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Abstract 

The issue of timing and scope of policies to manage invasive species has achieved considerable 

attention in the economic literature. Whereas many earlier studies compare prevention and 

control for a single invading species, we focus instead on the optimal balance of adaptation and 

control when an invasive species competes for scarce resources with a resident species. In 

particular, we focus on the role that species’ life history, i.e. the degree of evolutionary 

specialization in survival or reproduction, plays for the choice of strategy. A numerical age-

structured optimization model is used for the analysis. Results show that life history is an 

important factor for the trade-off between direct control of the invader and adaptation of 

harvesting strategies for the resident species. Life history is also crucial for the trade-off between 

early and delayed control of the invader. When a direct control technology is not available, there 

are larger economic losses with a resident species specialized in survival, whereas if such 

technologies are available, the larger losses occur with a resident species specialized in 

reproduction.  
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1. Introduction  

 
Invasive species, i.e. species that are introduced into a natural environment where they are not 

normally found, can give rise to large economic damage due to their impact on native species, 

wildlife habitats, forest and agriculture productivity, and recreation (Pimentel et al., 2005; Gren 

et al., 2009). Estimates of damage cost indicate that they can correspond 5-10% of GDP (Gren et 

al., 2009). In principle, there are three ways of controlling damage of invasive species; 

prevention, control and adaptation measures. Prevention efforts inhibit the entrance of species 

into new regions, control measures regulate the size and spread of the invader, and adaptation 

measures affect the damage caused by the invader through adjustments of economic activities at 

the site such as, e.g., the management of native species already present in the habitat (see e.g. 

Perrings 2005 and Finnoff et al., 2005 for definitions of the different types of measures). Existing 

international instruments for biodiversity conservation are mainly focused on prevention of 

unwanted introductions, while providing little guidance regarding the issue of control or 

adaptation (Secretariat of the Convention on Biological Diversity, 2001). However, these 

prevention measures sometimes fail to stop the entrance of invasive species, and the associated 

establishment and growth are determined by the interaction with resident species. The 

implication of this interaction for optimal choice of control and adaptions strategies has, to the 

best of our knowledge, not been analyzed in the economic literature (see Gren 2008 for a 

review). The purpose of this paper is to examine how optimal control and adaptation policies 

depend on the economic and biological characteristics of invading and resident species. To this 

end, we use a two-population discrete dynamic model with an invasive species, which compete 

for scarce resources with a commercially valuable harvested resident species 

 

A vast majority of the economic studies on invasive species focus on the trade-off between 

prevention and control measures, and abstract from the interaction with the resident species. 

Because of the stochastic impact of prevention measures on the invader, the impact of prevention 

is typically modeled as random, while control is assumed to exert a known impact on the invader 

population (Olson and Roy, 2005; Kim et al., 2006; Leung et al., 2002; Finnoff et  
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al., 2007). Within this type of framework, Olson and Roy (2005) use a static stochastic model to 

examine how the trade-off between prevention and control depends on the economic and 

biological characteristics of a single invader, such as initial invasion size, invader growth rate, 

and the probability distribution of introductions. Kim et al. (2006) assume that discovery of the 

invader occurs with a delay, and show that it is economically efficient to spend more on 

prevention before than after the discovery of the invader. After discovery, prevention can still be 

more important than control if the invader population is small enough, but when the population 

increases, prevention is no longer optimal. Total expenditures on prevention and control are 

shown to decrease with the population of the invader, and increase with the invader population 

growth rate and the carrying capacity of the invaded ecosystem.  

 

The consideration of uncertainty in invader growth, in particular when entering a new ecosystem, 

is recognized by Leung et al. (2002). They use stochastic dynamic programming model to 

identify the optimal combination of prevention and control, and derive associated acceptable 

invasion risk. Finnoff et al. (2007) argue that national and regional managers frequently 

implement policies when invaders have arrived and show that this can be explained by risk 

aversion if the effect of control on invader population is certain whereas the effect of prevention 

is not. The importance of recognizing uncertainty in the spread of an introduced invader is 

supported by ecological literature, where it is argued that the efficacy of control is dependent on 

the progress stage of the invasion (e.g. Grice, 2009). It is, e.g., suggested that control strategies 

should exploit times when the invasive species population is low. It is also emphasized that 

ability of the invasive species to compete with resident species and survive in the new habitat is 

increasingly more important compared to biological dispersal ability (MacArthur and Wilson, 

1967). Therefore, the focus in this article is on the role that life history of invasive and 

commercial resident species plays for the economic damage of invasions actually occurring, 

while we abstract from the role that life history can have for species’ dispersal. Developing a 

bio-economic model, we analyze how the trade-off between control and adaptation depends on 

invasive and resident species life history and on technologies for control and adaptation. In our  
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view, this paper contributes to the literature on control and adaptation through i) the inclusion of 

a interaction between invading and resident species, ii) the use of an age-structured model, which 

allows for analysis of the role of the age of the invader at the time of arrival as well the role of 

age for the optimal control and harvesting decisions, and iii) modeling of alternative species 

types that differ only in terms of life history, which allows for the analysis of life history for the 

above trade-off.  

 

The main results of this paper show that life history is an important factor for the trade-off 

between direct control of the invader and adaptation of harvesting strategies for the resident 

species. Life history is also crucial for the trade-off between early and delayed control of the 

invader. When a direct control technology is not available there are larger economic losses with a 

resident species specialized in survival, whereas if such technologies are available, the larger 

losses occur with a resident species specialized in reproduction. 

 

The paper is organized as follows; the bio-economic model is presented in Section 2, and data 

for the empirical are given in Section 3. Next, the results are presented and the paper ends with a 

brief summary and discussion in Section 5. 

 

 

 

2. Bio-economic model 
 

The bio-economic model builds on Elofsson et al., (2012) and adds the possibility of adaptation 

measures. In order to analyze the role of invading and resident species life history, we then 

classify species into two types, A and B, corresponding to iteroparous species of type I and III, 

respectively. The classification is based on the observation that species have a limited amount of  
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energy available, which must be allocated between fecundity and survival, thereby defining their 

life history strategy. The type A life history is found among species that spend large efforts to 

protect to their relatively few offspring, thereby increasing the probability of survival of the 

young, such as e.g. mammals (Deevey, 1947; Polis and Farley, 1980). The type B life history is 

found among species that produce high numbers of young at a cost of low juvenile survival. This 

type of life history is common among e.g. fish, insects, marine invertebrates, and plants. The two 

species types have the following characteristics (cf. Lack 1954; Williams, 1966; Pianka and 

Parker, 1975):  

 

- Type A species has, as a juvenile, a high survival rate which falls as age increases. 

Reproduction is low for all mature age classes.  

-  Type B, juvenile survival is low but the survival rate increases with age. Reproduction is 

high for reproductive age classes and increases with age.  

 

Following Elofsson et al. (2012) we assume there are two species populations, one resident and 

one invader, each associated with a life history j, with j=A,B. A stock transition relationship 

describes the development of the populations over time. The fraction of individuals of cohort a 

surviving until the following year is denoted 1,a jα + . The number of individuals of the two 

species in a habitat is assumed to affect survival and offspring production due to competition for 

limiting resources. Survival and offspring production of the species from one year to another is 

therefore assumed to be determined by a factor 
( )aj aj aj aj

t t
a

R I

e
β µ− +∑

, which is decreasing in the 

number of residents and invaders. The coefficients ajβ  and ajµ  indicate, respectively, the 

carrying capacity of the habitat with regard to the species own population, and the degree of 

competition for scarce resources such as food or space between the two species. 

 

The number of individuals in cohort a+1 of the resident species, 1,
1

a j
tR +
+ , counted before the 

reproductive season, is defined by: 
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aj aj aj aj
t t
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a j aj a j aj
t t t

aj
t
aj
t
aj aj

R R e H j A B a a

H a h

H h a a

R R

β µ

α
− +

+ +
+

∑
= ∀ = ∀ =

= ∀ <

≥ ∀ ≤ ≤

=

   (1)  

 

where aj
tR  and aj

tI  denote the number of individuals of resident and invader species, 

respectively, belonging to cohort a at time t and aj
tH  is the harvest of the resident species at time 

t. It is assumed that only individuals above age h  are captured. The number of individuals in 

different cohorts of the resident species at time t=0 is given by 0
ajR . 

 

Individuals of the resident species are assumed to reach maturity at the age of a , and continue to 

reproduce until they die at an age of a . Resident species recruitment is assumed to be 

determined by:  

 

( ) ( )0 0

0 0   ,
j aj j aj aj aj aj aj

t t t t
a a

a R I R I
j aj j aj

t t
a a

R R e m e j A B
β µ β µ

α
− + − +

≥

∑ ∑ 
= ∀ = 

 
∑ ,   (2) 

 

where 
( )aj aj aj aj

t t
a

N I
ajm e

β µ− +∑
 is the gross number of offspring produced and 

( )0 0

0
j aj j aj

t t
a

N I
je

β µ

α
− +∑

 is the 

survival rate in the same year, with both terms being affected by inter- and intra-species 

competition.  

 

Stock dynamics of the invading species are defined by: 
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0  ,

0   and

aj aj aj aj
t t

a
I R

a j aj a j aj aj
t t t t

aj
t

aj
t

I I e V W j A B a a

W a g

W g a a

β µ

α
− +

+ +
+

∑
= + ∀ = ∀ =

= ∀ <

≥ ∀ ≤ ≤

,  (3) 

  

where aj
tV , with 0aj

tV ≥ , is the number of individuals of cohort a of the invading species 

entering the habitat in time period t, and  aj
tW  is the number of invaders subject to control in the 

same time period. It is assumed that no individual below age g  is captured.  

 

Invader recruitment is analogous to that of the resident: 

 

 
( ) ( )0 0

0 0   ,
j aj j aj aj aj aj aj

t t t t
i a

a I R I R
j aj j aj

t t
a a

I I e m e j A B
β µ β µ

α
− + − +

≥

∑ ∑ 
= ∀ = 

 
∑

 
  (4) 

 

 

It is assumed that there is a sole manager of the habitat, whose objective is to maximize the net 

present value from joint management of the two species. The manager is assumed to be a price-

taker in all markets. Revenues from harvests of the resident species, j
tTR , are: 

 
j j aj aj

t t
a h

TR p w H
≥

= ∑
 

,        (5) 

 

where jp  is the price per kilo, ajw  is the age-specific weight of the resident species and aj
tH  is 

the catch of cohort a. The total harvesting cost, TCR, is: 
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,

j j

j j aj aj aj aj
t t t

a h a h
TCR w R w H

γ δ

η
≥ ≥

   
=    

   
∑ ∑ ,   

   (6) 

 

where jγ  is the stock elasticity, jδ  the output elasticity and jη  a calibration parameter (cf. 

Danielsson et al. [1997], Sandberg [2006]). 

 

Following Olson and Roy (2005), the total cost for control of the invader is assumed to depend 

on the magnitude of control as well as on the stock of the invader, and is defined by: 

 

,

j j

j j aj aj aj aj
t t t

a h a h
TCI w I w W

θ τ

ψ
≥ ≥

   
=    

   
∑ ∑

      (7)
 

 

where jψ  and jθ  are the stock and output elasticities, and jτ  is a calibration parameter. 

 

Profits in a given time period, πt, are defined by: 

 
j j j

t t t tTR TCR TCIπ = − − ,        (8)  

 

and the total net present value, TNPV, is given by:  

 

1

T

t t
t

TNPV ρ π
=

=∑ ,         (9) 

 

where ρt=(1/(1+r))t is the discount factor with r as the annual discount rate. The manager of the 

two-population system is assumed to choose harvests and control in order to maximize (9) given 

(1)-(8). Setting up the Lagrangian function and solving for the Kuhn-Tucker first order  
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conditions (see Appendix), gives the following equations for the development of aj
tH , aj

tW , aj
tR

and aj
tI along the optimal path: 

 
 

1,
1 0,

0,  0 ,  0,1,...,  and ,...,

aj

aj

t j j a j
t t tH

t aj aj
t tH

L TR TCR

L H H t a h a

ρ ρλ

ρ

− +
+

−

′ ′′ = − − ≤

′ = ≤ = =                
(10) 

1, 1, 0 0 1, 1, 0 0
1 1 1 1

0
0,

0,  0,  0,1,...,  and 1,..., 1

aj
t

aj
t

i
t j a j a j aj j j a j a j j j

t t t t t t t t t tR
i

t aj aj
t tR

L TCR R R I I

L R R t a a

ρ ρλ λ λ ρ ω ω

ρ

− + + + +
+ + + +

=

−

′ ′ ′ ′ ′′ = − + − + − − ≤

′ = ≥ = = −

∑

  (11) 

  
1,

1 0,

0,  0 ,  0,1,...,  and ,...,

aj
t

aj
t

t j a j
t tW

t aj aj
t tW

L TCI

L W W t a g a

ρ ρϖ

ρ

− +
+

−

′′ = − − ≤

′ = ≤ = =
   (12)

 

 

1, 1, 0 0 1, 1, 0 0
1 1 1 1

0
0

0,  0,  0,1,...,  and 1,..., 1

aj
t

aj
t

a
t j a j a j j j a j a j aj j j

t t t t t t t t t tI
a

t aj aj
t tI

L TCI R R I I

L I I t i i

ρ ρ λ λ ρϖ ϖ ϖ

ρ

− + + + +
+ + + +

=

−

′ ′ ′ ′ ′= − + + + − + ≤

= ≥ = = −

∑

 (13)
 

 

Equation (10) shows that the optimal harvest of an age cohort at time t is determined by the 

marginal net benefit of harvesting in current period and the marginal user cost, 1,
1

a j
tρλ +
+ . 

 

Similarly, quation (11) shows that the resident population is determined by the marginal increase 

in harvesting cost, the discounted marginal value of the age cohort at time t+1, the marginal 

value of one individual of the cohort at time t, the marginal value of the direct and indirect 

impact on recruitment, and discounted marginal value of the impacts on survival and recruitment 

of the invader. Noting the one-to-one relationship between aj
tR  and 1,

1
a j
tH −
− , see equation (1), the 

two last term in equation (11) indicate the additional marginal cost of harvesting at time t-1 in 

the presence of an invasion, due to the increased growth of the invader. The increased growth of 

the invader will, in turn, reduce growth of the resident population and thereby increase 

harvesting costs through the stock term in the cost function. 
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Equation (12) demonstrates that optimal control of the invader is determined by marginal control 

cost and the negative marginal user value of the invader.  Given the one-to-one relationship 

between control and invader population, equations (12) and (13) show that the marginal user cost 

of control is jointly determined by the negative increase in control cost owing to the stock effect, 

the marginal value of the positive impact on resident species survival and reproduction and the 

negative marginal value of the positive impact on invader species survival and reproduction, 

divided by the marginal survival of the invader. Therefore, control is higher if the marginal stock 

effect on control costs is low, there is high competition with the resident species and the own 

density dependence is low, where the latter occurs when the invader population is small. The 

remaining first order conditions are included in the Appendix.  

 

 

3. Data  
 

Data used for the population model are generic data from Järemo and Bengtsson (2011) which 

illustrate the typical life history of type A and B species. Both species are have a life span of six 

years, which implies that we have six age cohorts, with a=0,…,5. Survival data illustrate the 

characteristics of the different species types, described above. Hence, a type B species has a 

higher reproduction than type A, but a lower juvenile survival. Reproduction parameters are 

calibrated such that both species have the same finite rate of increase at a stable age distribution 

and density independence. In the absence of competition between species, the age of highest 

reproductive value1 is three for a type A organism and five for a type B. The age specific intra- 

and inter-species competition effects, βaj and µaj, are subjectively set to 0.00001 for all age 

classes and species. The age-specific weight is assumed to increase linearly with age and is 

normalized to 1 for 5-year olds of both species. All parameter values that characterize the life 

histories of the different species types are given in Table 1.  

                                                           
1 The age with the highest expected reproduction of an individual from their current age onward, given that they 
have survived to their current age. 
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TABLE 1. Model Data. 
 Age 
                                                 0 1 2 3 4 5 
Age specific survival (αaA), sp. Aa  0.80 0.70 0.50 0.32 0.22 0.14 
Age specific survival (αaB), sp. Ba 0.10 0.30 0.50 0.60 0.70 0.80 
Fecundity (maA), sp. Aa

 0 0 4 4 4 5 
Fecundity (maB), sp. Ba 0 0 20 40 80 150 
Intra- and interspecies competition (βak and µak) 0.00001 
Weight at age ( ajw ), sp. A and B  0.0 0.2 0.4 0.6 0.8 1.0 
Number of individuals at t=0 ( 0

aAR ), sp. A  2239 1497 716 65 0 0 

Number of individuals at t=0 ( 0
aBR ), sp. B 2894 831 397 227 152 16 

 

 
We assign the identical economic parameters to both species types. The price of harvest, jp  in 

eq. (5) is normalized to one. Harvest and control technologies are assumed to be similar. It is 

presumed that only individuals of age 2 or older can be harvested or controlled, respectively. The 

size of stock elasticity in equations (6) and (7) depends on whether we have group-living or 

solitary species, i.e. for group-living species a stock elasticity less than minus one can generally 

be expected (Bjørndal, 1987, 1988). We assign the value -1 to jγ and jθ , thereby assuming that 

the species are relatively uniformly dispersed over the habitat. Output elasticity is determined by 

the size of scale economies in harvesting and control. Here, the output elasticities 𝜏𝑗 and 𝛿𝑗 are 

both assumed to be equal to one, implying that we have linear cost functions. Diseconomies of 

scale would be associated with an output elasticity would be larger than one, whereas under 

economies of scale it would be smaller than one. The parameters jη  and 𝜓𝑗 are arbitrarily set to 

1. The initial vector 0
ajR  is set as the steady-state stock in the economic profit-maximizing 

equilibrium with harvest in the absence of invaders and the discount rate r is set to 3 percent, as 

suggested by e.g. Boardman et al. (2011) to be in concordance with values used for cost-benefit 

analysis of public projects. 

 

In the following, optimal harvests are simulated over 50 years. Simulations show that when 

direct control is included then steady state conditions, with positive levels of harvest, control and  
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populations of both species which last over a longer time, are found for most invasions given the 

level of propagule pressure assumed here. This contrasts with the situation where harvest 

adaptation is the only available management measure, i.e. when 0aj
tW = . In that case, steady 

state conditions have not been achieved in simulations. With the resident species initially at the 

economic equilibrium, steady state condition prevail, approximately, between year 15 and 35, 

thereafter the resident species is completely harvested when time approaches T.  

 

4. Results 
 

The above model describes a system with two types of decision variables, harvest of the resident 

species and direct control of the invader. Given that both resident and invasive species can have 

one out of two different life history types, there are four different possible combinations of 

resident and invading species types. Furthermore, the invasions can be made by individuals 

belonging to six different age classes. Thus, there are a large number of different possible 

invasion scenarios. Below, results are calculated for invasions of ten individuals of a given age 

and type in each time period in each scenario. The calculations are made using GAMS (Brooke 

et al. [1998]). In the following, we (i) investigate the role of direct control technologies for the 

economic vulnerability of resident species of different type, (ii) compare the scope and timing of 

control and harvest adaptation, (iii) investigate the trade-off between harvest adaptation and 

direct control, and (iv) examine the balance between early and delayed control for invaders of 

different type and age.  

  

4.1 The role of direct control possibilities for economic damages 

 

In order to investigate the economic implications of a direct control technology being available, 

we compare the TNPV for the case where (i) adaptation of harvests of the resident species is the 

only means available to manage the invader and (ii) both adaptation of harvests and direct 

control of the invader are possible. Results are shown in figure 1. The figure reveals that in the  
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absence of the direct control technology, there is larger economic damage when the invader is of 

type B or the resident is of type A, ceteris paribus. With chosen data, the possibility to control 

invaders directly will substantially improve the TNPV. Moreover, when the control option is 

included, residents of type A become economically more robust with regard to invasions 

compared to type B, while the situation is reversed when control is not included. Type B remains 

the more damaging species whether control is included or not. The large positive impact of the 

control option on a resident type A is explained by the high cost for harvest adaptation for this 

type of species when control is not possible, in combination with the small impact of harvest 

adaptation on invader population growth due to the comparatively low reproduction of the 

harvested age-classes. Thus, large adaptation costs are saved when the control option is 

available. Adding to the effect is that in equilibrium, a larger biomass is harvested for a type A, 

implying that there is a larger value to be spared when applying control.  

 

For a type B invader, the relative difference between invaders of different age with regard to the 

economic damage caused is altered when control is available. Without control, a type B age 4 is 

the most damaging, which is explained by its high remaining life-time reproduction. However, 

when direct control is possible, a type B species age 5 causes the largest economic damage. The 

explanation is that direct control is effective when directed towards 4-year olds2 given their high 

remaining life-time reproduction. Control of age-class 4 is also the optimal strategy when this is 

the age of the invader at the time of introduction. However, when the invading age-class is 5 

years old, then it is less efficient to wait until the juveniles produced reach age-class 4, given the 

relatively large growth of the invader population in the meantime. When invaders are age 5 at the 

time of introduction, only about 1/3 of the direct control is directed towards 4-years olds, while 

the rest of the control is directed towards 5-year olds. Consequently, with a 5-year old invader, 

control is less efficient. Moreover, control costs are larger than with a 4-year old invader per 

individual controlled, given the higher weight of 5-year old individuals. Together, this implies 

 

                                                           
2 Age class 4 is targeted by control when the invader is age-class 3 to 5.  
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that the control technology is more efficient when the invader is 4 years old, explaining the 

reversal of the outcome between these age-classes.  
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FIGURE 1. TNPV of harvest under different invasions. Data series display “resident species type 
- invasive species type – control option availability”. The vertical axis shows the TNPV in the 
invasion scenario divided by TNPV in the case with no invasion. The primary and secondary 
vertical axis indicates scenarios when a control technology is unavailable and available, 
respectively. 
 

4.2 Scope and timing of management  

 

The scope and timing of control differs substantially between invasion scenarios. With a type A 

invader, only age class 2 is controlled if the invader is between zero and two years old at the time 

of invasion. This is explained by the high damaging potential of age-class 2, see Figure 1, given 

that this age-class causes the most rapid growth of invader population, in combination with the 

restriction on control of age-classes below 2, and the lower cost per individual controlled for 

younger individuals due to their lower biomass. For invaders age class 0-2, control is increasing  
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over the first years, reaching a stable level after 10-15 years, cf. Figure 2. Low control in the first 

years is explained by the high control cost because of the small stock of the invader.  

 

For older age classes, control of age class 2 is combined with control of the invading age class. 

This illustrates the trade-off between immediate control of invading individuals and control 

directed towards the most damaging age-class as well as the role of control cost where, as 

mentioned above, control cost is related to weight. Total numbers controlled is increasing over 

the first years, reaching a stable level after approximately 10 years. 

 

When there is a type B invader, control efforts are directed towards age class 3 and 4 when the 

invader is of age 3 or below. When the invader is age 4, control is focused on this age class only, 

whereas if the invader is age 5, control efforts are directed towards age classes 4 and 5. A stable 

level of total control is achieved after 9-20 years, where the adjustment path increases with age. 

 

A comparison of the timing of control and harvest reveals that the presence of an invasion 

implies that harvests will, in the first few time periods, be higher than without an invasion, 

because it is anticipated that the future stock of the resident will be lower and hence harvesting 

costs higher, cf. Figure 2. In the medium term, harvests will be lower than in the no-invasion 

case.  
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FIGURE 2. Control of invader type A age 2 with a resident B, and harvest of the resident. The 
data series are indicated by “management strategy  – available management strategies”. Harvest 
in the case with no invasion is included for reference. The primary vertical axis shows the 
number of resident harvested and the secondary vertical axis the number of invaders controlled.  
 

 

If there is no possibility to exert direct control towards the invader, harvest adaptation will be 

used to “crowd-out” the invader, see Figure 2. Over the first five time period, harvests are 

reduced in order to increase the resident population. This leads to “crowding-out” of the invader 

and lower harvesting costs in the medium term. Therefore, harvests can again be increased in the 

medium term, even though they are not as high as in the no-invasion scenario. 

 

4.3 The trade-off between adaptation and control  

 

In principle, the trade-off between harvest adaptation and control is determined by (i) the 

variation in impact of control of different age classes, where larger variation between age classes 

implies that direct control is favored over adaptation, and (ii) the costs of control versus harvest  
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adaptation, where the strategy with lower cost is optimally favored over the other. With the given 

model, direct control is more efficient with an invading type B species given the larger variation 

in reproduction between age classes. As shown in Elofsson et al. (2012), adaptation is generally 

more efficient with a resident type B species due to the high reproduction of the marginally 

harvested age class 4, in combination with the modest cost for abstaining from harvesting this 

age class.  

 

Some harvest adaptation is always optimal, given the construction of the model. However, with 

equal parameters in the harvest and control cost functions such as assumed above, harvests are 

little adapted in the medium and long term if there is a possibility to directly and selectively 

control the invader. In order to investigate conditions when harvest adaptation becomes a  

significant tool to the policymaker, we examine the role of control cost function parameters for 

this choice. It seems reasonable that control costs could be higher compared to harvesting costs, 

given that the invaders behavior might not be equally well known and technologies for control 

might not be well established. This implies that the cost level jψ   and the output elasticity could 

be higher, while there are no obvious expectations to put on the stock elasticity.  

 

Results show that management strategies are insensitive to assumptions about the calibration 

parameter jψ as well as to stock elasticity in the control cost function. This confirms results in 

Elofsson et al. (2012) regarding the role of the corresponding parameters in the harvesting cost 

function. If, however, the output elasticity of the control cost function is high, implying rapidly 

increasing marginal cost of control, harvest adaptation can be included to a significant extent in 

optimum. We here chose to measure harvest adaptation through the impact on the resident 

species population. In Figure 3 below, the increase in the resident population, motivated by the 

crowding-out effect that it has on the invader, is shown when the output elasticity of the control 

cost function is three times as large as in the reference case. The figure suggests that harvest 

adaptation can be of importance in an optimal policy, in particular with a resident type B and an  
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invader type A age 2. This is also the scenario with largest economic damages, cf. Figure 1. In 

scenarios where both resident and invasive species are of type A, harvest adaptation is of little 

importance, even with a high output elasticity of control cost.  
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FIGURE 3. Harvest adaptation. Increase in resident species population after 25 years when the 
output elasticity of the control cost function equals 3. The vertical axis shows total population 
number in the relevant scenario divided by reference scenario. 
 
 

Next, the question is how harvest adaptation affects the control strategy. We look at the scenario 

with the largest harvest adaptation when 3jθ = , i.e. with a resident B and invading A age 2. 

Figure 4 shows the optimal development of the resident population and of control of the invader. 

The results illustrate that with rapidly increasing marginal costs of control, harvest are reduced 

such that the resident population increases in the medium term in order to crowd out the invader. 

The higher control costs imply that control is reduced over the first 15 years. Thereafter, control 

is larger than in the reference case for the next 25 years. The larger control is explained by 

falling control costs because of the more rapid increase in the stock of the invader over the first 

15 years, in combination with larger marginal benefit of control under a larger invader stock as  
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the marginal impact of the invader on survival and reproduction is increasing in the invader 

stock. A paradoxical consequence of the higher output elasticity is that the total number of 

individuals controlled after 35-40 years only slightly exceeds the numbers controlled in the 

reference scenario, but the invader population is more than eight times as large.  
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FIGURE 4. Harvest adaptation and control in a scenario with a type B resident and invader type 
A age 2. Comparison of reference scenario and a scenario where 3jθ = .  
 
 

4.4 Early or delayed control 

 

Next we investigate the balance between efforts to control the invader at an early stage and 

efforts to control the invader when it is already established. Control at an early stage, namely at 

the time of introduction, can be approximated by control of the invading age class3. Control 

when the invader is established can be approximated by control of all other age-classes. The cost  

 
                                                           
3 In almost all scenarios, control of the invading age class never exceeds 10 individuals, i.e. the number of 
individuals entering the ecosystem. The single exception is with an invading type B age 4, where steady state control 
is 10-12 individuals.  
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of control of a particular age class â , âj
tCI ,is calculated as the total cost of control, weighted by 

the biomass-share of that particular age class, i.e. 

( )ˆ ˆ ˆ

ˆ

j j

aj j aj aj aj aj aj aj aj aj
t t t t t

a h a h a a
CI w I w W w W w W

θ τ

ψ
≥ ≥ ≠

     
=      

    
∑ ∑ ∑ . The net present value of this cost 

then constitutes the aggregate cost for controlling that particular age class. 

 

The relative costs of efforts spent on early control of invading and delayed control of other age 

classes are shown in Figure 5 below. The balance between early and delayed control is 

determined by the relative costs of controlling different age classes, which is determined by age-

specific weight. Also, early control is favored if future damages or the costs of delayed control 

are large. Future damages are large if the invader population grows rapidly in number, and future 

control costs are large if the invader increases rapidly in weight with age. 

 

Early control of the invading age class is the only type of control if the invader is a type A age 2 

or a type B age 4, independently of the resident species type, see Figure 5. In both cases, these 

age-classes cause large economic damage given that invader population grows rapidly in 

numbers.  Thus, early control prevents large future damages.  

 

Relatively larger costs are optimally incurred for early control of the invading age class if the 

resident is of type A than if it is of type B. This is explained by the larger long term damage of an 

additional invader individual when there is a resident A, given the lower reproduction of type A 

and hence the slower recovery of the resident stock, once it is harmed by competition of an 

invader.  
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FIGURE 5. Optimal discounted relative costs for control of different age classes when control 
costs are determined by the biomass controlled. Results are indicated by “resident species type – 
invader species type – invader age”.  
 

 

The results in Figure 5 are calculated assuming that control costs are determined by controlled 

biomass. An alternative approach would be to assume that control costs are determined by the 

number of individuals controlled. In order to investigate whether such an assumption would have 

a significant impact on the balance between early and delayed control, we calculate control costs 

assuming that all individuals in the invader population have the same weight. This implies that 

control costs are independent of invader age, and thus only determined by the number of 

individuals. The results from these calculations are shown in Figure 6. Under such a scenario one 

would generally expect that older age classes will be controlled to a higher degree than shown in 

Figure 5, because the cost of controlling older individuals is comparatively lower. This will hold 

provided that, in the reference scenario, (i) there are older age classes which can be controlled 

and (ii) the control cost reduction is sufficient to motivate a change of strategy, given the 

difference in damage done to the resident species. This damage is determined by reproduction 

and survival of the individual controlled as well as the size of resident and invader stocks. 
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From Figure 6 one can find that with equal weight per individual, 0.5 weight units, there are, as 

can be expected, relatively more resources devoted to early control for all invading age classes 3-

5 when the resident is type A, given the relatively spoken lower cost for controlling these age 

classes, compared to the case in Figure 5. With a type A resident, there are, however, also more 

resources devoted to early control of type B invaders age 2. The invader population in present in 

the habitat has a higher biomass in the steady state4 compared to the situation depicted in Figure 

5, which makes control less costly overall, wherefore total control is larger. The higher biomass 

is explained by juveniles constituting a large share of the population and they now have a 

relatively spoken higher weight per individual. Given the increase in total control, all individuals 

age 3 are controlled and therefore, more control is directed towards invaders age 2.  

 

With a resident B and an invading A, fewer resources are devoted to early control for all invading 

age classes but age class 5, which is explained by the lower control cost for older age classes. 

With a resident B and an invading B, more resources are devoted to early control if the invader is 

age class 3 or 5, and less if it is age class 2 or 4. For invasions of age class 2 and 4, relatively 

more resources are allocated to the control of older, more damaging age classes. For invaders of 

age class 5, the age class is subject to more control as it is highly damaging. For invasions of age 

class 3, the large share of resources spent on control of the invading age class is, again, explained 

by the fact that the whole age class 4 is already subject to control. In this scenario equal weight 

implies that, compared to the reference scenario, control of the invading age class is first reduced 

in the initial time periods. The manager knows that it will now be less expensive to control age 

class 4, compared to the reference scenario depicted in Figure 5. Therefore, he or she initially 

postpones control of 3-year old individuals until they are 4 years old, thereby saving on control 

costs. Thereafter periods, control is increased above levels in the reference scenario for a number 

of time periods, because control costs are lower with equal weight as soon as there are enough  

 

                                                           
4 Given that juveniles constitute a large share of the population and now have a higher weight. 
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juveniles in the population. The invader population stabilizes at a somewhat lower level, 

compared to the reference scenario. 

 

 

 
FIGURE 6. Optimal discounted relative costs for control of different age classes when control 
costs are determined by the number of individuals controlled. Results are indicated by “resident 
species type – invader species type – invader age”.  
 

 

5. Summary and discussion 
 

Using a model of optimal co-management of one resident and one invading species, we attempt 

to examine the balance between harvest adaptation and direct control. We also investigate the 

trade-off between early and delayed control of invaders once they have entered a new habitat. 

Both issues are investigated with a focus on species life history and invader age for the trade-offs 

made. Assuming similar cost functions for harvest of the resident and control of the invader, as 

well as similar functions describing the development of the two populations, allows us to isolate 

the role of life history for the choice of management strategy. 
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The analysis shows that the marginal user cost of the resident species is determined by density of 

the species, given the role that density has for harvesting cost, survival and reproduction, and by 

the development of the stock of the invasive species, given the competition between the two for 

scarce resources such as food or space. Correspondingly, the marginal user cost of the invader is  

determined by sensitivity of control cost to invader density as well as by density dependence of 

invader growth and the degree of competition between the two species.  

 

Certain species are, through evolution, specialized in survival rather than reproduction. Results 

from numerical simulations suggest that this type of species is more economically vulnerable to 

invasions if harvest adaptation is the only available management tool, compared to species which 

have specialized in reproduction. However, the situation is reversed if direct and selective 

control of the invader is possible. In that case, species specialized in reproduction rather than 

survival, become the most vulnerable type. The reversal of outcome is caused by the inefficiency 

of harvest adaptation as a tool to manage invaders when the resident species cannot, with the 

help of harvesting strategy choices, be made to rapidly change its grow rate, such as is the case 

for species specialized in survival.  

 

Results also show that although direct control is initially costly when the invader population is 

small and hence individuals are hard to find in the habitat, control rapidly increases and a steady 

state with constant control, harvest and populations appears within a limited number of years. 

This outcome differs from the case where only harvest adaptation is possible, as in that case 

steady states seem unlikely to arise. If the output elasticity of control is high enough, solutions 

which include both control and harvest adaptation can be optimal. An exception is when both 

resident and invader species are specialized in survival. In that case harvest adaptation seems 

little relevant as a tool to reduce economics damages from invasions. 

 

The choice between early control of the invader at the time of invasion and delayed control in 

later time periods is determined by differences in costs and effects of controlling different age  
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classes. Relatively larger costs are optimally devoted to early control if the resident is of type A. 

This is mainly explained by a slower recovery of the resident stock, once it is harmed by an 

invader.  
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Appendix  
 
The manager of the two-population system is assumed to choose harvests of the resident 
species and control of the invader in order to maximize (9) given (1)-(8). Let λt

aj
 denote the 

Lagrange multipliers for the constraints (1) and (2) and aj
tϖ  the Lagrange multipliers for the 

constraints (3)and (4). The Lagrangian function is then: 
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The first order conditions for this maximization problem, including the complementary slackness 
conditions, are: 
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