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Abstract

Xavier Tizon.Algorithms for the Analysis of 3D
Magnetic Resonance Angiography
Images. Doctoral Thesis

ISSN 1401-6230, ISBN 91-576-6700-4

Atherosclerosis is a disease of the arterial wall, progressively impairing blood
flow as it spreads throughout the body. The heart attacks and strokes that
result of this condition cause more deaths than cancer in industrial coun-
tries. Angiography refers to the group of imaging techniques used through
the diagnosis, treatment planning and follow-up of atherosclerosis. In recent
years, Magnetic Resonance Angiography (MRA) has shown promising abil-
ities to supplant conventional, invasive, X-ray-based angiography. In order
to fully benefit from this modality, there is a need for more objective and
reproducible methods.
This thesis shows, in two applications, how computerized image analysis
can help define and implement these methods. First, by using segmentation
to improve visualization of blood-pool contrast enhanced (CE)-MRA, with
an additional application in coronary Computerized Tomographic Angiogra-
phy. We show that, using a limited amount of user interaction and an algo-
rithmic framework borrowed from graph theory and fuzzy logic theory, we
can simplify the display of complex 3D structures like vessels. Second, by
proposing a methodology to analyze the geometry of arteries in whole-body
CE-MRA. The vessel centreline is extracted, and geometrical properties of
this 3D curve are measured, to improve interpretation of the angiograms. It
represents a more global approach than the conventional evaluation of athe-
rosclerosis, as a first step towards screening for vascular diseases.
We have developed the methods presented in this thesis with clinical practice
in mind. However, they have the potential to be useful to other applications
of computerized image analysis.

Keywords:Contrast-Enhanced Magnetic Resonance Angiography, Comput-
erized Tomographic Angiography, blood-pool agents, segmentation, fuzzy
connectedness, fast marching, vesselness, atherosclerosis, shortest path, vas-
cular analysis, Maximum Intensity Projection, curvature, torsion
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1 Introduction

Cardio-vascular diseases are the leading cause of death in western countries.
Among them, atherosclerosis accounts for more than 70% of this mortality,
alone responsible for more deaths than cancer. Atherosclerosis is a systemic
disease of the vessel wall that evolves slowly over the years, often without
any symptomatic manifestation. Yet, when it strikes, it can be dramatic, with
plaque rupture and thrombosis causing unstable angina, myocardial infarc-
tion or sudden death. That is why it is crucial to develop methods to diagnose
and evaluate risks associated with atherogenesis.

Medical imaging has emerged in the last two decades as an essential
tool in clinical diagnosis and follow-up. As the technique evolves, the num-
ber of available modalities increases steadily, offering new ways to explore
pathologies. But the complexity of images grows along with their quantity:
three-dimensional, high-resolution datasets are becoming standard. Their
correct interpretation requires highly trained experts and advanced technical
equipment. This thesis aims at showing that this interpretation task can be
made easier by the use of computerized image analysis and proper visualiza-
tion techniques.

The datasets used in this thesis all come from emerging angiographic
modalities:

• Blood-pool contrast-enhanced magnetic resonance angiography
• Coronary contrast-enhanced computerized tomographic angiography
• Whole-body contrast-enhanced magnetic resonance angiography

To improve the analysis and visualization of these datasets, we use in
this thesis methods from:

• Fuzzy set theory and digital geometry
• Computer graphics
• Mathematical image analysis: partial differential equation, differential

geometry
• Scale-space theory

The thesis is organized as follows. Section2 focuses on the data them-
selves. It provides the reader with an overview of the medical context behind
the image analysis projects. First with a brief introduction to atherosclerosis,
and then to the physical and clinical aspects of Magnetic Resonance Imaging
(MRI) and Angiography (MRA), including ways to visualize the acquired
data. Section3 introduces most of the mathematics behind the algorithms
used to analyze angiographic images. First, the notion of connectedness is
defined for grayscale images, and we show how to use it to segment arteries
from veins. Then we introduce the shortest path problem and an algorithm
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to solve it in the context of vessel detection. The last part shows how the
geometry of 3D curves can be measured to detect early signs of plaque vul-
nerability. Research not only consists in the introduction of new concepts,
but also in their proper implementation [18]. Section4 gives information
about the way the new algorithms were implemented. Section5 offers some
views of the future, suggesting ways to improve our results and new research
tracks. In section6, we summarize the main results of the different articles
included in this thesis.
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2 Background

Our research has been articulated around two projects, involving different
imaging protocols and image analysis methods. This section aims at present-
ing the background knowledge necessary to understand the papers included
in this thesis.

2.1 Atherosclerosis

Diseases of the circulatory system account for nearly half of the deaths in
western countries. Atherosclerosis belongs to this group, and will most likely
be the principle cause of worldwide morbidity and mortality in the near fu-
ture [126].

As early as 1740, Krell, a German physician, described calcic structures
inside the arterial wall, which he named “bony plaque”. Lobstein, nearly
100 years later, named the disease “atherosclerosis” [55]. The word athe-
rosclerosis comes from the Greek words “athero”, meaning gruel or paste,
and “sclerosis”, meaning hardness. It is a systemic disease: it affects the
whole body. It is characterized by a local thickening of the innermost vessel
wall layer, the intima (see Fig.1), leading to a progressive reduction of the
diameter of the arteries [3, 10, 102].

Atherosclerotic lesions, commonly called atheromas or plaque, are com-
posed of accumulated intracellular and extracellular lipids, smooth muscle
cells, and connective tissue. They can be found in any medium or large
artery, but will most likely be near bifurcations and in highly curved ves-
sels [145]. In order of frequency [86], they can be found in (see Fig.2 and3
for an anatomic chart of the main arteries):

• the abdominal aorta
• the coronary arteries, especially the proximal segments
• the arteries to and in the lower limbs: iliac, femoral, popliteal and

tibial arteries
• the carotid, brachial, and vertebral arteries

The formation of atherosclerotic plaque is thought to be a continuous
process, which may go on for several years without any symptoms. The de-
tailed mechanisms of atherogenesis are still uncertain, and Stary suggested
in 1994 a decomposition in eight different stages [148]. Stages 1 to 3 rep-
resent the progressive plaque buildup. They happen during childhood and
young adulthood. The intima thickens as it slowly incorporates muscle cells,
lipids and blood cells. At stages 4 and 5, the plaque is almost fully grown,
but does not yet induce any symptom. The thickening of the plaque is ac-
companied by a compensatory dilation of the vessel, called arterial remod-
eling [49, 69, 166]. This way, a relatively large plaque may exist in the
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Figure 1: The artery wall consists of three layers: (3) a layer of connective
tissue, the tunica adventitia; (1) a second layer of smooth muscle cells and
elastic connective tissue, the tunica media; and a third layer of endothelial
cells, the tunica intima. The central, blood containing space, is the lumen.
Fatty deposits in the intima constitute the atherosclerotic plaque (2).
© Copyright Bayer HealthCare AG, Leverkusen, Germany.
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arterial wall without any reduction in blood flow. Eventually, at stages 6 to
8, the large plaque may cause a diminished luminal diameter with conse-
quent impairment of blood flow. To some extent, the body will protect itself
by forming new blood vessels around the affected area. This is called de-
veloping “collaterals”. If the flow is reduced in the coronary arteries or in
the large arteries of the legs, the patient may experience pain as angina or
claudication. However, in many cases, the plaque does not give any notice
until it ruptures. The rupture induces a thrombus formation with subsequent
temporary or permanent occlusion of the vessel. In the coronary arteries, the
result is a myocardial infarction, and in the arteries of the legs acute criti-
cal ischemia. Strokes and transitory ischemic attacks of the brain are often
caused by thrombus formation on lesions in the carotid arteries.

Several risk factors have been identified [99]. Their relative importance
is still a matter of active research:

• High Low Density Lipids cholesterol level
• Hypertension
• Tobacco smoking
• Diabetes
• Obesity
• Physical inactivity
• Genetic factors

Two strategies are possible for treatment, depending on the gravity of the
disease. The medical approach includes a low-fat diet together with exercise,
to lower blood lipid levels, lose weight, and to help develop collaterals. Med-
ications are also useful: anti-platelets and anti-coagulants, to reduce the risk
of clot formation in the vessels. When the disease has reached a certain stage,
evaluated by clinical symptoms and the state of the vascular bed surround-
ing lesions, surgery is required to bypass or unblock the heavily stenosed
arteries. Several techniques are available, which all require, in order to plan
and evaluate the results of the procedure, a quantitative knowledge of vessel
geometry.

Aging, atherosclerosis and vessel morphology.Recently the view that
atherosclerosis only amounts to a matter of “plumbing” has been
challenged [51, 87]. The role of inflammation in the process of atherogene-
sis has been recognized, and plaque can be seen as the scar tissue left by the
inflammatory process. As such, its effects are very similar to those of aging.
It is actually often mentioned that atherosclerosis may be viewed as an ac-
celerated form of aging [41]. The effects of atherosclerosis can be observed
locally, with a luminal diameter reduction, leading to stenosis and eventually
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Figure 2: Schematic representation of the main arteries in the human body.
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Figure 3: Name of the main arteries in the human body.
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occlusion. But, as shown by recent research, the more global consequences
may be even more critical to identify and measure. The whole vascular sys-
tem reacts actively to the process of atherogenesis: the role of vasculature
in atherogenesis is not simply a passive housing of atherosclerotic lesions.
On the contrary, the vascular morphology evolves along with atherosclerosis
progression in a process called arterial remodeling [69, 166]. The vessel wall
gets stiffer as it loses its elasticity, and the outer arterial diameter increases
as plaque grows within the lumen. This compensatory mechanism makes
vessels longer, and thus more tortuous. With this new model, it is apparent
that we need to target the underlying atherosclerotic vascular disease process
instead of addressing the size of the lumen. The purpose of paper VI is to
suggest a set of objective measures of the morphology of the main arteries in
whole-body CE-MRA.

2.2 Data acquisition
2.2.1 Magnetic Resonance Imaging

The following sections present a brief introduction to the Magnetic Reso-
nance phenomenon, and the way images are created from the MR signal. To
get a more in-depth description of MRI, the reader is referred to [11, 38, 127]
for example, and to [54] for the authoritative reference on MRI.

History. Nuclear Magnetic Resonance (NMR) was discovered indepen-
dently by Bloch [13] at Stanford University, and Purcell [123] at Harvard.
MRI was known as NMR until the “nuclear” connotation became unpopular,
but both names denote the MR principle involved. In 1946, Bloch and Pur-
cell found that when certain nuclei were placed in a strong magnetic field,
they could absorb energy in the radio-frequency range, and re-emit this en-
ergy during the transition to their original state [127]. They were awarded
the Nobel prize in physics in 1952 for their research. Spectroscopy remained
the only application for many years, and R.R. Ernst received the Nobel prize
in chemistry in 1991 for his work on NMR spectroscopy. It took 20 years
and the work by Damadian [29], Lauterbur [83] and Mansfield [100], to-
gether with the introduction of the use of Fourier Transform in 1975 by
Kumar [80], to produce images from the MR phenomenon. Lauterbur and
Mansfield were awarded the Nobel prize in medicine in 2003 for “their dis-
coveries concerning Magnetic Resonance Imaging”. Two other Nobel prizes
have been rewarded for research in Magnetic Resonance: in 1944 in Physics
to I. Rabi and in 2002 in Chemistry to K. Wüthrich.

Spin and precession. Some nuclei possess an intrinsic quantum property,
the spin angular momentumI. In the case of the1H hydrogen nucleus (the
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proton), it will give rise to a magnetic momentµ, which produces magnetic
interactions with its environment :

µ = γI , (2.1)

whereγ is the gyromagnetic ratio, uniquely defined for a nuclear isotope
possessing a spin. So, a proton acts as if it were a spinning sphere of charge
and mass, with an angular momentumµ. When placed in an external mag-
netic fieldB, protons experience a torqueΓ, to align the moment withB:

Γ = µ×B , (2.2)

where× represents the vector cross product. Because of the angular momen-
tum, the result is a precession of the proton aroundB at angular frequency
ωL, the Larmor frequency:

ωL = γB . (2.3)

Only nuclei with non-zero magnetic moment can undergo NMR. Such
nuclei must have an odd number of protons or neutrons (e.g.1H, 2H, 13C,
15N, 31P, 19F). The magnetic momentsµi of the individual nuclei sum up
to M , the net magnetization vector:

M =
1
V

∑
i

µi , (2.4)

whereV is the total volume of the nuclei.

Excitation and relaxation. M has a componentMz along thez axis,
which is conventionally chosen to point in the direction ofB, and a trans-
verse componentM⊥. It is the transverse component of the magnetization
vector that can be measured, using an antenna: this is the NMR signal. By
induction,M⊥ will produce a measurable current in the antenna. Inversely,
if we generate a current in the antenna at the resonance frequency, it will
causeM⊥ to grow, as the nuclei are given energy and “tipped off” from their
equilibrium position. The angle measuring how much energy they are given
is called theflip angle.

The process of sending a pulse to excite the nuclei, and to measure the
way they return to equilibrium with the same mechanism, forms the basis of
NMR. The pulse has an energy in the radio-frequency (RF) range, to obtain
resonance with the nuclei precessing at Larmor frequency. It is thus called a
RF pulse.

The relaxation of the spins after excitation are governed by two physical
processes:
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• spin-lattice relaxation, with time constantT1

• spin-spin relaxation, with time constantT2

The Bloch equation describes the interaction of nuclear spins with the exter-
nal magnetic fieldB and their local environment:

∂M

∂t
= γM(t)×B +

M0 −Mz(t)
T1

z − 1
T2

M⊥(t) , (2.5)

whereM0 is the equilibrium sample magnetization, andM⊥ = [Mx,My, 0].
Solving the Bloch equation with a constantB and a RF pulse of 90° flip

angle gives:

Mz(t) = M0 (1− e−t/T1)

M⊥(t) = M0 e−t/T2 .
(2.6)

This is the gradient echo experiment, the simplest MR sequence. It gives an
easy interpretation for the time constantsT1 andT2. T1 is the time constant
characteristic for the return ofMz to its equilibrium valueM0, andT2 de-
scribes the way the transverse magnetizationM⊥ decays back to zero. These
equations explain how contrast is built from the MR signal, by showing the
link between the measured signal (Mz andM⊥) and the local properties of
tissue (T1 andT2).

MR Imaging. The process as it has been described up to now only gives
one signal for the whole sample.To be able to do MR imaging, we need a way
to localize the origin of the signal. This is done with the help of so-called
field gradients. A field gradient is a spatially varying magnetic field added to
the main fieldB0. The field strength produced this way will be different for
different spatial locations, and thus the resonant frequencyωL of the nuclei
will also depend on their location:

ωL(z) = γ(B0 + zGz) . (2.7)

Applying a gradient along thez direction is called “slice selection”. If an RF
pulse is applied to the sample when the gradient is active, only a thin slice
of the volume will enter the resonant stage. The thickness of the slice will
depend on (see Fig.4):

• the slope of the gradient alongz,
• the “RF bandwidth”, that is the spread of the RF pulse around its center

frequency.



2.2 Data acquisition 11

ω0

ω (s-1)

z (m)

RF bandwidth

∆z1

∆z2

G1
G2

Figure 4: Slice thickness depends on gradient slope and RF bandwidth.
G represents the gradient slope, and∆z the corresponding slice thickness.
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Additional gradients alongx andy allow for the complete spatial encod-
ing of the MR signal. In practice, thin and well-defined slice excitation is
difficult to achieve within system constraints and therefore spatial resolution
along the slice-select direction1 is typically less (3 mm) than the in-plane
resolution (1 mm). The imaging equation gives the measured signal:

S(t) =
y

ρ(x, y, z)e−i2π(xkx+yky+zkz) dxdy dz , (2.8)

where

kx(t) = γ

∫ t

0
Gx(u) du ,

andky andkz are defined accordingly. The zero in the lower limit of the
integral definingkx represents the time at which the gradient is switched
on. ρ(x, y, z) is the density of protons in the sample. All integration limits
are determined by the regions of non-zero spin density. Some terms of the
imaging equation will depend on the type and the order of the applied RF
pulses, the so-called imaging sequence. However, the signal is always pro-
portional to the Fourier Transform of the proton density. As can be seen from
the imaging equation2.8, the signal is complex in the most general case. It
is acquired in the Fourier domain, usually named k-space in MRI. An in-
verse Fourier Transform is then necessary to reconstruct the image from the
MR signal. Two additional parameters are important to describe the imaging
sequence:

• TR, the time to repetition. It is the time interval between RF pulses.
• TE , the time to echo. It is the time after the excitation pulse when the

transverse magnetization is measured.

As an illustration of the effect ofTR andTE , Fig.5 shows the different kinds
of contrast MRI can provide. For a particular imaging sequence, the “spin-
echo” sequence, we have:

signal ∝ ρ(1− e−TR/T1)e−TE/T2 . (2.9)

Therefore, the tuning ofTR and TE allows the contrast to be built from
different physical properties of the tissue.

2.2.2 MR artifacts

MRI is a very elaborate technique. Many things can go wrong when perform-
ing an MR examination. The defects that can be seen in an image depend
on the scanner hardware, the imaging sequence, and even the subject inside
the scanner. These defects are called artifacts, and we will describe some of
them, relevant to our study, as they can be useful to understand the task at
hand.

1Usually this is the axis of the scanner, which we will refer to as the z-axis.



2.2 Data acquisition 13

T1

T2

PD

not used

clinically

150

50

TE (ms)

TR (ms)

1200 3000
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Figure 5: Upper row: typical values ofTR andTE to build the three simplest
kinds of contrast in MRI: signal weighted byT1, T2 and Proton Density
(PD). Lower row: three axial slices of a human brain MRI scan, showingT1,
T2 and PD-weighted contrast. We can clearly see the different information
provided by the three modalities. The white disks on each side of the head
are fiducial markers used to align the three images. The patient has multiple
sclerosis, and lesions of the white matter can be seen as bright spots on the
T2 and PD images, and dark spots on theT1 image.
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Noise. The noise present in the MRI image is primarily due to thermal
noises in the patient [110]. Noise present in the raw, complex MR signal
acquired in the Fourier domain presents a Gaussian distribution. But the
transformation to a magnitude image changes the Gaussian distribution of
the data to a Rician distribution [143]. Noise mainly depends on:

• voxel size
• acquisition time
• main magnetic field intensity

At high Signal to Noise Ratios (SNR), the Rician distribution is very close
to a Gaussian. Thus the assumption of Gaussian distributed noise is sound
for the images we will work with.

Partial Volume Effect. A voxel actually contains many protons and the
signal is averaged over the whole voxel volume. When a voxel contains
more than one tissue type, the signal contribution of this voxel is a mix of the
signals from the different tissue types the voxel contains: this is the Partial
Volume Effect. It is a common property of every imaging system and cannot
stricto sensu be called an artefact. However, as it causes blurred boundaries
and signal variations within a volume, it is an important effect that has to be
taken into account by the image analysis process.

Motion artifacts. Motion can be periodic, as caused by blood flow, heart
beat, or respiration; or random, as a consequence of patient movements. The
motion of the entire object during the imaging sequence generally results
in a blurring of the entire image with ghost images in the phase encoding
direction. More often, movements of a small portion of the imaged object
will result in a blurring of that small portion of the object in the image.
This type of artifact will be mostly visible around the patient’s heart. The
nature of the artifact depends on the timing of the motion with respect to the
acquisition.

Geometrical distortions. As shown in section2.2.1, gradients are used in
MRI to provide spatial localization of the MR signal. But, unlike the ideal
case of Fig.4 showing the gradient as a straight line, real gradients present
linearity defects. These effects get larger as voxels are further away from
the magnet’s center. The result is an error in voxel localization, that can be
observed in the image as local, non-linear distortions. Additionally, gradient
fields, which depend on the coils’ geometry, are usually specific to each MR
scanner, making these distortions even more difficult to handle [81]. In the
particular case of the whole-body MRA sequence (see section2.2.3), the size
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of the Field of View (FOV) is greater than in conventional imaging, making
distortions even more apparent (see an example in Fig.6). The purpose of
Paper III is to model these distortions using a phantom [165], to be able to
correct their effects and thus improve the quality of subsequent volumetric
quantitative measurements.

Figure 6: Geometrical distortions as they can be seen on a whole-body MRA
volume. Vessels in the distal portion of the field of view are curved towards
the image axis.

2.2.3 Magnetic Resonance Angiography

The first angiographic experiment dates back from early 1896 [56], just a
few months after Roentgen discovered X-rays (see Fig.7). Vessel visual-
ization examinations entered clinical practice with the invention of Digital
Subtraction Angiography (DSA) in the 1970s [79], which has become and
still remains the gold standard for vascular studies. In DSA, a catheter is
used to inject a radio-opaque contrast agent directly into the arteries. The
catheterization is an intervention presenting the risk of severe complications.
Moreover, the contrast medium, containing iodine, can cause serious side ef-
fects, such as allergy-like reactions or renal failure. See Fig.8 for an example
of a DSA image.

Ultrasound (US) [119], Computed Tomographic Angiography (CTA),
and the more recent variant of DSA, 3D rotational angiography [141], are
other techniques used to image vascular territories. Table1 summarizes the
main characteristics of the most widely available angiography modalities.
As an alternative, MRA offers a procedure that is safe for the patient, with
good spatial resolution, even if not matching that of DSA, and inherent 3D
acquisition.

There exist three major techniques to perform angiography with MRI [76]:

• Time of Flight (TOF) [167]. It uses the fact that, as blood is circulating
even during the acquisition, its magnetization properties differ from
the surrounding, non-moving tissue. For optimal conditions, the image
plane has to be oriented perpendicular to the main flow.



16 Algorithms for the Analysis of 3D MRA Images

Figure 7: The very first angiographic image, 1896. E. Haschek and O. Lin-
denthal used bismuth, lead, and barium salts as contrast medium to perform
the first X-Ray angiogram, using an amputated hand.

Figure 8: Example of a DSA image of the carotid artery, branching into the
internal and external carotids. A stenosis can clearly be identified.
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• Phase Contrast (PC) [163]. This technique is based on the linear re-
lationship between the phase of moving spins and their velocity. The
MR signal is directly related to blood flow velocity.

• Contrast-Enhanced (CE) [21, 28, 90, 101]. Like in DSA, contrast
agents have been developed to be used in MRA. They are injected
intravenously and reduce theT1 relaxation time of the surrounding
blood, making vessels appear brighter onT1-weighted images. Often
based on Gadolinium, they stay in the vascular bed for only a short pe-
riod of time (minutes). It is important to note that, unlike DSA, MRA
shows the effect of the contrast agent on proton relaxation around con-
trast molecules, and does not show the contrast agent itself. By timing
the injection so that the contrast medium reaches the vessels of inter-
est during image acquisition, it is possible to achieve exclusive arterial
enhancement [33, 121]. The total volume of injected contrast medium
is called the bolus, and the synchronization of injection and scan time
is calledbolus chase.

Flow-based techniques, like TOF-MRA and PC-MRA are of limited practi-
cal use. They require long acquisition times, and the quality of the images
depend on the orientation of vessels and blood flow patterns. In addition, the
size of the FOV is limited, and many parameters have to be set in order to
obtain optimal results. CE-MRA is therefore the preferred technique in most
vascular areas.

Blood-pool contrast agents. A new family of contrast agents has been
developed recently [67, 82, 170], which are currently in the last phase of
clinical trial, meaning that they are still only used on patients for research
purposes. Rather than diffusing quickly through the vessel wall, Blood-Pool
(BP) contrast agents remain intravascular much longer than conventional
contrast agents (typically more than an hour). They can thus be used to
produce images of the vascular structure during steady state, that is, when
the whole vascular tree is filled with contrast. This presents both advantages
and drawbacks:

, It allows for longer acquisition times, and significantly improves the
Signal to Noise Ratio (SNR). It also allows new kinds of imaging tech-
niques (e.g. whole-body imaging, perfusion studies in ischemic tis-
sues, or studies of vascular modifications around and inside tumors).

/ Arteries and veins are enhanced simultaneously. Since the two vessel
types often run close to each other, they produce very intricate datasets
that are difficult to interpret (see Fig.9).
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Table 1: Comparison of CE-MRA and other contrast based techniques [106]

CE-MRA CTA DSA US

Signal magnetic
pulse

X-Ray X-Ray sound
wave

Contrast e.g.
Gadolin-

ium

iodine
based

iodine
based

bubbles

Injection intra-
venous

intra-
venous

intra-
arterial

intra-
venous

Radiations risks none (?) large significant none

Other risks contrast
agent

contrast
agent

bleeding,
embolism,
contrast
agent,

infection

small

Resolution low
(1 mm)

high high (0.2-
0.6 mm)

low

Remarks contra-
indications:

metallic
implants

bed-side

Figure 9: Maximum Intensity Projections (MIP) of a typical blood pool
angiography data set, showing the vessels of the head and neck. Three MIPs
are presented, with varying angles around they (head to feet) axis: -45°, 0°
and 45°.
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In the diagnosis of atherosclerosis, arteries are the main objects of in-
terest. The datasets produced by BP-CE-MRA have thus raised a problem,
arteries-veins separation, which can be solved by, for example, using image
processing techniques [14, 84, 103, 161, 162, 174]. The purpose of paper I
is semi-automatic arteries-veins separation.

Whole-body CE-MRA. The systemic distribution of atherosclerosis re-
quires the use of techniques which can assess the arterial system as exhaus-
tively as possible. We describe here a technique for a whole-body MR angio-
graphic examination of the atherosclerotic patient (see Fig.10). This proto-
col was used to produce data for the studies of papers III to VI [52, 62, 130].

All imaging was performed on a 1.5 T Gyroscan NT (Philips Medical
Systems, Best, the Netherlands) using MobiTrack software, the standard
body coil and a specially built table top extender (see Fig.11). A low-
molecular Gadolinium-chelate was injected at a rate of 0.6 ml/s for 67 s,
yielding a total volume of 40 ml. Breath holding was performed for the up-
per segment of the body, covering the carotid arteries and the thoracic aorta,
as well as for the next segment, covering the abdominal aorta, renal arteries
and aortic bifurcation. This is necessary to reduce motion artifacts caused
by respiration to minimum. The sequence was a 3D RF-spoiled gradient
echo with TR/TE/flip angle=2.6/1.0/30°. The matrix was512 × 512 (pixel
spacing 0.78 mm) and the FOV was400 × 400 mm2 with thirty 4 mm thick
partitions, zero-filled and interpolated to 60 partitions of 2 mm by the scan-
ner. This gives us rather big images, as the total size of a data volume for
one patient is: 4 subvolumes× 5122 in-plane pixels× 60 slices× 2 bytes
of data by voxel= 120 MB of raw data. An overlap of 3 cm between each
station gave a maximum total length of coverage of 171 cm. The scan time
for each station was 17 s. Including table top movements and instructions for
breath-holding, the total scan time was 87 s. The most crucial parameter is
timing: if the image is acquired too early after contrast injection, the vessels
will not be visible, due to poor contrast filling. If, conversely, the operator
waits too long before the acquisition, veins will be enhanced and will over-
lap arteries. The timing quality is one of the limiting factors for successful
image analysis of MRA data.

2.3 Visualization of angiographic images

Because of the increasing size and complexity of medical datasets, it has
become crucial to choose the right method to visualize 3D images on 2D
screens. There exist many methods (see [66] for a review, and [70] for more
in-depth details). This section briefly presents the ones that are useful to
visualize angiographic data in a clinical setting.
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Figure 10: Example of a whole-body data set. The image is a concatenation
of MIPs of the four sub-volumes produced by the imaging protocol. The four
stations are, from top to down: supra-aortic arteries and thoracic aorta; ab-
dominal aorta, renal arteries and iliac arteries; femoral and popliteal arteries;
tibial and peroneal arteries, continued at varied length below the ankle.
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Figure 11: Setup for a whole-body MRA examination. Patients are posi-
tioned supine (on their back), feet first. Their arms are raised on each side
of their head, to avoid fold-over. Prior to the whole-body acquisition, a test
scan is performed, to optimize the timing of contrast agent injection. During
the acquisition, the table moves between the four stations.

2.3.1 Rendering of 3D data

Volume visualization aims at presenting 3D data on a 2D screen. Four vol-
ume visualization techniques have proven useful over the years for clinical
angiographic practice [9]: Multi-Planar Reconstruction (MPR), Maximum
Intensity Projection (MIP), Surface Rendering (SR) and Volume Rendering
(VR).

Multi-Planar Reconstruction. This is a complicated term for a very sim-
ple method. From a 3D volume, 2D slices are shown on the screen. These
slices are the intersections of the volume by planes, either orthogonal to the
original acquisition frame, or oriented arbitrarily. In the latter case, inter-
polation of the original data is needed to produce the grayscale values of
the intersected pixels. As MPR displays the original, possibly interpolated,
graylevel values, it is always the visualization method that is the reference in
case of doubt. It is also possible to display the intersection of the data volume
with any surface [63, 122]: the technique is called Curved Planar Reforma-
tion (CPR). It is particularly useful in the context of angiography, where the
intersecting surface can be chosen to include the centerline of the vessel of
interest, thus showing a cut of the vessel lumen along the vessel course (see
Fig. 12, from [64]). Pushed even further, the technique can produce visual
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renderings of the lumen of a whole arterial tree in one image [65].

MIP. Maximum Intensity Projection is the most common visualization tech-
nique aside from MPR. It shows, in a given direction, the maximum gray-
scale value along a ray that is shot in that direction intercepting the volume.
When the direction does not coincide with the original volume frame, inter-
polation is needed to produce grayscale values along the ray. This makes
it a rather expensive technique in terms of processing time. A consider-
able amount of research has been done to make it faster [108, 152, 178],
using either dedicated hardware or smarter algorithms. A vast amount of
enhancements of the MIP have also been proposed, as thin-slab, thick-slab,
depth-coded MIP or local MIP [134]. MIP has the following advantages and
drawbacks:

, It looks like a conventional, X-Ray angiogram. This is a non-negligible
asset, as it allows experienced radiologists to interpret MIP images
without additional training.

, The distribution of graylevels in the MIP is close to the one observed
from the original volume.

, It is adapted to angiography, where the objects of interest are bright.
/ The resemblance between MIPs and DSA might also be seen like a

drawback, as the way grayscale values are integrated along the ray is
not the same as for densitometric projections like DSA. In DSA, the
displayed grayscale reflects the attenuation of the light source as it tra-
verses the body, measures as the integral of the absorption function
along the ray. In a MIP, information from only one voxel is displayed.
A lack of knowledge from the physical process can lead to misinter-
pretation of the images.

/ The depth information is lost on static MIPs.
/ The vessel diameter is overestimated [5, 137].
/ The Contrast to Noise Ratio (CNR) is decreased.

For all these reasons, it is recommended not to use static MIPs, but to
gather MIPs from different projection angles. This can be done either by
pre-computing MIPs for a given set of angles, or using a reasonably powerful
workstation, displaying real-time dynamic MIP rendering with a free angle
projection. See Fig.13(a)for an example of MIP.

Surface Rendering. The principle of surface rendering is as follows. First
the objects of interest must be identified in the slice images by segmenta-
tion. This is usually done by thresholding, resulting in a binary volume.
The boundary of the binary volume is then approximated by a set of poly-



2.3 Visualization of angiographic images 23

Figure 12: curved MPR of a CTA data set, for which the intersecting surface
follows the main arteries of the peripheral vasculature. Reproduced with
permission from [64].
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(a) MIP (b) Surface rendering

(c) Volume rendering

Figure 13: MIP, surface and volume rendering of the same data set.
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gons. The most popular method to approximate the binary boundary is the
Marching Cube Algorithm [97]. Virtual light is sent towards the object and
is reflected on the facets, using a model of the interaction of the light ray and
the surface. For the perception of the three-dimensional structure it is helpful
if the viewpoint is dynamically moved. This is easily done in real time, due
to the simplification in the data brought about by the polygon modeling step.
See Fig.13(b)for an example of surface rendering.

Volume Rendering. Volume rendering does not require any preliminary
segmentation step. Each voxel is mapped via a transfer function to optical
quantities such as color and opacity. Then a ray is sent from each pixel in the
image plane through the volume data. As it passes the volume, each voxel it
encounters may contribute to the pixel value, depending on its intensity and
depending on the opacity of all voxels closer to the image plane. In the end,
a pixel’s intensity integrates contributions from many voxels along the ray.
In nearly all applications, some part of this process involves the first order
differential structure of the field: the gradient. More recently, higher order
differential operators have been proposed [72, 136]. See Fig.13(c) for an
example of volume rendering.

2.3.2 Haptic rendering

When it comes to 3D visualization, the way the operator interacts with data is
also important. The usual input devices that are available on any workstation
are the mouse and keyboard. They are not adapted to the manipulation of 3D
objects.

Haptic rendering with a PHANTOM input device is a possible candi-
date to provide better 3D interaction capabilities. It provides six degrees of
freedom (3 rotations and 3 translations) together with a haptic feedback. It
also provides three degrees of freedom for the haptic feedback, which is the
output of the system (a 3D force vector). Figure14 shows the setup of a
haptic platform used to segment angiographic data in paper III. It is able to
render angiographic volumes in real-time, which means 20 Hz for the stereo
display, and 1 kHz for the haptic feedback.
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Figure 14: The haptic desktop display. The PHANTOM device, a stylus that
allows interaction with 6 degrees of freedom (3 rotations and 3 translations),
is positioned beneath a semi-transparent mirror. The graphics are projected
through the mirror to obtain co-location of graphics and haptics.
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3 Vascular image analysis

The purpose of this section is to provide some background information about
the image analysis methods used throughout the different applications in
this thesis. For more thorough reviews on the analysis of vascular images,
see [19, 40, 153, 154].

The methods will be described in three dimensions, as this corresponds to
the data we have been working with. We will refer to our datasets as images,
independently of their dimensionality, but most often they will be 3D. We
call a scene a mappingf : R3 −→ R,x = (x, y, z) 7→ f(x, y, z). An image
is an estimate of a scene, discretized and quantized on a finite grid [43]. It is
represented by a 3D array of numbersf = {f [ix, iy, iz]}ik=1,...,Nk

, provided
the grid is a regular mesh.Nx, Ny andNz are the dimensions of the image
along thex, y andz directions. We will not assume an isotropic grid, unless
stated otherwise. As is often the case with medical 3D data, most of the
volumes we deal with have a resolution that is higher in-plane than between
slices (see section2.2.3 for the MRA case). A voxelv is denoted by its
coordinates(x, y, z) and a grayscale valuef(v) in 3D. Each voxel has 26
“direct” neighbors in a3×3×3 neighborhood: 6 sharing a face, 12 sharing an
edge, and 8 sharing a vertex. This 26-neighborhood defines the connectivity
that will be used in the following (if not stated otherwise).

3.1 Grayscale connectedness

As mentioned in section2.2.3, and as illustrated in Fig.9, datasets produced
with Blood Pool CE-MRA are very complex. In this section, we give the
theoretical background necessary to introduce the segmentation method de-
scribed in papers I and II, used to simplify the display of Blood Pool CE-
MRA images.

As early as 1979, Rosenfeld suggested a generalization of the concept of
connectedness to grayscale images [128]. In binary images, two voxels are
connected, if they belong to the same connected component [50]. By anal-
ogy, it is possible to define a “degree of connectedness” that is an expression
of the “hanging-togetherness” of two voxels within an image [158]. The
concept was theoretically extended by Udupa in [113, 132], and found many
applications to segmentation [31, 32, 112, 159]. The variant we present here
is, to some extent, a simplification of the more general framework of Udupa,
but its fast algorithmic implementation is original. It borrows ideas from
the distance transform computation method called “chamfering” [15, 30]. In
addition, it is also interesting to notice that this raster scan technique (also
called “sweeping”), has found recent applications in the numerical resolution
of Hamilton-Jacobi equations [104, 156, 168], which is a problem related to
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our work on Fast Marching (see section3.2).

3.1.1 Definition

In a binary volume, two voxels are connected to each other if they belong
to the same connected component, that is, if they are both, e.g., white, and
there is a path joining them consisting only of white voxels. This concept can
be generalized to grayscale images, yielding a “degree of connectedness”,
which values are not restricted to 0 and 1.

Let N (v) denote the 26-neighborhood of a given voxelv. A path ρ
joining two voxelsv andv′ is a sequence of distinct pointswi :

v = w0, w1, . . . wn−1, wn = v′ ,

such that for eachi, 0 ≤ i ≤ n − 1, wi+1 ∈ N (wi). Following Rosen-
feld’s terminology [128, 129], the strength of a path (with respect tof ) is the
minimum of the intensity values of its constituents, i.e.

Sf (ρ) = min
wi∈ρ

f(wi) . (3.1)

The degree of connectedness between two voxelsv andv′ is defined as the
maximum of the strengths among all possible paths joiningv andv′:

Cf (v, v′) = max
ρ(v,v′)

Sf (ρ) . (3.2)

Note that, for any voxelv, Cf (v, v) = f(v).

Now lets be a fixed starting point, a so-called seed voxel, andS a set of
seed voxels (not necessarily contiguous), defining a seed region. We define,
for any voxelv in the 3D image,

C(S, v) = max
s∈S

C(s, v) . (3.3)

That is, the degree of connectedness between a voxel and a region is the
maximum of the connectedness values for all the voxels in that region.

A rather serious limitation of this definition of connectedness is that it is
only able to segment bright objects from each other. This comes from the
fact that the strength of the path, in (3.1), is defined using only the intensity
values. There are two possible generalizations of this:

• Instead of using the grayscale values from the original images to de-
fine grayscale connectedness, Udupa uses a dedicated affinity func-
tion [158]. This function measures the degree of resemblance between
two voxels in the image. It is the most general formulation.
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• Dellepiane [31] uses a relative and normalized version of the gray
scale, in order to treat bright and dark objects equally.

However, the formulation of (3.1) is adequate to solve the problems de-
scribed in papers I and II where bright objects have to be segmented from
each other.

3.1.2 Algorithm

The “natural” way to compute the connectedness value for all voxels in the
image would require finding all possible paths between all pairs of voxels.
It is a computationally very demanding task, known as the “all-pairs short-
est path problem”. A possible solution, described in [26], has running time
O(n3) and uses a data structure of sizen2, wheren is the number of voxels.
These are rather drastic requirements when dealing with large images. How-
ever, considering the following observation, the whole computation is not
necessary: if, for a voxelv, the valuesC(S, w) are known for all neighbors
w ∈ N (v), then the degree of connectednessC(S, v) is the greatest con-
nectedness value among the neighborhood ofv, as long as it does not exceed
the graylevel value ofv, g(v). This can be written:

C(S, v) = min{f(v); max
w∈N (v)

C(S, w)} . (3.4)

This is a recursive definition of grayscale connectedness. It allows us to
compute a 3D image in which each voxel has as its intensity the degree
of connectedness to one given seed region: the “connectedness map”. To
achieve our goal of segmentation using the connectedness maps, we must
compute as many connectedness maps as we have seed regions. Each voxel
will then be assigned to the seed region it has the highest connectedness to.

Computing several connectedness maps is unpractical, and can be avoided
by the use of an additional image that we call the label map. The segmen-
tation process is equivalent to the propagation of label values from the seed
points, using an algorithm that can be summarized by the pseudo-code in
Algorithm 1, p.49.

The computation scheme is based on a chamfer algorithm, similar to
the one used to compute distance transforms [16]. The image is processed
sequentially forward, from voxel(1, 1, 1) to voxel (xmax, ymax, zmax), and
backward, then forward again, etc, until a stopping criterion is met. The
criteria available in our implementation are the number of forward-backward
iterations and the number of changes in the connectedness map between two
iterations. During each iteration, computations are performed considering
only a reduced neighborhood, as can be seen in Fig.15.

The procedure is similar to the well-known region growing
technique [177], such as the “magic wand” of most image processing pro-
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Figure 15: Neighborhood of the 13 previously visited voxels for a backward
scan.

grams. But the usual formulation uses a similarity criterion based on the
grayscale value to propagate [142]. Grayscale connectedness, using the con-
nectedness value along a path as a propagation criterion, includes additional,
topological, information. Additionally, the notion of competing seeds of
different colors may provide a solution to the standard “leakage” behavior
of region growing. See Fig.16 for an illustration of the color propagation
process, and Section6.1for some results.

3.2 Fast marching

In this section, we describe an algorithm that is used in papers V and VI
to identify vessels of interest in whole-body angiograms. Our approach is
to formulate the problem in terms of finding the shortest path, according to
some metric, between two points in the MRA volume.

Finding the shortest path between two points in a given domain is a prob-
lem that arises, for example, in the context of differential geometry, where
the shortest path is called a geodesic in the domain. Algorithms to compute
this path have been studied within the field of graph theory. The simplest
form of the problem is to consider the input domain as a finite graph, where
weights are assigned to every arc linking two vertices. A shortest path be-
tween two vertices in the graph is the one with the lowest cumulative cost
among all admissible paths. The most popular algorithm to compute this path
is due to Dijkstra [36]. It solves a rather general form of the problem: to find
the shortest path between a starting point and any other point in the domain.
A more efficient variant is the so-called A* algorithm, which finds the short-
est path between a starting point and an end point within a reduced search
space. Both these algorithms extend the more basic method of breadth-first
search, which is also useful in Image Analysis [144].

The common problem of graph-based approaches is that they suffer from
a digitization bias [157], also called metrication error [25]. This means that
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grayscale

nb of pixels
image histogram

Figure 16: Illustration of the concept of grayscale connectedness. Three
possible paths between two pixels in a synthetic image are represented. The
graylevel values are also plotted against the pixels forming the path, in a so-
called profile plot. The grayscale connectedness is the maximum grayscale
value among all possible paths of the minimum along each path. In this
example, grayscale connectedness will thus favor label propagation along
the red path, as its minimum value is higher than for the blue or green paths.
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the resulting path does not get closer to the euclidian path as the grid gets
finer, a property also denoted as multigrid convergence [23]. The root of the
problem is that on a graph, the set of allowed directions of motion is dis-
cretized very coarsely: only four directions are allowed. The motivation to
choose a method that computes a path which is closer to the “ideal”, euclid-
ian path is exemplified in Fig.17, adapted from Thomas Deschamps’ PhD
thesis [34].

Figure 17: Comparison of shortest paths computed using Fast Marching
and the Dijkstra algorithm. The image represents cells as viewed by a micro-
scope. The values of the cost function are inversely proportional to grayscale
image values. The light path is the Fast Marching path, whereas the dark path
is found using Dijkstra’s algorithm. One can clearly see that Dijkstra’s al-
gorithm is less prone to use diagonal steps, thus leading to different, longer
paths. This comes from the fact that the Dijkstra algorithm implicitly uses
the L1-norm to compute distances between pixels, whereas fast marching
uses the more correctL2, Euclidean norm.

The more recent emergence of minimum-cost path problems in the con-
text of Image Analysis has brought the idea that they could be considered as
the discretization of an underlying continuous problem. LetF be a positive
function defined inR3: the cost function. Given pointsA andB, we wish
to find the pathΓ that minimizes the cumulative cost in going fromA to B.
That is, ifγ(s) is the arc length parametrization ofΓ, we wish to minimize
the integral ∫ B=γ(L)

A=γ(0)
F (γ(s)) ds , (3.5)

whereL is the length ofΓ. We define a functionu(x) that is the minimum
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cost to go fromA to anyx ∈ R3

u(x) = min
γ

∫ x

A
F (γ(s)) ds . (3.6)

The level setu(x) = c is the set of points that can be reached with the same
minimum costc. The level sets form closed surfaces inR3, perpendicular to
minimum cost paths. By studying the evolution of these level sets, we can
formulate a dual interpretation of the problem in terms of front propagation.
The level sets ofu grow away from A (asF is always positive), at a speed
that depends on the values ofF . This formulation is actually more general,
and is the starting point of Level Set methods [4, 140]. With this formulation,
the value ofu can be interpreted as an “arrival time” of the front, and the cost
function as a speed term of the front.

Differentiating the expression foru, we see that∇u(x) = F (x)n, where
n is a unit vector, normal to the level set atx. Thenu satisfies the following
boundary condition problem, known as theeikonal equation:{

‖∇u(x)‖ = F (x)

u(A) = 0
. (3.7)

Once we have solved3.7 for u, we can find the minimum cost path by fol-
lowing∇u from B back toA. That is, we solve

Xt = ∇u, X(0) = B , (3.8)

until we reachA. This is called back-propagation (see Fig.18). Equation
(3.8) is an ordinary differential equation, that can be solved in an efficient
and correct way using a gradient following method, such as the Runge-Kutta
method [120].

In 1995, Tsitsiklis and Sethian independently introduced an efficient
method to compute discrete solutions to the eikonal equation (3.7) [4, 157],
based on upwind schemes to approximate the gradient, and a Dijkstra-like
algorithm. These two components will be described in more detail in the
following two sections.

3.2.1 Gradient approximation

The classical gradient approximations, using for example centered differ-
ences, are not suited to solve (3.7), and produce instabilities in the solu-
tions [140, pp. 41–43]. More advanced approximation schemes are needed,
like the ones developed to compute solutions of a more general class of Par-
tial Differential Equations: the static Hamilton-Jacobi equation [115]. The
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A

B

(a) Shortest path

A

B

(b) Back propagation

Figure 18: (a) Example of a shortest path computation. The image is divided
into two subparts. The left half of the cost image (not shown here) has con-
stant value of 100, and the right half a constant value of 200. It is then “more
costly” to travel in the right half. The graylevel disks represent the points of
equal arrival time when starting from pointA. The shortest path joiningB to
A is always perpendicular to the isophotes in the “arrival time” image shown
here. This image actually allows to compute the shortest path between any
point in the image and the start pointA. (b) Back propagation from the end
point B to the start pointA, by following the gradient of the fast marching
result.
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first-order discretization scheme we use is [138, 139]

‖∇u(x, y, z)‖2 ' max(D−xu,−D+xu, 0)2

+ max(D−yu,−D+yu, 0)2

+ max(D−zu,−D+zu, 0)2 ,

(3.9)

where

D−xu =
ui,j,k − ui−1,j,k

∆x
and D+xu =

ui+1,j,k − ui,j,k

∆x
.

The quotientsD−y, D+y, D−z andD+z are defined similarly. The denomi-
nators∆x, ∆y and∆z are the voxel size along each direction.

3.2.2 Algorithm

The Fast marching algorithm provides a solution to (3.7) in O(n log n) op-
erations, wheren is the number of voxels in the image. The three main
characteristics of this algorithm are the following:

Causality. By fully rewriting (3.7) with the gradient approximation of (3.9),
we have

F (x, y, z) = max(
ui,j,k − ui−1,j,k

∆x
,
ui,j,k − ui+1,j,k

∆x
, 0)2

+ max(
ui,j,k − ui,j−1,k

∆y
,
ui,j,k − ui,j+1,k

∆y
, 0)2

+ max(
ui,j,k − ui,j,k−1

∆z
,
ui,j,k − ui,j,k+1

∆z
, 0)2 .

(3.10)

We see from the previous expression thatui will not depend onui−1 or
ui+1 if ui−1 > ui or ui+1 > ui. In other words, the value ofu at one
grid point will only depend on neighbors that have a smalleru value. Using
this property, the algorithm steps the solution outwards from the boundary
condition.

Narrow band. Following the propagating front interpretation, the algo-
rithm starts from the points defined by the boundary condition. In our case
of shortest path problem, the boundary condition is actually expressed at the
starting point. As the front propagates outwards, only the front points and
their neighbors need to be accounted for at one given step. The narrow band
is the set formed by these points (see Fig.19). By solving (3.10), we find
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the arrival time for a front point. This updating ofu only happens once for
each voxel, yielding an optimally effective algorithm. This means that all
points inside the contour defined by the narrow band have been updated and
theiru value is not to be changed. The key lies in the selection of which grid
point in the narrow band to update. The causality condition tells us that it is
the point with the smallestu value.

Accepted

Narrow band

Far

Figure 19: The front during fast marching propagation. The set of “ac-
cepted” voxels have been included in the computation and will not be visited
again. The “narrow band” voxels are candidates to be included in the next
iteration. The “far” voxels are ignored for the next iteration.

Priority Queue. In order to efficiently manipulate the grid points con-
tained in the narrow band, we build a priority queue, implemented as a
min-heap structure2. The complexity of min-heap insertions and removal
is O(log n), andO(1) for min-value extraction. The overall complexity of
the fast marching algorithm isO(n log n), making it very efficient, even on
large datasets.

For more details about the implementation, see Section4 and [34, 71,
89]. Figure20 shows the result of a fast marching run on a 2D MIP of a 3D
MRA data set from papers V and VI.

2A heap is a complete binary tree. Its top node, the root, contains the lowest value in the
tree [26].
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Figure 20: Example of applying fast marching to a 2D MIP image of a
whole-body angiogram. The cost function is the one used in paper V. The
image is a surface rendering of arrival time values, shown here as the altitude
at each 2D point. The algorithm ensures that it is possible to slide back
from any point in the image back to the start point, which in this case was
placed at the branching of the abdominal aorta and the common iliac arteries.
The rendering was produced using Paraview (Kitware Inc., Clifton Park, NY,
USA).
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3.2.3 Cost function

Cost function design is an essential step for the success of the fast marching
procedure. The desired properties for a cost function are as follows:

• Low cost values in regions where the path should be.
• High cost values in regions where there is no reason the path should be.

It should not be set to infinity though, because it can be useful for the
path to be able to go through high cost areas (e.g. in case of stenosis,
the path between the two disconnected branches of the stenosed vessel
jumps through the flow void).

• Infinite cost values at “obstacles”, that is objects we definitely want
the path to stay away from.

Examples of cost functions can be found in papers V and VI.

3.3 Vessel enhancement

In Contrast-Enhanced MR Angiography, the objects of interest are blood
vessels, and in particular the arteries. They are cylindric objects, with brighter
intensity than the background, due to the presence of contrast medium. One
of the steps to detect arteries involves enhancement of these structures, while
removing other objects, like for example kidneys. Detection and enhance-
ment of 3D cylindrical objects has been an active research field in the last
decade [6, 7, 48, 75, 77, 78, 89, 133]. The methods described in this section
emerge from research in:

Differential geometry. Differential geometry is the description of shape
through derivatives. Image features can be described in terms of a
combination of local derivatives of the 3D grayscale image [44, 155].
In addition to that, it is desirable that these differential descriptions of
shape are invariant to orthonormal transformations3.

Scale space theory.In scale space theory, images are interpreted as obser-
vations of an infinitely smooth function (the scene), measured by a
device with a given aperture [73, 92, 155, 172]. This theory elegantly
solves the problem of discrete differentiation as will be seen in sec-
tion 3.3.1. Extracting features by using differential operators is con-
sidered as a measurement [42]. The aperture of the measuring device
is the scaleat which the object is observed. The feature only have
meaning for this particular scale. Gaussian scale-space theory gives

3As they are compositions of translations and rotations, these transformations leave angles
and distances unchanged. They are represented by orthonormal matrices, for whichRT = R
and‖R‖ = 1.
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us tools to compute these features and, more important, study them
over scale.

3.3.1 The Hessian matrix

A real 3D function can be approximated around a given pointx0, using the
Taylor approximation:

f(x0 +d) = f(x0)+dT ·∇f(x0)+
1
2

dT ·Hf (x0) ·d+O(‖d‖3) , (3.11)

where∇ is the gradient operator,d is a small perturbation vector ofR3, and
Hf is the so-called Hessian matrix, containing the partial derivatives off .

Hf = ∇(∇f) =



∂2f

∂x2

∂2f

∂x∂y

∂2f

∂x∂z

∂2f

∂x∂y

∂2f

∂y2

∂2f

∂y∂z

∂2f

∂x∂z

∂2f

∂y∂z

∂2f

∂z2


=


fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

 .

(3.12)
Equation (3.11) describes the local image structure up to the second order

in terms of derivatives. The gradient determines the best linear approxima-
tion around a point, and the Hessian the best quadratic approximation. The
Hessian can also be seen as the first order variation of the gradient:

∇f(x0 + d) ' ∇f(x0) + Hf (x0) · d . (3.13)

The Hessian tells us how the gradient vector changes as a function of dis-
placements away from the point at which it is measured. Those displace-
ments and the resulting gradient changes are both vectors in 3D. More on
the local structure can be found for example in [53]. One interesting prop-
erty is that the Hessian can be used to calculate the second derivative off
along any direction:

fvv = vT · Hf · v , (3.14)

To further study the structure of the Hessian matrix, its eigenvalues and its
associated eigenvectors are computed. This can be done at each point, and it
is equivalent to a 3D rotation of the coordinate system at that point, so that the
Hessian expressed in the local coordinates is diagonal. AsHf is symmetric
and real, the diagonalization is always possible. This new coordinate system
is called the second order gauge coordinates. We then have an orthogonal
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matrixR such that

RT · Hf · R =

λ1 0 0
0 λ2 0
0 0 λ3

 . (3.15)

We will use the convention|λ1| 6 |λ2| 6 |λ3| in the following. The eigen-
values ofH are invariant to orthonormal transformations, and thus constitute
a good set of descriptors for the second order local structure of an image.

Extracting the derivatives of a scenef from the image is an ill-posed
problem [42]. This means that an arbitrarily small local perturbation of a
function f at a point of its domain can cause an arbitrarily high error in
the computation of the partial derivatives off at that point. But differentia-
tion can be achieved in a well-posed manner by convoluting the image with
Gaussian derivative kernelsGσ [155]. This way, the derivatives are only
relevant when computed at a given scaleσ. For example:

∂f

∂x
' Gx,σ ∗ f =

∂Gσ

∂x
∗ f , (3.16)

where

Gσ(x) =
1

(2πσ2)D/2
e−‖x‖

2/2σ2
, (3.17)

andD is the dimensionality of the image, usuallyD = 3 in our case. The
Taylor approximation then becomes:

f(x0 +d;σ) = f(x0)+dT ·∇f(x0;σ)+
1
2

dT ·Hf (x0;σ) ·d+O(‖d‖3) .

(3.18)

3.3.2 Ridges

The common language definition of a ridge is “a top or upper part, espe-
cially when long and narrow”. Ridges are an intuitively simple concept but
their mathematical definition is not well agreed upon. There has been many
attempts to give this concept a mathematical definition that can be used in
image analysis. A full review of this topic is outside the scope of this thesis,
and we will refer the reader to the works by Eberly [37, 37], Lindeberg [93],
Koenderink [74] and Lopez [95, 96] for different approaches to the notion
of ridge. We focus on methods using classification techniques applied to the
Hessian eigenvalues and realize that, in 3D, a ridge is characterized by:

λ1 ' 0

|λ1| � |λ2| and |λ1| � |λ3|
λ2 ' λ3

. (3.19)

That is:
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• The smallest eigenvalue is almost zero: there exists a direction, de-
termined by the corresponding eigenvector, along which the second
derivative is close to zero.

• The derivatives are significantly non-zero in the plane perpendicular
to this direction.

• They are moreover similar, which means the local structure of the im-
age shows a high degree of symmetry in this plane. This is desirable to
detect vessels, as results have indicated that most of the luminal cross-
section of stenosed coronary vessels are circular or elliptical [17].

Krissian [78] showed with an analytic model of a vessel that, using the
λi, we could build a filter whose response is maximal at the center of the
vessel, and smoothly decreases towards the boundary. We will next describe
one such filter, that was used to identify vessels in paper VI.

3.3.3 The vesselness filter

The idea of using the eigenvalues of the Hessian matrix to detect locally
cylindrical structures in 3D was first reported in [58, 75, 98, 133]. From this
work, Frangi [45, 48] developed a “vesselness filter”, which is a measure of
how close to a bright cylinder the neighborhood around a given point is. It
has become a well-accepted descriptor for vessel objects [35, 57, 161, 174].
It is defined as

V(x;σ) =

{
0 if λ2 < 0 or λ3 < 0

(1− e−R
2
A/2α2

)e−R
2
B/2β2

(1− e−S
2/2c2) otherwise,

(3.20)
where

RA =
|λ2|
|λ3|

cross-sectional asymmetry,

RB =
|λ1|√
|λ2λ3|

blobness,

S =
√∑

j

λ2
j degree of image structure (Fröbenius norm),

andλ1, λ2, andλ3 are the three eigenvalues of the Hessian matrix, ordered
so that|λ1| 6 |λ2| 6 |λ3|. One can easily see that (3.20) actually gives
high values for eigenvalue triples corresponding to the ridge criteria given
in (3.19). Figure21 shows an example of vesselness computation. As the
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vesselness value is computed at a given scale, it corresponds to the action of
“probing” the volume with a “cylinder detector” for a given cylinder diame-
ter.

Figure 21: Vesselness results from a 3D MRA data set. The left image is
a MIP of the original volume. The right image is a MIP of the vesselness
volume, first along the scale direction, and then along the front-to-back di-
rection. A branching region is magnified to show that, being a discriminant
function based on second degree differential operators, it does not emphasize
bifurcations, which are third degree structures.

For the filter to be really useful, it has to be computed across a range
of different scales, corresponding to the objects present in the image. Two
parameters have to be chosen with care:

• The upper and lower bounds ofσ. Their selection is important because
not every scale is relevant. The upper boundσmax determines the re-
gion of capture of the vessel detector and is set equal to the maximum
vessel radius we want to detect. The lower boundσmin is set to one, so
that it corresponds to structures of size comparable to the voxel size.

• The step size while sampling along the scale direction. A straight-
forward linear sampling is not appropriate because this might lead to
aliasing at fine scales and over-sampling at coarse levels of scale. The
scale dimension should be sampled exponentially [44, 91]. We usually
choose powers of 2:σ ∈ {σmin = 1, 2, 4, 8, 16, 32 = σmax}.

This study of the whole set of vesselness responses forms a 4D data set,
that we used in paper VI to detect vessel centerlines, following the approach
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described in [171]. In order to be able to compare the vesselness values
across scales, we need to use normalized derivatives [92, 94]. That is:

∂f

∂x
= σ Gx,σ ∗ f (3.21)

and
∂2f

∂x2
= σ2 Gxx,σ ∗ f . (3.22)

This is to compensate for the averaging effect of Gaussian convolution
with large scale kernels. We used the notationGxx,σ for the second derivative
relative tox of the Gaussian kernel of (3.17).

3.4 Measurement of vessels

We mentioned in section2.1 that a quantitative knowledge of vascular mor-
phology is important for the diagnosis, treatment and follow-up of athero-
sclerosis. So far, the focus has been on measuring the degree of stenosis,
that is the degree to which luminal diameter is reduced. It is an important
clinical measurement used to evaluate the opportunity of surgical treatment.
Similarly, in some cases of vascular aneurysms4, the largest cross-sectional
area determines the potential need for surgical intervention.

In clinical practice, stenoses are still measured either directly on film
with a caliper, or on a computer screen, using more or less advanced “mea-
suring tools”. Although measurements of stenosis based on visual estimates
or caliper determinations from angiograms are useful, they are not precise,
as noted already in 1976 by Zir [176]. Manual measurements also suffer
from poor reproducibility. Two large scale clinical trials have suggested a
standardized measure of stenosis: the North American Symptomatic Carotid
Endarterectomy Trial (NASCET [1]) and the European Carotid Surgery Trial
(ECST [2]). They are schematically represented in Fig.22.

Efforts have also been done towards the automatic quantification of steno-
sis, using image analysis [22, 47, 59, 68, 160, 169, 173]. However, it has
been shown that plaque vulnerability, that is its tendency to rupture and
thereby cause a potentially acute event, is not well predicted by a lowered
vessel area [116]. The reasons are:

• Outward remodeling: the vessel wall responds to flow variations by
increasing its outer diameter.

• Plaque constitution and geometry may be more important than lumen
size [124, 151].

4An aneurysm is a bulge (dilation) in the wall of an artery. The bulge usually occurs in a
weak area of the artery’s wall. The pressure of blood inside the artery forces the weak area to
balloon outward.
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ECST=              x 100NL-RL
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Figure 22: The two stenosis measurement methods that have been shown by
large-scale clinical trials to be relevant: left, the NASCET measure, where
RL is the residual lumen diameter and DD is the diameter distant to the
stenosis; right, the ECST measure, where NL is the normal lumen diameter
estimated at the stenosis location.

This means that more global measures of vessel morphology can be of inter-
est. Description of such measures and ways to practically implement them
are the purpose of paper VI. We propose indexes measuring the geometry of
the vessel centerline, modeled as a 3D curve.

3.4.1 Measures along the central axis

The methods described in section3.2and 3.3have given us a line represen-
tation of the main branches of the arterial tree. It is a graph consisting of
vessel centerlines of the main arteries, and a set of nodes at the junction of
the centerlines. A 3D curve (see Fig.23) C in R3 is fully characterized by its
curvature and torsion. Given a parametrization ofC, where each point ofC
is identified by its coordinate vectorr(t), the curvatureκ(t) and the torsion
τ(t) are defined as

κ(t) =
‖ṙ × r̈‖
‖ṙ‖3

and τ(t) =
ṙ · (r̈ × ...

r )
‖ṙ × r̈‖

, (3.23)

whereṙ, r̈,
...
r represent the derivatives ofr with respect to the parametert.

κ andτ can be geometrically interpreted as follows:

curvature. Curvature is the amount by which a curve deviates from being
a straight line. The circle which shares the same tangent as the curve
at a given point is called the osculating circle. The curvature is then
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Figure 23: The 3D path. It is represented as a 3D curve on the left, and,
on the right, as thex, y, andz values ofr plotted against the arc length
parameter.

κ = 1/R, whereR is the radius of the osculating circle. The larger the
curvature, the smaller the osculating circle, and therefore the faster the
curve is turning. A circle of radiusR obviously has constant curvature
1/R, while a straight line has curvature zero.

torsion. The torsion of a curve measures how sharply it is twisting. Tor-
sion is related to the amount of helicoidal deformity in the centerline
(and especially to the pitch of that helix). It measures the amount of
deviation of the curve from a single plane, and is thus a measure of
planarity. The torsion is zero for a circle, zero for a straight line, and
is maximum for a circular helix whose pitch is the same as the radius
of its basic circle. Another interpretation is thatτ measures the rate at
which the osculating plane changes direction.

The derivatives ofr are computed using 1D Gaussian derivative kernels,
similarly to the differentiation method used in 3D to compute the Hessian.
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The variance of the derivative kernel determines the degree of regularization.
We chose a variance of 3 for our computations. Spatial anisotropy is han-
dled by using a higher variance along the z-direction. Coeurjolly recently
suggested a discrete method to compute curvature [24], but there does not
exist, as far as we know, an equivalent algorithm to compute torsion.
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4 Implementation

The difficulty of mathematical image processing lies in applying methods
that have originally been derived for continuous spaces (e.g. differential
geometry) to images, that are discrete in essence. The purpose of this section
is to describe how the actual work is done, taking into account the discrete
nature of the data we work with.

All methods described in this thesis have been implemented as plugins to
ImageJ [125]. ImageJ is a public domain package written in Java, originally
designed for biological image analysis, mainly microscopy. In this section,
we will give a more practical description of the developed algorithms, and
also describe how we implemented the interaction between users and angio-
graphic data. The following plugins, among others, have been developed and
are freely available from the author:

• Grayscale connectedness and its seeding interface
• Fast marching on anisotropic grids in 2D to 4D
• An interface to place seed points in a MIP
• Vesselness filter

We chose ImageJ because it is a lightweight but very powerful image
application. It is highly portable, as it is written in Java, and can thus be
used on many combinations of hardware and operating systems. In addition,
its speed of execution makes ImageJ very competitive in comparison with
C++ based image analysis libraries. Last but not least, the fact that ImageJ
is a public domain program gives us, at no cost, access to a whole set of
imaging functions and to a programming community willing to exchange
their knowledge.

4.1 Grayscale connectedness

The computation of grayscale connectedness, as described in section3.1,
requires the user to provide a set of seed points. These seeds are the start-
ing point of a region growing-like procedure. They represent anatomical
knowledge from the expert, and are crucial for the success of grayscale con-
nectedness segmentation.

4.1.1 User interface

In paper V, we introduced a method to place seed points in a 3D volume by
using, in parallel, a MIP and the original volume. Using the interface shown
in Fig. 24, the operator can place seed points in the MIP or in the original
volume. Seed points will show up in both windows, as the relocation from
2D to 3D (MIP to MPR) is performed automatically.
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Depending on the complexity of the data set and the number of differ-
ent objects one wants to individualize, interaction times range from 5 to 15
minutes for a whole 3D volume.

Figure 24: Interface to place seed points in the MIP, as described in paper II.
The left window shows the MIP with the different seed regions, and the right
window shows the original volume as a MPR. The user is able to paint in
both windows, as the program relocates seed voxels between windows.

4.1.2 Algorithm

The algorithm is described p.49. As grayscale connectedness is an iterative
process, it is not possible to give a reliable estimate of the computational
complexity of this algorithm. However, the experience showed that 10 to 50
iterations were usually enough to achieve good segmentation results. This
corresponds to computation times ranging from 2 to 15 minutes on a com-
mercial PC.

4.2 Fast marching

Fast marching is an algorithm we used in papers V and VI to find a curve
within the artery joining two given points. It solves the “one source, multiple
destinations” shortest path problem, given a positive cost function (see sec-
tion 3.2). The algorithm we implemented is detailed by algorithms2 and3.
It actually is a more general version of fast marching than what is usually
described, as we do not assume isotropic sampling of the cost function. It
makes the updating procedure of algorithm3 slightly more complicated, but
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Algorithm 1 : The grayscale connectedness algorithm in 3D
Input : input image,I with grayscale functionfI

label imagecolorI (with n seeded regionsSj)
output image,O with grayscale functionfO

label imagecolorO (both initialized to0)

foreach v ∈ Sj , 0 < j ≤ n do
fO(v) = fI(v)
colorO(v) = colorI(v)

repeat
for v = (1, 1, 1) to (xmax, ymax, zmax) , v /∈ Sj do

Findwmax ∈ N+(v) such thatfO(wmax) = max
w∈N+(v)

(fO(w))

if fO(wmax) > fO(v) then
fO(v) = min{fI(v); fO(wmax)}
colorO(v) = colorO(wmax)

for v = (xmax, ymax, zmax) to (1, 1, 1) , v /∈ Sj do
Findwmax ∈ N−(v) such thatfO(wmax) = max

w∈N−(v)
(fO(w))

if fO(wmax) > fO(v) then
fO(v) = min{fI(v); fO(wmax)}
colorO(vO) = colorO(wmax)

until nb of changes inO ≤ MinNbChanges
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more adapted to the problems we want to solve. The necessity of implement-
ing this particular version of fast marching has two reasons:

• Our datasets are large. The volumes we work with are384× 512× 60
in size, with a voxel size of0.8 × 0.8 × 2. A proper use of the usual
implementation of fast marching would require a resampling of our
volume to384× 512× 150. If a 32-bits version of a given volume is
to be kept in memory, it would represent 112 MB instead of the non-
resampled 45 MB.

• We work in four dimensions. We use fast marching in 4D = 3D + scale-
space in paper VI. The hypervolumes are384× 512× 60× 7× 32b,
which represents 315 MB of input data only. Adding the size of the
output image and the algorithm’s data structures, it clearly becomes
difficult to handle for a commercial PC.

We used the freely available library JDSL to implement the min-heap
data structure of the narrow band.

The updating procedure of the fast marching algorithm consists in solv-
ing (3.10), that is, finding the largest possible solution to the following qua-
dratic equation:(

ui,j,k − ux

∆x

)2

+
(

ui,j,k − uy

∆y

)2

+
(

ui,j,k − uz

∆z

)2

= F 2 , (4.1)

where 
ux = min(ui−1,j,k, ui+1,j,k)

uy = min(ui,j−1,k, ui,j+1,k)

uz = min(ui,j,k−1, ui,j,k+1) .

(4.2)

Fast marching is used to compute the “arrival time map”, given a cost
function and a pair of start and end points. Its computation time depends
highly on the discriminant power shown by the cost function. Using a cost
function based on vesselness values, fast marching finds within a few sec-
onds the shortest path between two vessel points across a384 × 512 × 60
image.

4.3 Vesselness

The results from the vesselness filter were used in paper VI to build the cost
function used as input to fast marching. As described in section3.3, comput-
ing vesselness requires the computation of second-order derivatives, using
the Gaussian scale-space framework, and the computation of eigenvalues of
a3×3 matrix at each voxel. We used E. Meijering’s plugins to ImageJ [105]
to implement all derivative computations, and the JAMA matrix package
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Algorithm 2 : Pseudo-code describing the Fast Marching main
loop.

input : a list of seed points, and a cost image F
output: an imageu of arrival time values

// Initialization
foreach v∈ F do

if v∈ list then
u (v) = 0
label (v) = TRIAL

else
u (v) =∞
label (v) = FAR

// Main loop
while narrowBand is emptydo

voxel =getMin (narrowBand)
neighbors = listNeighbors(voxel)
foreach nVoxel∈ neighborsdo

newU =computeNewU (nVoxel)
if label (nVoxel) = FARthen

changeLabel(nVoxel, TRIAL)
u ( neVoxel ) =min ( u ( nVoxel ), newU )
insert (narrowBand, newU, nVoxel)

if label (nVoxel) = TRIALthen
u ( nVoxel ) =min ( u ( nVoxel ), newU )
replace (narrowBand, newU, nVoxel)

remove (narrowBand, voxel)
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Algorithm 3 : Pseudo-code describing the Fast Marching updating
procedure ComputeNewU. It is inspired from [34]. The algorithm
is valid for volumes with non-isotropic spatial resolutions. Note
that the implementation is more verbose, as the elegant simplifica-
tions suggested in [71] or [104] cannot be applied.

// Initialization
Computeux,uy, anduz (see (4.2))
Sort and put them into an array a such thatu3 > u2 > u1

Sort the∆x,∆y, ∆z accordingly into∆1,2,3

Delta (EQ3): discriminant of(
u−u1
∆1

)2
+

(
u−u2
∆2

)2
+

(
u−u3
∆3

)2
= F 2 (EQ3)

if Delta (EQ3)> 0 then
possible_u = largestRoot(EQ3)
if possible_u > u3 then

// u depends on 3 neighbor directions
returnpossible_u

else
GOTO Case2

else
Case2
Delta (EQ2): discriminant of(

u−u1
∆1

)2
+

(
u−u2
∆2

)2
= F 2 (EQ2)

if Delta (EQ2)> 0 then
possible_u = largestRoot(EQ2)
if possible_u > u2 then

// u depends on 2 neighbor dir.
returnpossible_u

else
Case1
// u depends on 1 neighbor dir.
returnu1 + ∆1F

else
GOTO Case1
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for eigenvalues computation. The detailed description of discrete Gaussian
scale-space implementation is not given here, but it should be noted that a
correct solution to the problem is not straightforward (see for example Lin-
deberg’s book on the subject [92]).

For a384 × 512 × 60 volume, and using anisotropic Gaussian kernel
sizes to reflect the spatial anisotropy of the input volume, computation of
the vesselness filters takes around 3 min per scale on a PC with a 3 GHz
processor and 2 GB of RAM. That means that in our experiments, where the
vesselness was computed at 6 scales, the computation time for one whole-
body data set was about 80 minutes.
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5 Conclusions and future research

With the exception of an incursion in the realms of CT imaging in paper II,
this thesis aims at providing tools to make better use of information in MRA
images. Two projects, centered on two imaging protocols, constitute this
thesis. We will discuss them separately.

5.1 Arteries-veins separation in BP-CE-MRA

We have proposed a method that helps radiologists visualize complex 3D
structures like vessel trees, by separating arteries and veins in BP-CE-MRA.
It uses user interaction, grayscale connectedness and maximum intensity
projections. The algorithms are simple to implement, have low memory
requirements, and converge quickly towards the solution. Moreover, con-
current grayscale connectedness provides a complete segmentation of the
volume in only one pass. Yet, it does not completely solve the problem of
“leakage” between arteries and veins at locations where contrast is poor be-
tween vessels. This is actually a limitation in the resolution of the imaging
procedure, and can only efficiently be solved by model-based techniques [8,
46, 161]. Another limitation is the rather long interaction time required, still
above the threshold that would make the method clinically useful. This can
be addressed by automatically detecting features (e.g. vesselness) to identify
the seed points, and with better interaction capabilities, as shown in paper III.
The rather simplistic definition of connectedness is also a drawback, but it
can be generalized [31, 32, 132, 158] to be applicable to other segmentation
tasks [117, 164]. To date, the most successful application of computerized
image analysis to solve the same kind of problems use a combination of fea-
ture detection, vessel models and level set techniques [161]. As the Blood-
Pool agents are getting closer to entering the market, those techniques still
need to improve to reach clinical acceptance.

5.2 Whole-body CE-MRA

The systemic nature of atherosclerosis calls for an imaging technique that
offers full body coverage within an acceptable time. The downside is that the
amount of data becomes difficult to handle, as does the task of understanding
its 3D structure. We showed that user interaction, in cooperation with image
analysis, could provide a hint of an answer to the question: “is this patient
at risk of an atherosclerosis-related event?”. A more argued answer to this
question needs further clinical investigations.

The whole-body MRA protocol is relatively recent, and there is room
left for improvement [20, 85]. Concerning vessel detection, there are still
theoretical questions that need to be answered, like the detection and proper
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handling of vessel branches. This work is closely related to research on
medialness computation [107, 118] and grayscale skeletons [27, 175].

5.3 Future work

Much work has been done since the first reports on automated vessel analy-
sis [12, 109, 114, 131, 149]. However, a significant amount of research is
still needed for these methods to be clinically useful. Advances are needed
on the medical imaging front (MI), and on the image analysis front (IA):

MI MR imaging offers the extended possibility to study the inner struc-
ture of tissues. There is a tendency towards exploring the composition
and local structure of atherosclerotic plaque to measure its vulnerabil-
ity [39, 124]. Functional plaque imaging allows to relate local mech-
anisms to more global measures like the ones we suggest, for a better
understanding of atherosclerosis pathophysiology.

IA Some recent work on resolution of Hamilton-Jacobi equations showed
that sweeping algorithms may outperform queue-based algorithms [156,
168]. This means that the way we use grayscale connectedness would
be an efficient algorithm to handle more general definitions of connect-
edness, like the fuzzy connectedness framework described by
Udupa [112, 132, 158]. Fuzzy Connectedness is a powerful, all-purpose
segmentation algorithm, that makes few assumptions about the data. It
may benefit from an attractive property of the chamfer algorithm: its
low memory requirements. Despite the growing availability of com-
puting power, memory is always a concern when manipulating large
medical datasets.

IA The vesselness filter introduced by Frangi identifies cylinder-like local
neighborhoods with a discriminant function of the Hessian’s eigenval-
ues. It is possible to generalize this approach, as suggested recently by
Lillholm [ 88], by feeding the whole set of derivatives up to a given or-
der to a classification algorithm. There is however a great deal of work
to be done on the choice of the classifier, the possible normalization
between the different features, or the way scale should be handled.

IA From our work on centerline detection in whole-body angiograms, we
feel that the next step in analyzing the 3D structure of the vascular tree
is segmentation. This way, more descriptors of the vessel wall geome-
try could be gathered and compared to other, more conventional, clin-
ical tests (e.g. biochemical markers). The geometric approach could
also be compared with more local analysis of stenoses (see section3.4
for references).
The task is far from trivial: the main obstacles are resolution and gray-
scale normalization of MR images. Whole-body MR images are still
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quite poorly resolved, and not adequate to measure small objects like
peripheral arteries [60, 135]. In addition, in MR imaging, voxel inten-
sities of similar tissues are not comparable between scanners, not even
between patients imaged by the same scanner, and not even within a
single image. This is due to hardware-induced and patient-induced
variations in the measured signal. It is even more apparent in angiog-
raphy, where voxel intensities are proportional to the concentration of
contrast medium. This makes the use of simple segmentation methods
like thresholding impossible. That is why successful attempts to seg-
ment MR images rely on a careful combination of low-level operators
and model-based techniques [61].
With a proper segmentation of whole-body angiograms, it would be
possible to measure for example local defects in concavity [111] or
surface roughness [146, 147] to obtain an estimate of the global plaque
burden [150].

It seems that our research has led to more questions than answers. But
some may argue that this is the purpose of research.

5.4 Conclusion

The use of automated image analysis methods as a clinical tool, that is, used
everyday by a physician with little knowledge of image analysis, is only at
its early dawn. There is a didactic work that needs to be done, to explain the
advantages and limitations of computerized image analysis. It is also impor-
tant to work on the interface: it should be easy to interact with and should
display the needed information. That way, our work will help improve the
quality of diagnostic. Better analysis and better visualization, for a better
understanding.
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6 Summary of the included papers

This section presents the content of each of the enclosed papers, giving an
more detailed presentation than the abstract. It also includes the main results,
giving an overview of the achieved work.

6.1 Papers I and II: Grayscale Connectedness Segmentation in
MRA and CTA

In the first two papers, we studied the feasibility of using the grayscale con-
nectedness algorithm to enhance visualization of two recently introduced
imaging techniques:

• Blood-pool agent CE-MRA. The new contrast agents stay in the blood
stream for a longer period of time, compared to the Gadolinium com-
pounds. This allows longer acquisition times, and consequently better
resolution, also leads to better venal enhancement. For a better un-
derstanding of these images, arteries and veins can be visualized sep-
arately from each other.

• Coronary CTA. High resolution is the first requirement to produce
useful images of the coronary arteries. CTA offers this possibility,
together with a procedure that is potentially less hazardous for the
patient than conventional angiography. Segmentation allows to use
Maximum Intensity Projections to visualize these datasets, producing
images similar to invasive angiography. Moreover, a separate rendi-
tion of the different branches of the coronary arteries would help a
radiologist to better study them.

The complex datasets (see Fig.25 for MRA and Fig.26 for CTA) are very
difficult to interpret with conventional rendering methods, and a segmenta-
tion step preliminary to visualization may help understand the 3D structure
of the data.

The proposed algorithm uses the grayscale degree of connectedness as
a tool to find the zone surrounding each vessel, in order to split the orig-
inal volume into its different vessel components. In contrast to traditional
segmentation methods, no grayscale information is lost in the process. Seed
points of different colors are placed in the different objects of interest that
need to be separated from each other. The interface allows placing these
seed points either in the original volume, or in the MIP, or in both simultane-
ously. The algorithm then uses the defined seed points to partition the initial
volume into a chosen number of Regions of Interest (ROI). Finally, visual-
ization is achieved by MIP, Surface Rendering, or Volume Rendering. Some
examples of the achieved results are presented in Fig.25 for BP-CE-MRA
and Fig.26for coronary CTA. In both cases, the segmentation step improves
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(a) (b)

Figure 25: A MRA dataset using blood pool agent as contrast medium.
(a) MIP of the original volume, showing the arteries, veins, bladder and soft
tissues.(b) MIP of the segmented arteries and some remaining soft tissues.

the visibility of the clinically relevant structures by subdividing them or re-
moving unwanted objects. The interaction times necessary to produce results
of high quality are around 30 min for each data set. Computation times for
the GC segmentation lie around 5 to 10 min. These feasibility studies show
that complex datasets can be visualized efficiently by adding an additional
segmentation step. The time needed to perform this segmentation is not
yet clinically tractable. However, the use of more advanced user interaction
techniques (see paper III) and feature detection (as the vesselness filter used
in paper VI) could make this a useful clinical tool.

6.2 Paper III: Haptic-Guided Seeding of MRA Images for Semi-
Automatic Segmentation

It is difficult to efficiently visualize and interact with 3D data. In this paper,
we investigate how stereo graphics and haptics can be combined to facili-
tate the seeding procedure in semi-automatic segmentation of magnetic reso-
nance angiography (MRA) images. Real-time volume rendering using max-
imum intensity projections (MIPs) was implemented together with a haptic
rendering method that provides force feedback based on local gradients and
intensity values (see Fig.27). This combination allows a user to trace vessels
in the image, guided by haptic feedback. As the amount of resistance from
the device is proportional to image gradient, it is easy to follow a vessel all
the way across the image. This way, a user can place seed points directly in
the 3D data set. We then tested two segmentation algorithms that use the set
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(a) (b)

Figure 26: A coronary CTA dataset.(a) MIP of the original volume, where
the coronary arteries are completely masked by other, brighter components
in the image.(b) MIP of the segmented right coronary artery.

of seed points as input. The seeding work burden was significantly reduced
with the haptics platform. The interface provides an intuitive access to 3D
data and showed the benefits of haptic interaction over conventional input
devices.

6.3 Paper IV: Compensation for Geometrical Hardware-Induced
Distortion in Contrast Enhanced Whole-Body Magnetic Res-
onance Angiography

In contrast-enhanced whole-body Magnetic Resonance Angiography (MRA),
a patient’s main arterial system can be imaged using an optimized MR se-
quence. This sequence scans the whole volume in about 87 seconds using
only four stations with large FOVs (450 mm) and small image overlaps. Us-
age of large FOV introduces significant hardware-induced geometrical dis-
tortion to the acquired volume. The purpose of this study was to model this
geometrical distortion and to create a non-linear transformation which com-
pensates for it in post-processing.

A special MRA sequence was used on a 1.5 T Philips Gyroscan NT to ac-
quire the volumes. A two-dimensional phantom was constructed and used to
image the distortion from this MRA sequence. Distortion symmetry was as-
sumed in head-feet direction and rotational symmetry was assumed around
the scanners main axis. The phantom was scanned with different orienta-
tions to give all distortion information needed. The geometrical distortion
was compensated for in the four stations and the results were added creating
a distortion compensated whole-body volume. The compensation was tested



60 Algorithms for the Analysis of 3D MRA Images

Figure 27: Volume rendering with 3D texture mapping. Here, a MIP of the
abdominal vascular system is shown together with the graphical representa-
tion of the PHANTOM stylus.

on both phantom and patient volumes and the results were evaluated both vi-
sually and by extracting statistical information. Geometrical correctness of
phantom volumes were measured by approximating straight lines to phan-
tom rods. In patient volumes, the direction change of arteries was manually
measured on station borders. The image continuity was evaluated visually in
regions close to station borders.

Visual evaluation confirmed an improvement to the geometry of the re-
sulting volumes. The maximum displacement of data was reduced from
16.1 mm to 2.1 mm when the compensation is performed on a phantom vol-
ume. The mean direction change of arteries over station borders was reduced
from 21.0° to 2.4°. The continuity of the imaged organs was evaluated visu-
ally in regions close to station overlaps and was found to have increased.

We have shown that it is possible to compensate for the hardware-induced
geometric distortion in a specific MRA sequence using a two-dimensional
phantom and symmetry assumptions. The accuracy of the symmetry as-
sumptions is of great importance and was found sufficient for present needs.
However, the assumed rotational symmetry is not ideal, thus using a three-
dimensional phantom with higher precision is recommended for a more ac-
curate result. Compensation for intensity distortions can also be made with
this technique using a phantom. Patient-induced distortions were not com-
pensated for.
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6.4 Paper V: Identification of the Main Arterial Branches in
Whole-Body Contrast-Enhanced MRA in Elderly Subjects
Using Limited User Interaction and Fast Marching

As atherosclerosis is a global disease, it becomes interesting to provide clini-
cians with imaging techniques that offer full coverage of the patient’s arterial
system.

In this paper, we suggest a method to extract, from a whole-body CE-
MRA data set, a predefined set of “arteries of interest”. Maximum Intensity
Projections are used as an interface with the 3D volume, to place a series of
landmarks inside the main arteries. The number of landmarks is kept low (36
for a whole-body data set) to reduce interaction time. The location of these
landmarks is determined in advance, in cooperation with angiographers, to
include the arteries with high diagnostic potential. The landmarks also rep-
resent topologically significant points in the arterial structure. The original
image is automatically thresholded, providing a rough estimate of the vascu-
lar region. A distance transform of the “vascular object” is computed to build
a volume where high grayscale values will be observed near the center of the
lumen, low grayscale values at the vessel wall, and zero outside vessels. By
taking the inverse of this image, we have a reasonable cost function for a fast
marching algorithm, where it will be fastest to march through vessel voxels
near the lumen center, and almost forbidden to march outside the vessel.

We tested our method on 10 subjects. It was able to build a graph model
of the main arterial branches, and performed well in the presence of vascular
pathologies, such as stenoses and aneurysms. Results were rated by an expe-
rienced radiologist, with an overall success rate of 82%. These rates ranged
from 40% to 100%, showing that some regions, e.g. the vertebral arteries,
were typically more problematic than others.

To conclude, we showed it was possible to extract chosen arterial branches
in 3D whole-body CE-MRA with a moderate amount of interaction, using a
single MIP projection.

6.5 Paper VI: Objective Assessment of Vessel Geometry in 3D
Whole-Body Contrast-Enhanced MRA

The danger of an acute event related to atherosclerosis is not well predicted
by the classical “degree of stenosis” approach, which consists in identifying
the highly stenosed vessels and measuring the luminal diameter reduction.
The “arterial remodeling” model focuses on how vessel geometry and its
changes during the course of atherogenesis influence blood flow patterns.
Plaque vulnerability is related to wall shear stress, itself related to vessel
tortuosity.

In this paper, we suggest two objective measures of vessel geometry,
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computed from whole-body contrast-enhanced MR angiograms. As in pa-
per V, MIP are used as an interface with the 3D volume, to place a series of
landmarks inside the main arteries. These landmarks constitute the node of
a graph model of the arterial tree. They convey topological and anatomical
information, as they separate the whole tree into segments, in a way simi-
lar to the analysis usually done in clinical practice. A cost function is built
from the image data by computing the response of a vesselness filter for a
predefined set of scales. Fast marching is then applied in 4D (three spatial di-
mensions and scale) to find the shortest path, within the arteries, between the
landmarks. The suggested algorithm is able to handle the anisotropic char-
acter of the 4D hypervolume.Curvature and torsion are then computed using
well-posed differentiation, based on Gaussian scale-space theory. Curvature
is a measure of the rate at which the direction of the local tangent changes,
whereas torsion measures the vessel’s planarity. They are both needed to
describe the 3D nature of the 3D curve.

The values of curvature and torsion along the vessel centreline are dis-
played on a surface rendering of the arterial tree, together with “curvature
indexes” and “torsion indexes”, which summarize the measurements by seg-
ment and for the whole tree.

In conclusion, we showed that it is possible to measure objectively and
without segmentation the geometry of main arteries in whole-body CE-MRA.



REFERENCES 63

References

[1] North American Symptomatic Carotid Endarterectomy Trial. Meth-
ods, patient characteristics, and progress.Stroke, 22(6):711–20
(1991).

[2] Randomised trial of endarterectomy for recently symptomatic carotid
stenosis: final results of the MRC European Carotid Surgery Trial
(ECST).Lancet, 351(9113):1379–87 (1998).

[3] Wikipedia, open-content encyclopedia.http://en.wikipedia.
org/wiki/Main_Page (2004).

[4] Adalsteinsson D. and Sethian J. A Fast Level Set Method for Prop-
agating Interfaces.Journal of Computational Physics, 118:269–277
(1995).

[5] Anderson C.M., Lee R.E., Levin D.L., de la Torre Alonso S., and D.
S. Measurement of internal carotid artery stenosis from source MR
angiograms.Radiology, 193(1):219–226 (1994).

[6] Aronsson M. On 3D fibre measurements of digitized paper. Ph.D.
thesis, Swedish University of Agricultural Sciences (2002).

[7] Aylward S., Pizer S., Bullitt E., and Eberly D. Intensity ridge and
widths for tubular object segmentation and description. InIEEE Work-
shop on Mathematical Methods in Biomedical Image Analysis, pages
131–138 (1996).

[8] Aylward S.R. and Bullitt E. Initialization, noise, singularities, and
scale in height ridge traversal for tubular objects centerline extraction.
IEEE Transactions on Medical Imaging, 21(2):61–75 (2002).

[9] Baskaran V., Pereles S., Nemcek Jr A.A., et al. Gadolinium-enhanced
3D MR angiography of renal artery stenosis: a pilot comparison
of maximum intensity projection, multiplanar reformatting, and 3D
volume-rendering postprocessing algorithms.Academic Radiology,
9(1):50–59 (2002).

[10] Beers M.H. and Berkow R., editors.The Merck Manual of Diagnosis
and Therapy. Medical Services, USMEDSA, USHH (2004).

[11] Beutel J., Kundel H.L., and Van Metter R.L.Handbook of Medical
Imaging - Volume I. Physics and psychophysics. SPIE Press (2000).

[12] Blankenhorn D.H., Brooks S.H., Selzer R.H., Crawford D.W., and
Chin H.P. Assessment of atherosclerosis from angiographic images.
Proceedings of the Society for Experimental Biology and Medicine,
145:1298–1300 (1974).

[13] Bloch F., Hanson W.W., and Packard M. Nuclear induction.Physical
Review, 69(1):127 (1946).

[14] Bock M., Schoenberg S.O., Flömer F., Knopp M.V., and Schad L.R.
Artery and vein separation in time-resolved MRA with correlation

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page


64 Algorithms for the Analysis of 3D MRA Images

analysis. InXI International Workshop on Magnetic Resonance An-
giography, volume 41 ofActa Radiologica Supplementum, pages 64–
65 (2000).

[15] Borgefors G. Distance Transformations in Digital Images.Computer
Vision, Graphics, and Image Processing, 14(3):344–371 (1986).

[16] Borgefors G. On digital distance transforms in three dimensions.
Computer Vision and Image Understanding, 64(3):368–376 (1996).

[17] Brown B.G., Bolson E.L., and Dodge H.T. Dynamic mechanisms in
human coronary stenosis.Circulation, 70(6):917–922 (1984).

[18] Buckheit J. and Donoho D.L. Wavelab and reproducible research.
In A. Antoniadis, editor,Wavelets and Statistics. Springer-Verlag,
Berlin, New York. (1995).

[19] Bühler K., Felkel P., and La Cruz A. Geometric methods for vessel
visualization and quantification - a survey. In G. Brunett, B. Hamann,
H. Müller, and L. Linsen, editors,Geometric Modelling for Scientific
Visualization, pages 399–420. Springer-Verlag (2004).

[20] Carriero A., Maggialetti A., Pinto D., et al. Contrast-Enhanced Mag-
netic Resonance Angiography MoBI-Trak in the Study of Peripheral
Vascular Disease. InCardioVascular and Interventional Radiology,
volume 25, pages 42–47. Springer-Verlag, New York (2002).

[21] Chakeres D.W., Schmalbrock P., Brogan M., Yuan C., and Cohen L.
Normal venous anatomy of the brain: demonstration with gadopente-
tate dimeglumine in enhanced 3-D MR angiography.American Jour-
nal of Roentgenology, 156(1):161–172 (1991).

[22] Chapman N., Witt N., Gao X., et al. Computer algorithms for the au-
tomated measurement of retinal arteriolar diameters.British Journal
of Ophthalmology, 85(1):74–9 (2001).

[23] Coeurjolly D. and Klette R. A Comparative Evaluation of Length
Estimators of Digital Curves.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):252–258 (2004).

[24] Coeurjolly D. and Svensson S. Estimation of Curvature along Curves
with Application to Fibres in 3D Images of Paper. In J. Bigun and
T. Gustavsson, editors,SCIA, volume 2749 ofLecture Notes in Com-
puter Science, pages 247–254. Springer-Verlag, Berlin Heidelberg
(2003).

[25] Cohen L.D. and Kimmel R. Global minimum for active contour mod-
els: a minimal path approach.International Journal of Computer
Vision, 24(1):57–78 (1997).

[26] Cormen T.H., Leiserson C.E., and Rivest R.L.Introduction to algo-
rithms. McGraw-Hill (1998).

[27] Couprie M., Nivando Bezerra F., and Bertrand G. Topological oper-



REFERENCES 65

ators for grayscale image processing.Journal of Electronic Imaging,
10(4):1003–1015 (2001).

[28] Creasy J.L., Price R.R., Presbrey T., Goins D., Partain C.L., and
Kessler R.M. Gadolinium-enhanced MR angiography.Radiology,
175(1):280–283 (1990).

[29] Damadian R. Tumor Detection by Nuclear Magnetic Resonance.Sci-
ence, 171(976):1151–1153 (1971).

[30] Danielsson P.E. Euclidean distance mapping.Computer Graphics
and Image Processing, 14(3):227–248 (1980).

[31] Dellepiane S.G. and Fontana F. Extraction of intensity connected-
ness for image processing.Pattern Recognition Letters, 16(3):313–
324 (1995).

[32] Dellepiane S.G., Fontana F., and Vernazza G.L. Nonlinear image la-
belling for multivalued segmentation.IEEE Transactions on Image
Processing, 5(3):429–446 (1996).

[33] den Boer J.A. and Hoogeveen R. Contrast enhanced MR angiography.
Medica Mundi, 45(1):10–22 (2001).

[34] Deschamps T.Extraction de courbes et surfaces par méthodes de
chemins minimaux et ensemble de niveaux. Applications en imagerie
médicale 3D. Ph.D. thesis, Université de Paris - Dauphine (2001). In
english.

[35] Descoteaux M., Collins L., and Siddiqi K. A Multi-Scale Geomet-
ric Flow for Segmenting Vasculature in MRI. InComputer Vision
Approaches to Medical Image Analysis (CVAMIA). Springer-Verlag,
Prague (2004).

[36] Dijkstra E.W. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271 (1959).

[37] Eberly D., Gardner R., Morse B., Pizer S., and Scharlah C. Ridges
for image analysis. Journal of Mathematical Imaging and Vision,
4(4):353–373 (1994). ISSN 0924-9907.

[38] Farr R.F. and Allisy-Roberts P.J.Physics for medical imaging. Saun-
ders (1998).

[39] Fayad Z.A., Sirol M., Nikolaou K., Choudhury R.P., and Fuster V.
Magnetic resonance imaging and computed tomography in assess-
ment of atherosclerotic plaque.Current Atherosclerosis Reports,
6(3):323–242 (2004).

[40] Felkel P. Segmentation of vessels in peripheral CTA datasets. Tech-
nical report, VRVis: Zentrum für Virtual Reality und Visualisierung
Forschungs (2001).

[41] Ferrari A.U., Radaelli A., and Centola M. Invited review: ag-
ing and the cardiovascular system.Journal of Applied Physiology,



66 Algorithms for the Analysis of 3D MRA Images

95(6):2591–2597 (2003).
[42] Florack L.M.J.Image structure. Kluwer Academic Publishers (1997).
[43] Florack L.M.J. Mathematical techniques for image analysis (2003).

Lecture Notes.
[44] Florack L.M.J., Ter Haar Romeny B.M., Koenderink J.J., and

Viergever M. Scale and the differential structure of images.Image
and Vision Computing, 10(6):376–388 (1992).

[45] Frangi A.F., Niessen W.J., Hoogeveen R.M., van Walsum T., and
Viergever M.A. Model-based quantitation of 3-D magnetic reso-
nance angiographic images.IEEE Transactions on Medical Imaging,
18(10):946–956 (1999).

[46] Frangi A.F., Niessen W.J., Nederkoorn P.J., Bakker J., Mali W.P., and
Viergever M.A. Quantitative analysis of vascular morphology from
3D MR angiograms: In vitro and in vivo results.Magnetic Resonance
in Medecine, 45(2):311–22 (2001).

[47] Frangi A.F., Niessen W.J., Nederkoorn P.J., Elgersma O.E.H., and
Viergever M.A. Three-dimensional model-based stenosis quantifica-
tion of the carotid arteries from contrast-enhanced MR angiography.
In Workshop on Mathematical methods in Biomedical Image Analysis,
pages 110–118 (2000).

[48] Frangi A.F., Niessen W.J., Vincken K.L., and Viergever M.A. Mul-
tiscale vessel enhancement filtering. InMedical Image Computing
and Computer-Assisted Intervention - MICCAI ’98, pages 130–137.
Springer Verlag (1998).

[49] Glagov S., Weisenber E., Zarins C.K., Stankunavicius R., and Kolet-
tis G.J. Compensatory enlargement of human atherosclerotic coro-
nary arteries.New England Journal of Medicine, 316(22):1371–1375
(1987).

[50] Gonzalez R.C. and Woods R.E.Digital Image Processing. Prentice
Hall (2001).

[51] Gorman C. and Park A. The Fires Within.Time Magazine(2003).
[52] Goyen M., Herborn C.U., Kröger K., Lauenstein T.C., Debatin J.F.,

and Ruehm S.G. Detection of atherosclerosis: systemic imaging
for systemic disease with whole whole-body three-dimensional MR
angiography-initial experience.Radiology, 227(1):277–282 (2003).

[53] Griffin L.D. and Colchester A.C.F. Superficial and deep structure in
linear diffusion scale space: isophotes, critical points and separatrices.
Image and Vision Computing, 13(7):543–557 (1995).

[54] Haacke M.E., Brown R.W., Thompson M.R., and R. V.Magnetic
Resonance Imaging: Physical Principles and Sequence Design. John
Wiley and Sons (1999).



REFERENCES 67

[55] Hanke H., Lenz C., and Finking G. The discovery of the pathophysio-
logical aspects of atherosclerosis–a review.Acta Chirurgica Belgica,
101(4):162–169 (2001).

[56] Hascheck E. Lindenthal O.T. Ein Beitrag zur praktischen verwethung
der photographie nach Röntgen.Wiener klinische wochenschrift,
9(4):63–64 (1896).

[57] Hernandez M., Barrena R., Hernandez G., Sapiro G., and Frangi
A.F. Pre-clinical evaluation of implicit deformable models for three-
dimensional segmentation of brain aneurysms in CTA. InSPIE Med-
ical Imaging 2003 Symposium, volume 5032, page 139 (2003).

[58] Hladuvka J., König A., and Gröller E. Exploiting eigenvalues of the
hessian matrix for volume decimation. In9th International Confer-
ence in Central Europe on Computer Graphics, Visualization, and
Computer Vision, pages 124–129 (2001).

[59] Hoffmann K.R., Nazareth D.P., Miskolczi L., et al. Vessel size mea-
surements in angiograms: a comparison of techniques.Medical
Physics, 29(7):1622–1633 (2002).

[60] Hoogeveen R.M., Bakker C.J., and Viergever M.A. Limits to the ac-
curacy of vessel diameter measurement in MR angiography.Journal
of Magnetic Resonance Imaging, 8(6):1228–1235 (1998).

[61] Imielinska C., Metaxas D.N., Udupa J.K., Jina Y., and Chen T. Hy-
brid Segmentation of Anatomical Data. In W.J. Niessen and M.A.
Viergever, editors,MICCAI, volume 2208 ofLecture Notes in Com-
puter Science, pages 1048–1057. Springer (2001). ISBN 3-540-
42697-3.

[62] Johansson L., Lundberg A., Erriksson M.L., Hoogeveen R.M., and
Ahlström H. Whole body contrast enhanced magnetic resonance an-
giography. A tool for screening and evaluation of total plaque burden?
In ISMRM Eleventh Meeting Proceedings(2003).

[63] Kanitsar A. Advanced Visualization Techniques for Vessel Investiga-
tion. Master’s thesis, University of Technology Vienna, Institute of
Computergraphics and Algorithm (2001).
URL http://www.cg.tuwien.ac.at/research/vis/
angiovis/

[64] Kanitsar A., Fleischmann D., Wegenkittl R., Felkel P., and Gröller
M.E. CPR - Curved Planar Reformation. In13th IEEE Visualization
2002 Conference (VIS 2002), pages 37–44 (2002).

[65] Kanitsar A., Wegenkittl R., Fleischmann D., and Gröller M.E.
Advanced Curved Planar Reformation: Flattening of Vascular
Structures. InIEEE Visualization 2003, pages 43–50 (2003).
URL http://www.cg.tuwien.ac.at/research/vis/

http://www.cg.tuwien.ac.at/research/vis/angiovis/
http://www.cg.tuwien.ac.at/research/vis/angiovis/
http://www.cg.tuwien.ac.at/research/vis/adapt/
http://www.cg.tuwien.ac.at/research/vis/adapt/


68 Algorithms for the Analysis of 3D MRA Images

adapt/
[66] Kaufman A. Volume Visualization: principles and advances. Course

notes 24, SIGGRAPH (1998).
[67] Kellar K.E., Fujii D.K., Gunther W.H., Briley-Saebø K., Spiller M.,

and Koenig S.H. NC100150, a preparation of iron oxide nanoparti-
cles ideal for positive-contrast angiography.MAGMA, 8(3):207–13
(1999).

[68] Kerwin W., Han C., Chu B., et al. A quantitative vascular analysis
system for evaluation of atherosclerotic lesions by MRI. InMICCAI
2001, pages 786–794. Springer Verlag (2001).

[69] Kiechl S. and Willeit J. The natural course of atherosclerosis.
Part II: vascular remodeling. Bruneck Study Group.Arteriosclero-
sis,Thrombosis, and Vascular Biology Thromb Vasc Biol, 19(6):1491–
1498 (1999).

[70] Kim Y. and Horii S.C. Handbook of Medical Imaging - Volume 3.
Display and PACS. SPIE Press (2000).

[71] Kimmel R. and Sethian J.A. Optimal Algorithm for Shape from Shad-
ing and Path Planning.Journal of Mathematical Imaging and Vision,
14(3):237–244 (2001).

[72] Kindlmann G., Whitaker R., Tasdizen T., and Möller T. Curvature-
Based Transfer Functions for Direct Volume Rendering: Methods and
Applications. In IEEE Visualization 2003 Conference (VIS 2003),
pages 513–520 (2003).

[73] Koenderink J.J. and van Doorn A.J. The structure of images.Biolog-
ical Cybernetics, 50:363–370 (1984).

[74] Koenderink J.J. and van Doorn A.J. Local features of smooth shapes:
ridges and courses. In B.C. Vemuri, editor,Geometric Methods in
Computer Vision II, volume 2031, pages 2–13. SPIE (1993).

[75] Koller T.M., Gerig G., Székely G., and Dettwiller D. Multiscale de-
tection of curvilinear structures in 2-D and 3-D image data. In5th
Intrenational Conference on Computer Vision, pages 864–869 (1995).

[76] Kouwenhoven M., Bakker C.J., Hartkamp M., and Mali W.P.T.M.
Vascular diagnostics, chapter Current MR Angiographic Imaging
Techniques, a survey, pages 375–400. Springer Verlag (1994).

[77] Krissian K., Malandain G., and Ayache N. Model based multiscale
detection and reconstruction of 3D vessels. Technical report, INRIA
(1998).

[78] Krissian K., Malandain G., Ayache N., Vaillant R., and Trousset Y.
Model-based detection of tubular structures in 3D images.Computer
Vision and Image Understanding, 80(2):130–171 (2000).

[79] Kruger R.A., Mistretta C.A., Lancaster J., et al. A digital video image

http://www.cg.tuwien.ac.at/research/vis/adapt/
http://www.cg.tuwien.ac.at/research/vis/adapt/


REFERENCES 69

processor for real-time x-ray subtrac-tion imaging.Optical Engineer-
ing, 17(6):652–657 (1978).

[80] Kumar N., Welti D., and Ernst R.R. NMR-Fourier-Zeugmatography.
Journal of Magnetic Resonance, 18(1):69–83 (1975).

[81] Langlois S., Desvignes M., Constans J.M., and Revenu M. MRI
geometric distortion: a simple approach to correcting the effects of
non-linear gradient fields.Journal of Magnetic Resonance Imaging,
9(6):821–831 (1999).

[82] Lauffer R., Parmelee D., Dunham S., et al. MS-325: albumin-targeted
contrast agent for MR angiography.Radiographics, 207(2):1529–538
(1998).

[83] Lauterbur P.C. Image formation by induced local interactions:
examples of employing nuclear magnetic resonance.Nature,
242(5394):190–191 (1973).

[84] Lei T.H., Udupa J.K., Saha P.K., and Odhner D. Artery-vein separa-
tion via MRA - An image processing approach.IEEE Transactions
on Medical Imaging, 20(8):689–703 (2001).

[85] Leiner T., De Vries M., Hoogeven R., Vasbinder G.B.C., Lemaire
E., and Van Engelshoven J. Contrast-enhanced peripheral MR an-
giography at 3.0 Tesla: initial experience with a whole-body scanner
in healthy volunteers.Journal of Magnetic Resonance and Imaging,
17(5):609–614 (2003).

[86] Léoni J. Physiopathologie de l’athérosclérose - Mécanismes et
prévention de l’athérothrombose. Ph.D. thesis, Faculté de Médecine
et de Pharmacie de Besançon (2001).

[87] Libby P. Atherosclerosis: the new view.Scientific American, pages
47–55 (2002).

[88] Lillholm M. and Pedersen K.S. Jet Based Feature Classification
(2004). In Proceedings of International Conference on Pattern Recog-
nition, Cambridge, United Kingdom. August 2004.

[89] Lin Q. Enhancement, extraction, and visualization of 3D volume
data. Ph.D. thesis, Computer Vision Laboratory, Linköping Univer-
sity (2003).

[90] Lin W., Haacke E.M., Smith A.S., and Clampitt M.E. Gadolinium-
enhanced high-resolution MR angiography with adaptive vessel track-
ing: preliminary results in the intracranial circulation.Journal of
Magnetic Resonance Imaging, 2(3):277–284 (1992).

[91] Lindeberg T. Effective scale: a natural unit for measuring scale-space
lifetime. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(10):1068–1074 (1993).

[92] Lindeberg T.Scale-Space Theory in Computer Vision. Kluwer Acad-



70 Algorithms for the Analysis of 3D MRA Images

emic Publisher (1994).
[93] Lindeberg T. Edge Detection and Ridge Detection with Auto-

matic Scale Selection.International Journal of Computer Vision,
30(2):117–156 (1998).

[94] Lindeberg T. Principles for automatic scale selection.Handbook on
computer vision and applications, 2:239–274 (1999).

[95] Lopez A.M., Lloret D., Serrat J., and Villanueva J. Multilocal crease-
ness on the level-set extrinsic curvature.Computer Vision and Image
Understanding, 77:111–144 (2000).

[96] Lopez A.M., Lumbreras F., Serrat J., and Villanueva J. Evaluation of
methods for ridge and valley detection.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(4):327–335 (1999).

[97] Lorensen W.E. and Cline H.E. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. InComputer Graphics (Proceed-
ings of SIGGRAPH ’87), volume 21, pages 163–169 (1987).

[98] Lorenz C., Carlsen I.C., Buzug T.M., Fassnacht C., and Weese J.
Multi-scale line segmentation with automatic estimation of width,
contrast and tangential direction in 2D and 3D medical images. In
CVRMed-MRCAS’97, Lecture Notes in Computer Science, pages
233–242 (1997).

[99] Maas R. and Boger R.H. Old and new cardiovascular risk factors:
from unresolved issues to new opportunities.Atherosclerosis Supple-
ment, 4(4):5–17 (2003).

[100] Mansfield P. Multi-Planar Image Formation Using NMR Spin Echoes.
Journal Of Physics C-Solid State Physics, 10(3):55–58 (1977).

[101] Marchal G., Bosmans H., Van Hecke P., Jiang Y.B., Aerts P., and
Bauer H. Experimental Gd-DTPA polylysine enhanced MR angiog-
raphy: sequence optimization.Journal of Computed Assisted Tomog-
raphy, 15(4):711–715 (1991).

[102] Marieb E.M. Human anatomy and physiology. The Benjamin-
Cummings Publishing Company (1995).

[103] Martel A.L., Fraser D., Delay G.S., Morgan P.S., and Moody
A.R. Separating arterial and venous components from 3D dynamic
contrast-enhanced MRI studies using factor analysis.Magnetic Reso-
nance in Medecine, 49(5):928–933 (2003).

[104] Mauch S. Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations. Ph.D. thesis, California Institute of Technology, Pasadena,
California (2003).

[105] Meijering E.H.W., Niessen W., and Viergever M.A. Quantitative eval-
uation of convolution-based methods for medical image interpolation.
Medical Image Analysis, 5(2):111–126 (2001).



REFERENCES 71

[106] Mistretta C.A. Relative characteristics of MR angiography and com-
peting vascular imaging modalities.Journal of Magnetic Resonance
Imaging, 3(5):685–698 (1993).

[107] Morse B.S., Pizer S., and Liu A. Multiscale medial analysis of med-
ical images.Image and Vision Computing, 12(6):327338 (1994).

[108] Mroz L. and Hauser H. Interactive High-Quality Maximum Intensity
Projection. In M. Gross and F.R.A. Hopgood, editors,EUROGRAPH-
ICS Š2000, volume 19 (2000).

[109] Nilsson S., Berglund I., Bylund H., et al. Quantitation of atherosclero-
sis in femoral arteriography with ECG gated exposures.Acta Radio-
logica, 29:311–315 (1988).

[110] Nowak R. Wavelet-based rician noise removal for magnetic resonance
imaging. IEEE Transactions on Image Processing, 8(10):1408–1419
(1999).

[111] Nyström I. and Smedby O. Skeletonization of volumetric vascular
images – Distance information utilized for visualization.Journal of
Combinatorial Optimization, 5(1):27–41 (2001). Special Issue on Op-
timization Problems in Medical Applications.

[112] Nyul L.G., Falcao A., and Udupa J.K. Fuzzy-connected 3D image
segmentation at interactive speeds.Graphical Models, 64(5):259–281
(2002).

[113] Nyul L.G., Udupa J.K., and Saha P.K. Incorporating a measure of
local scale in voxel-based 3-D image registration.IEEE Transactions
on Medical Imaging, 22(2):228–37 (2003).

[114] Olsson A.G., Carlson L.A., Erikson U., Helmius G., Hemmingsson
A., and Ruhn G. Regression of computer estimated femoral athe-
rosclerosis after pronounced serum lipid lowering in patients with
asymptomatic hyperlipidaemia.Lancet, 1(8284):1311 (1982).

[115] Osher S. and Sethian J.A. Fronts Propagating With Curvature-
Dependent Speed - Algorithms Based On Hamilton-Jacobi Formu-
lations.Journal of Computational Physics, 79(1):12–49 (1988).

[116] Pasterkamp G., Schoneveld A.H., van der Wal A.C., et al. Relation
of arterial geometry to luminal narrowing and histologic markers for
plaque vulnerability: the remodeling paradox.Journal of the Ameri-
can College of Cardiology, 32(3):655–662 (1998).

[117] Pelletier D., Garrison K., and Henry R. Measurement of whole-brain
atrophy in multiple sclerosis.Journal of Neuroimaging, 14(3):11–19
(2004).

[118] Pizer S.M., Burbeck C.A., Coggins J.M., Fritsch D.S., and Morse B.S.
Object shape before boundary shape: Scale-space medial axes.Jour-
nal of Mathematical Imaging and Vision, 4:303–313 (1994).



72 Algorithms for the Analysis of 3D MRA Images

[119] Poli A., Tremoli E., and Colombo A. Ultrasonographic measurement
of the common carotid artery wall thickness in hypercholesterolemic
patients: a new model for the quantitation and follow-up of preclinical
atherosclerosis in living human subjects.Atherosclerosis, 70:253–261
(1988).

[120] Press W.H., Flannery B.P., Teukolsky S.A., and Vetterling W.T.Nu-
merical Recipes: The Art of Scientific Computing. Cambridge Univer-
sity Press, Cambridge (UK) and New York, 2nd edition (1992). ISBN
0-521-43064-X.

[121] Prince M., Grist T.M., and Debatin J.F.3D contrast MR angiography.
Springer (1999).

[122] Prokesch R.W., Coulam C.H., Chow L.C., Bammer R., and Rubin
G.D. CT angiography of the subclavian artery: utility of curved planar
reformations.Journal of Computer Assisted Tomography, 26(2):199–
201 (2002).

[123] Purcell E., Torrey H., and Pound R. Resonance absorption by nuclear
magnetic moments in a solid.Physical review, 69:37–38 (1946).

[124] Quick H.H., Debatin J.F., and Ladd M.E. MR imaging of the vessel
wall. European Radiology, 12(4):889–900 (2002).

[125] Rasband W. ImageJ.http://rsb.info.nih.gov/ij/ (1997).
National Institutes of Health, Bethesda, Maryland, USA.

[126] Reddy K. and Yusuf S. Emerging epidemic of cardiovascular disease
in developing countries.Circulation, 97:596–601 (1998).

[127] Rinck P.A. Magnetic Resonance in Medicine - The basic textbook of
the european magnetic resonance forum. Blackwell scientific publi-
cations (1993).

[128] Rosenfeld A. Fuzzy Digital Topology.Information and Control,
40:76–87 (1979).

[129] Rosenfeld A. On connectivity properties of grayscale pictures.Pattern
Recognition, 16(1):47–50 (1983).

[130] Ruehm S.G., Goyen M., Barkhausen J., et al. Rapid magnetic
resonance angiography for detection of atherosclerosis.Lancet,
357(9262):1086–1091 (2001).

[131] Ruhn G., Erikson U., Helmius G., and Hemmingsson A. Comput-
erized quantitation of atherosclerosis in an experimental model. Ar-
teriography and microdensitometry.Acta Radiologica Diagnostica,
23(6):621–624 (1982).

[132] Saha P.K., Udupa J.K., and Odhner D. Scale-based fuzzy connected
image segmentation: theory, algorithms, and validation.Computer
Vision and Image Understanding, 77(2):145–174 (2000).

[133] Sato Y., Nakajima S., Shiraga N., et al. Three-dimensional multi-scale

http://rsb.info.nih.gov/ij/


REFERENCES 73

line filter for segmentation and visualization of curvilinear structures
in medical images.Medical Image Analysis, 2(2):143–168 (1998).

[134] Sato Y., Shiraga N., Nakajima S., Tamura S., and Kikinis R. Local
Maximum Intensity Projection (LMIP): A New Rendering Method for
Vascular Visualization.Journal of Computer Assisted Tomography,
22(6):912–917 (1998).

[135] Sato Y., Tanaka H., Nishii T., et al. Limits on the accuracy of
3-D thickness measurement in magnetic resonance images–effects
of voxel anisotropy. IEEE Transactions on Medical Imaging,
22(9):1076–88 (2003).

[136] Sato Y., Westin C., Bhalerao A., et al. Tissue classification based on
3D local intensity structures for volume rendering.IEEE Transactions
on visualization and computer graphics, 6(2):160–180 (2000).

[137] Schreiner S., Dawant B.M., Paschal C.B., and Galloway R.L. The
importance of ray pathlengths when measuring objects in maximum
intensity projection images.IEEE Transactions on Medical Imaging,
15(4):568–579 (1996).

[138] Sethian J. A fast marching level set method for monotonically ad-
vancing fronts. Proceedings of the Natural Academy of Sciences,
93(4):1591–1595 (1996).

[139] Sethian J. Fast marching methods.SIAM Review, 41(2):199–235
(1999).

[140] Sethian J.Level set methods and fast marching methods. Cambridge
University Press (1999).

[141] Seymour H.R., Matson M.B., Belli A.M., Morgan R., Kyriou J., and
Patel U. Rotational digital subtraction angiography of the renal ar-
teries: technique and evaluation in the study of native and transplant
renal arteries.British Journal of Radiology, 74(878):134–141 (2001).

[142] Shapiro L. and Stockman C.Computer Vision, chapter Region Grow-
ing, pages 289–291. Prentice Hall (2001).

[143] Sijbers J., den Dekker A.J., Van der Linden A., Verhoye T.M., and
Van Dyck D. Adaptive anisotropic noise filtering for magnitude MR
data.Magnetic Resonance Imaging, 17(10):1533–1539 (1999).

[144] Silvela J. and Portillo J. Breadth-first search and its application to
image processing problems.IEEE Transactions on Image Processing,
10(8):1194–1199 (2001).

[145] Smedby O.Angiographic methods for the study of fluid mechanical
factors in atherogenesis. Ph.D. thesis, Department of Diagnostic Ra-
diology, Uppsala University (1992).

[146] Smedby O. Do plaques grow upstream or downstream?: an angio-
graphic study in the femoral artery.Arteriosclerosis,Thrombosis, and



74 Algorithms for the Analysis of 3D MRA Images

Vascular Biology, 17(5):912–918 (1997).
[147] Smedby O. and Bergstrand L. Tortuosity and atherosclerosis in the

femoral artery: what is cause and what is effect?Annals of Biomedical
Engineering, 24(4):474–480 (1996).

[148] Stary H.C., Chandler A.B., Glagov S., et al. A definition of initial,
fatty streak, and intermediate lesions of atherosclerosis. A report from
the Committee on Vascular Lesions of the Council on Arteriosclerosis,
American Heart Association.Circulation, 89(5):2462–2478 (1994).

[149] Stevenson D., Smith L., and Robinson G. Working towards the auto-
matic detection of blood vessels in X-ray angiograms.Pattern Recog-
nition Letters, 6(2):107–112 (1987).

[150] Störk S., Van Den Beld A.W., Von Schacky C., et al. Carotid
Artery Plaque Burden, Stiffness, and Mortality Risk in Elderly
Men: A Prospective, Population-Based Cohort Study.Circulation,
110(3):344–348 (2004).

[151] Stroud J.S., Berger S., and Saloner D. Influence of stenosis morphol-
ogy on flow through severely stenotic vessels: implications for plaque
rupture.Journal of Biomechanics, 33(4):443–455 (2000).

[152] Sun Y. and Parker D.L. Performance Analysis of Maximum Intensity
Projection Algorithm for Display of MRA Images.IEEE Transactions
on Medical Imaging, 18(12):1154–1169 (1999).

[153] Suri J., Liu K., Reden L., and Laxminarayan S. A review on MR
vascular image processing algorithms: acquisition and prefiltering:
Part I. IEEE Transactions on information technology in biomedicine,
6(4):324–337 (2002).

[154] Suri J., Liu K., Reden L., and Laxminarayan S. A review on MR
vascular image processing algorithms: skeleton versus non skeleton
approaches: Part II.IEEE Transactions on Information Technology in
Biomedicine, 6(4):338–350 (2002).

[155] ter Haar Romeny B.M. Front-End Vision and Multi-Scale Image
Analysis. Kluwer Academic Publisher (2003).

[156] Tsai Y.R., Cheng L., Osher S., and Zhao H. Fast sweeping algorithms
for a class of Hamilton-Jacobi equations.SIAM Journal on Numerical
Analysis, 41(2):673–694 (2003).

[157] Tsitsiklis J.N. Efficient algorithms for globally optimal trajectories.
IEEE Transactions on Automatic Control, 40(9):1528–1538 (1995).

[158] Udupa J.K. and Samarasekera S. Fuzzy connectdness and object de-
finition: theory, algorithms, and applications in image segmentation.
Graphical Models and Image Processing, 58(3):246–261 (1996).

[159] Udupa J.K., Wei L., Samarasekera S., Miki Y., van Buchem M.A., and
Grossman R.I. Multiple Sclerosis Lesion Quantification Using Fuzzy-



REFERENCES 75

Connectedness Principles.IEEE Transactions on Medical Imaging,
16(5):598–609 (1997).

[160] van Bemmel C., Spreeuwers L., Viergever M., and Niessen W. Level-
Set Based Carotid Artery Segmentation for Stenosis Grading. InMIC-
CAI 2002, pages 36–43. Springer Verlag (2002).

[161] van Bemmel C., Spreeuwers L., Viergever M., and Niessen W. Level-
set-based artery-vein separation in blood pool agent CE-MR an-
giograms. IEEE Transactions on Medical Imaging, 22(10):1224–
1234 (2003).

[162] van Bemmel C.M., Wink O., Verdonck B., Viergever M., and Niessen
W.J. Blood Pool contrast-enhanced MRA: improved arterial visual-
ization in the steady state.IEEE Transactions on Medical Imaging,
22(5):645–652 (2003).

[163] Walker M.F., Souza S.P., and Dumoulin C.L. Quantitative flow mea-
surement in phase contrast MR angiography.Journal of Computed
Assisted Tomography, 12(2):304–313 (1988).

[164] Wang B., Saha P.K., Udupa J.K., et al. 3D airway segmentation via
hyperpolarized 3He gas MRI by using scale-based fuzzy connected-
ness. Computerized Medical Imaging and Graphics, 28(1-2):77–86
(2004).

[165] Wang D., Doddrell D.M., and Cowin G. A novel phantom and method
for comprehensive 3-dimensional measurement and correction of geo-
metric distortion in magnetic resonance imaging.Magnetic Reso-
nance Imaging, 22(4):529–542 (2004).

[166] Ward M.R., Pasterkamp G., Yeung A.C., and Borst C. Arter-
ial remodeling. Mechanisms and clinical implications.Circulation,
102(10):1186–1191 (2000).

[167] Wehrli F., Shimakawa A., Gullberg G.T., and MacFall J.R. Time-of-
flight MR flow imaging: selective saturation recovery with gradient
refocusing.Radiology, 160(3):781–785 (1986).

[168] Wenwang Z. The fast sweeping method of eikonal equations and its
parallelism. Technical report, KTH Numerical analysis and computer
science (2003).

[169] Westenberg J.J.M., van der Geest R., Wasser M., et al. Vessel diame-
ter measurements in gadolinium contrast enhanced three dimensional
MRA of peripheral arteries.Magnetic Resonance Imaging, 18(1):13–
22 (2000).

[170] Wikström J., Johansson L., Ericsson A., Børseth A., Åkeson P., and
Ahlström H. Abdominal vessel enhancement with the blood pool
agent NC100150: relation to dose and echo time. InISMRM Pro-
ceedings, abstract no. 1046. Sydney (1998).



76 Algorithms for the Analysis of 3D MRA Images

[171] Wink O., Niessen W., and Viergever M. Multiscale vessel tracking.
IEEE Transactions on Medical Imaging, 23(1):130–133 (2004).

[172] Witkin A.P. Scale-space filtering. InProceedings of the 7th Inter-
national Joint Conference on Artificial Intelligence, pages 1019–1022
(1983).

[173] Yim P.J., Mullick R., Summers R.M., et al. Measurement of steno-
sis from magnetic resonance angiography using vessels skeletons. In
SPIE Medical Imaging(2000).

[174] Young N., Pekar V., and Weese J. Vessel Segmentation for Visual-
ization of MRA with Blood Pool Contrast Agent. InMICCAI 2001,
pages 491–498. Springer Verlag (2001).

[175] Yu Z. and Bajaj C. A Segmentation-Free Approach for Skeletoniza-
tion of Gray-Scale Images via Anisotropic Vector Diffusion. InPro-
ceedings of 2004 IEEE International Conference on Computer Vi-
sion and Pattern Recognition (CVPR’04), volume 1, pages 415–420.
Washington, DC (2004).

[176] Zir M., Miller S.W., Dinsmore R.E., Gilbert J.P., and Harthorne
J.W. Interobserver variability in coronary angiography.Circulation,
53:627–632 (1976).

[177] Zucker S.W. Region Growing: childhood and adolescence.Computer
Graphics and Image processing, 5:382–399 (1976).

[178] Zuiderveld K.J., Koning A., and Viergever M.A. Techniques for
speeding up high-quality perspective Maximum Intensity Projection.
Pattern Recognition Letters, 15(5):507–517 (1994).





Acknowledgements

This thesis summarizes research projects carried out at the Centre for Image
Analysis and Uppsala University Hospital between June 1999 and September
2004. I would like here to express my gratitude to the people who made it
all possible.

My supervisor, Professor Gunilla Borgefors. From the very first day we met,
in Paris in early 1999, you did everything to make me feel welcome. You
always kept an open mind about my scientific choices, even if the paths I
chose sometimes wandered away from your footsteps. Thank you for your
constant support, and for allowing me to pursue things in my own way.

My co-supervisor, Professor Örjan Smedby. I have learned a lot from you
and your unique double competence. I will try to always keep in mind that
one of the most important aspects of cooperative research is to understand
each other’s language.

My second co-supervisor, Doctor Hans Frimmel, for helping me squeeze the
bitter-sweet juice out of my writing. I hope our collaboration on the vessel
geometry project will go on after this thesis is defended.

The VISIT program and the people who worked hard for me to skip bother-
ing about money during these five years.

All my colleagues at CBA, past and present, for making it such a special
place. Carolina for being the sweetest roommate; Stina for a very pleasant
and intensive semester of teaching; Ida for her never-ending smile; Ingela
for her competence and spirit: keep up the fight!; Lucia for her fantastic
tiramisu recipe: it’s mine now,; Nataša for a lot of fuzzy reasons; Joakim
for lightening up the Monday seminars; Ola and Mats, the math brothers, for
the scientific discussions; Bosse for having helped me improve my Swedish
by talking so fast; and everybody that I did not mention here but do not
forget. Good luck to you all. A very special thanks to Lena. You have
always been there to help me with the oddities of the Swedish administration
and my laziness to comply with the paperwork.

Special thanks go to my former flatmate Felix. You showed me that science
was a matter of creativity, and I showed you that French cuisine also was! I
am very grateful for the thorough review you did on this thesis. Good luck
for the future for you and Jenni!

The people at the MR Department of Uppsala University Hospital. Lars,
Rolf, Arvid, Joel, Jan, Lena, the boss Håkan, and all the clinical staff. An-
ders L. is especially acknowledged for spending time uploading tremendous
amounts of data, packing up our hard disks with material to work on.



My principal co-authors on the papers included in this thesis: Adam Löfving,
Erik Vidholm, Joel Kullberg, Qingfen Lin and Hans Frimmel. Thanks to you,
I learned that research is much more fun as a cooperative process.

I came to Sweden in May 1999, on a Tuesday morning. The very same
evening, I was playing boule at Odinslund, which I have done there and
almost everywhere in Sweden many times since. I am endlessly grateful to
Sven-Erick, Christina, Staffan, Erik, and Ingrid for this first evening. I also
want to thank all the MoPSes, past and present, and all my fellow players in
the small world of boulesverige, for making my Swedish years so enjoyable.
I owe you a lot, and I’ll try to come back from time to time to check if you
can still cope with the French carreaux.

My friends from far-away France. Jérôme, Sylvain and Catherine, Thierry
and Alix, Gilles and Patricia, Olivier, Nicolas and Karine. It is good to know
you always are here, and I look forward to seeing you more often than every
second year.

Ma famille à Sanxay et Sheffield : mes parents et ma soeur Virginie. Dans
les bons et les moins bons moments, vous êtes toujours à mes côtés.

There is one person left to thank. Lots of things have happened during the
past five years, and the most important is you, Liliana, becoming a part of
my life. There would be so much to thank about, and not least the part you
played in the writing and reviewing of this thesis. I love you with all my
heart.

Uppsala, September 2004


	Introduction
	Background
	Atherosclerosis
	Data acquisition
	Visualization of angiographic images

	Vascular image analysis
	Grayscale connectedness
	Fast marching
	Vessel enhancement
	Measurement of vessels

	Implementation
	Grayscale connectedness
	Fast marching
	Vesselness

	Conclusions and future research
	Arteries-veins separation in BP-CE-MRA
	Whole-body CE-MRA
	Future work
	Conclusion

	Summary of the included papers
	Papers I and II
	Paper III
	Paper IV
	Paper V
	Paper VI

	References
	Acknowledgements

