958	966	
14	Mineral soil 0-10 cm		14	13	
15	Mineral soil 10-30 cm		-166	-123	
16	Total soil		806	856	
17	Ecosystem (12+16)		1899	1973	

	Pool changes of N, % of Σ inputs			
18	<i>Trees</i> (12/4*100)	276	79**	81**
19	Soil (16/4*100)		58	62
20	<i>Ecosystem</i> (17/4*100)		137	143
	Unaccounted N, kg/ha			
21	(4-12) Control, (4-17) Treated	- 250	- 517	- 591

⁸ ^a data from the Stråsan Norway spruce stand in 1994 (T. Persson, pers. comm.)

1 Figure 1. Basal area development for pine and spruce stands and different treatments.

4

are marked with (*).

- 1 Figure 2. Partitioning of N stores in 1997 between compartments in the pine and
- 2 spruce ecosystem. Significant differences (P<0.05) between control and treatments

7

Manuscript

6

1 Figure 3. Relative distribution of N in 1997 in the pine and spruce ecosystems.

1 Figure 4. Pool changes of N in pine ecosystem compartments: a) Relative to total

