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Abstract 

The aim of this study was to investigate to which degree the accuracy of vegetation classification 
could be improved by combining optical satellite data and airborne laser scanner (ALS) data, 
compared with using satellite data only. A Satellite Pour l’Observation de la Terre (SPOT) 5 scene 
and Leica ALS 50-II data from 2009, covering a test area in the mid-Sweden (latitude 60° 43’ N, 
longitude 16° 43’ E), were used in maximum likelihood and decision tree classifications. Training 
and validation data were obtained from the interpretation of digital aerial photo stereo models. 
Combination of SPOT and ALS data gave classification accuracies up to 72%, compared with 56% 
using only SPOT data. This indicates that integrating features from large area laser scanning may 
lead to significant improvements in satellite data-based vegetation classifications. 

  

 
1. Introduction 

The combined use of satellite imagery and airborne 
laser scanner (ALS) data in vegetation mapping is 
promising, since it makes use of both the spectral 
information in the optical satellite image and the three-
dimensional information in the ALS data. 

The EU Habitats Directive has set new and high 
standards for how protected sites and valuable habitats 
should be selected and monitored (European 
Commission 2000, European Commission/DG 
Environment 2007). In Sweden, with large forest areas, 
this requires efficient methods for identifying valuable 
sites over large areas at low costs. The currently 
available vegetation maps, produced by aerial photo 
interpretation, cover less than 50% of the land area in 
Sweden, and there is currently no funding available for 
producing a national vegetation map with entirely 
manual methods.  

Automated satellite image classification is an 
established method for producing large area land-cover 
maps and estimations of forest variables, for example, 
in the Swedish national version of the European 
Coordination of Information on the Environment 
(CORINE) Land Cover database (Hagner and Reese 
2007); a statewide land-cover mapping of Wisconsin 
(Reese et al. 2002); the Land Cover Map of Great 
Britain (LCMGB) (Fuller et al. 1994); and Moderate 
Resolution Imaging Spectroradiometer (MODIS) Land 
Cover (Friedl et al. 2002), just to mention a few. The 
accuracy obtained for such products based on the two-
dimensional optical data like Landsat Thematic 
Mapper (TM) is, however, limited. ALS data have 

proved useful in the mapping of certain vegetation 
types such as mires (Korpela et al. 2009). Several 
studies have shown the benefits of combining ALS 
data with different kinds of imagery, for example, for 
estimations of forest variables (Hyde et al. 2006, 
Holmgren et al. 2008, Erdody and Moskal 2010), and 
for classification and mapping of forests (Hill and 
Thomson 2005, Dalponte et al. 2008, Ke et al. 2010), 
rangelands (Bork and Su 2007), urban areas (Haala and 
Brenner 1999) and coastal and estuarine areas (Chust 
et al. 2008, Kempeneers et al. 2009). Also imaging 
radar has been used in combination with optical 
satellite data, for example, for mapping of 
deforestation in Brazil (Rignot et al. 1997). 

 Beginning in 2009, the Swedish National 
Land Survey (NLS) is collecting laser scanner data for 
most of the country. Although the main purpose is the 
production of a new, national Digital Elevation Model 
(DEM), the nation-wide coverage of laser data might 
also be a resource for future vegetation mapping.  

The objective of our study was to investigate the use 
of combining ALS data and images from the Satellite 
Pour l’Observation de la Terre (SPOT) 5 in a 
vegetation classification. A SPOT scene from late May 
2009, covering an area west of Gävle in the mid-
Sweden, was used together with the ALS data from the 
same period. Focus was on mapping forest vegetation 
and mires according to the classification system of the 
Swedish national version of CORINE Land Cover 
database (Engberg 2005). 
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2. Material and methods 

2.1 Study area 

The 25 × 50 km2 study area is located west of Gävle in 
mid-Sweden around latitude 60° 43’ N, longitude 16° 
43’ E (figure 1). It is mainly covered by managed 
hemiboreal forests and mires, here defined as peat- 
accumulating wetlands with less than 30% canopy 
cover. These forests are dominated by Scots pine 
(Pinus sylvestris), Norway spruce (Picea abies) and 
birch (Betula spp.). 

 
Figure 1. Map of the study area. 

2.2 Remote-sensing data 
 
The optical satellite data used in this study was a SPOT 
5 HRG XS scene from 31May 2009. The pixel size 
was 10 m × 10 m for the green, red and near-infrared 
bands and 20 m × 20 m for the shortwave infrared 
band. The image has been geometrically precision 
corrected to the grid system Swedish Reference Frame 
1999 (SWEREF 99), with an error of less than 0.5 
pixels. Within the framework of the national DEM 
production, NLS performed a laser scanning of the 
study area during 29–31 May 2009 using a Leica ALS 
50-II scanner carried by a fixed-wing aircraft. The 
flying altitude was approximately 2300 m, the average 
point density 1.6 m-2 and the maximum scanning 
angle ±20°. 

2.3 Vegetation reference data 
 
Ground-truth data were collected through the 
interpretation of colour-infrared aerial photos. The 
photos were acquired by NLS at 4800 m above the 
average ground level in 2008 and 2009 using a Z/I 
Digital Mapping Camera (DMC) and interpreted in a 
digital photogrammetric work station. While a basic 
sample of images was randomly distributed in the 
study area, a set of additional images were selected 
from areas where the less frequent deciduous and 
mixed forest classes are more common in order to 
represent all classes. Class proportions in the ground-
truth data set are therefore not entirely representative 
for the region. Within the stereo images, 1548 circular 
sample plots with 10 m radius were distributed in a 
grid with 500 m spacing and a randomly selected 
starting point. The following data were registered per 
plot: mean tree height, tree species composition 
(percentage of canopy cover), diffuse canopy cover 
(percentage) and vegetation class. Canopy cover is 
defined as the area of the ground covered by a vertical 
projection of the canopy (Jennings et al. 1999). Diffuse 
canopy cover means the total vertical projection of the 
tree crowns on the ground, including any gaps within 
the crowns (Allard et al. 2003). The classification 
scheme has seven classes based on the refined Swedish 
national version of the European CORINE Land Cover 
database (Engberg 2005). Unlike in CORINE, no 
minimum mapping unit was used in this study. Class 
definitions are given in table 1. Due to few training 
areas, the classes coniferous, deciduous and mixed 
forest on mire, that is forest meeting the criteria of 
30% canopy cover and 5 m tree height but growing on 
mire, were excluded from the classification and are not 
shown in table 1. Plots where the dominating class 
covered less than 70% were excluded from the 
reference data set. Large spectral outliers were 
examined closer by visual interpretation of the satellite 
image and aerial photos and excluded if the presence 
of roads, water, large gaps between trees and so on 
could explain the spectral anomalies. After exclusion 
of outliers, the data set consists of 780 plots. From 
each class, two-thirds of the plots were randomly 
selected as training areas and the remaining third was 
used for validation. 

2.4 Processing of remote-sensing data 

Laser returns were classified as ground or vegetation 
returns using a progressive Triangulated Irregular 
Network (TIN) densification method (Axelsson 1999, 
2000), implemented in the TerraScan software 
(Terrasolid Ltd., Helsinki, Finland) (Soininen 2004). A 
DEM was estimated by linear TIN interpolation with 
the laser returns classified as ground hits. First step, 
ground elevation was calculated in 0.5 m raster cells as 
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the mean elevation of ground hits within each cell. 
Second, empty cells were assigned elevation values by 
TIN interpolation of the filled cells. The height value 

(dz) of a laser return was computed as the difference 
between the z-value of the laser return and the z-value 
of the DEM. 

 

Table 1. Class definitions. 

Class 
Canopy 

cover (%) 
Tree height 

(m) 

Species composition (%) 
No. of sample 
plots, training 

No. of sample 
plots, evaluation 

Coniferous Deciduous 

Clear cut† 0-100 <2 0-100 0-100 87 43 
Young 0-100 2-5 0-100 0-100 23 12 
Coniferous 5-
15 m 

≥30 >5, ≤15 ≥70 <30 94 47 

Coniferous 
>15 m 

≥30 >15 ≥70 <30 185 93 

Deciduous ≥30 >5 <30 ≥70 81 41 
Mixed ≥30 >5 30-70 30-70 23 11 
Mire‡ ≤30 any 0-100 0-100 27 13 

Notes: †The plot should show traces of felling, e.g. stumps, machine tracks and debris. ‡ Peat-accumulating wetland. This ground type is not 
allowed for any other class. 

. 

Laser data were extracted in 10 m × 10 m grid cells 
coinciding with the SPOT pixels. A height threshold of 
10% of the maximum laser height in each cell and ≥ 
1.0 m was applied in order to separate canopy returns 
from returns of ground, stones and low vegetation. 
Several features were extracted from the laser data 
within each raster cell, based on the dz distribution of 
laser returns above the height threshold: 10th percentile 
(P10), 20th percentile (P20),..., 90th percentile (P90), 95th 
percentile (P95) and 100th percentile (P100). A 
vegetation ratio (V) was calculated as the ratio between 
the number of laser returns above the height threshold 
and the total number of returns. 

2.5 Classification and accuracy assessment 

Classification was done with the ENVI software 
version 4.7 (ITT Visual Information Solutions, 
Boulder, CO, USA), using the maximum likelihood 
method. Image data for the training and validation 
plots were extracted from the SPOT image and the 
ALS rasters with nearest-neighbour sampling. A first 
classification was done with the four SPOT bands, and 
different combinations of height percentiles and/or 
vegetation ratio from the ALS data were tested as 
additional bands. Classification with only ALS data 
was tested in order to better understand the influence 
of these data on the result. A decision tree 
classification was also tested. In the first step, a 
threshold on V was used to split the pixels into two 
groups: (1) clear-cuts and mires (low V) and (2) other 
classes. The threshold V = 0.31 was selected as the 
value giving the largest number of correctly classified  
 
 

plots in the training data. Second, a maximum 
likelihood classification with the SPOT bands as 
predictors was made on each group separately. Pixels 
classified as coniferous forest were then classified as 
5–15 m or >15 m using the threshold obtained from 
linear regression between P90 and aerial photo-
interpreted tree height. 

3. Results 

Classification using only the four SPOT bands gave an 
overall accuracy of 55.8%. The error matrix (table 2) 
shows that many clear-cuts were classified as young 
forest, and that the two coniferous classes were often 
mixed up.  

When looking at the entire reference data set, 
Pearson correlation coefficient between V and aerial 
photo-interpreted canopy cover was 84.3%. The 
correlation between height percentiles and mean tree 
height ranged from 59.5% to 71.9% for P10 to P50 and 
decreased slightly for higher percentiles. For the two 
coniferous classes, the highest correlation, 93.2%, was 
found for P90. Using P50 and V as additional bands in 
the classification resulted in an overall accuracy of 
70.0%. Without V the accuracy was 65.8%. The 
improvement is mainly due to less confusion between 
clear-cuts and young forest and between the two 
coniferous classes. Table 3 shows the error matrix.  

When using ALS data alone, P50 and P90 gave good 
results for coniferous forest and mire, but the overall 
accuracy was only 50.4% and the result was 
particularly bad for deciduous forest and clear-cuts. 
Adding V improved the result for these two classes, but 
the overall accuracy remained low, 58.5%.  
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The highest overall accuracy, 71.9%, was obtained 
with the decision tree. The majority-filtered 
classification image is similar to the one from the best 
maximum likelihood classification (figure 2(d)), but 
slightly more heterogeneous and possibly with some 
more confusion between young forest and coniferous 
forest 5–15 m. Kappa analysis of the error matrices for 
classification with only SPOT data and for the decision 
tree classification (SPOT and ALS data) indicates that 

the latter method is significantly better at a confidence 
level higher than 99%.  

Overall classification accuracies for different band 
combinations are shown in table 4, together with 
producer’s accuracies for each class. Classification 
images for a part of the study area are shown in figure 
2 together with the SPOT 5 image and the P50 raster. 
After validation of the result, post-processing of the 
classified images was made with a 5 × 5 pixels 
majority filter.  

 

Table 2. Error matrix for maximum likelihood classification using only SPOT data. 

Classification 
data 

Validation data  User’s 
accuracy (%) Clear-cut Young Coniferous 5-15 

m 
Coniferous >15 m Deciduous Mixed Mire 

Clear cut 24 1 0 0 0 0 2 88.9 

Young 13 8 4 1 2 1 1 26.7 

Coniferous 5-15 

m 1 0 14 
20 3 0 0 36.8 

Coniferous >15 
m 1 0 23 

53 1 3 0 65.4 

Deciduous 0 3 1 5 29 0 0 76.3 

Mixed 0 0 5 13 6 7 0 22.6 

Mire 4 0 0 1 0 0 10 66.7 

Producer’s 
accuracy (%) 

55.8 66.7 29.8 
 

57.0 

 

70.7 

 

63.6 

 

76.9 

Overall 

accuracy 

55.8 

 

 

Table 3. Error matrix for maximum likelihood classification using SPOT data, P50 and V. 

Classification data 

Validation data  User’s 
accuracy (%) Clear-cut Young Coniferous 5-15 

m 
Coniferous >15 
m 

Deciduous Mixed Mire 

Clear cut 33 0 0 1 0 0 4 86.8 

Young 3 12 4 1 3 0 0 52.2 

Coniferous 5-15 m 0 0 31 5 4 3 0 72.1 

Coniferous >15 m 1 0 7 67 3 3 0 82.7 

Deciduous 0 0 1 3 27 2 0 81.8 

Mixed 0 0 4 16 4 3 0 11.1 

Mire 6 0 0 0 0 0 9 60.0 

Producer’s accuracy 
(%) 

76.7 100 66.0 72.0 65.9 27.3 69.2 

Overall 
accuracy 

70.0 
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4. Discussion 

The objective of this study was to investigate to which 
degree a vegetation classification using optical satellite 
images could be improved by integrating ALS data. 
The combined use of these two data sources increased 
the classification accuracy by 16% compared with 
those using only satellite data. The highest overall 
accuracy was obtained when using P90 and V together 
with SPOT data in a decision tree. ALS data helped 
distinguish between height classes with similar spectral 
signatures, while optical satellite data were important 
for species discrimination.  

P50 and P90 alone did not work well for separating 
clear-cuts, but the result improved from 11.6% to 
41.9% when adding V. If one single tree, or part of a 
tree, is present in a clear-cut pixel, the height 
percentiles will be strongly affected by that tree since 
most of the lower vegetation will fall below the height 
threshold and will not count as vegetation hits. The 
height percentiles may therefore have values similar to 
those in higher forest classes. The vegetation ratio will 
still be low, which explains the improvement in 
accuracy when this variable was used in the 
classification.  

 
Figure 2. A 6.6 × 6.2 km part of the study area. (a) The SPOT image, (b) the P50 raster, (c) classification using SPOT data and (d) 
classification using SPOT data together with P50 and V. Water and roads are from the Swedish National Land Survey’s 
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topographic map and road map. Urban and agricultural areas from the topographic map are masked out. A 5×5 pixels majority 
filter has been applied to the classified images. 

 

The low accuracy when using only SPOT data is partly 
due to confusion between the two height classes of 
coniferous forest. There is little spectral difference 
between these classes, and the height information from 
ALS data is necessary in order to separate them from 
each other. Clear-cuts that are old enough to have some 
vegetation are spectrally close to young forest, which 
might explain the confusion between these two classes. 
In addition, it is difficult to accurately measure the 
height of small trees in aerial photo stereo models. This 
may cause errors in the reference data set and might be 
one reason for the relatively low classification 
accuracies. These errors, however, have no 

implications on the overall conclusion that using 
features from large area laser scanning would lead to 
significant improvements in satellite data-based land-
cover classifications.  
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Table 4. Over-all accuracy and classwise producer’s accuracies (%) for different band combinations.  

Bands* Clear cut Young Coniferous 5-15 
m 

Coniferous >15 m Deciduous Mixed Mire Over-all 

S1-S4 55.8 66.7 29.8 57.0 70.7 63.6 76.9 55.8 

S1-S4, P50 58.1 83.3 61.7 72.0 63.4 36.4 76.9 65.8 

S1-S4, V 69.8 75.0 36.2 52.7 68.3 36.4 76.9 56.5 

S1-S4, P50, V 76.7 100 66.0 72.0 65.9 27.3 69.2 70.0 

P50, P90 11.6 16.7 74.5 80.6 2.44 18.2 84.6 50.4 

P50, P90, V 41.9 83.3 63.8 77.4 17.1 36.4 84.6 58.5 

decision tree† 67.4 66.7 68.1 77.4 70.7 63.6 76.9 71.9 

* S1-S4 are the four SPOT bands, P50 and P90 are the 50th and  90th height percentiles, and V is the vegetation ratio. † The decision tree uses V, P90 
and the four SPOT bands as predictors. 
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