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Bridging National and Reference Definitions 
for Harmonising Forest Statistics 

 
Göran Ståhl, Emil Cienciala, Gherardo Chirici, Adrian Lanz, Claude Vidal,  
Susanne Winter, Ronald E. McRoberts, Jacques Rondeux, Klemens Schadauer, 
and Erkki Tomppo 
__________________________________________________________________ 
 

Abstract: Harmonisation is the process of making information and estimates 

comparable across administrative borders. The degree to which harmonisation 

succeeds depends on many factors including the conciseness of the definitions, the 

availability and quality of data, and the methods used to convert an estimate according 

to a local definition to an estimate according to the reference definition. 

Harmonisation requires the availability and use of common reference definitions and 
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methods for converting from estimates based on national definitions to estimates 

based on reference definitions. This article focuses on conversion methods which are 

characterised as ‘bridges’ because they can be seen as means of crossing from islands 

of local definitions to the mainland of a reference definition. A structured approach is 

proposed for constructing bridges of three kinds:  reductive, neutral, and expansive 

bridges. A hierarchical decision tree is presented to guide users and to summarise the 

propositions, and case examples with different types of bridges illustrate the concepts. 

Although the article addresses harmonisation of forest information, the results are 

relevant for harmonising a broad variety of area statistics. 

Keywords:  forest resource assessment, statistics, harmonisation, national forest 

inventory, standardisation   

__________________________________________________________________ 

 

 

Challenges in utilisation of natural resources and mitigation of environmental 

problems call for increased international collaboration. The response to these 

challenges is manifested in multilateral agreements such as the United Nations (UN) 

Framework Convention on Climate Change (UNFCCC 1992), the Convention on 

Biological Diversity (CBD 2007), the Ministerial Convention on the Protection of 

Forests in Europe (MCPFE 2003), and the Montréal Process (Montréal Process 2005). 

These agreements require substantial amounts of information from the parties to 

assess overall progress, to evaluate compliance with obligations, and to determine 

next steps within the frameworks of the agreements (e.g., Corona et al., 2002; Corona 

& Marchetti, 2007, Irland 2010). In this context, meaningful comparisons among 

parties require that information and estimates be harmonised. For this purpose, 
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common reference definitions generally are proposed, and parties that do not collect 

data according to these definitions must develop conversion methods.  The criteria for 

a reference definition are given in Vidal et al. (2008). In this context, it should be 

noted that not only the harmonised estimates as such are important but also the 

corresponding uncertainty estimates. For example, the agreements under UNFCCC 

require parties to deliver uncertainty estimates of the reported annual greenhouse gas 

emissions.   

Köhl et al. (2000) distinguish between harmonisation and standardisation.  

Whereas standardisation requires that all parties use the same definitions, and possibly 

even identical measurement protocols, harmonisation requires only a final conversion 

of estimates from the local to the reference definition (Vidal et al., in press). Thus, 

harmonisation permits parties to use existing time series of data and locally adapted 

methods, rather than establishing new or parallel data acquisition systems. This 

freedom is important in times of expanding international information requirements, 

because construction of standardised protocols for every new agreement would be 

time consuming, costly, and most likely impossible to achieve. Further, information 

requirements tend to change over time, and it is often easier for parties to change only 

the final conversion step than their entire data acquisition protocols. On the other 

hand, harmonisation may sometimes leave too much freedom to parties with the result 

that information may be inaccurate and of poor quality, or harmonisation is only 

partially possible (e.g. FAO 2006); thus, harmonisation is not a solution to all 

problems related to obtaining comparable information.   

Within the area of forest statistics, the UN Food and Agriculture Organisation 

(FAO) has an important role in proposing common definitions in connection with 

their global forest resources assessments (e.g. FAO 2001, FAO 2006). These 
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assessments have been conducted in collaboration with countries from all parts of the 

world, and because they have been conducted at 5-10 year intervals, the process has 

become an important driver towards global harmonisation of forest statistics. How-

ever, the latest report (FAO 2006) indicates that many problems remain to be solved 

before forest statistics from different countries are truly comparable.  

The UNFCCC, with its Kyoto Protocol, has become another important driver 

towards global harmonisation of information. According to the agreements, 

information should be provided annually from many different sectors of which one is 

land use, land-use change, and forestry sector. Cienciala et al. (2008) demonstrate the 

importance of forest inventory information for this sector and point to promising 

ongoing harmonisation efforts. Within the framework of the CBD (CBD 2007), the 

European Environmental Agency (EEA) has coordinated an initiative with the 

objective of reducing the rate of loss of biodiversity in European forests (EEA, 2008).  

To evaluate temporal forest biodiversity trends, a set of indicators has been defined 

(EEA, 2007). Many of the indicators relate to components of forest biodiversity and 

can be calculated using information already acquired by national forest inventories 

following successful harmonisation (Winter et al., 2008).  

The inventory, monitoring, and assessment working group of the North 

American Forestry Commission (including Canada, Mexico, and USA) has explored 

methods for harmonised reporting (McRoberts et al., 2009) by aggregating national 

forest inventory (NFI) data to the continental level within a broad-scale ecological 

framework (Gillis et al., 2004).  An analysis of the inventory databases of the three 

countries revealed compatibility among several primary variables including area and 

stem volume on forest land. 
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For harmonisation to be successful, several factors must be considered. Firstly, 

both the local and reference definitions must be concise, so that differences between 

them are clear. Secondly, local data or information with adequate accuracy must be 

available. Thirdly, methods to convert estimates from the local to the reference 

definition must be available or be established.  This article focuses on conversion 

methods which are characterised as ‘bridges’ because they can be seen as means of 

crossing from islands of local definitions to the mainland of a reference definition.  

The objective of this study was to propose a structured approach to 

constructing bridges and to illustrate the concepts with case examples. The results are 

based on work on harmonising information from European NFIs conducted during 

2004-2008 by Action E43 Harmonisation of National Forest Inventories of Europe: 

Techniques for Common Reporting of the European program Cooperation in the field 

of Scientific and Technical Research (McRoberts et al. 2009, Tomppo and Schadauer, 

in press). Although the case studies are taken from Europe the basic findings are 

general and not restricted to European conditions. The conclusions are summarised as 

a hierarchical approach to the proper choice of bridges.  

 

A Methodological Framework for Constructing Bridges 

A harmonisation bridge can take different forms, from mere recalculations 

based on existing data to advanced statistical functions to convert from existing 

definitions to reference definitions. Sometimes it involves a combination of different 

methods. In general, each party to an agreement must construct its own bridges, at 

least as long as each party acquires basic data differently. When constructing bridges 

from a local to a proposed reference definition, an important issue is the kind of 
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national data available to support the assessment. From this point of view, we 

distinguish among reductive, expansive, and neutral bridges. 

  

 For reductive bridging, national data are available in ‘surplus’, i.e. the 

reference definition is narrower than the national one. For example, a 

country may have a national definition whose scope is wider than that of 

the reference definition, and thus the bridge must only identify the portions 

of the national data that should be excluded to satisfy the reference 

definition.   

 

 For expansive bridging, the opposite situation is encountered. In this case, 

the scope of the reference definition is wider; i.e. there is a lack of data for 

a simple recalculation and conversion factors may require auxiliary data. 

 

 With neutral bridges, the scope of the reference and national definitions is 

the same, although different subdivisions between features may have been 

used. For example, in a country where the national and the reference 

definition of forest correspond perfectly, the national definition of forest 

types may deviate from the reference. In this case bridges for conversion 

between forest types are needed. 

 

We define different types of variables involved in the construction of bridges. Firstly, 

the target variable is the variable in focus for harmonised reporting. A bridge is 

needed when the national definition of the target variable deviates from the reference 

definition. Secondly, there may be one or more core variables involved in the 
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definition of the target variable. For example, definitions of forest generally use the 

core variables height and crown cover (at maturity, in situ). Thirdly, auxiliary 

variables, which may be correlated with the target variable and/or the core variables, 

are often available to facilitate derivation of functional relationships. Auxiliary 

variables may be of many different kinds, and the utility of a specific variable 

depends on the context. Data for auxiliary variables may also be obtained from 

inventory systems other than the one whose data are used to calculate the estimates 

according to the national definition.  

 

Level of application 

Bridges can be applied at different levels in an inventory system. In many 

cases, it is straightforward to apply the bridge at the level of individual sampling units 

(trees or plots) and then aggregate the units in a standard manner to obtain an estimate 

according to the reference definition at national or sub-national level. This approach is 

straightforward for reductive and neutral bridges, and also for expansive bridges when 

auxiliary data are available from all potential land units to be included under the 

reference definition.  

In case auxiliary data at the level of sampling units are not available, the 

bridging procedure generally would imply application of a conversion factor or 

function to the aggregated estimate according to the national definition. Thus, 

depending on the data available, bridges are applied at different levels. In general, 

bridges applied at the level of sampling units result in the best accuracy, although this 

cannot be taken as a rule.  

Further, the possibilities to assess the uncertainty of the harmonised estimates 

depend on at what level bridges are applied. For example, with a reductive bridge 
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applied at plot level the possibility for, e.g., variance estimation remain the same, 

which is not the case if an expansive bridge is applied at an aggregate level. 

In Figure 1, the two main levels where bridges can be applied are illustrated, 

i.e. at the level of individual measurement units (e.g. sample plots) or at an aggregate 

level. 

 

< Figure 1> 

 

 

Reductive bridges 

Reductive bridges are generally easiest to construct. Data are available and the 

bridging procedure, in the simplest case, only requires use of new threshold values. 

Straightforward bridges can be constructed when the core variables in the national and 

reference definitions are identical. For example, definitions of forest typically use 

crown cover and height (at maturity, in situ). If data for these core variables are 

acquired, a country can adopt new thresholds and thus satisfy the reference definition 

through reductive bridging. Another straightforward example regards sizes of trees to 

be included in assessments of growing stock (Tomter et al. in press). If a country 

includes all tree sizes in the growing stock estimate but the reference prescribes a 

specific threshold diameter, the country easily can make assessments according to the 

reference definition through reductive bridging. 

Reductive bridging becomes more difficult if no core variables are involved or 

available or if a country applies non-standard definitions of the core variables. In such 

cases, reductive bridging requires use of conversion factors or functions obtained 
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from case studies or from neighbouring regions. Available auxiliary variables may be 

used either to predict the target variable directly according to the reference definition 

or to predict the core variables whereby the target variable can be assessed in a 

subsequent step (Fig. 2). 

 

<Figure 2> 

 
 

Case example – a reductive bridge for biodiversity in European forests 

Whittaker (1972) defined three spatial types of biodiversity: alpha diversity, which 

refers to ecosystem diversity; beta diversity, which refers to the change in diversity 

between ecosystems; and gamma diversity, which refers to the overall diversity for 

different ecosystems within a region. Forest structural diversity is further 

characterized with respect to three components: species composition, often assessed 

using the Shannon index (H') as an indicator; horizontal diversity, often assessed 

using the standard deviation of diameter (d) as an indicator; and vertical diversity, 

often assessed using number of height layers (Pommerening 2002, Varga et al. 2005). 

 For alpha diversity, McRoberts et al. (in press) demonstrated the sensitivity of 

both H' and d to minimum diameter and plot radius. Previous works by, e.g., 

Magnussen (1998) and Garcia (2006) have reached similar conclusions. Therefore, 

harmonisation of estimates of these indicators requires a reference definition that 

specifies a minimum diameter and a plot radius.  In this case, selection of reference 

definition thresholds for the two core variables depends on the ability or inability to 

construct bridges.  In particular, although expansive bridges may produce acceptable 

conversions in aggregate for large areas, they are too imprecise and possibly biased 

for predicting numbers of individual trees and their species, diameters and heights 
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which is required for alpha forest structural diversity assessments.  Therefore, the 

thresholds for the core variables for the reference definition must be the greatest 

minimum diameter and the least plot radius among the NFIs whose estimates are to be 

harmonized.  It follows, then, that bridges to convert between national definitions and 

the reference definition must have two components, one to accommodate differences 

in minimum diameter and one to accommodate differences in plot radii.  Because the 

reference definition minimum diameter is the greatest minimum diameter among the 

NFIs, bridges for this component are all reductive, i.e., simply disregard data for each 

tree whose diameter is less than minimum diameter in the reference definition.  

Bridges to accommodate differences in plot radii are likewise reductive, i.e., simply 

disregard data for each tree whose distance from plot centre is greater than the 

reference definition for plot radius.  However, whereas no additional information is 

necessary for the minimum diameter component of the bridge, accommodating 

differences in plot radii requires information for an auxiliary variable, namely 

distance between individual trees and plot centre.   

For harmonizing estimates among European NFIs, the reference definition 

would include a diameter corresponding to the largest minimum diameter and a plot 

radius corresponding to the smallest plot size.  Because reference definition thresholds 

for both these core variables are at the extremes of their respective distributions, 

progress toward standardization would greatly enhance the credibility of harmonized 

estimates for this type of information.       
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Expansive bridges 

Expansive bridging is generally more complex than reductive bridging 

because core variables are not fully available. Auxiliary variables may, however, be 

available.  Further, expansive bridges may be particularly complex when multiple, 

interdependent, target variables are involved. An expansive bridge may be needed to 

estimate forest area according to the reference definition. But growing stock may also 

be a target variable and the bridge for growing stock must include estimates of the 

number of trees on areas for which there may be none or very limited auxiliary data 

available. 

In constructing expansive bridges, comparable information from areas similar 

to the target area is often needed. Such information can be obtained from pilot studies 

within the country or data may be available from countries or regions with similar 

conditions. If auxiliary data are available, perhaps from other inventories, expansive 

bridges may be constructed through developing predictive models. For example, 

logistic regression functions may be applied to estimate the probability that a 

particular plot belongs to a specific land-use category. Area estimates can then be 

obtained by adding probabilities, given the sampling design used (e.g. Yu and 

Ranneby 2007). In many cases imputation schemes (e.g. Tomppo and Halme, 2004) 

could be efficient because they provide entire suites of variables to sample plots or 

other units where only auxiliary data are available. Following imputation, all units in 

the dataset will include the same variables and thus data processing will be simplified.   

If auxiliary data are unavailable or insufficient, expansive bridges must be 

based on simple conversion factors. As for reductive bridges, expansive bridges may 

involve either direct prediction of the target variable or prediction of core variables 

followed by subsequent assessment of the target variable (cf. Fig. 2). 
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Case example 1 - an expansive bridge for total forest area in Sweden 

The Swedish National Forest Inventory (Ranneby et al. 1987) is a landscape 

level inventory in the sense that plots are laid out on all land cover categories. On the 

plots, assessments of ‘forest’ are made both according to a national definition1 and 

according to FAO’s reference definition (e.g. FAO 2006). Thus, estimates of various 

quantities can be derived for different forest as well as non-forest categories.  

However, in the mountain range in the northwest part of the country the accessibility 

conditions are very poor. As a consequence, in areas at high altitudes, known to be all 

non-forest according to the national definition, assessments are only made using air 

photos or maps. Thus, in order to obtain an estimate of total forest area in Sweden 

according to FAO’s reference definition, there is a need to develop an expansive 

bridge since the air photo and map based assessments cannot be used for 

distinguishing between forest and non-forest land. 

 The National Inventory of Landscapes in Sweden (NILS; Ståhl et al. 2011) 

covers the entire country with a sparse network of sampling units. Each unit consists 

of (i) a 5*5 km square where basic landscape composition and configuration data are 

acquired, (ii) a 1*1 km square where detailed air photo interpretations of land cover, 

land use, and several other features are made, and (iii) 12 plots and lines within the 

1*1 km square which are inventoried in the field.  

In NILS, the core variables height and crown cover are recorded on all the 

field plots, and because the mountain birch forests are not managed, the conditions are 

considered to represent the state ‘at maturity, in situ’, as required for the FAO 

                                                 
1 The national definition (until 2009) states that the growth potential has to be at least 1 cubic metre per 
hectare and year. From 2009 onwards, Sweden will apply FAO’s definition as the national definition in 
order to simplify international collaboration. 
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definition of forest. All field plots from NILS within the target area in the mountain 

range were evaluated; an expansive bridge for total area was developed simply by 

estimating the proportion of the plots fulfilling the forest category thresholds and 

multiplying with total area. The estimate obtained regarding forest in the mountain 

area was 1.03 Mha and thus the total area of forest in Sweden was 28.32 Mha (in 

2008).  

 

Case example 2 - an expansive bridge for growing stock of beech in Wallonia, 

Belgium 

In Wallonia, by tradition trees conventionally are measured at 1.5 m rather than at 1.3 

m height. Further, circumference (girth) rather than diameter is acquired, and the 

threshold circumference used is 20 cm. To convert from the Wallonian estimate of 

growing stock (which includes only trees with a circumference above 20 cm at 1.5 m 

height) to an estimate according to a reference, which includes all trees above 1.3 m 

(e.g. Tomter et al. in press), there is a need to develop an expansive bridge. 

The Wallonian NFI sampling units comprise 3 concentric circular plots; the 

plot radii are 18 m (for trees above 120 cm circumference at 1.5 m height), 9 m (trees 

above 70 cm), and 4.5 m (trees above 20 cm). Volume models are available to predict 

the volume of a tree from circumference measurements at 1.5 m height (Dagnelie et 

al., 1999). 

Based on estimates from the NFI, regression analysis was applied to predict 

the total number of beech trees by circumference class within the entire Wallonian 

region. The model was then applied to predict, by extrapolation, the number of small 

trees for which no information was available in the NFI. The regression model 

obtained was: 
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E[ln (N)] = -1.2059 C1.5
3 + 5.2465 C1.5

2 - 8.434 C1.5 + 15.349          (1) 

 

Here, N is the number of trees in a specific circumference class (1 cm width) and C1.5 

is the girth (m) at 1.5 m height. The model, and the data, is shown in Fig. 3; the 

approach is further described in Rondeux (1999).  

 

<Figure3> 

 

By applying Eq. 1 the total number of trees in each class below 20 cm was estimated, 

assuming that the chosen model form would provide fair predictions (cf. Rondeux 

1999). 

 Further, for the small trees new allometric models were developed based on 

existing data. The individual tree (excluding branches) volume model obtained was: 

 

E[V] = 0.822*C1.5 
2.342 + 0.0005                    (2) 

 

Here, V is volume in m3 and C1.5 is circumference in m. By applying Eq. 2 the average 

volume of a tree in each class was predicted and the total volume in a class was 

estimated through multiplication by the predicted number of stems. This procedure 

was applied to each class below 20 cm and the corresponding volume estimates were 

summed to obtain an estimate of the total volume of small trees.  

Following this, only the trees between 1.3 m and 1.5 m height remained to be 

included. Although this could have been done using a procedure similar to the one 

described above, after converting from circumference at 1.5 m to circumference at 1.3 
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m by applying taper models, an expert judgement was made that the total volume of 

trees in the interval 1.3-1.5 m would be extremely small in comparison to total 

growing stock. Thus, this small fraction of the growing stock was not included in the 

expansive bridge. 

The estimates of beech growing stock obtained were 13.887 Mm3 according to 

the Wallonian definition and 14.027 Mm3 according to the reference definition. Thus, 

the expansive bridge resulted in a very modest (1%) increase of the growing stock. 

Further examples of expansive bridges for growing stock are presented in 

Tomter et al. (in press). 

 

 

Neutral bridges 

Neutral bridges represent the special case in which data are equally abundant 

under both the national and reference definitions. Typical cases involve definitions 

related to trees where the reference may include other subdivisions such as between 

aboveground and belowground parts. This type of bridge generally would involve 

development and application of allometric functions that can be applied to the basic 

auxiliary data that are available (e.g. diameter data when biomass should be 

estimated).  Another kind of neutral bridge is required when different classification 

schemes have been applied to subdivide forest area.  In this case, a neutral bridge is 

required to transit from the national to the reference classification. Because there is a 

1:1 relationship regarding which data are available, neutral bridging typically involves 

re-labelling categories based on the core variables involved.  
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Case example – a neutral bridge for forest type classification in Italy 

A forest type is a category of forest defined by its composition and/or site 

factors, as categorized by each country in a system suitable to its situation (Montréal 

Process, 1998). In Europe, a set of 35 Pan-European indicators has been endorsed 

under the Ministerial Conference on the Protection of Forests in Europe to measure 

progress towards sustainable forest management in the region. Seven indicators 

should be reported by forest types (Barbati et al., 2007).  

The European forest type system (EEA, 2006) is a hierarchical classification 

scheme consisting of 14 categories subdivided into 76 types. In Table 1, a selection of 

reference categories defined by EEA, as well as categories currently used by the 

Italian NFI, is provided. There are clear links between the Italian and the European 

systems, and thus neutral bridges could be constructed to transfer between the two 

systems based on the characteristics of each forest sample plot. 

 

<Table 1> 
 

 

A decision tree 

A simple hierarchical decision tree is provided as a tool for providing general 

support and an overview of the kinds of bridging options that are available (Fig. 4).  
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Discussion 

Harmonisation is becoming increasingly important as the demands for 

information to support international processes continue to increase. Procedures for 

converting from estimates according to national definitions to estimates according to 

reference definitions are crucial in this context. The proposed framework is intended 

to assist users in the construction of bridges for making these conversions. However, 

the framework only provides generic guidance and thus all the necessary details need 

to be provided in each specific application, as illustrated in the case examples. 

Bridges will likely be rather different in different applications, especially in cases 

where expansive bridges are developed based on auxiliary information. Also, in many 

real cases, mixtures among the different types of bridges are likely to be constructed.  

Further, in addition to providing guidance, the proposed framework is intended to 

strengthen the harmonisation process because it provides a standardised scheme for 

the development of bridges.   

The quality of an estimate obtained using a specific bridging procedure 

depends on many factors. In the case of reductive bridges, estimation of variances in 

general should be straightforward because standard procedures should apply. In this 

case, use of a bridge is not likely to reduce the accuracy of the estimate. However, in 

some cases results obtained based on direct assessments of categorical variables may 

differ from estimates obtained based on a posteriori classification using core 

variables. This is an area where additional research would be motivated. Neutral 

bridges may require only that new allometric models or new classification schemes be 

applied to existing data. Provided that these models are properly developed, there is 

no reason why the accuracy of estimates should be reduced. However, whenever 
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models are applied to predict variables, both sampling and model errors ideally should 

be incorporated into variance estimates (e.g. Ståhl et al. 2011).  

When expansive bridges are used, the accuracy of estimates will likely 

decrease because the necessary model relationships or direct conversion factors will 

generally be rather coarse. In such cases, variances might be estimated using stratified 

approaches for which one stratum consists of sampling units where target data are 

directly available and a second stratum consists of the remaining units (e.g. Gregoire 

& Valentine 2008). For the latter stratum, approximate variance estimation methods 

may be available; e.g., when imputation techniques are applied.  

From a qualitative perspective, external reviewers could evaluate the adequacy 

of the selected bridges. An example would be in connection with bridges applied for 

reporting to the UNFCCC and the Kyoto Protocol, because these procedures must be 

carefully described in national inventory reports which are scrutinized annually by 

external reviewers. In the future, increased quality demands most likely will require 

similar formal quality assessment procedures in many other cases as well. 

Harmonisation, rather than standardisation, allows parties to maintain their 

national data collection protocols and their time-series according to national 

definitions. This is important because many users operate only at the scale of 

individual countries and benefit from being able to use information according to 

‘known’ definitions. Further, many international processes demand forest information 

and the demands from different processes vary. Thus, unless a number of parallel 

inventories are conducted, there will always be a need to harmonise information so 

that the requirements under different agreements are satisfied. Nevertheless, 

application of standardised protocols for acquiring data for core variables that often 

are used in international definitions greatly simplifies construction of bridges. Thus, 



19 
 

inventories that concentrate on acquiring high quality data for standardized core 

variables would be well prepared for diverse reporting requirements. 

For these reasons, NFIs should direct future developments towards providing 

data that can be harmonized using neutral or reductive bridges as a means of avoiding 

uncertainties associated with expansive bridges, independently of the international 

reference adopted. Thus, NFIs should aim for good geographical coverage and 

standardized measurements of all major core variables. 

When expansive bridges rely on case studies, existing information from 

similar regions or extrapolation, potential sources of bias must be carefully evaluated. 

If case studies are conducted, they could be directed to the specific areas from which 

data are needed.  Careful selection and application of protocols are necessary so that 

potential selection bias does not cause bias in the resulting estimates.  

Increased collaboration among countries opens possibilities for construction of 

adequate bridging methods as data from different regions become available. In 

Europe, the European National Forest Inventory Network (ENFIN 2011) provides 

such opportunities. At the international scale, FAO is likely to continue to be a driver 

towards harmonised forest statistics through the periodic forest resource assessments 

conducted. 

Finally, whereas this article has focused on the development of bridges for 

applications using forest data and information, the generic results should be applicable 

for harmonization of area statistics in other cases as well. 
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Figure 1. Application of a bridge (reductive) at the level of individual sampling 

units (right) and at aggregate level (left); EN is the target quantity according to 

the national definition and ER the corresponding quantity according to the 

reference definition. 
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Figure 2. Reductive bridging when no core variables are immediately available. The 

arrow A indicates that core variables are predicted using auxiliary data and that a 

standard reductive bridging then is performed (arrow B). Alternatively, conversion 

factors based on auxiliary data can be used directly (arrow C). 
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Figure 3. The observations and the fitted regression curve for predicting the total 
number of beech trees for a given circumference class (cm); R2=0.978; the 
coefficient of variation for the estimated intercept was 2.7%. 
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Figure 4. A hierarchical decision tree to guide users in the construction of bridges 

(CV=core variable, AV=auxiliary variable). 

 

Can new CV thresholds be app-
lied to meet the ref. def.? (CVs 
may be predicted based on AVs)  

Is the national definition identi-
cal with the reference definition? 

Yes No bridge is needed 

No

Bridging by recalculation 
with new thresholds (nor-
mally reductive or neutral 
bridging) 

Yes

No

Can new model relationships or 
conversion factors be developed 
based on existing national data? 

Develop new models or 
conversion factors (any type 
of bridge) 

Yes

No

Are measurements for applying 
both the national definition and 
the reference definition available 
in any region with similar forest 
conditions or could a special case 
study be conducted?

Develop conversion 
factors or models by use of 
data from a similar region 
or a specific case study 
(normally expansive 
bridging). 

Yes

No

Yes

No

Other solutions, for example: 
- Expert judgment  
- Include new variables in the inventory

START 

Can existing data be extra-
polated or could data from 
complementary data sources be 
applied? 

Make extrapolations or 
apply data from external 
sources (normally 
expansive bridging). 
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Table 1. Examples of conversions from the Italian forest type classification system to the 
reference system endorsed by EEA (2006). In this case the bridging functions are 
obtained by linking the classes in the Italian system directly to the corresponding EEA 
categories. (Note that this conversion system is not officially implemented in Italy).  

 

CATEGORY  (EEA, 2006) TYPE  (EEA, 2006) CLASS (code). Dominant species 
(INFC, 2003) 

3. Alpine coniferous forest  3.1 Subalpine larch-arolla 
pine and dwarf pine forests  

1. Larch and arolla  

4. Scots pine and mountain pine 
(mountain pine dominated) 

3.2 Subalpine and montane 
spruce and montane mixed 
spruce-fir mixed forests  

2. Spruce  

3. Fir  

3.3 Scots pine and Black 
pine forests  

4. Scots pine and mountain pine 
(scots pine dominated)  

5. Black pine  

5. Mesophytic deciduos forest  5.2 Sessile oak-hornbeam 
forest  

12. Horn-beam  

5.8 Ravine and slope forest  14. Other broadleaves forest 
(Maple, lime) 

6. Beech forest  6.3 Subatlantic submontane 
beech forests  

8. Beech dominated forest (Beech 
pure) 

7. Montane beech forest  7.3 Apennine-Corsican 
montane beech forests  

8. Beech dominated forest (Beech 
and fir) 

12. Floodplain forest  12.1/2  Riparian/fluvial 
forest 

13. Hygrophil forest (Alders 
dominated) 

12.1/2 Riparian/fluvial 
forest 

13. Hygrophil forest (Aspen 
dominated) 

12.1 Riparian forest 13. Hygrophil forest (Willow 
dominated) 

12.3 Mediterranean and 
Macaronesian riparian 
forest 

13. Hygrophil forest (Plane tree) 

13. Non-riverine alder, birch or 
aspen forest  

13.2 Italian Alder forest  14. Other broadleaves forest 
(Italian alder dominated) 

13.4 Southern boreal birch 
forest 

14. Other broadleaves forest (Birch 
dominated)
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