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Abstract 

 

In forest inventories regression models are often applied to predict quantities such 

as biomass at the level of sampling units. In this paper we propose a model-based 

inference framework for combining sampling and model errors in the variance 

estimation. It was applied to airborne laser (LiDAR) datasets from Hedmark County 

(Norway) where the model error proportion of the total variance was found to be large for 

both scanning (ALS; airborne laser scanning) and profiling LiDAR when biomass was 

estimated. With profiling LiDAR, the model error variance component for the entire 

county was as large as 71% whereas for ALS it was 43% of the total variance. Partly, this 

reflects the better accuracy of the pixel-based regression models estimated from scanner 

data as compared to the models estimated from profiler data. The framework proposed in 

our study can be applied in all kinds of sample surveys where model-based predictions 

are made at the level of individual sampling units. Especially, it should be useful in cases 

where model-assisted inference cannot be applied due to the lack of a probability sample 

from the target population, or due to problems of correctly matching observations of 

auxiliary and target variables. 

 

Keywords: forest inventory, model-based inference, regression estimation, scanning 

laser, profiling laser, variance 
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Introduction 

In forest inventories, quantities at the level of sampling units are often predicted 

using regression models. Well known examples include volume and biomass models 

based on measurements of diameter and height on individual trees (e.g. Marklund 1988). 

Similarly, in inventories based on airborne lasers (LiDAR; light detection and ranging) 

regression models are applied to predict per-hectare biomass or volume based on 

measurements derived from the lasers (e.g. Nelson et al. 1988, 2003a; Næsset 1997). 

Standard sampling theory assumes that the variables entering the estimators are 

observed without error (e.g. Gregoire & Valentine 2008). If measurement errors or model 

-related errors cannot be ignored, uncertainty estimates such as the variance typically are 

underestimated when standard formulas are applied (e.g. Särndal et al. 1992). Thus, the 

reported figures are less trustworthy than they appear to be and, as a result, inappropriate 

decisions may be made based on the information. In some studies (e.g. Gertner & Köhl 

1992, Gertner et al. 2002) error budgets are compiled where the contribution of different 

error sources to the total error (often expressed as variance or mean square error) is 

assessed. The importance of proper handling of model-related errors also is pointed out 

by the Intergovernmental Panel on Climate Change (IPCC 2003) in their good practice 

guidance for greenhouse gas reporting for the land use, land-use change, and forestry 

sector of the United Nations Climate Change Convention. However, in many forest 

surveys model related errors are ignored and uncertainty estimates are provided as if 

predicted quantities were true. 

 LiDAR based forest surveys have evolved rapidly over the last decade (e.g., 

Næsset 1997, Means et al. 2000, Holmgren 2004). The strength of the technique in the 

context of forest inventory is that very detailed information about canopy height and 

cover can be obtained through measurements of time differences in the returns of laser 

pulses, emitted from air- or spacecrafts, reflected from the canopy and from the ground. 

Two different approaches using so-called small-footprint laser data have been developed 

and demonstrated in operational projects, namely (i) the use of airborne profiling lasers 

designed for sampling-based inventories (Nelson et al. 2003a, 2004), and (ii) the use of 

airborne scanning lasers (ALS) for wall-to-wall mapping of forest stands for practical 
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forest planning (Næsset & Bjerknes 2001, Næsset 2002). Today, it is common practice in 

many countries to apply ALS when stand level information for forest management plans 

is compiled (e.g. Næsset 2004b, 2007). The profiling system developed at NASA by 

Nelson et al. (2003b), labeled “Portable Airborne Laser System” (PALS), is an 

inexpensive and simple device which can be operated at low costs. A profiling system 

only collects a narrow line of data on the ground, and does not provide data for wall-to-

wall mapping. In contrast to this, each flight-line of a scanning system typically has a 

swath width of, say, 500-1000 m. Thus, scanning systems can provide data for 

continuous mapping of the forest and are therefore ideal for estimating properties of the 

forest at stand level. However, ALS can also be used as a strip sampling tool to inventory 

timber volume and biomass in large areas. 

Applications where LiDAR measurements are used in the context of sampling 

surveys currently are gaining increased interest (e.g. Nelson et al. 2004, Parker & Evans 

2004, Andersen & Breidenbach 2007). In such applications, standard sampling estimators 

and variance estimators are problematic due to the complex structure of the surveys, 

where long lines or belts may extend over several strata (e.g. Nelson et al. 2008). Further, 

many different sources of errors are involved, and model-related errors need to be 

specifically accounted for in the uncertainty analysis or model-assisted estimators 

(Särndal et al. 1992) be applied. The latter approach requires that there is a sound 

probability sample of population units, with measured target variables, available from the 

area of interest, which is not always the case. The reason may be that already existing 

biomass models are applied in new surveys or that good matching of units from field 

sampling and remote sensing cannot be achieved.   

The objective of this study was to develop and apply a general framework for 

model-based estimation and error assessment, accounting for both sampling and model 

errors, in cases where regression models are applied to predict the target variables. 

Especially, the framework should be useful in cases where model-assisted estimators 

cannot be applied. The study was based on LiDAR data from Hedmark County, Norway, 

where both scanning and profiling laser data had been acquired in order to assess biomass 

resources. While model-based inference may encompass many different approaches (e.g. 
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Gregoire 1998, McRoberts 2010), in this study we applied regression models at the level 

of sampling units that had been selected through probability sampling.  

 

Materials and Methods 

The Hedmark County survey 

The study area was Hedmark County, in southeastern Norway on the Swedish border 

(Fig. 1). The total area of the county is 27390 km2. There are 2309 permanent National 

Forest Inventory (NFI) sample plots available in this area, distributed systematically in a 

3x3 km grid; each plot is circular and has a size of 250 m2. The measurement protocol 

stipulates that 20% of the permanent plots are re-measured every year; this selection is 

made according to a Latin square design within a 45x45 km block of plots. 

On each sample plot, all trees with diameter at breast height (DBH) ≥5 cm were 

callipered and tree heights were measured on an average of 10 sample trees per plot. 

Trees with DBH <5 cm (but taller than 1.3 m) were counted, and their diameters 

estimated by means of models (Tomter 1998). Total above ground dry biomass of all 

trees taller than 1.3 m was then estimated according to species-wise allometric models 

with DBH and height as predictor variables (Marklund 1988). The coordinates of each 

plot center were determined with an average accuracy <1 m using differential Global 

Positioning System and Global Navigation Satellite System measurements according to 

the procedures suggested by Næsset (2001).  

The county was stratified into eight strata based on existing land use maps and 

Landsat satellite images. The eight strata included four productive forest classes, i.e., (1) 

high, (2) medium, and (3) low productivity forests and (4) young forest. The remaining 

four strata were either nonproductive forest or non-forest classes, i.e., (5) nonproductive 

forest, (6) mountain areas >850 m above sea level, (7) developed areas, e.g., residential 

areas and infrastructure, and (8) open water. Both profiling and scanning laser data were 

collected during the summer of 2006. The flight lines were flown east-west and followed 

the NFI grid (Fig. 2), for practical reasons without any account for the stratification. 

Observations from NFI sample plots measured in the period from 2005 to 2007 were used 
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as ground training data to construct models of relationships between the airborne laser 

data and aboveground biomass as determined from field measurements. 

 

Laser profiling 

In total, 105 profiling flight lines totaling 9166 km were flown; 763 NFI plots were 

overflown within 17.8 m of plot center. Profiling laser measurements of canopy height 

and crown density, similar in form to ALS variables described by Næsset and Gobakken 

(2008, Section 2.4), were extracted along fixed-length, 17.8 m segments closest to the 

center of the ground plot and related to total aboveground biomass. The segment 

dimension, 17.8 m, was defined by the diameter of a 250 m2 circular ground plot. 

The eight-class stratification proved problematic with respect to analysis of the 

profiling LiDAR data. Due to the variability in data, it was found that only rather 

approximate predictive biomass models could be developed for each of the four 

productive forest classes. As a consequence, one generic linear model (R2 = 0.59, RMSE 

= 39 t ha-1) was developed across all productive forest classes.  For the four 

nonproductive forest/ non-forest classes, the R2 values ranged between 0.46 and 0.64, 

with RMSEs between 12.3 and 19.8 t ha-1. Profiling results, then, are reported for 

productive forest and the four nonproductive/non-forest classes based on estimates made 

on each of the 17.8 m segments on all flight lines. 

In all the models, biomass (t ha-1) was the dependent variable and heights to the 

40th, 60th and 90th canopy cover deciles the independent variables together with average 

canopy height, quadratic mean canopy height, and standard deviation of canopy heights. 

Standard linear regression was applied. For each model, the independent variables 

providing the best fit were selected. Typically, two independent variables were included 

in each model: one variable related to decile height and one to either average height, 

standard deviation of heights, or quadratic mean height. 

 

Laser scanning 

Fifty-three flight lines were flown with the scanning laser with an inter-line distance of 6 

km, which means that approximately 50% of the available plots were covered by ALS 
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data (Fig. 2). In total, 4570 km were flown covering 2297 km2 or 8.4% of the county’s 

area. The average pulse density for the scanner was 2.8 pulses m-2. Only first echoes were 

used in this study. Non-linear aboveground biomass models were estimated for 7 of the 8 

strata. From 30 to 151 sample plots were located in each stratum, except for water where 

no plots were measured. The estimated models were back-transformed and the calculated 

RMSE values then ranged between 9.6 and 23.9 t ha-1. The squared Pearson correlation 

coefficients between observed and estimated biomass after back-transform ranged 

between 0.79 and 0.92.  

 

All the models included both canopy height metrics and canopy density metrics derived 

from the ALS data. Altitude was also included in four of the models. The selected models 

contained from two to four explanatory variables. Typical canopy height metrics were the 

upper deciles of the canopy height distributions. The canopy density metrics were 

computed by dividing the respective canopy returns into 10 different vertical layers of 

equal height. The height of each layer was defined as one tenth of the distance between 

the 95% percentile and the lowest canopy height (1.3 m). The canopy densities were then 

computed as the proportion of number of returns above a given layer to total number of 

returns including those below 1.3 m, see Næsset (2004a) for further details.  

 

Each flight line or strip was divided into regular 250 m2 grid cells and the cells were 

allocated to strata. The laser echoes that belonged to each grid cell were used to derive 

the same canopy height and -density metrics as derived for the NFI plots. The estimated 

models were used to predict biomass for each cell within 500 m wide belts with the 

center lines of the ALS scans being the center lines of the belts. The model developed for 

medium site productivity was used also for predicting biomass for each cell allocated to 

the stratum water. 

 

Statistical methods 

In the following sections, basic estimators, variances, and variance estimators will be 

derived in steps. First, we address a standard simple random sampling framework where 
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sampling and model errors are combined. Then, this is expanded to account also for 

cluster sampling and stratification, which were important  features of the Hedmark 

County LiDAR survey.  

The following basic setup of an inventory, such as the one in Hedmark, is assumed: 

- A first sample, S1, is acquired by simple random sampling. This is the ‘applica-

tion sample’ to which we apply the regression models developed based on the S2 

sample (see below). Thus, from the S1 sampling units proxy variables are 

acquired and used as independent variables in a regression model to predict the 

target variable on each sampling unit. In Hedmark, the proxy variables were the 

ALS or profiling laser measurements. 

- A second sample, S2, is taken where measurements of both target and proxy 

variables are made. In Hedmark, our S2 sample consists of all ground sample 

plots and the corresponding metrics derived from the profiling or scanning laser 

measurements.  

We assume that there is only one model step involved, i.e. that biomass is predicted 

directly based on proxy data at the level of sample plots. Moreover, in the basic set-up we 

assume that the samples S1 and S2 are independent.  

All derivations are made in a model-based context, assuming that a population model 

),,()( xgxY  is available. Here, x is the vector of independent variables, the vector 

of parameters, and  the deviation from the true value. The form of the expected value 

model ),(),,()|(  xgxgExYE  is assumed to be known. In practice, this model 

can be fitted using linear or non-linear regression, including back-transformation and 

correction for transformation bias in case the dependent variable was transformed. Such 

corrections are available for many common transformations, e.g. Miller (1986, §1.2.3)). 

Below, the x -vector variables are denoted 1ix , i=1,..., m, where m is the number of 

sampling units in S1. The sample S2 is assumed to be acquired in a manner appropriate 

for estimating the parameters in the vector  . According to the assumptions of 

regression analysis, this can be done in many different ways, ranging from purposive to 

random sampling [e.g. Royall (1970), Royall & Herson (1973)]. The observations are 
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denoted with index ‘2’ and the model ),,( 222 iii xgy   is assumed to be valid; the 

parameters   are estimated as ̂ . Throughout the derivations, we condition on the 

sample S2.  

 

 

True population mean 

 

The true finite population mean can be written 

 

(1) 



M

i
iiY xg

M 1

),,(~1~   

 

where M is the population size. For large M, Y~  will differ only negligibly from the 

population model mean 

 

(2)  



M

i
iY xg

M 1
1 ),(

1   

 

obtained by taking expectation with respect to   . Throughout this study, we adopt Y  as 

definition of the population mean.  

 

Estimation 

 

A straightforward model-based estimator of the population mean, Y , following simple 

random sampling of size m (the sample size of S1) is  

 

(3)  



m

i
iY xg

m 1
1 )ˆ,(

1
ˆ   
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A total is applied by multiplying with the known population size. Our ambition now is to 

derive a formula for the variance, and a variance estimator (although omitting finite 

population correction). 

 

Variance and variance estimation 

We assume that our  -estimates are accurate enough so that we can linearize the 

g-model in the neighborhood of the true value, and use the first and second moments of 

the linear function as proxies for the true moments. 

 

(4) ),()ˆ(...),()ˆ(),()ˆ(),()ˆ,( 222111  xgxgxgxgxg ppp   

where 
j

j

xg
xg







 ),(
),( ; p is the number of parameters. Expected values, etc., are then 

taken considering both the distribution of ̂ -estimates and the S1 sample. The estimator 

of ̂  is independent of all 1ix -values, since the sample S2 is assumed taken 

independently of S1. All j̂  are further assumed to be unbiased, or approximately so. 

According to the assumed model, YYE  )ˆ( . Furthermore, 

 

(5) 







 



m

i
iiY

m

i
iY

m

i
iYY xgxg

m
xg

m
xg

m 1
11

1
1

1
1 )),()ˆ,((

1
),(

1
)ˆ,(

1
ˆ   

                    21 DD   

where 1D  is the term within brackets and 2D  the second sum 

 

D1 and D2 are (at least approximately) uncorrelated, and thus the variance for each term 

can be derived separately and the variances added. The details are provided in Appendix 

1. The resulting variance is 

 

(6)   
p

j

p

k
kjSkjSgY ggECov

m
V )()ˆ,ˆ(

1
)ˆ( 12

2   
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The first term arises from the sampling error due to S1, while the second term arises from 

the effects of the uncertainty of the ̂ -estimates (which is related to the selection of S2) 

on 2D . In equation (6), 2
g  is the population variance of the g-values and the '

ig -terms 

are the average values of the first order derivatives of the g-function. Here and elsewhere, 

the indices 1S  and 2S  denote the sample within which the moments are considered. An 

estimator of this variance is (see Appendix 1): 

(7)  
 


p

j

p

k
kjkjSgY ggvoCs

m
V

1 1
2

2
ˆ

ˆˆ)ˆ,ˆ(ˆ
1

)ˆ(ˆ   

 

In this formula, 2
gs  is the sample based estimate of the population variance of the g-

values. The covariance term is estimated from the sample S2. 

 

 

Cluster sampling 

We now expand the set-up to accommodate the important case where the model is 

applied at the level of population elements selected through cluster sampling (in the S1 

sample). This is the case when LiDAR sampling lines (profiler) or strips (ALS) are 

divided into smaller pieces (profiling 17.8 m segments or ALS 250 m2 cells in the 

Hedmark case) for which biomass is predicted using a model (or when models for 

biomass or volume are applied to trees on sample plots). 

 We introduce the notation G for cluster totals. In the context of LiDAR sampling, 

a cluster is a flight line, i.e., the total of biomass estimates made on all segments (profiler) 

or cells (ALS) in a given laser flight line. The ’average of the cluster totals’ then can be 

expressed in a form similar to (3) as 

 

(8)  



m

i
i

m

i
iY G

m
G

m 11

ˆ1
)ˆ(

1
ˆ   
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where 



iT

t
iti xgG

1
1 )ˆ,(ˆ   is the sum of the )ˆ,( xg values for the iT  objects within the 

ith cluster. The average from (8) can easily be converted to total biomass or average 

biomass per hectare for the region of interest. Note that there is a weighting mechanism 

implicit in the consideration of cluster totals. Longer flight lines contain more segments 

or cells, thereby contributing larger numbers of biomass observations to the flight line (or 

cluster) totals. 

 Variances can be derived following the same logic as in the former section, and 

thus the following variance formula is obtained: 

 

(9)   
p

j

p

k
kjSkjSGY GGECov

m
V )()ˆ,ˆ(

1
)ˆ( 12

2   

 

Here 2
G  is the variance of cluster totals in the population and 




m

i
ij G

m
G

1

)(
1   


 


m

i

T

t
itj

i

xg
m 1 1

),(
1  . Further, a variance estimator can be derived along the previous 

lines of derivation, using the notation 



m

i
iti xgG

1

),(   instead of ),( ixg , 





m

i
iti xgG

1

)ˆ,(ˆ   instead of )ˆ,( ixg , 
 


m

i

T

t
itjj

i

xg
m

G
1 1

),(
1   instead of jg  , 

and 
 


m

i

T

t
itjj

i

xg
m

G
1 1

)ˆ,(
1ˆ   instead of jĝ  . The resulting variance estimator is:  

 

(10)  kjkj

p

j

p

k
SGY GGvoCs

m
V  

 

ˆˆ)ˆ,ˆ(ˆ
1

)ˆ(ˆ
1 1

2
2
ˆ   

 

Stratification and post-stratification 
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 In case of ordinary stratification (e.g. Gregoire and Valentine 2008) samples are 

selected independently in different strata. If this is the case, and if separate regression 

models are used for predictions in each stratum, stratified sampling can be handled easily 

by making separate estimates (of population totals and variances) for each stratum and 

then add the estimates to obtain overall estimates. 

 However, an important feature in many large-scale forest surveys, such as the 

LiDAR surveys in Hedmark, is that strata are formed based on available map data but 

sampling units are distributed independently of this stratification, denoted  post-

stratification in our study. In this case there will be dependencies between the estimates 

from different strata, due to the fact that some cluster sampling units extend over several 

strata. 

 An estimator of the mean value Yh in stratum h is: 

(11)   








m

i
ih

m

i
hih

Yh

A
m

G
m

1

1

1

)ˆ(
1

ˆ


  

In this formula, the summation extends over all clusters just like in the previous 

cases (e.g. Eq. 8) but the cluster totals are computed only based on the sub-units 

belonging to stratum h (if a stratum is not present in a cluster this quantity is zero). The 

variable Aih is the area (ALS) or length (profiler) of stratum h within cluster i. The h̂  

define the regression model used in stratum h. 

The corresponding mean across all H strata, which can then be multiplied with 

known total area to obtain an overall total, is: 

(12)   



H

h
YhhY W

1

ˆˆ   

Here, Wh is the known area proportion of stratum h from, for instance, the digital map 

used to stratify the entire study area. The derivations of a variance formula and a variance 

estimator of (12) are provided in Appendix 1. The variance is, approximately:  
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(13) 
 





H

h

H

k
kh

kh

kYkkkhYhhh
Y WW

AEAE

AGAGCov

m
V

1 1 )()(

))(,)((1
)ˆ(
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  

 

 
 


H

h

H

k

p

j

p

j
kjhjSkjhjS

kh

kh
h k

GGECov
AEAE

WW

1 1

''
12

1 2

2121
)()ˆ,ˆ(

)()(
  

 

The first part corresponds to the sampling error and the second part to the errors 

introduced due to the uncertainties of the parameter estimates of the regression model. An 

estimator of this variance is: 

(14) 


 

 

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h
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ˆˆ)ˆ,ˆ(ˆ   

The covariances of the parameter estimates are important. If separate models have been 

derived for each stratum based on independent datasets, then all cross-stratum covarian-

ces are zero. If the same model is applied in several (or all) strata, then cross-stratum 

covariances should be included.  

For an individual stratum, the variance estimator is: 

 

(15)   
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Results 

 

The estimation framework described above was applied to data from the Hedmark 

County survey, using both ALS and PALS data. The results are summarized in Table 1 

where both overall and stratum-level results are provided. Specifically, the total variance 

was separated into model and sampling error components, in order to illustrate the 

magnitude of the different sources of variability. 

 

Laser Profiling 

We note the following based on the results presented in Table 1: 

1.  The estimates based on profiler data are about 10% smaller than the corresponding 

ground-based estimates.  

2.  In all five strata where separate models were developed, more than 50% of the profiler 

variance is due to variability associated with model parameter estimation. The proportion 

of model variance is large; in three of the five profiling strata, model variance accounts 

for more than 90% of the total variance. 

3.  In all five strata where profiler versus ALS model variance proportions can be 

compared, the ALS model variance component is consistently smaller than the profiler’s. 

4.  Considering the productive forest class, the profiler standard error is larger than the 

ground-based standard error.   

 

Point 1 speaks to accuracy, and points 2-4 speak to the precision of the profiling LiDAR 

estimates. The larger proportion of model error variance for the profiler reflects the 

combined effects of (1) the better laser pulse geolocation accuracy of the scanning 

system, (2) the fact that the scanner acquires ranging measurements across an entire 

ground plot whereas the profiler measures only a linear slice in the proximity of a given 

ground plot, and (3) the fact that the profiler flew twice as many flight lines as the 
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scanner. Factors (1) and (2) result in smaller ALS model errors; factor (3) reduces the 

profiler sampling error.  

 

The Table 1 results quantitatively describe the limitations of the PALS profiling 

LiDAR and suggest two items that should be addressed in order to improve profiling 

results. First, the geolocation accuracy of the individual LiDAR pulses must be improved 

(see Gobakken and Næsset (2009) for description of effects of ALS-ground 

misregistration). Second, alternative model forms should be considered, e.g., ln-ln models 

(e.g., Næsset 2002) or the square root models utilized by Andersen and Breidenbach 

(2007) and Boudreau et al. (2008), see also Gregoire et al. (2008) for an appropriate 

back-transformation correction. Model error is simply overwhelming the profiling error 

term, and addressing the two points above may decrease the model error term and the 

total variance. 

 

Laser Scanning 

We note the following based on the ALS-results presented in Table 1: 

1.  The ALS based estimates are slightly larger than the corresponding ground-based 

estimates. The differences range between 0 and 10% in the different productive forest 

strata; in average, the difference is about 5%. However, larger differences were found in 

nonproductive forests and mountain areas, where the ALS based estimates were 

considerably smaller than the ground-based estimates, respectively. For the entire county 

the ALS based biomass estimate is very close to the corresponding ground-based 

estimate. 

2.  In total 43% of the ALS variance is due to variability associated with model parameter 

estimation. For the productive forest, the model variance accounts for 42% and it varies 

between 58% and 85% for the four productive forest strata. 

3.  Even if the model variance component is consistently smaller than the profiler’s, the 

proportion of model variance is high. 
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4.  In general the ALS standard errors are smaller than the ground-based standard errors, 

however, the differences are not very large.   

 

 The LiDAR-based biomass estimates in mountain areas and in developed areas 

were considerably smaller than the corresponding ground-based estimates. We argue that 

the lack of correspondence for these strata was due to the fact that the NFI has been 

focusing on productive forest and only measured sample plots located close to the 

productive forest areas. Thus, no representative ground-based samples were available for 

these areas.  

 

 

Discussion 

 

The proposed model-based framework for biomass estimation based on LiDAR data is 

only one out of several possible estimation approaches. One alternative would be a 

model-assisted framework (Särndal et al. 1992) where the models would be used to 

provide proxy values to which adjustments based on actual measurements are applied to 

ensure unbiased estimates; this approach was adopted by Andersen and Breidenbach 

(2007) and further by Gregoire et al. (2010). The model-assisted approach has the 

advantage of staying within the realm of design-based estimation, but it relies on the 

availability of a sound (probability-based) subsample of ground plots within the target 

area and good geographical matching between ground and LiDAR data.  

 Some features of the Hedmark study complicated usage of model-assisted 

estimation, e.g. that a random sample of field plots was not available in all regions and 

that location errors in the PALS data sometimes made it difficult to match field data and 

LiDAR data. In previous studies with profiling lasers (Nelson et al. 2003a; 2004; 2008) 

the S1 and the S2 samples have been independent; in such cases a model-based approach 

would be the only straightforward estimation framework.  
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The empirical findings illustrate that profiling LiDAR may be less adequate for 

large area sampling than ALS unless predictive models associated with the profiler can 

be significantly improved. ALS systems seem to be more efficient with respect to 

collecting LiDAR measurements over existing ground plots as the wide swath of a 

scanning system in most cases will ensure overlapping measurement of the plots from the 

air and on the ground. However, we consider the further development of sampling 

designs and applications that allow regional estimates based on profiling LiDAR 

observations to be of great importance because, for the next decade, profiling LiDARs 

will be the only space LiDARs available capable of providing continental perspectives; 

the NASA  ICESat II and DESDynI are the only space LiDAR missions currently under 

consideration for launch - both are currently configured as profilers.  The presented 

estimation framework is applicable for profiling as well as scanning LiDAR applications 

and thus should allow for timely and rapid biomass assessments at several geographical 

scales, from regional to continental and even global levels. 

However, there are several possibilities to further improve the proposed methodo-

logical framework. While the current approach accounts for the parameter estimation 

uncertainty in one model step, cluster sampling, and stratification/post-stratification, it 

could be further developed to cover also prediction errors for individual units, systematic 

sampling, and additional model steps. Inclusion of prediction errors for individual units 

would be particularly relevant for estimates within smaller regions. They would be 

straightforward to include when random sampling of single population units is applied, 

although with cluster sampling the dependencies between elements within clusters would 

lead to complications. Systematic sampling only would affect the sampling error part of 

the variance, and methods such as successive differencing (e.g. Wolter 1984) probably 

could be applied to accommodate this effect. Additional model steps also could be 

included along similar lines as the first model step.  

 There are several forest inventory cases where the proposed framework would 

be straightforward to apply; one example is field-based inventories where volume or 

biomass models are used for tree-level predictions on sample plots. These models are 

normally developed independently of the application sample. Also, the formulas allow 

for investigations into the trade-offs between sample sizes in applications and sample 
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sizes for developing the regression models. Clearly, poor models applied to large samples 

will lead to small sampling error components and large model error components. 

  It should be noted that the model-based estimators derived require that the 

complete (estimated) variance-covariance matrix of the estimators of the regression 

parameters is known. This requirement may be difficult to meet in cases where existing 

regression models are applied, and where there is no access to data so that the covariance 

matrices can be computed (if they are not reported).  

 Although the results of the estimation framework appeared correct and logical 

when applied to LiDAR data, a small additional simulation study was carried out in order 

to check for the correctness of some of the basic formulas. The variance estimator (7) was 

evaluated based on the model: )exp( iii xy   , with 5.2),1.0ln(    and 

5.0 , and different distributions for x where 45)exp(5  xd . Also, two different 

selection methods regarding the sample S2 (simple random sampling and PPS sampling, 

using d as the ‘size’ variable) were applied. This model can be seen as a fair 

approximation of volume or biomass (y) as a function of diameter (d). The parameter 

estimates were obtained following a linearization through logarithmic transformation. In 

each repetition of the simulation new S1 and S2 samples were selected. The distributions 

for d were (i) rectangular and (ii) half-triangular with d=5 nine times as frequent as d=45. 

In all cases evaluated the mean of the variance estimator corresponded closely to the 

simulated (true) variance, indicating a solid performance of the proposed variance 

estimator. 

 We conclude that the proposed model-based framework should be very useful in 

inventory programs where regression models are used to predict the quantities of interest 

at the level of individual sampling units. The application described in this paper – 

LiDAR-based estimation of biomass – is an important example, which demonstrated that 

the model error contribution to the total variance may often be substantial. Especially, the 

proposed framework should be useful in cases where model-assisted inference cannot be 

applied; the reasons may be either that models have been developed from an independent 

dataset or that matching of the samples for model development and application cannot be 

fully achieved, as was the case when profiling LiDAR was applied in Hedmark.      
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Table 1. Mean, standard error, standard error in percent of mean and percentage model error of total variance for total above 
ground dry biomass using profiling (PALS) and scanning (ALS) LiDAR.  The corresponding ground-based Norwegian 
National Forest Inventory estimates are reported in the two rightmost columns. 
 

      PALS    ALS    Ground plots 

Land cover 
No of 
plots 

Mean 
 (t ha‐1) 

SE 
 (t ha‐1)  SE %

a
  

% model 
error 

 
 
No of 
plots 

Mean 
 (t ha‐1) 

SE 
 (t ha‐1)  SE %

a
  

% model 
error 

 
 
No of 
plots 

Mean 
 (t ha‐1) 

SE 
 (t ha‐1) 

Productive forest:                               

  High                46  133.8  6.07  4.5  85.1    92  121.3  8.21 

  Medium                105  97.8  3.43  3.5  57.8    243  94.5  3.77 

  Low                138  47.4  2.19  4.6  64.0    306  46.6  2.29 

  Young                151  44.6  3.59  8.0  63.3    334  40.3  2.77 

All prod. forest  554  57.6  2.21  3.8  56.5    440  67.7  2.16  3.2  41.8    975  64.0  1.73 

                                 

                                 

Non prod. Forest/nonforest:                             

  Nonproductive forest  109  29.7  2.03  6.9  86.8    107  27.4  2.40  8.7  70.9    167  22.5  2.13 

  Mountain areas  78  6.37  3.06  48.1  98.1    85  6.0  0.69  11.5  29.6    182  6.5  0.85 

  Developed areas  22  10.9  3.00  27.6  97.7    30  5.8  0.89  15.2  72.6    ‐‐‐ no plots ‐‐‐ 

  Water     0  1.63  4.78  294.0  99.4    0  3.2  0.30  9.5  14.6    77   0.6  0.58 

                                 

Total     763  35.5  1.49  4.2  71.5    662  40.3  1.18  2.9  42.7    1401  39.4  0.99 
                                               a SE %: standard error in percent of mean above ground dry biomass. 
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Figure legends 

Figure 1. The study area: Hedmark County, Norway. 

 

Figure 2. Fifty three airborne laser scanning flight lines (spacing of 6 km) and 1401 

National Forest Inventory ground plots (black dots). Profiling laser was flown at every 3 

km, i.e., twice as many flight lines as with the scanning laser. 
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Fig.1. 

 



 
 

28

 

Fig 2. 
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Appendix 1 

The starting point for the derivations is the decomposition  
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We seek to derive the variance of ˆY Y  , namely ˆ( )Y YV   . The notations 1D  and 
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The stochastic nature of 1D  is determined by the sample 1S  and that of D2 (the estimator 

̂ ) by the sample 2S . This is indicated by the indices 1S  and 2S  below.  Now 1D  is the 

deviation between the average S1 sample value, if the true model g is  known and its 

expected value and this deviation is independent of  ; thus 2
1

1
)( gm

DV   where 2
g  is 

the population variance of the g -values (population from which 1S  is taken). 

  

Regarding 2D , the Taylor approximation leads to 
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The variance of 2D is obtained by    )1|()1|()( 2212212 SDVESDEVDV SSSS  . 

Conditioned on 1S  we have  
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variance 
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Note that )ˆ,ˆ(2 kjSCov   depends only on S2 (not on S1).  

 

Further, conditioned on S1, the bracketed term in 2D is a constant. Hence,  

0)1|( 22 SDES , or nearly so and thus also 0)1|( 212  SDDES . This implies that both 

0),( 2121 DDCovE SS  0))(),(( 22121 DEDECov SSS and thus 1D  and 2D  are at least 

approximately uncorrelated. Therefore we can simply add the variances of 1D  and 2D  to 

get the variance of Y̂   
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The first term arises from the sampling error due to S1, while the second term arises from 

the uncertainty of the ̂ -estimates (which is related to the selection of S2). 

 

Variance estimation 

A variance estimator will now be derived. To start with, we address the estimation of  

2
g  from the S1-sample, through substituting ),( 1 ixg  by )ˆ,( 1 ixg  and applying the 

sample variance 2s as an estimator. Conditional on S1 we obtain 
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where ),( kj ggCov   denotes the sample covariance of the variables ),( 1 ij xg   

and ),( 1 ik xg  .  

 

The unconditional expectation thus equals  
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Dividing this with m, and utilizing that  ),()/1(),( 11 kjSkjS ggCovmggCov  we obtain 
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The term )ˆ,ˆ(2 kjSCov  can be estimated from the sample S2, while the product 

)()( 11 kSjS gEgE  probably is fairly well estimated by kj gg ˆˆ  , where 
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1ˆ  . This implies a certain bias amounting to ),(1 kjS ggCov   which 

would be in the order of m/1  (in relation to the estimate as such) 

 

In conclusion, a ‘fair’ variance estimator can be expressed as  
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In matrix notation the double sum can be written as TgvoCg )ˆ()ˆ(ˆˆ    (with the 

gradient g as a row vector and T as a notation for transposition). 

 

Variances for the post-stratified estimator  

The formulas for the variance and its estimator are in principle derived by the same 

method as above, but the details are more complicated since a ratio estimator is involved. 

 

For the estimator (12) 
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we have the ‘generic’ formula 
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Further, applying the customary expression for ratio estimators,  
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Now, by a Taylor expansion 
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By inserting this into the numerator covariance above and expanding we obtain 
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since two of the four terms are (at least almost) zero, due to the (near) unbiasedness of  

̂ . 

 

The first term equals the covariance estimator with true data and its expectation with 

respect to S1 is thus equal to 
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The second term equals, by expansion, and taking expectation with respect to S1, 
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By inserting these two expressions in the ‘generic’ formula we obtain the approximate 

formula (13) for the variance. 

 

The approximate variance estimator is obtained by inserting sample estimates (and 

observed values) in the variance formula, in analogy with formula (7).  


