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Abstract

Ida-Maria Sintorn.Segmentation Methods and Shape Descriptions
in Digital Images. Doctoral Thesis

ISSN 1652-6880, ISBN 91-576-7019-6

Digital image analysis enables creating objective, fast, and reproducible analysis
methods of objects or situations that can be imaged.

This thesis contains theoretical work regarding distance transforms for images
digitized in elongated grids. Such images are the result of many, mainly 3D, imaging
devices. Local weights appropriate for different elongation factors in 2D, as well as
in 3D, are presented. Methods adapted to elongated grids save time and computer
memory compared to increasing the image size by interpolating to a cubic grid.

A number of segmentation methods for images in specific applications are also
included in the thesis. Distance information is used to segment individual pores in
paper volume images. This opens the possibility to investigate how the pore net-
work affects the paper quality. Stable and reliable segmentation methods for cell
nuclei are necessary to enable studies of tumor morphology,as well as amounts of
fluorescence marked substances in individual nuclei. Intensity, gradient magnitude,
and shape information is combined in a method to segment cellnuclei in 2D fluo-
rescence and 3D confocal microscopy images of tissue sections. Two match based
segmentation methods are also presented. Three types of viral capsids are identified
and described based on their radial intensity distributionin transmission electron
micrographs of infected cells. This can be used to measure how a potential drug
affects the relative amounts of the three capsids, and possibly, the viral maturation
pathway. Proteins of a specific kind in transmission electron volume images of a
protein solution are identified using a shape based match method. This method re-
duces the amount of visual inspection needed to identify proteins of interest in the
images.

Two representation schemes, developed in order to simplifythe analysis of indi-
vidual proteins in volume images of proteins in solution, are presented. One divides
a protein into subparts based on the internal intensity distribution and shape. The
other represents the protein by the maximum intensity curveconnecting the centers
of the subparts of the protein. These representations can serve as tools for collect-
ing information about how flexible a protein in solution is and how it interacts with
other proteins or substances. This information is valuablefor the pharmaceutical
industry, when developing new drugs.

Key words:digital image analysis, volume images, microscopy images,elongated
grid, distance transform, segmentation, shape description, grey-level, gradient mag-
nitude, watershed, decomposition

Author’s address:Centre for Image Analysis, Lägerhyddsvägen 3, SE-752 37 Upp-
sala, Sweden
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1 Introduction and objectives

The number of areas using digital images as tools, for evaluation and analysis, is
steadily increasing. Constantly improved technology for image generating systems,
and cheaper and better computers, constitute the main underlying reasons. This
growth, in turn, gives rise to a demand and wish for automaticanalysis and ex-
traction of information captured in the images. The idea of using computers for
performing quantitative and objective studies of information present in images, has
been around for quite some time. The first textbook on the subject was published al-
ready in the late sixties byRosenfeld(1969), and since then, the demand and interest
for digital image analysis has been ever increasing.

The work leading to this thesis was performed at the Centre for Image Analy-
sis (CBA) in Uppsala, which is a joint institution between the Swedish University
of Agricultural Sciences and Uppsala University. CBA was founded in 1988 and
theoretical and application oriented image analysis research has since then been
performed in the fields of discrete geometry, medical and biomedical image analy-
sis, forestry and agriculture, and remote sensing. This thesis contains work related
to several of the mentioned fields. Theoretical work on digital topology has been
performed, regarding distance transforms, continuing thework by Professor Borge-
fors, supervisor of the author, and work presented in earlier CBA theses byNyström
(1997) assistant supervisor for the author, andSvensson(2001). One application
of the theoretical results is the analysis of the structure of paper, related to the the-
sis ofAronsson(2002). A large part of this thesis is devoted to incorporating both
shape and intensity information in methods developed for, and adapted to, specific
biomedical applications. Many of these methods have their roots in work on binary
shape analysis of 2D and 3D images by CBA researchers Borgefors, Nyström, and
Svensson. Both intensity and shape information has also been used in the task of
digital cell image analysis, connected to the thesis byWählby(2003).

Objectives

The main objectives of this thesis have been to adopt established image analysis
methods to work directly on elongated digitalization grids, and to incorporate inten-
sity information in distance based shape analysis and representation schemes of 2D
and 3D biomedical structures.

About this thesis

This is a thesis in digital image analysis, and the emphasis therefore lies on the
developed methods, and not on the different applications. The concepts and methods
are, hence, presented as generally as possible, although certain application specific
circumstances and problems are discussed to motivate the choice of actions. The
images studied in this thesis were all acquired with different microscopy techniques.
A brief description of how the different microscopes work isgiven in Section 2. The
author has, however, not acquired any of the images herself,and is not an expert on
any of the systems. Section 3 contains image analysis concepts that constitute the
foundation of this work. In Section 4, the methods in the appended Papers are
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described, together with discussions and ideas for furtherdevelopments. Finally,
conclusions and a summary of ideas for future work are presented in Section 5.
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2 Microscopy techniques

The methods presented in this thesis were in most cases developed for either a spe-
cific application or a specific type of images. The images wereall acquired by
experts in the microscopy techniques briefly presented below. For comparative pur-
poses, absorption light microscopy is also described, although no images studied in
this thesis were acquired using that technique.

2.1 Light microscopy

In a common light microscope, the visible light that is not absorbed by the sample
creates the magnified image. An illustration is shown in Figure1 (left). Light from
a light source is focused on the sample using a glass lens. Thelight that passes
through the sample is magnified and focused on the detector using two lenses. The
resolution limit in a light microscope is0.2µm, (Alberts et al., 1994), i.e., half the
wavelength of blue light, which is the visible light with theshortest wavelength.

2.2 Fluorescence microscopy

In fluorescence microscopy, light emitted from fluorescent molecules in the sample
is imaged. A fluorescent molecule absorbs light of certain wavelengths, and then
emits light of longer wavelengths (longer wavelengths haveless energy). Specific
structures can be marked with fluorescent molecules, or sometimes a structure is
fluorescent by nature. As this technique also uses light to magnify an object, the
resolution limit is0.2µm, the same as in light microscopy. A dichroic, or beam
splitting mirror, reflects light below a certain wavelengthwhile longer wavelengths
are transmitted. This is used in a fluorescence microscope, together with two filters,
to ensure that only absorption wavelengths for the fluorescent marker to be imaged
hit the sample, and at the same time only emitted wavelengthsfrom that marker
hit the detector. In Figure1 (middle), a schematic representation of a fluorescence
microscope is seen. Light from the light source of the absorption wavelengths is let
through a filter, reflected in the dichroic mirror, and focused onto the sample. When
the light reaches the fluorescent molecules they begin to emit light. Light from the
sample is transmitted through the dichroic mirror, filteredto ensure that only light
of certain wavelengths is present, and focused onto a detector where the image is
formed.

2.3 Confocal microscopy

Just as in fluorescence microscopy, light emitted from fluorescent molecules is im-
aged with confocal microscopy. The technique is similar to ordinary fluorescence
microscopy, but with the addition that a laser light source in combination with a
blocking pinhole allows for imaging a specific spot of the sample at a time, see Fig-
ure1 (right). The light source needs to be a well focused laser to make sure that the
light, which is reflected in the dichroic mirror, is focused onto a small spot in the
sample. Light emitted from this spot is transmitted throughthe dichroic mirror and
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Figure 1: Simplified drawings of a light microscope (left), afluorescence micro-
scope (middle), and a confocal microscope (right). All three microscopes have a
light source (l), a specimen (s), and a detector (d). The fluorescence microscope
also has two filters (f1, f2) and a dichroic mirror (m) that control which wavelengths
of the light that reach the specimen and the detector. The confocal microscope has
a filter (f2) and a pinhole (p), in front of the detector, to ensure that light from out
of focus objects (dashed lines) and light of undesired wavelengths do not reach the
detector.

passes through a pinhole before it hits the detector. This pinhole blocks most of the
light emitted from out of focus parts of the sample. The focalspot can scan the sam-
ple inx- andy-direction using a set of mirrors, and the sample can be movedin the
z-direction. The confocal technique thereby allows for imaging of 3D structures,
illustrated with the fish bone in Figure1 (right). If a sampling corresponding to the
best possible resolution is chosen for a specific setup, the resulting volume image
will have elongated voxels, as light from out of focus objects limits the resolution
in the z-direction more than in thex- andy-directions. It is very difficult to give
any numbers for how thick objects that can be imaged with a confocal microscope
as it depends on the sample itself as well as on the microscopesetup. The amount
of light reaching the detector decreases with depth, as emitted light from deeper
into the sample will be absorbed and reflected by the sample ontop of it and less
light will, hence, reach the detector than from the top part of the sample. An exam-
ple, to give a feeling for the order of the size it is possible to image, is that a good
50µm cell tissue section with a resolution of approximately0.2µm in thex- andy-
direction and0.3µm in thez-direction can be achieved.

2.4 Transmission electron microscopy (TEM)

A transmission electron microscope, see Figure2 (left) for a schematic drawing,
images the amount of electrons that passes through the sample at different posi-
tions. The denser the material is in a spot of the sample, the more the electrons are

12



scattered and less electrons will, hence, be transmitted through that spot. This is il-
lustrated with the dense fish bone appearing in the resultingimage in Figure2 (left).
Air molecules also scatter electrons and therefore the imaging takes place in vac-
uum. Electrons are focused on the sample by an electromagnetic lens and the elec-
trons that are transmitted through the sample are magnified and projected onto a
detector using two more electromagnetic lenses. The resolution limit in an electron
microscope for biological samples is about2nm, (Alberts et al., 1994).

Electron tomography, or 3D imaging of an object using electron microscopy, can
be performed by reconstruction from a series of images of thesample, acquired at
different tilt angles. SidecTM Electron Tomography (SET), (SET webpage, 2004),
uses the common reconstruction method filtered back projection, in combination
with a refinement method called COMET, (Skoglund et al., 1996). This makes it
possible to use a lower dose of electrons, which in turn, allows for acquisition of
more images in a tilt series, without destroying the sample.With the combination
of low dose electron microscopy and a refinement method, SET can reconstruct
individual molecules down to a resolution of approximately2nm (SET webpage,
2004).

2.5 Scanning electron microscopy (SEM)

In scanning electron microscopy (SEM), see Figure2 (right), scattered electrons
are detected instead of transmitted electrons. In backscatter mode, the electrons
scattered back from the top part of the object are detected. The electron beam in
a scanning electron microscope is focused by an electromagnetic lens and is bent
using scan coils or a beam deflector to scan over the sample. Ateach spot of the
sample, the backscattered electrons are detected and converted to an intensity value
reflecting the density of the spot. Hence, a SEM image is a 2D image of the top part
of the sample. The resolution limit for biological samples in SEM is about10nm,
(Alberts et al., 1994). 3D SEM images can be produced as stacks of 2D images,
each acquired using SEM, with a thin slice of the sample cut off between successive
image acquisitions. The resolution in thex- andy-direction is usually higher than
the thickness of the slices, and, hence, 3D images with elongated, box-like, voxels
are the result.
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Figure 2: Simplified drawings of a transmission electron microscope (left), and a
scanning electron microscope (right). Both microscopes have an electron gun (e), a
specimen (s), and a detector (d). The scanning electron microscope also has a beam
deflector (b).
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3 Fundamental image analysis concepts

As stated in the title, image analysis methods for both 2D and3D images have been
developed. The images are, in this case, digital images (computerized discrete im-
ages). Such images are in a computer represented by grids, ormatrices, with a value
at each position. The location in the matrix corresponds to the spatial coordinates of
the image, and the value at a location represents the grey-level, or intensity, of the
corresponding position in the image. An element of a digitalimage, i.e., a position
and value of the matrix, is in 2D denoted a pixel (picture element), and in 3D a voxel
(volume picture element). Hereafter, image element or simply element will be used
when no distinction between pixels and voxels is necessary.If only two intensity
values are present in the image, it is a binary image. A grey-level image is an image
having more than two intensity values. The range of values chosen when acquiring
an image depends on what is required to solve the problem at hand and the amount
of available memory. A common range is from 0 to 255, where 0 represents black
and 255 white. All images used in this thesis were either acquired in that range or
rescaled thereto.

A basic issue when it comes to digital image analysis is connectivity, i.e., how an
image element is connected to other image elements (Kong and Rosenfeld, 1989).
A pixel has two types of neighboring pixels: four edge neighbors, and four ver-
tex neighbors, see Figure3. A voxel has three types of neighbors; six face neigh-
bors, twelve edge neighbors and eight vertex neighbors, seeFigure3. In 2D, de-
pending on whether only the edge neighbors, or both the edge and vertex neigh-
bors, are regarded as connected to a pixel, a method is based on 4-connectivity
or 8-connectivity, respectively. In 3D, there are three different connectivities:
6-connectivity, where only the face neighbors are taken into consideration; 18-
connectivity, where also edge neighbors are used; and 26-connectivity, where all
neighbors are included.

If an image element, pixel or voxel, has the same size in all directions, all neigh-
bors of the same type are at equal distance from the element. They should therefore
be treated similarly in all processing and analysis steps. If the sampling rate is dif-
ferent along the different directions, all neighbors of thesame type are not at equal
distance from the element. This should be taken into consideration in all further
processing of the image. As elongated image elements is one of the main issues in
this thesis, it is discussed in more detail in Section4.1.

2D 3D

Figure 3: The types of neighbor relations in a 2D3 × 3 neighborhood, and a 3D
3 × 3 × 3 neighborhood.
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Figure 4: A binary image of a maple leaf (left), and its DT (right).

A group of connected elements that somehow is distinguishedfrom the other
elements is called an object. The complement to the object orobjects is gener-
ally called the background. Usually 8-connectivity, in 2D,and 26-connectivity
in 3D, is used for the object or objects. To avoid topologicalparadoxes (see
Rosenfeld and Pfaltz(1966)), this implies that 4- and 6-connectivity has to be used
for the background in 2D and 3D, respectively.

A survey of digital topology for 2D and 3D digital images can be found in
Kong and Rosenfeld(1989). There, definitions for ahole in 2D, and atunnel and
cavity in 3D are given. If an object completely surrounds a part of the background,
it contains ahole in 2D and acavity in 3D. If the background passes through the
object, it contains atunnel. A hollow ball is an example of a 3D object having a
cavity, and a donut is an example of a 3D object having a tunnel.

In the following subsections fundamental image analysis methods, used or mod-
ified in the papers included in this thesis, are explained. SubsectionDigital distance
transformscovers how to approximate and calculate the closest distance from each
image element in an object, or region, to the background. In SubsectionSegmen-
tation some methods for how to recognize and delineate objects in animage are
explained. The SubsectionObject representation, contains methods by which a seg-
mented object can be represented to simplify further analysis.

3.1 Digital distance transforms

Measuring distances is useful in many image analysis applications, both as a de-
scriptive measure in itself, and also as information for further processing and analy-
sis. Distance information is used in all papers appended to this thesis. The pioneer-
ing work regarding digital distances was performed byRosenfeld and Pfaltz(1966,
1968), and a brief overview of applications is found inBorgefors(1994).

A distance transformation is a procedure applied to an, in general, binary image,
where it computes the distance from each image element in theobject to the closest
image element in the background. The result, the distance transform (DT), is, hence,
a grey-level image where each object element has an intensity value equal to the
closest distance to the background, see Figure4.
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In the earliest approaches (Rosenfeld and Pfaltz, 1966, 1968), the distance as-
signed to an object pixel in the DT is given by the minimum number of neighbor
steps necessary to move from the pixel to the nearest pixel inthe background. De-
pending on the connectivity used, 4 or 8 in 2D, and 6, 18, or 26 in 3D, the resulting
distance values are different. The drawback with these DTs is that they are very
rotation dependent. An object element can be assigned different distance values if
the distance transformation is applied to the same object but rotated differently in
the image.

To achieve a DT more stable under rotation, the different neighbor steps can be
given different weights. The first idea (Montanari, 1968), was to approximate the
length of each local neighbor step by the Euclidean distanceof the step. However,
this is not the best weights to use, no matter how intuitive itmight sound.Borgefors
(1984a) proved that other weights give a better approximation overlonger distances,
as well as a DT more stable under rotation. Good integer weights for the local
steps in a 2D image are 3 and 4 for the edge and vertex neighbors, respectively,
and for a 3D image good weights are 3, 4, and 5 for, the face, edge, and vertex
neighbors respectively. Even better approximations to theEuclidean distances, and
hence, a DT more stable under rotation, can be achieved if local distance information
from a larger neighborhood is taken into account, see e.g.Borgefors(1986), and
Svensson and Borgefors(2002a).

A DT can be calculated by propagating local distances in two passes over the
image (Rosenfeld and Pfaltz, 1966). This is the case for both 2D and 3D images as
well as for images of higher dimensionality. The elements inthe object are set to
infinity, and the elements in the background to 0, prior to running the two passes.
During the first, forward pass, the image is processed from left to right and from top
to bottom and in 3D, also from front to back. During the second, backward pass,
the image is processed from right to left, bottom to top, and in 3D, also from back
to front. The element under consideration, is given the minimum value of itself and
the values of its already visited neighbors each increased by their respective local
step weights. This process of propagating information overthe image using local
step weights is often referred to as chamfering, and weighted distance transforms
(WDTs), are therefore often called chamfer distance transforms.

Once a DT has been computed, only a subset of the image elements of the object
and their assigned distance values is needed to represent orreconstruct the original
object. The distance values can be interpreted as radii of discs (2D) or balls (3D)
totally enclosed in the object. If a disc or ball is completely covered by another
disc or ball it is not needed in the representation of the original object. A disc or
ball which is not completely covered by any other single discor ball is called a
maximal disc or ball. The center elements and correspondingdistance values of
such maximal discs, (CMDs), or balls, (CMBs), are all that isneeded to represent
the entire object. These CMDs/CMBs can be identified from a DTby inspecting the
distance values in the local neighborhood, (Arcelli and Sanniti di Baja, 1988).

To reconstruct the original object from the CMDs/CMBs, a reverse distance
transform, (Nyström and Borgefors, 1995), is computed from the distance values of
the CMDs/CMBs. It is computed in the same manner as the WDT, i.e., by prop-
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agating local distance information in two passes over the image. The difference is
that the maximum value of itself and the values of already visited neighbors each
decreased by the respective local step weights, is assignedto the element under
consideration.

It is sometimes useful to propagate distance information when obstacles are
present in the image. This is performed in the same manner as in an ordinary DT
with the exception that the obstacle elements are never considered. This constrained
DT, CDT, (Piper and Granum, 1987), requires iteration of the two scans through the
image until no more changes occur, to propagate the distanceinformation around the
obstacles. The number of needed iterations depends on the image contents (objects
and obstacles).

Attempts have been made to calculate DTs on grey-level images, and thereby
incorporate underlying grey-level information into the DT, (Rosin and West, 1995;
Ikonen and Pekka, 2005; Saha et al., 2002; Svensson and Borgefors, 2002b). How-
ever, it is difficult to weigh together the importance of the distance and intensity
information. Despite the problem of mixing modalities, grey-weighted DTs have
shown to be useful in certain applications.

3.2 Segmentation

To separate the contents of an image into regions of interest, or objects, and back-
ground is called segmentation. This is a central process, asall further analysis and
information extraction depend on the result of the segmentation. There exists very
many different approaches to image segmentation, of which three general and com-
mon methods are explained below. These, as most image analysis methods, are
usually modified to fit the segmentation task at hand.

Thresholding

Thresholding is a simple segmentation method useful in cases where regions of in-
terest can be identified as image elements having similar grey-levels and, at the same
time, the remaining image elements have different grey-levels. To find one (or more)
suitable threshold values, it is often useful to study the grey-level histogram of the
image. In the grey-level histogram, the grey-levels versusthe number of elements of
each grey-level, is plotted. In simple cases where an image contains bright objects
in a dark background or vice versa, the histogram has a valleybetween two peaks,
where the two peaks corresponds to the background and the object, respectively, see
Figure5 (top). The grey-level at the valley is then a suitable threshold. However,
in most cases the histogram does not contain two well separated peaks, see Fig-
ure5 (bottom), and choosing a suitable threshold is then not easy. Another common
problem is a varying image background. In such cases it will not be possible to
use a single threshold for the whole image, but more local approaches need to be
considered. InSahoo et al.(1988), an overview of different thresholding techniques
is given.
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Figure 5: Images and corresponding grey-level histograms;coins (top), and leaves
(bottom).

Watershed segmentation

A segmentation algorithm known as watershed, WS, was presented as a general
contour detection algorithm byBeucher and Lantuéjoul(1979). The method can
be applied to different kinds of image information, such as grey-level, distance or
gradient magnitude (local contrast) information, to divide the image content into
regions. Since the late seventies, the method has been used in a variety of different
applications, seeMeyer and Beucher(1990) andVincent (1993) for overviews. A
brief description of the method, applied to a 2D image, is given below, although it
works similarly in other dimensionalities. The WS segmentation algorithm is easily
understood by interpreting the intensity image as a landscape. High values (bright
regions) in the image correspond to mountains or hills in thelandscape, and low
values (dark regions) correspond to lakes or valleys. Imagine drilling a small hole in
every local hollow and slowly submerging the landscape in water. The deepest lakes
or valleys will start to fill, and as the water level rises, they will eventually merge
with other lakes or valleys. At places where different basins of water are about to
meet, a watershed, or dam, is built. This inhibits water collections belonging to
different local hollows to merge. When the whole landscape has been submerged
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in water, all image elements will have been assigned to a basin of water originating
from a local hollow. Either the watersheds or the basins are referred to as the WS
segmentation of the image. The latter is used in this thesis.In cases where separated
mountains or hills are the desired output of the segmentation process, the image
is inverted, i.e., the landscape is turned up-side-down, prior to applying the WS
algorithm.

Depending on the type of information the WS algorithm is applied to, different
regionalizations of the image can be achieved. One way is to apply the algorithm
directly to the intensity information. Consider an image oftightly packed cells,
see Figure6(a). Since the objects in the image are bright, the image is inverted,
Figure6(b), prior to application of the WS algorithm. As the algorithm is explained
above, a regionalization which completely covers the imagewill be created. If it
instead is run only to a certain intensity, known a priori to be the background, it can
create regions corresponding to well defined objects, as in Figure6(c). The problem
of deciding a good background level is, however, often as hard as it is to find a good
thresholding level.

(a) (b) (c)

Figure 6: The watershed algorithm applied to intensity information. The original
image (a), and inverted (b). The result,(c), of the algorithm applied to (b).

The WS algorithm is commonly applied to gradient magnitude information.
Consider the image of cell nuclei in Figure7(a). A gradient magnitude image can be
calculated by filtering the image with one, or a set of local contrast detecting filters,
see e.g. (Sonka et al., 1999), for a number of commonly used filters. Figure7(b),
is calculated by filtering the image with a set of Sobel filterswhich detects edges
in different directions, and combining the filter responsesin each position. Dark
regions in the gradient magnitude image correspond to regions in the original im-
age with low local contrast, whereas bright regions correspond to regions with high
local contrast, i.e., sharp edges. When the WS algorithm is applied to the image
in Figure7(b), the result is, a regionalization where the watersheds willbe situated
where the gradient magnitude information is locally highest, see Figure7(c). If the
gradient magnitude image is interpreted as a landscape the borders will be placed
along the crest line of the mountain range separating two valleys.
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(a) (b) (c)

Figure 7: The watershed algorithm applied to gradient magnitude information. The
original image (a), and the gradient magnitude image (b). The result, (c), of the
algorithm applied to (b) and overlayed on (a).

Often, the regionalization resulting from the WS algorithmcontains far more
regions than desired. This is a problem often referred to as "over-segmentation",
and can be handled in two different ways. One is to preprocessthe image, e.g., by
smoothing, in order to reduce the number of local minima, each giving rise to one
region in the WS segmentation. The other is to merge the resulting regions into
more significant ones, thereby obtaining the desired output. Most often a combina-
tion of both methods, adapted to the problem at hand, is needed to acquire a good
segmentation result. Different criteria can be used to merge neighboring regions.
One criterion is to set a threshold for the lowest allowed height, h, of the lowest
point along the watershed between two regions, measured from the bottom of the
more shallow region, see Figure8. This means that the weakest point in the border
decides whether two regions should be merged or not. Since this merging crite-
rion only depends on one single image element, it is rather noise sensitive. A more
robust method is to merge regions based on statistics from the whole separating
border, e.g., the mean or median border value. Note that using statistics from the
whole border is more computationally expensive than using only one point along
the border. To use the median value is more computationally expensive than using
the mean, as more values need to be kept during the complete merging process, in
order to update border values correctly. If the mean value isused, only the number
of border elements, together with the sum of the intensity values, need to be kept
to enable a correct updating of the border during the merging. Merging does not
necessarily need to be decided from intensity measures. It can also be based on
regional measures such as size of a region, length of the border, or shape.

Instead of affecting all information in the image by smoothing the image to
remove irrelevant local minima or by treating all WS regionsas equally impor-
tant when merging, seeds can be planted, automatically or manually, marking re-
gions of interest. After seeding, the WS algorithm is run as described above
with the exception that watersheds are only built where two seeded regions meet,
(Meyer and Beucher, 1990). After a seeded WS there will, hence, be as many re-
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Figure 8: Illustration of the merging criterion where regions are merged based on
the height,h, of the lowest point along the separating border, measured from the
bottom of the more shallow region.

gions as there were seeds to start from. Seeding can serve as auseful way of combin-
ing different types of information. An example of this is illustrated on a small image
of cell nuclei, Figure9, where object seeds are found as local maxima in the original
intensity image, and background seeds are local minima in the gradient magnitude
image. The seeded WS algorithm is thereafter run on the gradient magnitude infor-
mation. Naturally, also a seeded WS might need to be combinedwith preprocessing
and/or a merging algorithm. The strategy of combining intensity and edge informa-
tion in a seeded WS is used in the method developed in Papers V and VIII, and is
further discussed in Sections4.4and4.5.

(a) (b) (c)

Figure 9: The seeded watershed algorithm applied to gradient magnitude informa-
tion. The original image and object seeds (a), and the gradient magnitude image
and the background seed (b). The result, (c), of the algorithm applied to (b) and
overlayed on (a).

Once a segmentation of the image into objects and backgroundhas been per-
formed, the WS algorithm can also be used to divide objects into smaller parts. This
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is usually desirable, since objects often are attached to each other in clusters. A
WS algorithm applied to a distance transform of the cluster can serve as an efficient
way of dividing the cluster into single objects, see Figure10. This way of using
the WS algorithm as a cluster separating method was used in Papers III and V, see
Sections4.2and4.4.

(a) (b) (c) (d)

Figure 10: The watershed algorithm applied to a distance transform. An image of
two overlapping coins (a), the regionalization after thresholding (b), a DT of the
coins (c), the resulting regions after the watershed algorithm applied to the distance
transform (d).

Yet another way of using the WS algorithm is to find suitable threshold levels
for an image. If a grey-level histogram of an image is seen as a1D image, the
WS algorithm applied to the inverted histogram image, possibly with subsequent
merging, can produce good threshold values for the originalimage. In Figure11,
an example of this way of finding two good threshold levels fora light microscopy
image of a cell culture is shown. The peak furthest to the right in the histogram
corresponds to the background, the central peak corresponds to healthy cells, and
the peak to the left corresponds to dead cells due to lack of nutrition in the central
part of the culture. WS segmentation of the inverted histogram detects good and
image dependent threshold levels. This can be useful for segmenting objects in
similar images but with varying contrast or overall brightness. Often more than one
threshold level is desired, and as long as the peaks in the histogram correspond to
the different regions of interest and are separated by the deepest valleys, WS based
thresholding will supply the desired threshold levels.

Template matching

If specific structures in an image are sought, that can be distinguished by a certain
shape and/or grey-level distribution, global approaches such as thresholding or WS
segmentation, are often unsuccessful. An alternative way for finding the objects
of interest is to locally compare, or match, the image information with a template
describing the searched structure. Depending on what object feature the template
represents, the similarity measure and matching procedure, i.e., how the image is
searched, are usually somewhat different.
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(a) (b) (c) (d)

Figure 11: Using the watershed algorithm to automatically find grey-level thresh-
olds. The original image (a). The grey-level histogram of the image (b). The
histogram displayed as a 1D grey-level image (c) (top). The resulting regions of a
watershed algorithm applied to the 1D image (c) (middle). The resulting regions af-
ter merging, using a border height criterion, until only three regions remain (c) (bot-
tom). Borders of the resulting regions, (d), after thresholding the original image
with the values 60 and 184, found as the values at the watersheds in (c) (bottom).

In cases where the template represents an intensity distribution, the similarity
measure needs to weigh together the individual similarity between each position
in the template and the its underlying image element. This isdone by moving the
template over the image and at each position measuring the similarity between the
template and the subimage underneath. see Figure12. The result from this match-
ing is, hence, an image where the intensity of an element represents the similarity
between the subimage and the template centered at that element. A common and
simple similarity measure between the template and the subimage, is correlation
(Gonzalez and Woods, 2002), which in its simplest form is the sum of every tem-
plate element intensity multiplied by the intensity of the subimage element under-
neath it. Matching using this similarity measure can be performed very efficiently
in the frequency domain. The disadvantage with this similarity measure is its sen-
sitivity to intensity changes in the image. To compensate for this, the correlation
coefficient can be used instead. The correlation coefficient, CC, at a position in the
image is calculated as

CC =
N
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whereN denotes the total number of elements in the template, andi = 1...N . The
elements grey-levels in the template and subimage are denoted ti andsi, respec-
tively. Matching using this similarity measure is usually performed in the spatial
domain, as the formula for theCC is difficult to translate to the frequency domain.
This approach for segmenting objects with a certain intensity pattern has been used
in Paper IV, see Section4.3.

A simpler measure, to compare the template and the subimage underneath it,
can be used when the template instead represents a shape. Thecontour in 2D, and
surface in 3D, of the shape then serves as the template, and the sum of values un-
derneath the template, can be used as a similarity measure. If the image can be
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*

Figure 12: A template, centered at *, is moved over the image and at each position
compared to the subimage underneath.

transformed so that the match score decreases (or increases) the closer to a perfect
match the template is moved, a search algorithm can be used tospeed up the match-
ing procedure. This is the case for the chamfer matching algorithm first proposed
by Barrow et al.(1977). The general idea is to calculate a DT from the contours of
the objects in the image and then perform the matching in the distance image. The
sum of the distance values hit by the template serves as the similarity measure. The
lower the sum is, the better is the match. How the sum changes when the template
is moved a small step in different directions is the key to finding the local best fits.
Directions resulting in higher sums can be discarded, and only the directions giving
lower sums should be further investigated. Note that a smallstep does not gener-
ally only mean translation, but also rotation, and in some cases scaling needs to be
considered as well. Finding the best local matches is, hence, equivalent to finding
local minima in ann-dimensional function, wheren denotes the number of allowed
geometrical transformations of the template. Since the search from a starting po-
sition may end in the closest local minimum (of course, depending on the search
algorithm used), many starting positions are needed in order to find all objects of
interest. For real images, this optimization problem is very large and therefore the
original method is not suitable. InBorgefors(1988), a very important improve-
ment to the method made it suitable for problems where no information about the
approximate positions of the objects is available, a hierarchical chamfer matching
algorithm (HCMA) was presented. The original chamfer matching algorithm is em-
bedded in a resolution hierarchy which greatly reduces the computational cost of the
matching, while also reducing the sensitivity to noise. A resolution pyramid of the
contour image is calculated, see Figure13, and the chamfer matching is started at
the lowest resolution level. The good match positions are then used as starting po-
sitions when the matching is moved to the next resolution level. Another important
improvement, (Borgefors, 1984b), is using the sum of the squared distance values
hit by the template instead of just the sum. This similarity measure is better as it
introduces fewer false minima. The HCMA algorithm, extended to 3D, is used for
segmenting proteins in volume images in Paper VIII.
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Figure 13: A resolution pyramid of the contours of a maple leaf. The resolution is
halved between successive resolution levels.

3.3 Object representations

It is often useful to study the shape of a segmented object using different represen-
tation schemes, in order to facilitate recognition and analysis tasks. The aim is to
represent an often complex object by a simpler structure, more easily analyzed. Two
intuitive representations of an object will be explained here. The first is to represent
the object by (simpler) subparts, and the second is to represent the object by a curve
centrally located in the object.

Decomposing an object into subparts facilitates analysis as each part can be
analyzed individually, as well as how the different parts are connected to compose
the entire object. InSvensson and Sanniti di Baja(2002), a 3D method is presented
which decomposes a binary object into simpler parts based onits shape. The method
consists of three main steps, which all use information froma DT of the object.
Seeds for the different subparts are identified in the DT of the object. Balls are then
grown from each seed. How much each seed grows depends on its distance value.
The remaining elements of the object are then each set to belong to the closest ball.
A final merging process, used to remove non-significant partsthat do not have much
outer surface in the object, is often necessary. The identified seeds and the resulting
decomposition of a binary "man" are shown in Figures14(a)and14(b). This method
serves as the basis for the decomposition method in Paper VI,further described in
Section4.5, which incorporates intensity information in the decomposition.

As briefly mentioned at the end of Section3.2, the WS algorithm can be used to
decompose a region into subparts. The WS algorithm can be applied to the DT of
an object resulting in a decomposition similar to the methoddescribed above. The
difference is mainly that the WS will not necessarily resultin dividing lines at po-
sitions where the surface bends. This is because the WS will only grow from local
maxima, and elongated parts will therefore likely become part of a larger neighbor-
ing region. In Figure14(c)the same object as in Figure14(b) is decomposed with
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(a) (b) (c)

Figure 14: A cross section of a 3D object displaying the seedsidentified in the
binary decomposition method (a), and the resulting decomposition (b). The result
of a watershed algorithm applied to a distance transform of the object (c).

the WS algorithm applied to a distance transform of the object. The WS algorithm
can also be used to decompose a segmented object based on internal intensity infor-
mation. The decomposition will then be strictly guided by the intensity distribution
within the object, regardless of the shape of the object.

Instead of analyzing the entire object or its parts, a medialrepresentation, such
as its skeleton, can be useful. Analyzing the medial representation instead of the
original object has proven successful in several 3D medicalapplications, see e.g.
Nyström and Smedby(2001) andFouard et al.(2004). Desirable features of a me-
dial representation are that it is thin, centered within, and topologically equivalent
to the original object. Topologically equivalent means that the number of holes in
2D, and the number of cavities, and the number of tunnels in 3D, should be the same
for each connected component in original object and in the representation. For a 2D
object, a medial representation possessing these featuresis a curve, while for 3D
objects it can either be a surface, or further reduced to a curve, see Figure15. For
binary objects, the curve in 2D, or the surface in 3D, together with the distance from
the background to each element in the representation, provides enough information
to recover the original object, with an accuracy to the outermost layer. Therefore,
the representation serves as an efficient way of storing binary objects. There are
different approaches for calculating a medial representation of a binary object. A
distance based approach can be performed by iteratively thinning the DT of an ob-
ject. The elements in the outer distance layer are iteratively removed if they are
not CMDs or CMBs, or needed for shape or topology preservation, (Svensson et al.,
1999; Svensson, 2002). A more efficient 2D distance based method, using a path
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(a) (b) (c)

Figure 15: A surface skeleton (b), and a curve skeleton (c), of the 3D binary man
(a).

growing approach, is found in (Sanniti di Baja, 1994).

The idea of representing a 3D shape by a centralized curve, tosimplify analysis,
can be transferred to the case of grey-level values inside the object, (Svensson et al.,
2002). Instead of finding the most central curve, a curve following the maximum
intensity is searched for, similar to finding crest lines in amountain range. This can
be achieved by thinning the shape based on intensity, under the constraint that the
grey-level topology is not changed. This means, e.g., that aregion within a 3D ob-
ject with strictly lower grey-values than what is surrounding it will result in a closed
surface in the grey-level medial representation. The idea by Svensson et al.(2002),
of incorporating grey-level information in a medial representation was modified and
used in Paper VII, and is, hence, further discussed in Section 4.5.
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4 Contributions

In this Section, the methods and results thoroughly described in Papers I−VIII, are
briefly presented. How distance transforms should be adopted to elongated 2D and
3D grids, Paper I and II, is described in Section4.1. This is used in Paper III,
described in Section4.2, to segment individual pores in 3D SEM images of pa-
per. Section4.3, corresponding to Paper IV, presents how circular symmetric viral
capsids can be described and identified in 2D TEM images basedon distance and
intensity information. Section4.4, presents how different types of information are
combined in Paper V to segment fluorescence labeled cell nuclei in 2D and 3D im-
ages. Finally, Section4.5, describes two different representation schemes, Paper VI
and VII, and a match based segmentation method, Paper VIII, for proteins imaged
using SET.

4.1 Adapting distance transforms to elongated grids

In Section3.1 the concept of a DT, and how to compute it by using a distance
transformation, was explained. The local steps and weightswere all given for
images with square or cubic image elements. All images are, however, not sam-
pled in such grids, especially not 3D images, where many tomographic and mi-
croscopic images have longer voxels in thez-direction. In 2D, elongated pixels
are sometimes encountered in images produced with a line scanner or in satel-
lite images. It is of interest to adapt methods to these elongated grids in order to
avoid interpolation to cubic grids, as this makes the imageslarger without adding
any information. In Papers I, and II, weighted DTs, WDTs, in images with elon-
gated pixels and voxels are examined. This has also been investigated in 2D by
Coquin and Bolon(1995); Bolon et al.(1992) and in 3D byCoquin et al.(1994);
Fouard and Malandain(2005). Pixels in 2D images have a height equal to 1 and
width equal toΛ ≥ 1, and voxels in 3D images have height and width equal to 1
and lengthΛ ≥ 1. An elongated pixel has three kinds of neighbors, in the follow-
ing denoted by capital letters, while an elongated voxel hasfive different neighbors,
denoted by lower case letters, see Figure16. Optimal weights are calculated for
local steps to the neighbors, i.e., to image elements in a3 × 3, and3 × 3 × 3
neighborhood, for 2D and 3D, respectively.

A B

C
a

a

a

a

b
b

c
d

d

e

Figure 16: The different types of local steps for images digitized in an elongated 2D
grid (left), and 3D grid (right).
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The optimal weights for the local steps in the neighborhood were calculated by
minimizing the maximum error between the WDT and the digitalEDT, which is
as rotation independent as possible, in square and cubic grids of sizesΛ M × M
andΛ M × M × M , respectively. The optimal weights for the local steps are
all dependent onΛ. The weights need to fulfill thesemi-regularitycriterion, which
states that if two elements can be connected by only one type and direction of local
step, this path should be the shortest, or equal to the shortest path between the two
elements. In 2D, see Figure16 (left), this leads to the following constraints:

A ≤ B and C ≤ B and B ≤ A + C ∀ Λ. (2)

In 3D, see Figure16(right), the constraints implied by thesemi-regularitycriterion
become:

a ≤ b, a ≤ c, b ≤ d, c ≤ d, d ≤ e, 2e ≤ b + 2d, b ≤ 2a, d ≤ a + c. (3)

These constraints are not enough to generate unique expressions for the local dis-
tances in 3D. The points(1, 2, 1) and(1, 1, 2) can be reached from the origin in two
ways, each fulfilling the constraints above. This gives riseto four different combina-
tions of additional constraints. The combination chosen togive unique expressions
for the local steps was:

e + a ≤ d + b and e + c ≤ 2d. (4)

Due to symmetry, the optimization only needs to be performedin one quad-
rant in 2D, and one half of an octant in 3D. The maximal difference to the EDT is
assumed to occur on the border of the image, The expressions for the differences
between the WDT and the EDT will be different along the borderaccording to the
combination of steps needed to get there. To optimize the WDT, the local steps
which minimize the maximum of these expressions is found by solving the system
of equations the expressions give rise to. In 2D, the expressions for the local steps
and the maximum difference to the Euclidean difference (scaled with M ), denoted
maxdiff are:

A(Λ) =
3Λ2 − Λ − (Λ − 1)

√
Λ2 + 1

5Λ2 − 2Λ + 1
+

2Λ
√

(Λ + 1)(
√

Λ2 + 1 − 1)

5Λ2 − 2Λ + 1
,

C(Λ) = ΛA(Λ),

B(Λ) = ΛA(Λ) +
√

Λ2 + 1 − Λ,

maxdiff(Λ) =| Λ − ΛA(Λ) | .

(5)
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The corresponding expressions in 3D are:

a(Λ) =
3Λ2 + Λ(
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√
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2,
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d(Λ) = Λa(Λ) − Λ +
√

1 + Λ2,

e(Λ) = Λa(Λ) − Λ +
√

Λ2 + 2,

maxdiff(Λ) =| Λ − Λa(Λ) | .
(6)

All local steps can be derived from one of the local steps. Here, the local steps
are expressed as functions of theA, or a steps. The reason that all steps can be
expressed as a function of one step, is that when optimizing on a square or cube,
the error on the border of the cube, for all directions of local steps, should be equal.
The WDT for elongated image elements underestimates the distances along the di-
rections of the local steps and overestimates the distancesin directions that are not
well covered by the local distances.

Integer local steps are often used and they are acquired by multiplying the local
steps with a scale factor and rounding off to the nearest integer. To make sure
that the integer local steps are the best possible for each scale factor, an integer
neighborhood for each rounded integer local step is examined. Since the best local
steps depend onΛ, the local step equations are the main result of this work. The
optimal and best integer local steps for 2D and 3D WDTs whenΛ equals3 is given
in Tables1 and2, respectively. A good way two visualize the difference to the EDT
is to show digital circles, 2D, or spheres, 3D, computed withthe WDTs. The digital
circle and sphere forΛ = 3 are shown i Figure17.

Table 1: Local steps in 2D forΛ = 3.

scale factor A C B maxdiff

1 0.883 2.649 2.811 0.351
1.085 1 3 3 0.398
3.454 3 9 10 0.394
4.563 4 12 13 0.370
5.672 5 15 16 0.356
6.768 6 18 19 0.355
12.452 11 33 35 0.352

. . . . .
∞ Aopt Copt Bopt 0.351

Note that the errors are very large for aΛ of 3. The WDTs for elongated grids
are rather rotation dependent, see Figure17. The largerΛ is, the more rotation de-
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Table 2: Local steps in 3D forΛ = 3.

scale factor a b c d e maxdiff

1 0.865 1.279 2.595 2.757 2.911 0.406
1.940 2 3 5 5 5 0.739
2.347 2 3 6 7 7 0.444
6.909 6 9 18 19 20 0.422
9.281 8 12 24 26 27 0.414
17.205 15 22 45 48 50 0.411
19.570 17 25 51 54 57 0.410

. . . . . .
∞ aopt bopt copt dopt eopt 0.406

pendent the WDT becomes. To extend the neighborhood would reduce the error and
the rotation dependency, but this would of course have the side effect of increasing
the computational cost. Since the elements are elongated, an asymmetric neighbor-
hood,3 × 5 in 2D and5 × 5 × 3 in 3D, would be a good way to compensate for
the largest errors without increasing the computational costs as much as with full
5 × 5 and5 × 5 × 5 neighborhoods. Weights for 3D WDTs in such asymmetric
neighborhoods have been optimized over spheres inCoquin et al.(1994).

Figure 17: The disc and ball, 3 views, forΛ = 3, computed using the weights 3, 9,
and 10 in 2D and 2, 3, 6, 7, and 7 in 3D.

4.2 Segmentation of paper pores

In Paper III, a method which segments individual pores in a paper volume image
having elongated voxels is described. Information about the void space, the pores
between the fiber network, is of interest for paper quality. It affects how the paper
interacts with light and fluids, as well as the overall quality of the paper. Using 3D
image analysis is the only way to extract individual pores for further feature extrac-
tion. The paper volume used to demonstrate the method in Paper III is a piece of
milk carton, embedded in epoxy, and digitized as a stack of 2Dimages using SEM.
Between successive 2D image acquisitions, the top part of the sample was cut off us-
ing a microtome. The voxels in the final aligned 3D volume are approximately seven
times longer in thez-direction than in thex- andy-direction and correspond to true
voxel sizes of0.7× 0.7× 5.0µm. The volume was binarized into fibre network and
void space using shading correction and grey-level thresholding, (Aronsson et al.,
2002).
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The algorithm for segmenting individual pores, can be divided into three steps:
identification of the top and bottom surface of the paper; distance based WS seg-
mentation of the void space; and merging of neighboring regions. All steps of the
method use distance information and since the voxels in the volume are elongated, a
WDT with weights adopted to the voxel size is used, see Section 4.1. Good integer
approximations for the weights were calculated using the method in Paper II.

Prior to segmenting individual pores, the top and bottom surfaces of the paper
need to be identified. This is performed using the rolling ball algorithm as described
for this application inSvensson and Aronsson(2003). There, distance information
is used to simulate a rolling ball with a user-provided radius. The paper surface is
defined as being the points the surface of the ball traces. Theremaining steps of
the segmentation method are illustrated using a small part of a 2D slice from the
volume, see Figure18. A WDT is calculated for the void space, see Figure18(b),
where brighter values correspond to larger distance values. The WS algorithm is
then applied to the distance information yielding as many regions as there were lo-
cal maxima in the DT, see Figure18(c). Merging of regions is necessary to reduce
the over-segmentation to regions corresponding to individual pores. This merging
is performed in two steps. First, all neighboring regions with a maximum distance
value on the border, only slightly smaller than the largest distance value in one of
the regions, are merged. Second, all neighboring regions with a maximum distance
value on the border, larger than a certain size, are merged. The result after each of
the two merging steps are shown in Figures18(d)and18(e), respectively. During
the first merging step, regions separated due to a small contraction on the outer sur-
face are merged, and small regions are merged to other small,or large, neighboring
regions. During the second merging step, regions sharing a large border surface are
merged. The first criterion is dependent on the sizes of the regions and the border
between them, while the second is a fixed-size threshold.

In Figure19, surface renderings of five individual pores identified in the volume
are shown. The last slices of the fibre network are shown behind the pore regions
to give a feeling for the complexity of the segmentation task. When the individual
pores have been segmented features can easily be extracted and used to gather in-
formation about the paper structure. In Paper III, a few features are presented for
the five pores visualized in Figure19, as well as some scatter plots of features for
all segmented pores.

4.3 Description and segmentation of viral capsids

When designing segmentation algorithms, it is important toincorporate as much
information as possible about the objects to be found. If only objects of a certain
kind are sought, a more specific segmentation, such as matching, is generally a good
choice. In Paper IV, a matching method used to segment and classify three types of
viral capsids in 2D is described. The capsids are imaged in host cell nuclei using
TEM. This results in images with a severely textured background as can be seen in
Figure20. Matching based on intensity is computationally expensive. Therefore,
less computationally demanding segmentation techniques,such as edge based seg-
mentation methods and ring filters, were tried. They were, however, not successful
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(a) (b)

(c) (d) (e)

Figure 18: The pore segmentation algorithm illustrated on apart of a 2D slice from
the volume. The original binary image (a), a distance transform of the void space
(b). The result of watershed algorithm (c), when applied to (b). The result after each
of the two merging steps (d) and e), respectively.

Figure 19: A surface rendering of five individual pores identified by the method
described in Paper III.
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on these images due to the texture in the background.

The three capsid types are all radially symmetric, but theirradial density, or
grey-level, distribution differ, see Figure20. The radial grey-level distribution for
each type is used to create a unique description, or signature, which, in turn, is used
to create a template for the matching method.

Figure 20: Part of a TEM image showing the three different capsid types.

A circular symmetric object in an image can be described by a 1D function ofr,
where the value at positionr represents the grey-value at distancer from the center
of the object. The objects in consideration here are approximately circular and can
therefore be described by such a 1D function. The value at each r is calculated as
the mean of all values at distancer from the center. This representation of a circular
object will be referred to as the density profile of an object.A profile represent-
ing each class is created by averaging eight manually pickedcapsids of each class
after size and grey-level normalization. A template for each class is created from
the density profiles by doing the opposite to a profile calculation, i.e., all pixels at
distancer from the center in the template image are assigned the value at positionr
in the profile. Density profiles along with their corresponding templates are shown
in Figure21.

The templates are used one at a time to calculate three correlation images, where
the value in each position shows the similarity between the underlying image and
the template centered at that position. The similarity measure is the correlation co-
efficient(CC) and the matching is performed in the spatial domain, see Section 3.2.
The positions with the highest percentage ofCCs for each template were matched
to templates of smaller and larger sizes. The size of the template that produced the
bestCC, along with theCC itself, were kept for further analysis and classification.
Starting from the highestCC for each class and moving on to lower values, the
circular subimage giving rise to the score was transformed into polar coordinates
and placed as rows in a matrix. Each row was then aligned to theclass profile and
the matrix was matched against a similar matrix produced from the class profile. To
classify the subimage as a true capsid, theCC for the aligned matrix needs to be
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Figure 21: Density profiles as functions and images, and corresponding templates
for the three different capsid types.

higher than a threshold,T 1. This threshold is set as a percentage of the highestCC
in the image. In addition, theCC for the circular subimage needs to be higher than
a threshold,T 2, set as a percentage ofT 1. For one of the capsid types, the middle
type in Figure20, the variance of the sums of the rows in the aligned matrix also
needs to be lower than a threshold. These analysis steps are performed for positions
of each class until a number of positions not fulfilling the criteria are found.

This segmentation and classification method was applied to micrographs from
three different preparations. The results on two images, from which the eight cap-
sids used to construct the three class profiles were picked, are shown in Figure22.
The method was also applied to 10 micrographs not used for developing the method.
The result was compared to visual classification performed by an expert. In total
185 (82%) of the 226 capsids were correctly classified, 41 (18%) were missed, and
38 (17%) false objects were found. The results are very satisfactory considering the
severely textured background and the low contrast between objects and background.
Using the two thresholds, T1 and T2, allows for excluding false capsids as they are
generally not as radially symmetric as true ones. It also allows for including true
capsids with lower original match scores due to not perfectly circular shape or a
somewhat distorted interior. As the method is described, itneeds very little human
interaction. The thresholds can be tuned for a small image and then used for all
images produced under the same condition.

These results can be further improved if a human expert wouldmake the final
decision. The thresholds could then be slightly lowered andthe iterative exami-
nation of the best position could be run farther. The subimages classified as true
capsids can be presented in a table on the screen where the human expert can mark
the false or true capsids. The false positives can thereby beeliminated, and as more
objects are kept, more missed objects can be found.

The density profile is a compact way to describe circular symmetric objects.
Besides being a good and useful description, certain measurements can easily be

36



F
ig

u
re

2
2

:
R

esu
lt

o
f

th
e

seg
m

en
tatio

n
an

d
classificatio

n
m

et
h

o
d

ap
p

lied
to

tw
o

m
icro

g
rap

h
s.

P
o

sitio
n

s
classified

as
each

o
fth

e
th

ree
cap

si
d

typ
es

are
m

arked
w

ith
circles,d

iam
o

n
d

s
an

d
sq

u
ares,resp

ectively.

3
7



extracted from the profiles and used to distinguish objects of different types. In the
viral capsid case, it is of interest to measure the width of the outer shell. The reason
is that when a viral capsid matures, proteins are attached tothe shell, and it is of
interest to know the thickness of this layer and where it is acquired. The width can
be calculated as the length between the two zero-crossings,at an approximate radius
from the center, in the second derivative of a smoothed profile, see Figure23.

capsid
8.23 pixels

center

width=

capsid 14.25 pixels
center

width=

Figure 23: Calculation of the width of the outer capsid shellfor a capsid without
attached proteins (left), and for a capsid with attached proteins (right). From top
to bottom: capsid image, density profile as image, profile as function, smoothed
profile, first derivate of the smoothed profile, and second derivative of the smoothed
profile. The straight line in the second derivative of the smoothed curve marks the0
level.

4.4 Segmentation of cell nuclei

The aim of the method presented in Paper V was to develop a segmentation method
which incorporates several different types of information, to be used for automatic
segmentation of 2D and 3D images of fluorescence stained cellnuclei in tissue.
This allows for studying cells in their natural context. Thebenefits of automatic
segmentation compared to manual delineation of the nuclei using a mouse, are that
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it is more objective, easily reproduced, and faster.

Mainly three problems are encountered when fluorescence images of stained
cell nuclei are studied. The background intensity is generally not flat but varies,
due to autofluorescence from the tissue and fluorescence fromout of focus objects.
Usually, there are also intensity variations within each object and the cell nuclei are
often clustered, see Figure24(a). The two last issues complicate the task of finding
borders between all nuclei, while not finding false borders within the nuclei. The
problems with varying background, presence of false borders and weak true borders
are encountered in many other types of imagery as well. Therefore, this method, or
part of it, is likely to be useful in other situations.

The method consists of four main steps: automatic marking ofregion seeds; WS
segmentation; merging of neighboring regions with weak borders; and splitting of
regions based on a shape criterion. The different steps of the method are illustrated
in a small 2D image of cell nuclei in Figure24. The extendedh-maxima transform,
(Soille, 1999), was used to place seeds in local maxima higher thanh, correspond-
ing to objects or parts of objects in the intensity image. Thesame transform but
applied to the inverted gradient magnitude image, see Figure24(c), was used to find
background seeds. This will, of course, result in background seeds also inside the
objects. These are removed based on their small size. The object seeds and re-
maining background seeds are shown in Figure24(c). Using local maxima in the
intensity image as object seeds, and large local minima in the gradient magnitude
image as background seeds, removes to a great extent the problem with varying
background. The borders between the seeds were then found with the WS algo-
rithm applied to the gradient magnitude image, see Figure24(d). Due to the inten-
sity variation within the objects, many objects will consist of several regions, each
originating from a separate seed. These should be joined without joining regions
from neighboring objects. This is a difficult problem, as borders separating differ-
ent objects are not always stronger than borders between regions within an object.
The assumption made in this method is that the average borderbetween objects is
stronger than the average border between regions within an object. The average gra-
dient magnitude strengths between all regions in the image are, hence, calculated.
All borders weaker than a certain threshold are then merged,see Figure24(e), one
by one, starting from the weakest border. It is important that the borders are merged
in order, as the average border strength for regions affected by a merging needs to be
updated. The assumption made in the previous step is not always valid for clustered
objects. They are sometimes so tightly packed, that there isno clear border between
them. The last step of the method uses distance based shape information to split re-
gions that have deep concavities. A distance transform is calculated for each region,
and the WS algorithm is applied to the distance information.Neighboring regions
are merged if the border between them have high enough distance values, compared
to the distance values inside the regions. The result of thisshape based WS will be
a splitting of regions that are connected by a narrow waist, see e.g. the two objects
in the lower left quadrant of the result in Figure24(f). This method will, hence,
segment objects that contain at least one seed, have bordersto neighboring objects
that have sufficiently strong gradient magnitude average and have a reasonable cell
nucleus shape.
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(a) (b) (c)

(d) (e) (f)

Figure 24: Illustration of the method combining intensity,edge, and shape infor-
mation, in the segmentation of cell nuclei. A small 2D image (a), and its gradient
magnitude (b). The object and background seeds are shown in white and black, re-
spectively (c). The result after a seeded WS (d), and after merging based on mean
edge strength (e). The final result after splitting regions based on shape information
(f).

A small smoothing filter was applied to both the 2D images and the 3D image
to speed up the WS segmentation. Prior to that, thez-slices of the volume were
compensated for light attenuation and the volume was subsampled to cubic voxels.
To compensate for light attenuation, the mean of all pixel intensities higher than 10
was calculated for each slice. This value is plotted againstslice number as a solid
curve in Figure25. A straight line was fit to the linear part of the plot, representing
the slices inside the tissue sample, in a least square sense,and used to compensate
for the attenuation. The intensities in az-slice were compensated by multiplication
with m/(k × z + m), wherek is the slope of the line andm is the offset. The
mean of all pixel intensities above 10 for each slice after the compensation is seen
as the dotted curve in Figure25. A multiplicative compensation is important to
make sure that values equal to, or close to, zero are not increased. As can be seen
in the plot, some slight attenuation still remains, but the contrast in all slices is now
sufficient for segmentation. Each voxel in the original volume was 98nm in thex-
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Figure 25: A plot of the mean intensity for all element values> 10 in eachz-slice
in the confocal microscopy image versus slice number. The solid line represents
the values prior to light attenuation compensation and the dashed line represents the
values after compensation. The compensation was performedas described in the
text.

andy-directions and 163nm in thez-direction. The image was subsampled to cubic
voxels by nearest neighbor interpolation, as this simple interpolation method proved
to be sufficient.

The method was evaluated on six 2D images and one 3D image of cell nuclei
in tissue. There was a total of 689 nuclei in the 2D images, and90 nuclei in the
3D image, of which 91% were correctly segmented for both the 2D images and
the 3D image. A surface rendering of the 3D result and a close-up are shown in
Figure26. Apart from the nuclei there were fluorescent objects in the images not at
all resembling proper nuclei. These were also segmented butif necessary they can
easily be removed based on their different size. This would improve the percentage
of correctly segmented nuclei.

The mean intensity in thez-slices still decrease with depth, even after the com-
pensation has been performed, see the dashed curve and the fitstraight line in Fig-
ure 25. A better compensation would probably have been achieved byfitting the
line to the mean of the highest percentage of intensities in each slice, instead of the
mean of all pixel intensities higher than 10 in each slice. The line should then only
be fit to the slices inside the tissue sample. The slices before the peak in Figure25
originate from when the focal plane was outside the sample and should, hence, not
be used for fitting the line. Calculating the mean of all pixelvalues higher than a
low threshold in each slice might, however, be necessary to decide where sample
begins to be in focus.

To test whether the decrease in signal through the 3D sample was only due to
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(a) (b)

Figure 26: The result of the segmentation method applied to avolume image of cell
nuclei (a), and a close-up showing that the method manages toseparate touching
nuclei (b).

light attenuation or also due to less staining in the deeper slices some additional
experiments were performed. New tissue sections were prepared as in Paper V. In
addition, one section was stained from both sides, instead of just letting the stain dif-
fuse into the sample from one side, which is more common. Volumes were acquired
with different objectives (and from both sides of the section which was stained from
both sides). These volumes revealed that staining from one side reaches through the
whole volume without decrease and that the decrease in signal was only due to light
attenuation.

4.5 Identification and representation of molecules imaged with
SET

As mentioned in Section2, SET is a protein imaging method producing 3D im-
ages with a resolution down to2nm. This is good enough to give coarse structural
information of proteins, together with information on how they interact with other
proteins or molecules. SET volumes contain thousands of objects of which only
a handful are the objects of interest. These are, so far, found by visual inspection
of objects having approximately the proper size after suitable thresholding of the
image. Developing methods for segmentation and analysis ofobjects in the vol-
umes would reduce the amount of human interaction needed to find the objects of
interest. The objects of interest are very small in the volume images, and therefore
the amount of available shape information is limited. The reconstructions also suf-
fer from noise and varying background. In Papers VI and VII, two representations
of proteins imaged with SET are presented. They are both based on the internal
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density distribution of the object, which make them insensitive to changes on the
border. These methods can serve as valuable tools when analyzing structural differ-
ences of objects of a certain kind and how they interact with other objects. They can
also be used in the segmentation process to help distinguishtrue objects of interest.
In Paper VIII, a segmentation method which combines intensity, edge, and shape
information is presented. This creates a method which reduces the mentioned prob-
lems of varying background, touching objects, and need for large amount of human
interaction, in cases where the shape of the objects of interest is known.

Volume images of proteins created from atom positions deposited in the protein
data bank, (PDB), (Berman et al., 2000), were created and used for developing and
evaluating the methods. These volumes were created by representing each atom by
a Gauss kernel with a magnitude corresponding to the weight of the atom. The sum
of the contributions from all atoms less than a resolution dependent distance away
from each element, constitutes the intensity value assigned to that image element.

Object decomposition using internal intensity and shape

In Paper VI, a method which decomposes an object into its constituent parts is de-
scribed. Measurements of the individual parts and how they are connected in the
object can be used to describe, and distinguish between, different objects. The
method is an extension of a decomposition method for binary objects presented by
Svensson and Sanniti di Baja(2002) to incorporate also the internal intensity distri-
bution of an object. The intensity information decides how many parts an object will
be decomposed into, while the shape decides where the borders between the parts
will be placed. This makes the method robust to small changeson the border of an
object. The choice of grey-level threshold used for segmenting the image is there-
fore not critical, as long as an object stays connected. The threshold will, hence, not
affect the number of parts an object is decomposed into, but it will still affect the
sizes, and to a certain extent, the shape of the parts.

The decomposition method is applied to a grey-level object already segmented
from the background. It consists of two main steps: identification of seeds from
the internal grey-level distribution, and shape based growth from these seeds. Local
grey-level maxima are identified and marked as seeds. Since the images are rather
noisy, using all local maxima would create too many seeds, and consequently, too
many regions in the final decomposed object. Therefore, the image is smoothed by
applying a Gaussian filter prior to detection of local maxima. All maxima detected
on the smoothed image are considered as significant and used as seeds. A sphere,
centered at each seed is then grown until it somewhere reaches the border of the
object. A second growth step consists of assigning the remaining object elements to
the closest sphere. The two growth steps are both based on distance information. A
distance transform is calculated inside the object, and thedistance values assigned
to the seeds are used in a reverse DT, RDT. This RDT corresponds to the spheres,
centered at the seeds. In the second growth step a constrained DT from the bor-
ders of the spheres with the background as obstacle, is calculated. The spheres are
then grown distance layer by distance layer until all image elements are assigned to
a region. The purpose of distance based growth in two steps instead of one, is to
stop seeds in protruding or peripheral parts of the object, to conquer elements from
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larger regions. The result of the decomposition method applied to some protein im-
ages created from PDB are shown in Figure27, and to some proteins (antibody IgG)
imaged with SET in Figure28. The first columns of the two Figures contain identi-
fications, the second columns contain volume renderings, and the third contain the
decomposition results. The content of the fourth columns, agrey-level based medial
representation, will be described below. In the last row of Figure27, the star in the
identification denotes that the molecule presented is an assumed biological struc-
ture, which in this case consists of three units of the protein with PDB identification
1eo8.

In some cases, e.g. for 1igt (which consist of two Fab arms anda Fc stem),
quantitative information (number of amino acids or atoms) about the structural sub-
units (domains) of a protein can be found in PDB. The number ofsubparts in the
decomposition result depends on the resolution, as this affects how many local in-
tensity maxima that can be distinguished. In a volume image with a resolution of
2nm produced from PDB, the protein 1igt is decomposed into 7 subparts, see Fig-
ure27. Each of the two Fab arms are decomposed into 2 regions and theFc stem is
decomposed into 3. To enable comparison of the subparts of the decomposition and
domain information, in some cases available in PDB, the image can be smoothed
until it decomposes into the correct number of subparts. If this is done for 1igt, each
Fab arm and the Fc stem make up 34, 32, and 34 % of the total volume, respectively.
The corresponding percentages for the number of amino acidsin each domain is 33
for each Fab arm, and 34 for the Fc stem.

Grey-level based medial representation

A medial representation of objects in volume images is suggested in Paper VII.
This representation facilitates analysis and comparison,as it is compact. Moreover,
it enhances and reveals internal grey-level features that are difficult to discover by
inspecting the original objects. The representation is based entirely on grey-level
distribution and no specific segmentation of the object is necessary. Seeds for the
representation are identified as in the decomposition method described above, i.e.,
as local maxima after Gaussian smoothing. Some sort of segmentation is, hence,
necessary to decide which seeds belong to the object and which do not. The repre-
sentation scheme can roughly be described as the maximum intensity path connect-
ing these seeds of the different parts. It is developed from the method presented in
Svensson et al.(2002), and adapted to the application of studying proteins in volume
images.

After identification of the local maxima, any possible grey-level cavities are set
to belong to the background. The grey-level cavities are identified as connected
components of only one grey-level, with neighbors of strictly higher grey-levels. It-
erative thinning guided by the grey-level distribution in the image is then performed.
A distance label is assigned to each voxel, denoting the minimum constrained dis-
tance to a region with a lower grey-level, when all regions with higher grey-levels
are obstacles. Each voxel will, hence, have two values, a grey-value, and a distance
value. Thinning is then performed per grey-level, and within each grey-level, per
distance value. Voxels are removed if their removal does notchange the topology of
the background or the object, (Bertrand and Malandain, 1994; Saha and Chaudhuri,
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PDB Id. Vol. Rend. Decomp. MGR

1igt

1afv

1afa

1eo8

1eo8*

Figure 27: From left to right: PDB identification; volume rendered original ob-
ject; grey-level decomposition; medial grey-level based representation, MGR, for
constructed PDB volumes.
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IgG No. Vol. Rend. Decomp. MGR
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3

Figure 28: From left to right: volume rendered original object; grey-level decompo-
sition; and medial grey-level based representation, MGR, for three IgG molecules
from SET.
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Figure 29: Left: Medial grey-level based representation ofPDB ID 1afv. Right:
Grey-levels along the representation.

1994). The local maxima serve as endpoints in the representation, and are therefore
considered as unremovable during thinning. The resulting representation is denoted
Medial Grey-level Representation (MGR). MGR for some proteins constructed from
PDB are shown in the fourth column of Figure27, and for some proteins imaged
with SET in the fourth column of Figure28. The grey-values of the voxels that are
part of the MGR are kept in the representation, as they revealinformation about the
grey-level distribution along the path, or paths, connecting the center points. As the
grey-levels depict density, this could indicate how tightly different parts are con-
nected. An illustration of this is shown in Figure29, for a protein constructed from
the PDB ID 1afv. The grey-levels between the two middle localmaxima are low, in-
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dicating that they are only weakly connected, while the higher grey-levels between
the middle and the outer local maxima indicate that they are probably more tightly
connected.

Shape based identification

The segmentation method used so far for segmenting objects in SET volumes con-
sists of grey-level thresholding together with size discrimination and visual inspec-
tion. This method has several drawbacks. The background varies in the volumes,
and using one grey-level threshold for the whole volume therefore means that the
size of an object will be dependent on its position in the volume. To be sure not
to throw away true objects of interest, the range of acceptedsizes, hence, has to
be rather generous. This in turn, increases the amount of objects that need to be
visually inspected. As the visual inspection is very time consuming, reducing the
number of objects that need visual inspection is desirable.Another problem with
the size discrimination step is that objects touching otherobjects or objects that have
been split into parts are easily discarded as they will be interpreted as one object be-
ing too large or several objects being too small. In Paper VIII, a method is presented
which focuses on the described problems. It combines intensity and gradient mag-
nitude information to extract stable borders of the objects. A template is then used
to search for borders corresponding to objects of interest.

The method uses the hierarchical chamfer matching algorithm, (HCMA),
(Borgefors, 1988), which matches a binary edge template to a DT of a binary edge
image. The matching is embedded in a resolution pyramid to speed up the calcula-
tions and avoid getting stuck in false local minima. The sum of the squared distance
values hit by the template is used as the comparison measure,see Section3.2. A low
sum will, hence, correspond to a good match. The template can, in the case of SET
volume segmentation, be either a volume image of a protein ofthe kind of interest,
constructed from PDB, or a manually identified object in a SETvolume. The edge
of the template is found through grey-level thresholding and extracting the border
of the object. The edges of the image are found by using a seeded WS algorithm.
Object seeds are identified as voxels having an intensity higher than a threshold,
known to definitely correspond to the interior of possible proteins. A background
seed is identified as the largest connected component of elements having a gradient
magnitude lower than a threshold. This produces a background seed spread over the
whole volume even if the background is varying. A seeded WS isthen applied to
the gradient magnitude image, and the borders between the resulting regions will be
placed along the gradient magnitude maxima. This is similarto the method used in
Paper V, with the exception that the object seeds are all given the same label, as the
borders, and not the individual objects, are sought. The border of the object region
is extracted and used in the HCMA algorithm. The positions generating low sums
are the result of the method. Objects at these positions should be presented, in order
of increasing sum, to an expert for final visual inspection.

In Figure30, the objects at the two best positions in each of three volumes with
the antibody IgG as objects of interest are presented. The volumes each contain one
visually identified IgG antibody. The method manages to find the correct objects as
the best position in volume one and three and as the second best position in volume
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Figure 30: Volume renderings of subvolumes corresponding to the the best (top
row) and second best (bottom row) match positions in three SET volume images
containing the antibody IgG in solution. The visually judged true IgG proteins are
at the best position for the first and third volume and at the second best position in
the second volume.

two, even though the template and the objects differ quite a lot. The structure at the
best position in volume two is rather similar to the templateand might possibly be
an antibody not found by the former segmentation method.

As a postprocessing step, the mean intensity of the objects at the best positions
can be investigated to make sure that the position corresponds to a position with
high intensity values, and not a part of the background between two objects. This
would possibly have revealed that the second best positionsin volumes one and
three correspond to false proteins.
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5 Conclusions and future work

This thesis includes image analysis research essentially within three different fields.
In the digital geometry field, theoretical results regarding optimization of the local
weights in distance transforms (DTs) adapted to elongated grids in 2D and 3D have
been described.

In the segmentation field, several methods developed for different applications
have been presented. A DT with weights optimized for an elongated voxel grid,
in combination with the watershed (WS) algorithm was used tosegment individual
pores in a paper volume. A match based segmentation algorithm was developed
to identify and classify three types of viral capsids in 2D images of infected cell
nuclei. An average radial grey-level profile for each capsidtype was used to create
the templates used in match based segmentation. Intensity,edge strength, and shape
information were combined in a WS based method to segment cell nuclei in 2D
and 3D images. The last segmentation algorithm presented inthis thesis combines
intensity, edge, and shape information to segment proteinsof a specific kind in
volume images.

In the field of object representation, some description schemes have been pre-
sented. The radial grey-level profiles used for identifyingand classifying capsids
serve as an efficient way of describing and comparing different capsids. Two meth-
ods developed to describe and simplify analysis of proteinsin volume images have
been presented. The first decomposes a segmented object intosubparts based on
internal intensity distribution and shape. The second creates a medial representation
of an object solely from its internal intensity distribution.

Further investigation on how to adapt image analysis methods to elongated grids
would be useful. Whether, e.g., connectivity and edge detection filters should be
treated differently in such grids, compared to square or cubic grids, needs investi-
gation. Using information about elements in a neighborhoodof the element under
consideration can perhaps reveal information about its connectivity to other ele-
ments and how steep an edge is and where it should be positioned.

In relation to the analysis of pores in paper, as well as to thedecomposition of
proteins into subparts, the question of how to find the main part of an object arose.
The largest inscribed ball is often used, but this is a measure that in most cases is
not representative, neither of the shape, nor of the volume.The largest inscribed
convex object would be a more representative feature to investigate. However, it is
so far not clear how to identify such an object, or a good approximation thereof.

Another idea, not yet investigated, is whether it is possible to use the presented
decomposition method to estimate the resolution achieved in Sidec Electron To-
mography (SET) volumes (or in other electron tomography reconstructions). If a
protein of the same kind as in the reconstruction is deposited in the protein data bank
(PDB), volume images of it can be constructed at different resolutions. Comparing
the decomposition result of the PDB protein in images of different resolutions with
the decomposed object in the SET image would probably revealthe approximate
resolution obtained in the SET image. There are two circumstances that are likely
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to limit the accuracy of the estimated resolution. The first is that the SET images
contain noise, which influence the detection and localization of local maxima. The
second is that the protein structures deposited in PDB are likely to be tighter than
the same protein imaged with SET, as SET images proteins moving freely in solu-
tion while most protein structures deposited in PDB are the structures proteins have
in crystal lattices.

In the hierarchical chamfer matching (HCMA) algorithm, DTsare calculated
from extracted edges in the image to be searched. Some work has been performed
by Rosin and West(1995) on how edge strength information (or other information)
can be included in the DT and subsequently used in the matching. Rosin and West
(1995), however, start from already extracted binary edges. A slightly different ap-
proach would be to calculate a DT directly from the gradient magnitude information.
This can be achieved by calculating a reverse DT (or a DT from the inverted gra-
dient magnitude image) from the values already present in the gradient magnitude
information. The benefit of this strategy is that no decisionof what is to be counted
as an edge or not need to be taken. This edge-weighted DT has been somewhat
investigated by the author with promising results. The problem that occurs, though,
is how to weigh different types of information, a problem present in all attempts to
combine modalities. This needs further investigation.

A tunnel is defined as the background passing through the object, and this defini-
tion is also used in the medial grey-level based representation method. Considering
volume images of proteins and protein complexes, it could easily be imagined that
grey-level tunnelsexist and are of interest. A grey-level tunnel would be a pathof
grey-levels higher than the background but lower than the voxels surrounding them,
passing through the object. Identifying such grey-level tunnels is a topologically
interesting task, and incorporating them into the medial grey-level based represen-
tation would make it even better suited for the protein analysis application.

Information from the decomposition result and the medial grey-level based rep-
resentation could most likely be used in the segmentation process. It could prefer-
ably be added at the last step of the presented match based segmentation method to
discard false objects and strengthen the overall rating of true objects of interest.

The idea of using the WS algorithm on the grey-level histogram of an image to
automatically find threshold levels, illustrated in Figure11, should also be further
investigated and evaluated on different types of images.

In connection to the description and discussion of each method in the contribu-
tion section, some additional ideas or suggestions for improving the methods were
mentioned. Investigating these ideas further, together with the briefly described un-
explored ideas above, is left for future work.

50



References
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994).

Molecular Biology of the Cell, chapter 4, pages 139–156. Garland Publishing,
Inc.

Arcelli, C. and Sanniti di Baja, G. (1988). Finding local maxima in a pseudo-
Euclidean distance transform.Computer Vision, Graphics, and Image Process-
ing, 43:361–367.

Aronsson, M. (2002).On 3D Fibre Measurements of Digitized Paper. PhD thesis,
Swedish University of Agricultural Sciences. Silvestria,No. 254.

Aronsson, M., Sävborg, Ö., and Borgefors, G. (2002). Minimizing scanning elec-
tron microscope artefacts by filter design.Journal of Microsocpy, 206(1):84–92.

Barrow, H. G., Tenenbaum, J. M., Bolles, R., and Wolf, H. C. (1977). Parametric
correspondence and chamfer matching: Two new techniques for image match-
ing. In Proceedings 5th International Joint Conference on Artificial Intelligence,
pages 659–663, Cambridge, Massachusetts.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalova, I., and Bourne, P. (2000). The protein data bank. Nucleic Acids
Research, 28:235–242.

Bertrand, G. and Malandain, G. (1994). A new characterization of three-
dimensional simple points.Pattern Recognition Letters, 15:169–175.

Beucher, S. and Lantuéjoul, C. (1979). Use of watersheds in contour detection.
In International Workshop on Image Processing: Real-time andMotion Detec-
tion/Estimation, pages 2.1–2.12.

Bolon, P., Vila, J. L., and Auzepy, T. (1992). Opérateur local de distance en mail-
lage rectangulaire. InProc. 2ème Colloque de Géométrie Discrète en Imagerie:
Fondements et Applications,Grenoble, France, pages 45–56. In French.

Borgefors, G. (1984a). Distance transformation in arbitrary dimensions.Computer
Vision, Graphics, and Image Processing, 27:321–345.

Borgefors, G. (1984b). An improved version of the chamfer matching algorithm.
In 7th International Conference on Pattern Recognition, pages 1175–1177, Mon-
treal, Canada.

Borgefors, G. (1986). Distance transformations in digitalimages.Computer Vision,
Graphics, and Image Processing, 34:344–371.

Borgefors, G. (1988). Hierarchical chamfer matching: A parametric edge matching
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(6):849–865.

Borgefors, G. (1994). Applications using distance transforms. In Arcelli, C.,
Cordella, L. P., and Sanniti di Baja, G., editors,Aspects of Visual Form Pro-
cessing, pages 83–108. World Scientific Publishing Co. Pte. Ltd.

51



Coquin, D. and Bolon, P. (1995). Discrete distance operatoron rectangular grids.
Pattern Recognition Letters, 16:911–923.

Coquin, D., Chehadeh, Y., and Bolon, P. (1994). 3D local distance operator on
parallelepipedic grids. InProc. 4th Discrete Geometry for Computer Imagery,
Grenoble, France, pages 147–156.

Fouard, C. and Malandain, G. (2005). 3-D chamfer distances and norms in
anisotropic grids.Image Vision and Computing, 23(2):143–158.

Fouard, C., Malandain, G., Prohaska, S., Westerhoff, M., Cassot, F., Marc-Vergnes,
J.-P., Mazel, C., and Asselot, D. (2004). Skeletonization by blocks for large
3D datasets: Application to brain microcirculation. In2nd. IEEE International
Symposium on Biomedical Imaging, pages 89–92.

Gonzalez, R. C. and Woods, R. E. (2002).Digital Image Processing, chapter 12,
pages 698–704. Prentice-Hall, 2nd edition.

Ikonen, L. and Pekka, T. (2005). Shortest routes on varying height surfaces using
gray-level distance transforms.Image and Vision Computing, 23(2):133–141.

Kong, T. Y. and Rosenfeld, A. (1989). Digital topology: Introduction and survey.
Computer Vision, Graphics, and Image Processing, 48:357–393.

Meyer, F. and Beucher, S. (1990). Morphological segmentation. Journal of Visual
Communication and Image Representation, 1:21–46.

Montanari, U. (1968). A method for obtaining skeletons using a quasi-Euclidean
distance.Journal of the Association for Computing Machinery, 15(4):600–624.

Nyström, I. (1997).On Quantitative Shape Analysis of Digital Volume Images. PhD
thesis, Uppsala University. Faculty of Science and Technology, No. 288.

Nyström, I. and Smedby, Ö. (2001). Skeletonization of volumetric vascular im-
ages – distance information utilized for visualization.Journal of Combinatorial
Optimization, 5(1):27–41. Special Issue on Optimization Problems in Medical
Applications.

Nyström, I. and Borgefors, G. (1995). Synthesising objectsand scenes using the
reverse distance transformation in 2D and 3D. In Braccini, C., De Floriani, L.,
and Vernazza, G., editors,Image Analysis and Processing, volume 974 ofLecture
Notes in Computer Science, pages 441–446. Springer-Verlag.

Piper, J. and Granum, E. (1987). Computing distance transformations in convex and
non-convex domains.Pattern Recognition, 20(6):599–615.

Rosenfeld, A. (1969).Picture Processing by Computer. Academic Press, New York.

Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in digital picture pro-
cessing.Journal of the Association for Computing Machinery, 13(4):471–494.

Rosenfeld, A. and Pfaltz, J. L. (1968). Distance functions on digital pictures.Pattern
Recognition, 1:33–61.

52



Rosin, P. L. and West, G. A. W. (1995). Salience distance transforms. Graphical
Models and Image Processing, 57(6):483–521.

Saha, P. K. and Chaudhuri, B. B. (1994). Detection of 3-D simple points for topol-
ogy preserving transformations with applications to thinning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(10):1028–1032.

Saha, P. K., Wehrli, F. W., and Gomberg, B. R. (2002). Fuzzy distance transform:
Theory, algorithms, and applications.Computer Vision and Image Understand-
ing, 86:171–190.

Sahoo, P. K., Soltani, S., Wong, A. K. C., and Chen, Y. C. (1988). A survey
of thresholding techniques.Computer Vision, Graphics and Image Processing,
41:233–260.

Sanniti di Baja, G. (1994). Well-shaped, stable, and reversible skeletons from the
(3,4)-distance transform.Journal of Visual Communication and Image Represen-
tation, 5(1):107–115.

SET webpage (2004). Sidec Technologies. http://www.sidectech.se. visited 2004-
12-10.

Skoglund, U., Öfverstedt, L.-G., Burnett, R., and Bricogne, G. (1996). Maximum-
entropy three-dimensional reconstruction with deconvolution of the contrast
transfer function: A test application with adenovirus.Journal of Structural Biol-
ogy, 117:173–188.

Soille, P. (1999). Morphological Image Analysis: Principles and Applications.
Springer-Verlag.

Sonka, M., Hlavac, V., and Boyle, R. (1999).Image Processing, Analysis, and
Machine Vision, chapter 4, pages 77–88. Brooks/Cole Publishing Company, 2nd
edition.

Svensson, S. (2001).Representing and Analyzing 3D Digital Shape Using Distance
Information. PhD thesis, Swedish University of Agricultural Sciences.Silvestria,
No. 211.

Svensson, S. (2002). Reversible surface skeletons of 3D objects by iterative thinning
of distance transforms. In Bertrand, G., Imiya, A., and Klette, R., editors,Digital
and Image Geometry, volume 2243 ofLecture Notes in Computer Science, pages
395–406. Springer-Verlag.

Svensson, S. and Aronsson, M. (2003). Using distance transform based algorithms
for extracting measures of the fibre network in volume imagesof paper. IEEE
Transactions on Systems, Man, and Cybernetics, 33(4):562–571. Special issue
on 3-D Image Analysis and Modeling.

Svensson, S. and Borgefors, G. (2002a). Digital distance transforms in 3D images
using information from neighbourhoods up to5 × 5 × 5. Computer Vision and
Image Understanding, 88(1):24–53.

53



Svensson, S. and Borgefors, G. (2002b). Fuzzy border distance transforms and their
use in 2D skeletonization. In Kasturi, R., Laurendeau, D., and Suen, C., editors,
16th International Conference on Pattern Recognition (ICPR 2002), volume I,
pages 180–183. IEEE Computer Society.

Svensson, S., Borgefors, G., and Nyström, I. (1999). On reversible skeletonization
using anchor-points from distance transforms.Journal on Visual Communication
and Image Representation, 10(4):379–397.

Svensson, S., Nyström, I., Arcelli, C., and Sanniti di Baja,G. (2002). Using grey-
level and distance information for medial surface representation of volume im-
ages. In Kasturi, R., Laurendeau, D., and Suen, C., editors,Proceedings 16th
International Conference on Pattern Recognition (ICPR 2002), volume 2, pages
324–327. IEEE Computer Society.

Svensson, S. and Sanniti di Baja, G. (2002). Using distance transforms to decom-
pose 3D discrete objects.Image and Vision Computing, 20(8):529–540.

Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: Ap-
plications and efficient algorithms.IEEE Transactions om Image Processing,
2(2):176–201.

Wählby, C. (2003).Algorithms for Applied Digital Image Cytometry. PhD thesis,
Uppsala University. Faculty of Science and Technology, No.896.

54



Other publications and conferences

The author has also been author or co-author to the followingpapers.

• Höglund S., Su J., Sandin Reneby S., Végvári Á., Hjertén S., Sintorn I.-
M., foster H., Wu Y., Nyström I., Vahlne A. (2002). Tripeptide Interference
with Human Immunodeficiency Virus Type 1 Morphogenesis.Antimicrobial
Agents and Chemotherapy, 46(11):3597–3605.

• Sintorn I.-M., Borgefors G. (2002). Weighted distance transforms for im-
ages using elongated voxel grids. In Braquelaire, A., Lachaud, J., Vialard A.,
editors,Discrete Geometry for Computer Imagery, volume 2301 ofLecture
Notes in Computer Science, pages 244-254. Springer-Verlag.

• Aronsson M., Sintorn I.-M. (2002). Ring Shaped Object Detector for Non-
Isotropic 2D Images using Optimized Distance Transform Weights. InProc.
IEEE International Conference on Image Processing, pages 985–988.

• Sintorn I.-M., Homman M. (2002). Description, Segmentation and Classi-
fication of Human Cytomegalovirus Capsids. In Åström K., editor, Proc.
SSAB’02, Symposium on Image Analysis, pages 21–24.

• Sintorn, I.-M. (2002). Automatic identification and classification of Cy-
tomegalovirus capsids in electron micrographs. Abstract in Proc. VINNOVA
2002.

• Homman, M., Sintorn, I.-M., Hultenby, K., Borgefors, G., Söderberg-
Naucler, C. (2002). Nuclear egress of human Cytomegalovirus capsids by
budding through the nuclear membrane. Extended abstract inProc. Interna-
tional conference on Electron Microscopy.

• Sintorn I.-M. (2004). Object Decomposition Based on Grey-level and Shape
Information. In Bengtsson E., Eriksson M., editors,Proc. SSBA’04, Sympo-
sium on Image Analysis, pages 25–28.

• Sintorn, I.-M., and Weistrand, Ola. (2002). A report on the first French-
Nordic summer school in mathematics. InCentre for Image Analysis Internal
report, No. 25.

The following international conferences have been attended.

• 9th International Conference on Discrete Geometry for Computer Imagery
(DGCI), Uppsala, Sweden, Dec. 2000.

• 11th International Conference on Image Analysis and Processing (ICIAP),
Palermo, Italy, Sept. 2001.

• 10th International conference on Discrete Geometry for Computer Imagery
(DGCI), Bourdeaux, France, April 2002.

55



• 11th International Conference on Discrete Geometry for Computer Imagery
(DGCI), Naples, Italy, Nov. 2003.

• IEEE International Symposium on Biomedical Imaging (ISBI), Arlington,
VA, USA, April 2004.

56



Acknowledegments

Special thanks to the following people for contributing to this thesis in some way or
the other.

• Gunilla Borgefors and Ingela Nyström, my supervisors, for friendship, help,
and support during these years, and for having confidence in me and encour-
aging me to develop my own ideas.

• Lena Wadelius for help with EVERYTHING and keeping things atCBA run-
ning smooth.

• Ewert Bengtsson for introducing me to Sidec and several skilled researchers.

• The more permanent staff at CBA: Gunilla, Ewert, Tommy, Fredrik, Olle,
Lena, Ingela, and Bosse for creating a great atmosphere at CBA.

• The less permanent staff at CBA: current and former PhD student colleagues
Anna, Ola, Robin, Mats, Maria, Petra, Lina, Amalka, Magnus,Patrick, Stina,
Roger, Felix, Xavier, Erik, Jocke, Mattias A, for lunches, fika, friday pubs,
wednesday pubs, and any other day pubs.

• Olle for help with the computer system, giving me more memory, and for
restoring, by me mistakenly deleted files.

• Bosse, Jocke, Erik, for not loosing patience while helping me with my never
ending questions about computers and programming.

• Gunilla, Ingela, Stina, Lina, and Bosse, for proofreading this thesis.

• Collaborators and co-authors from outside CBA: Sidec & SaraSandin, Ör-
jan Sävborg, Fredrik Erlandsson, Susana Mata, and especially Mohammed
Homman-Loudiyi, optimistic, enthusiastic, and funny; simply the best col-
laborator one can imagine.

• Collaborators and co-authors at CBA: Gunilla Borgefors, Maria Axelsson,
Magnus Gedda, Ewert Bengtsson, and most of all Stina Svensson and Car-
olina Wählby.

• Erik Vidholm for great support and help when this thesis and the last Papers
were produced, and panic was close.

• My office roommates: Roger Lundqvist, Nataša Sladoje, and a bunch of mas-
ter thesis students Erik, Per, Kristin and Mathias, for making our room the
best working place.

• Petra, Stina, Anna, Lina, Nataša, and Erik for a friendship started at work that
I hope will last forever!

• The other members of CBA’s golf-section, Tommy, Roger, and Erik, for not
always working on sunny summer afternoons.

57



• All my friends from Uppsala and elsewhere!

• Old and new members of my old and new family: Mamma Kerstin & Pappa
Jalle, Kalle & Nadine, Anna-Karin, Jo-Hanna, Barbro & Roger, Magda &
Viktor, I love you all!

• Mathias, you are the best! Jag älskar dig tusen miljarders!

Uppsala, February 2005

Ida-Maria Sintorn

58


	Introduction and objectives
	Microscopy techniques 
	Light microscopy
	Fluorescence microscopy
	Confocal microscopy
	Transmission electron microscopy (TEM)
	Scanning electron microscopy (SEM)

	Fundamental image analysis concepts
	Digital distance transforms 
	Segmentation
	Object representations

	Contributions
	Adapting distance transforms to elongated grids 
	Segmentation of paper pores 
	Description and segmentation of viral capsids
	Segmentation of cell nuclei 
	Identification and representation of molecules imaged with SET 

	Conclusions and future work
	References
	Other publications and conferences
	Acknowledgements

