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Abstract

Stump wood is a possible source of renewable energy, but before its potential as a fuel can be
utilized to a high degree, new harvesting techniques should be developed to reduce the
environmental impact (notably ground disturbance) of harvesting stumps. The forces required to lift
and drag stumps out of the soil are known. In this study two unknown and important parameters
were addressed: the torque required to uproot stumps by twisting them and the torque required to
cut lateral roots around stumps. A new, improved stump-twisting rig was designed and used in trials
with 28 Scots pine (Pinus sylvestris) trees (breast-height diameter over bark, 153-427 mm). The
measured torque requirements ranged from 10 to 50 kNm. Twisting stumps required more torque
than cutting lateral roots around stumps and the required torque increased with increases in stump
size. The results indicate that a wrist on a big feller-buncher, but not a conventional rotator used on
forest machines, should be able to generate sufficient torque to cut the roots around stumps such as

those used in this study.
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Introduction

Fossil fuels are being replaced with renewable fuels in Sweden. Thus, it is important to find
renewable fuel sources that are both economically and ecologically acceptable. A possible source is
the high quality-fuel wood contained in tree stumps (Anerud & lJirjis, 2011). Therefore, stumps are
currently being harvested in Sweden on a trial basis, using techniques developed in the 1970s and
early 80s when stump harvesting was last conducted in the country (Jonsson, 1985). The stumps are
extracted after clear-cutting, by excavators weighing 20-25 tons (metric) equipped with stump
harvesting heads, then left on-site in heaps to be cleaned from soil by a combination of rainfall,

drought and wind before being forwarded to roadside (Hedman, 2008; von Hofsten, 2010).

A major problem that needs to be addressed before stump wood can be used as a credible source of
renewable and sustainable energy is that uprooting stumps can cause substantial ground
disturbance, and thus adversely affect the environment (Walmsley & Godbold, 2010). One way to
decrease the ground disturbance could be to only harvest the stump centres. Stump centres of
poplar trees planted on farmland have been harvested for a long time with a tube saw (Czereyski et
al., 1965), and are still harvested in some areas of Italy (Spinelli et al., 2005). A prototype tube saw
stump-centre harvester for work in forest condition has been tested in the field in Sweden. To date,
its productivity has been lower than for conventional whole-stump harvesting, mainly due to the
decreased volume harvested per stump (von Hofsten, 2011); 7-10% of the total stem volume is
harvested in stump centre harvests (Fryk, 1975), compared to 15-30 % in whole-stump harvests
(Magnusson & Nylinder, 1977). An alternative solution could be to integrate stump centre and stem
harvests, handling the stump centre as an extension to the butt log (Nordfjell et al., 2011) and leaving
the roots in the soil, thereby reducing the ground disturbance, increasing the bearing capacity for
heavy machines and decreasing the environmental impact of stump harvesting (Nordfjell, et al.,

2011).



Understanding stump properties and the variations in ground disturbance associated with different
uprooting methods is important for developing more environmentally-friendly machines for stump
harvesting. Thus, several studies have examined the force required to vertically lift (Czereyski et al.,
1965; Horvath-Szovati & Czupy, 2005; Lindroos et al., 2010) or horizontally pull (e.g. Golob et al.,
1976; Liley, 1985; Peltola et al., 2000) stumps out of the ground. In addition, Anderson et al. (1989)
studied the shear strength (a type of material failure) of the root plate/soil interface of Sitka spruces
(Picea sitchensis) (Figure 1) in various soils by twisting stumps, but they did not report the torque,
and there is a general lack of information about the torque required to twist stumps. Of course, if
stumps were simply twisted, large proportions of the root systems could be uprooted, probably
causing similar degrees of ground disturbance to current stump harvesting technology. Alternatively,
in order to reduce the ground disturbance when stumps are lifted by twisting, knives could be
twisted around the stumps to cut the roots. No information about torque or forces required to cut
roots in such a manner appears to have been published, the only pertinent information regarding the
force needed to cut wood is above ground (e.g. Wiklund, 1967). However, the increase in force
required may not be high, since Gebresenbet & Jonsson (1992) found that 35 N was sufficient to pull
seed drill coulters through agricultural soil, although knives would have to penetrate more deeply to
cut lateral roots around trees. The forest soils also often contain more stones than agricultural soils,
so the forces required would probably be higher, especially because the roots are coarser and more

resistant in forests.

<Figure 1 here>

The aim of this study was to measure the torque needed to twist, and the force and torque needed

to cut lateral roots around Scots pine (Pinus sylvestris) stumps in a sandy sedimentary soil.

Material and Methods

Study site and treatments

The study site was a clear-cutting area in Vindeln municipality (64° 13’ N 19° 48’ E) with sandy
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sedimentary soil and flat, even, dry ground; bearing capacity, ground roughness and slope all 1
according to the Swedish terrain classification scheme (Berg, 1982). At the time of the study, the site
was supporting a stand with a mean diameter over bark at breast height (1.3 m above ground; DBH)
of 179 mm, mean height of 14.3 m, a basal area of 25.9 m?/ha and 934 stems per hectare. In August
and October 2010, 19 trees were felled, and six “fresh” stumps were twisted within three weeks. The
remaining stumps (“old” stumps, n=13) were twisted in August -September 2011, about 10 months
after cutting. In 2011 another nine trees were also cut and twisted fresh. Thus, in total 28 Scots pine

stumps were used in the trials (Table 1).

Three main treatments were applied in the trials: twisting stumps (T1), cutting lateral roots around
stumps by rotating a single knife (T2) and cutting lateral roots around the stumps by rotating two
knives on opposite sides of each stump (T3) (Table 1). In T1 the dependent variable torque required
to twist stumps was measured, while in the T2 and T3 treatments the dependent variables torque
and force required to cut the lateral roots were measured. In addition, the torque or force needed to
overcome the rig-to-stump resistance (E) was measured by twisting the rig without any knives or
chains around stumps (Table 1). This torque or force was then subtracted from the T2 and T3

measurements to exclude the rig-to-stump resistance from the results.

<Table 1 here>

Experimental rig and trial setup

A stump-twisting rig capable of twisting the stumps through an entire revolution (360°) was
constructed of steel, based on the stump-twisting rig described in Smith (1986) (Figure 1), but with a
circular design, enabling forces to be exerted on two sides of a stump with a constant relationship
between force and torque (i.e. maintaining a constant angle) while the rig is rotating (Figure 2). To
apply treatment T1 four 1.5 m long chains were fastened (one in each corner) to the inner frame
(Figure 2). Holes were then dug under four major roots, one chain was placed around each of them

and then reconnected to the rig. The rig rotated with the stump. To apply T2 and T3 one or two



knives were attached to the rig (Figure 2), near the roots (within 10-50 mm) of the focal stump. The
knives were sharpened between every repetition. The weight (ca. 300 kg) of the rig was enough to
push the knives into the soil when it was placed around a stump, and the rig rotated around the

stump.

Trees were cut 1-1.5 m above ground to create high stumps before the trials. The ground-covering
vegetation around each stump was removed to make the lateral roots around it visible. The rig had
bolts on two sides (32 in total) which were used to push plates against the stump, in order to keep
the rig upright during the trials. To further stabilize the rig when it was rotating, wooden planks and
wedges (numbers depending on stump size) were placed between the stump and the metal frame.
After the rig was fixed to the stump the rest of the trial equipment was connected (Figure 3): a pulley
reversing the direction of one cable, a triangular bar connecting the rig's cables to the winch cable, a
winch applying force to the rig's cables, an anchor holding the pulley in place, a load cell between the
pulley and the anchor for measuring the force applied during the trial and a rotary encoder for
measuring how far the rig turned during the trial. The winding rate of the winch was about 31 mm/s,

under trial conditions.

<Figure 2 here>

<Figure 3 here>

Measurements

Before the trees were cut in the trials the following variables of each individual tree were measured:
tree height, DBH, crown diameter and bark thickness. After the experiment the soil temperature was
measured. The root diameter of the first root cut in T2 and the first two roots simultaneously cut in

T3 were measured, to calculate the cut root area.

The applied force was measured with a load cell (ID no. 264003), positioned as shown in Figure 3 and

calibrated daily by lifting a 976 kg mass (validated using a Lindell 3100 scale, with accredited



calibration to 3 March 2014). The distance the rig turned was measured with a modified rotary
encoder (Emeta model 300-6-2000-9), with a drum diameter of 31.4 mm and resolution of 0.0493
mm. A string was wrapped around the rotary encoder's drum and was then fastened to one of the
cables. The data from the load cell and rotary encoder were recorded at a resolution of one
measurement per second by an Intab ACC2 data logger controlled by a computer running EasyView

software version 5.5.1.5.

The rotation (R) of the rig during trials was calculated as:

P
R = ro X 360 (degrees) (1)

where P is the distance in mm that the rig turned and the constant 1540 is the rig's diameter in mm.

The maximum torque (T) during each trial was calculated as:

T=2%077+2%0.77 = F x 0.77 (kNm) (2)
where F is the maximum force (kN) recorded during the revolution and the constant 0.77 is the rig’s
radius in m. These calculations were based on the assumption that the rig was pulled at two points
with the same force (half the measured force). To calculate the required torque to overcome E the

average value for an entire revolution was used.

The force required to cut through lateral roots (Fgr) was calculated as:
0.77
FR—F*m—F*ljs (kN) (3)
where F is the maximum recorded force (kN) when cutting through the first root in treatment T2 or
the two first roots simultaneously in T3. The constants 0.44 and 0.77 (m) are the distances from the
rig's centre to the knives and the point where the force was applied on the rig, respectively, the latter

acting as a lever increasing the force. To calculate the force required to overcome E the average

value for an entire revolution was used.

Analyses and statistics

Linear equations (kxx+m) expressing the force and torque of E as a function of DBH (for both fresh



and old stumps) was constructed, using the data presented in Table 2. The E force and torque values
were then subtracted from the values measured during the T2 and T3 treatments before any further

analysis of the data (Table 2).

The effects of main treatment (T1, T2 and T3) and secondary treatment (stump type, “fresh” and
“old”) on the required torque were evaluated with analyses of covariance (ANCOVA) using the
following general linear model (GLM, with 95% confidence intervals): y;=p+a+B;+e;, where yj is the
observed torque, p is the true value, a; is the effect of main treatment, B; is the effect of stump type
and e;; is the random deviation including the interaction effect of a and B. Tukey’s pair-wise
comparison test of means was used to test the significance of differences between treatments. No
interaction effects between factors were examined since T1 was not applied to “old” stumps (see
Table 1). Pearson correlation tests were used to assess the strength of associations of variables with

the torque (and thus whether they should be included as covariates in the ANCOVA).

The differences in required force between treatments T2 and T3 were also studied with ANCOVA, in
which interaction effects of a and  could be examined, using the model y;=p+o;+B;+(ap)i+e;, where
(aB); is the interaction between the main and secondary treatments and e;; is the random deviation.
Again, Pearson correlation tests were used to assess the strength of associations of other variables

with the force (and thus whether they should be included as covariates in the ANCOVA).

The maximum torque needed to twist stumps, the maximum torque required to cut lateral roots
around stumps and the maximum force required to cut lateral roots were also modelled with least
square regression functions, again applying Pearson correlation tests to identify associated variables
that could be used as independent variables, considering those with p-values < 0.05 to be significant.

All statistical analyses were performed using Minitab 16 (Minitab Ltd.) software.



Results

In total 28 stumps with DBH ranging from 154-427 mm (mean, 239 mm) were used in the trials (for

details of these and other variables, see Table 2). The equations derived for E are shown in Table 4.

<Table 2 here>

The DBH variable that was most closely associated with torque, and was used in the ANCOVA analysis
with maximum torque (n=26, Pearson’s r = 0.722, p<0.001). There was a significant difference in
maximum torque between treatments T1 and T2 (p<0.001) and a close to significant difference
between T1 and T3 (p =0.057), but not between “fresh” and “old” stumps (p=0.758) nor between T2
and T3 (p=0.383) (Table 3). Thus, twisting stumps required higher maximum torque than cutting
lateral roots around stumps with one knife and could even require higher maximum torque than
cutting lateral roots with two knives simultaneously. Based on these findings, data for treatments T2
and T3 were pooled (and designated T4) for further ANCOVA analyses of the maximum torque, which
detected significant differences between treatments T1 and T4 (p<0.001). The maximum torque in
treatment T1 was highly correlated to DBH (n=6, Pearson’s r=0.942, p=0.005), bark thickness (n=5,
Pearson’s r= 0.933, p=0.020) and crown diameter (n=5, Pearson’s r=0.982, p=0.003), while the
maximum torque in treatment T4 was highly correlated to DBH (n=20, Pearson’s r=0.813, p<0.001),
and crown diameter (n=16, Pearson’s r=0.738, p=0.001) (Table 3). Hence, the variables DBH and
crown diameter were used in the least square regression functions for treatment T1 and T4 (Table 4

and Figure 4).

The root area variable was most significantly correlated to the required force and hence was used in
the ANCOVA of force which showed that there was no significant difference between the force
required to treat “fresh” and “old” stumps, nor between treatments T2 and T3 (Table 3). Data for
these treatments were therefore again pooled and designated T4. The force applied in treatment T4
was significantly correlated not only to root area (n=14, R’=0.736, p=0.003), but also to DBH (n=14,
R?=0.631, p=0.016) and the torque needed to cut roots around stumps (T4) (n=14, R?>=0.637,
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p=0.014). Root area and the DBH were used in a least square regression functions for T4 (Table 4 and

Figure 5).

<Table 3 here>

<Table 4 here>

< Figure 4 here>

< Figure 5 here>

Discussion

Our results show that twisting stumps or cutting lateral roots around stumps requires much greater
torque (10-50 kNm) than any ordinary rotator mounted at the tip of a boom can generate. The
largest rotator supplied by the manufacturer Indexator (Vindeln, Sweden) can only generate a torque
of 7.8 kNm (L. Eriksson, Indexator AB, pers. comm., May 12, 2010). Thus, if such rotators were used
only the roots around small stumps could be cut, but any efficient stump harvesting technology
developed would have to be capable of harvesting stumps of all sizes. As an alternative, it could be
possible to twist stumps using the wrist of a feller-buncher's felling head, which can generate a
torque of 54.3 kNm and rotate through 340° (D. Barlow, Tigercat Inc., pers. comm., May 27, 2011).
Two knives in combination with a feller-buncher's wrist should be able to harvest most pine stumps

in soils similar to the soil at our study site, provided the boom is designed to handle such torque.

The force we found necessary for cutting lateral root wood is slightly higher than the force Wiklund
(1967) reported to be required for cutting stems with 9000-71000 mm? basal area (Figure 6), which is
not surprising since the soil’s resistance also hinders cutting through roots. This resistance was not
measured in the presented study, but Gebresenbet and Jonsson (1992) found that the force needed
to drag seed drill coulters through agricultural soil increases with depth and increases in speed, up to

about 35 N (at 70 mm depth and 2.1 m/s). In the presented study the knives penetrated the soil
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more deeply (to 350-400 mm) than in Gebresenbet and Jonsson (1992), but the speed was much
lower (0.03 m/s). These comparative data indicate that the force needed to pull knives through sandy
sedimentary forest soil will constitute a minor fraction of the total force required to cut through the
roots in such soil. It should be noted that the root size at the cutting point and DBH were correlated
(n=14, R’=0.631 p-value=0.016), because it was not possible to adjust the radial position of the knives
during the trials. Hence the knives were closer to the stems of large stumps, the knives cut through

larger roots attached to large stems, and the root size was not independent of DBH in the trials.

Kalliokoski et al. (2008) found that pines growing on a Myrtillus type site with a diameter at stump
height of 293 mm had 21 (s.d., 6.2) proximal roots, with an average root diameter of 64 mm (s.d., 37
mm), which approximately corresponds to trees with a DBH of ca. 236 mm (Karlsson, 2007). This
indicates that it should be possible to cut lateral roots around small pines. It also indicates that the
root diameters measured in this study are reliable, and the generated functions could be generalized

to pines growing in similar soils.

< Figure 6 here>

The time profiles of the torque differed substantially between twisting stumps (T1) and cutting
lateral roots with one and two knifes pooled together (T4), as shown in Figure 7. In T1 the torque was
initially high, but the required torque dropped rapidly when the roots loosened from the soil, or
broke off. In contrast, in T4 the maximum torque was lower, but the torque increased every time a
root was encountered. Thus, when a stump was twisted high torque had to be generated initially, but
after the initial peak was reached far less torque was needed, whereas when cutting roots the

maximum torque could occur at any time.

< Figure 7 here>

Only two measurements of the rig-to-stump resistance were made. In an attempt to validate the

reliability of the rig-to-stump resistance equation derived from these two measurements, the torque
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values acquired just before the rig started to turn in treatment T4 were used. This resulted in a
spread of observations above and below the rig-to-stump resistance line (Figure 8), indicating that
the rig-to-stump resistance line was adequately reliable to use to remove the rig-to-stump resistance
before analyzing the data, although it was based on only two measurements. However, it was not
possible to be certain when the rig started to move, therefore the torque measured just before the

rig started to turn was not used in any regression functions.

< Figure 8 here>

The treatments’ effects on the stems were not measured in any way, but cracks were observed in
some stems in inspections following T4 (Figure 9), probably due to roots flexing before being cut.
Some stumps subjected to T1 also had cracks, but they were much smaller. Therefore, twisting
stumps or using torque to cut roots around stumps should not be used for integrated stem and
stump harvests as it would endanger the butt log. A possible alternative for integrated harvest could
be to cut off the roots in a vertical movement (from above). Koch and Coughran (1975) found that
such a method did not damage the stem, but it was sometimes damaged when the tree was lifted

from the ground.

< Figure 9 here>

Some T4 trials were interrupted because the knives bent before all the roots were cut, or the stump
leaned so much that the cables fell off the rig (Table 2). There are two likely reasons for the knives
bending: the knives hitting the roots at an angle (since the roots were not straight), and/or the roots
flexing before being cut. Further, the degree of bending presumably increased somewhat as each
root was cut. However, the bending in some trials is unlikely to have biased our results in any
particular direction as both large and small roots had been cut before the knives bent. In addition,
during most of the treatment T1 trials the rig did not rotate through 360° (Table 2), instead the four
main roots usually broke after a short rotation, resulting in the stump either heavily leaning or

standing straight with four broken main roots. The data obtained during these observations were not
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removed from the analysis since the remaining roots were smaller than those that broke off, thus the
torque required to uproot them should not have been higher than the observed maximum torque,

and hence the incomplete twisting is unlikely to have biased our results.

A weakness of this study is that the experiment was unbalanced (for reasons beyond our control),
making it less likely to find treatment-related differences in force and torque in the ANCOVA analysis.
Therefore, further trials with balanced experiments would be desirable, to enhance the reliability of
the ANCOVA. If the experimental rig presented here is used in further studies it would also be
desirable to make the radial positioning of the knives adjustable, to maintain the same distance
between the knives and stumps (of all sizes). It would also be interesting to investigate other species
and soil types, to see if they require different torque/force. Finally, functions describing the
diameters of lateral roots close to the stem would be highly valuable for calculating the power

required to cut them.
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Tables
Table 1. No. of replicates of treatments in fresh (cut < 3 weeks before trial) and old stumps (cut ca. 10
months before trial). T1=twisting stumps; T2=one knife used for root cutting; T3=two knives used for

root cutting; E=rig-to-stump resistance.

Stump age
Treatments Fresh stumps Old stumps Sum
T1 6 0 6
T2 5 6 11
T3 8 1 9
E 1 1 2
Sum 20 8 28
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Table 2. Data on trees and stumps in the trials. Addrevations: T1=twisting stumps; T2=one knife used

for root cutting; T3=two knives used for root cutting; E=rig-to-stump resistance; DBH=diameter at

breast height over bark; BT=bark thickness; H= height of tree; Diam. C=crown diameter; Aroot=root

area; Soil temp.= temperature in the soil after trial; fresh=cut < 3 weeks before trial; old=cut ca. 10

months before trial; RTSR=calculated rig-to-stump resistance; Perf.=performance in trials, where

T=completely twisted, L=stump leaning during twisting, B=roots broke off (for T1), K=bent knives,

degree of twisting (0-360°).

Tree and stump variables

Trial responses and performance

DBH BT H, Tree  Diam.,C Aot Soil temp.  Stump RTSR  Max Torque  Force to cut root
Treatment Perf.

(mm)  (mm) (m) (m) (mm?’) (c) age (kNm) (kNm) (kN)
T3 295 24 n.a n.a. n.a. 15 Old 5.12 34.78* n.a. 130L
T3 267 36 n.a n.a. n.a. 12 old 4.36 25.61* n.a. 180T/K
T3 300 16 n.a n.a. 14421 12 Old 5.26 44.58*% 49.55% 138T/K
T3 252 n.a. n.a n.a. 14627 13 Old 3.96 34.57* 56.78* 145T/K
T3 167 21 14.8 33 n.a. 12 Old 1.65 17.19* n.a. 142L
T3 235 28 18.5 2.5 22894 11 old 3.49 20.83* 33.78* 196T/K
T3 243 37 17.5 3.9 n.a. 12 old 3.72 21.46* n.a. 180T/T
T3 211 33 1585 3.5 n.a. 11 Old 2.85 33.11* n.a. 121L
T3 177 20 13.0 1.0 4500 8 Fresh 1.92 22.20* 50.45* 180T/T
T2 174 23 14.8 2.2 1854 9 old 1.85 9.80* 15.14* 216L
T2 154 18 9.5 2.8 2733 9 Fresh 131 8.84* 10.93* 157L
T2 213 28 16.8 3.7 n.a. 11 Old 291 20.58* n.a. 134K
T2 245 26 14.5 3.6 2884 10 Fresh 3.76 18.49* 37.71* 360T
T2 247 25 16.5 33 1272 n.a. Fresh 3.81 16.24* 15.96* 321K
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T2

T2

T2

T2

T2

T2

T1

T1

T1

T1

T1

T1

200

220

211

286

320

327

184

229

279

220

249

170

427

196

21

24

21

28

39

48

23

28

36

27

35

n.a.

13.5

15.5

15.5

16.3

17.3

15.8

12.3

15.0

17.5

15.5

14.3

n.a.

2.3

3.8

3.2

4.2

5.9

5.4

31

43

5.0

3.8

5.1

n.a.

803

852

6927

12374

9940

31696

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

o4}

n.a.

Fresh

Fresh

Fresh

old

old

Old

Fresh

Fresh

Fresh

Fresh

Fresh

Fresh

old

Fresh

2.54

3.10

2.84

4.88

12.40*

21.55*%

25.27*

34.16*

49.85*

35.99*

20.89

40.53

47.50

31.25

45.33

24.75

8.67

2.49

13.23*

4.85*

37.78*

77.63*

33.99*

81.43*

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

3471

360K

208L

198K

360T

160K

3608

BL

~90BL

360B

BL

360T

360T

360T

*Torque or force after subtracting the stump-to-rig resistance.
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Table 3. Summary results of the ANCOVA. Abbreviation: T1=twisting stumps; T2=one knife used for
root cutting; T3=two knives used for root cutting; T4=data in T2 and T3 pooled; Stump age=fresh or
old stumps (cut < 3 weeks or ca. 10 months before trial, respectively). DBH and root area were used

as covariates.

Model factors

Responses Main tretments Stump age Interaction Covariate R? adj (%)
Torque p<0.001 p=0.758 n.a DBH (mm) 72.2
(kNm) (T1,T2 and T3)

(p<0.001)
Torque p<0.001 p=0.289 n.a DBH (mm) 71.1
(kNm) (T1 and T4)

(p<0.001)
Force p=0.519 p=0.583 p=0.124 Root area (mm?) 50.1
(kN) (T2 and T3)

(p=0.032)
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Table 4. Parameters for least squares regression functions for the torque required to twist stumps

(T1), and the torque or force required to cut lateral roots around stumps with one and two knives

pooled togheter (T4). Parameters of the linear equations for the rig-to-stump resistance (E) are also

shown. DBH, crown diametre and root area were independent variables. Abbrevation: SE=standard

error; RMSE= root mean square error.

Independent Parameter SE p-value RMSE R’ adj Interval

variables estimate (%)
Torque (E) (kNm) Intercept -2.844

DBH (mm) 0.027 196-427
Force (E) (kN) Intercept -4.977

DBH (mm) 0.047 196-427
Tourge (T4) (kNm) Intercept -16.896 7.729 0.032 6.656 64.3

DBH (mm) 0.178 0.030 <0.001 154.0-326.5
Tourge (T4) (kNm) Intercept 0.212 5.870 0.972 7.485 51.3

Crown diameter (m) 6.677 1.630 0.001 1.0-5.9
Tourge (T1) (kNm) Intercept -22.270 10.330 0.097 4.142 86.0

DBH (mm) 0.259 0.046 0.005 170-278.5
Tourge (T1) (kNm) Intercept -17.805 6.247 0.065 2.422 95.2

Crown diameter (m) 12.888 1.444 0.003 3.1-5.1
Force (T4) (kN) Intercept -29.800 24.320 0.244 19.495 34.8

DBH (mm) 0.280 0.099 0.016 154.0-326.5
Force (T4) (kN) Intercept 99.840 28.650 0.005 14.652 63.2
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LN(Root area) (mmz) 16.049 3.326 <0.001 803-31696
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Figure legends
Figure 1. The stump twisting rig designed by Smith (1986) and used by Anderson, et al. (1989) to

investigate the shear strength of Sitka spruce root plate/soil interfaces. Figure after Smith (1986).

Figure 2. Schematic lllustration of the rig and knives used in the study: from above (A), from the side,
equipped with chains (B), from the side, equipped with a ring for mounting knives (C) and cross-
section of knife used to cut roots (D), dimensions in mm. Knives were 14 mm thick and had an edge

angle of 30°.

Figure 3. The trial setup, cables shown as lines and strings as broken lines.

Figure 4. Left panel: torque needed to cut roots around stumps with one and two knives pooled
together (kNm=-16.896+0.178xDBH, DBH in mm) (T4) and the torque needed to twist stumps
(kNm=-22.270+0.259xDBH in mm) (T1) as functions of diameter at breast height over bark (DBH).
Right panel: torque needed to cut roots around stumps with either one or two knives
(kNm=0.212+6.677xCrown diameter in m) (T4) and the torque needed to twist a stump (kNm=-
17.805+12.888xCrown diameter in m) (T1) as functions of the crown diameter. In both cases, the

lines shown are least squares regression lines.

Figure 5. Forces needed to cut a lateral root with one and two knives pooled together (T4) as a
functions of root area (kN=-99.84+16.049xLN(Root area in mm?)) and diameter at breast height over
bark (DBH) (kN=29.80+0.28004xDBH in mm) to left and right, respectively. In both cases, the lines

shown are least squares regression lines.

Figure 6. Observed force (diamonds and solid line) needed to cut lateral roots of Scots pine with one
and two knives pooled together in current study and the force required to cut stems found by

Wiklund (1967) (broken line).
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Figure 7. Illustration of torque curves for trials in which stumps were twisted with chains (solid line)

or lateral roots were cut with a single knife (broken line).

Figure 8. Rig-to-stump resistance as a function of diameter at breast height over bark (solid line) and

measured values (dots) just before the rig started to rotate.

Figure 9. A stem with a crack after cutting the lateral roots around the stump (treatment T4), the

stump was debarked by the rig during the trial.
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