Segmentation Methods and Shape
Descriptions in Digital Images

Applications in 2D and 3D Microscopy

Ida-Maria Sintorn

Centre for Image Analysis
Uppsala

Doctoral Thesis
Swedish University of Agricultural Sciences
Uppsala 2005



Acta Universitatis Agriculturae Sueciae
2005:20

ISSN 1652-6880

ISBN 91-576-7019-6

(© 2005 Ida-Maria Sintorn, Uppsala

Printed in Sweden by Universitetstryckeriet, Uppsala Ersity, Uppsala, 2005



Abstract

Ida-Maria Sintorn Segmentation Methods and Shape Descriptions
in Digital Images Doctoral Thesis

ISSN 1652-6880, ISBN 91-576-7019-6

Digital image analysis enables creating objective, fastl @producible analysis
methods of objects or situations that can be imaged.

This thesis contains theoretical work regarding distan@esforms for images
digitized in elongated grids. Such images are the resuliasfyymainly 3D, imaging
devices. Local weights appropriate for different elongafactors in 2D, as well as
in 3D, are presented. Methods adapted to elongated gri@stisag and computer
memory compared to increasing the image size by interpajati a cubic grid.

A number of segmentation methods for images in specific egjitins are also
included in the thesis. Distance information is used to sagrindividual pores in
paper volume images. This opens the possibility to invastithow the pore net-
work affects the paper quality. Stable and reliable segatemt methods for cell
nuclei are necessary to enable studies of tumor morphoésgwell as amounts of
fluorescence marked substances in individual nuclei. #itigrgradient magnitude,
and shape information is combined in a method to segmentugelei in 2D fluo-
rescence and 3D confocal microscopy images of tissue ssctiwo match based
segmentation methods are also presented. Three typesbéapsids are identified
and described based on their radial intensity distribuiotransmission electron
micrographs of infected cells. This can be used to measuseshpotential drug
affects the relative amounts of the three capsids, andlggstie viral maturation
pathway. Proteins of a specific kind in transmission electrolume images of a
protein solution are identified using a shape based matchadef his method re-
duces the amount of visual inspection needed to identifyeprs of interest in the
images.

Two representation schemes, developed in order to simpkfynalysis of indi-
vidual proteins in volume images of proteins in solutior, presented. One divides
a protein into subparts based on the internal intensityidigton and shape. The
other represents the protein by the maximum intensity coovmecting the centers
of the subparts of the protein. These representations ¢aa as tools for collect-
ing information about how flexible a protein in solution iddemow it interacts with
other proteins or substances. This information is valuédnehe pharmaceutical
industry, when developing new drugs.

Key words:digital image analysis, volume images, microscopy imagks)gated
grid, distance transform, segmentation, shape desarigiey-level, gradient mag-
nitude, watershed, decomposition

Author’s addressCentre for Image Analysis, Lagerhyddsvagen 3, SE-752 37 Upp
sala, Sweden
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The work presented in Papers | and Il were developed undse discussions with
Gunilla Borgefors while the calculations and implememtasi (C, and C++) and
most of the writing was performed by the author. The methasgnted in Paper
Il was developed and written mainly by the author but withpheomments and
advice from the coauthors. Adapting existing methods armlémenting new ones
(C++) were performed by the author. The work in Paper IV wasely discussed
with Mohammed Homman-Loudiyi, while the author performée talgorithm
development, implementations (Matlab) and most of theimgiberself. The work
in Paper V was performed in close cooperation with Carolirihlly. The method
development, implementation and writing was split betweemnand the author. The
work presented in Paper VI was performed mainly by the autlegarding method
development, adapting existing implementations and icrgatew ones (C++),
and writing the paper. Paper VIl was produced in close cadfmer with Stina
Svensson, and the work with developing the method, impleimgit and writing
the paper was split mainly between her and the author. Theadegiresented in
Paper VIII was mainly performed by the author regarding rmdtdevelopment,
implementation (C++ and Matlab), and writing the paper.

The C and C++ implementations were either done as stand almggams or
as modules in the image processing platform IMP, develop#teaCentre for Im-
age Analysis originally by Bo Nordin and with substantiahtributions by Joakim
Lindblad.



1 Introduction and objectives

The number of areas using digital images as tools, for etialuand analysis, is
steadily increasing. Constantly improved technology fieage generating systems,
and cheaper and better computers, constitute the main lyimdereasons. This
growth, in turn, gives rise to a demand and wish for automatialysis and ex-
traction of information captured in the images. The idea ©ihg computers for
performing quantitative and objective studies of inforimapresent in images, has
been around for quite some time. The first textbook on theestibjas published al-
ready in the late sixties Bgosenfeld 1969, and since then, the demand and interest
for digital image analysis has been ever increasing.

The work leading to this thesis was performed at the Centrénfage Analy-
sis (CBA) in Uppsala, which is a joint institution betweerm tBwedish University
of Agricultural Sciences and Uppsala University. CBA wasrfded in 1988 and
theoretical and application oriented image analysis rebehas since then been
performed in the fields of discrete geometry, medical antheidical image analy-
sis, forestry and agriculture, and remote sensing. Thisghmntains work related
to several of the mentioned fields. Theoretical work on digibpology has been
performed, regarding distance transforms, continuinguthik by Professor Borge-
fors, supervisor of the author, and work presented in gaCIRA theses byNystrom
(1997 assistant supervisor for the author, éwknssor(200]). One application
of the theoretical results is the analysis of the structdifgaper, related to the the-
sis of Aronsson(2002. A large part of this thesis is devoted to incorporatingbot
shape and intensity information in methods developed foi,adapted to, specific
biomedical applications. Many of these methods have toeitsrin work on binary
shape analysis of 2D and 3D images by CBA researchers Bogg&fgstréom, and
Svensson. Both intensity and shape information has also bsed in the task of
digital cell image analysis, connected to the thesi®\tihlby (2003.

Objectives

The main objectives of this thesis have been to adopt eskaddliimage analysis
methods to work directly on elongated digitalization gyiaisd to incorporate inten-
sity information in distance based shape analysis and septation schemes of 2D
and 3D biomedical structures.

About this thesis

This is a thesis in digital image analysis, and the emphasisefore lies on the
developed methods, and not on the different applicatione.cbncepts and methods
are, hence, presented as generally as possible, althottga@gplication specific
circumstances and problems are discussed to motivate tieecbf actions. The
images studied in this thesis were all acquired with difiémicroscopy techniques.
A brief description of how the different microscopes worlgigen in Section 2. The
author has, however, not acquired any of the images heaselfis not an expert on
any of the systems. Section 3 contains image analysis ctttegt constitute the
foundation of this work. In Section 4, the methods in the apieel Papers are



described, together with discussions and ideas for fuidiegelopments. Finally,
conclusions and a summary of ideas for future work are ptedan Section 5.
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2 Microscopy techniques

The methods presented in this thesis were in most casesgeddor either a spe-
cific application or a specific type of images. The images vadr@acquired by
experts in the microscopy techniques briefly presentedibdior comparative pur-
poses, absorption light microscopy is also describedpaih no images studied in
this thesis were acquired using that technique.

2.1 Light microscopy

In a common light microscope, the visible light that is nosatibed by the sample
creates the magnified image. An illustration is shown in Fédu(left). Light from

a light source is focused on the sample using a glass lens.ligttethat passes
through the sample is magnified and focused on the detedtay tvgo lenses. The
resolution limit in a light microscope i8.2um, (Alberts et al, 1994, i.e., half the
wavelength of blue light, which is the visible light with tishortest wavelength.

2.2 Fluorescence microscopy

In fluorescence microscopy, light emitted from fluorescealarules in the sample
is imaged. A fluorescent molecule absorbs light of certaimelemngths, and then
emits light of longer wavelengths (longer wavelengths Hags energy). Specific
structures can be marked with fluorescent molecules, or thme® a structure is
fluorescent by nature. As this technique also uses light tgniflaan object, the
resolution limit is0.2um, the same as in light microscopy. A dichroic, or beam
splitting mirror, reflects light below a certain wavelengthile longer wavelengths
are transmitted. This is used in a fluorescence microscogetter with two filters,

to ensure that only absorption wavelengths for the fluorgsoarker to be imaged
hit the sample, and at the same time only emitted wavelerfgths that marker
hit the detector. In Figur& (middle), a schematic representation of a fluorescence
microscope is seen. Light from the light source of the alismmpwavelengths is let
through a filter, reflected in the dichroic mirror, and foalisato the sample. When
the light reaches the fluorescent molecules they begin tolegghi. Light from the
sample is transmitted through the dichroic mirror, filteteensure that only light
of certain wavelengths is present, and focused onto a detetiere the image is
formed.

2.3 Confocal microscopy

Just as in fluorescence microscopy, light emitted from flsoeat molecules is im-
aged with confocal microscopy. The technique is similarrdirtary fluorescence
microscopy, but with the addition that a laser light sourtedmbination with a
blocking pinhole allows for imaging a specific spot of the géarat a time, see Fig-
urel (right). The light source needs to be a well focused laserakesure that the
light, which is reflected in the dichroic mirror, is focusedto a small spot in the
sample. Light emitted from this spot is transmitted throtlghdichroic mirror and

11
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Figure 1: Simplified drawings of a light microscope (left)flaorescence micro-
scope (middle), and a confocal microscope (right). All éhreicroscopes have a
light source (I), a specimen (s), and a detector (d). The dkmnce microscope
also has two filters (f1, f2) and a dichroic mirror (m) that ttohwhich wavelengths
of the light that reach the specimen and the detector. Thiscahmicroscope has
a filter (f2) and a pinhole (p), in front of the detector, to eresthat light from out
of focus objects (dashed lines) and light of undesired vemgths do not reach the
detector.

passes through a pinhole before it hits the detector. Thisgié blocks most of the
light emitted from out of focus parts of the sample. The fepalt can scan the sam-
ple in z- andy-direction using a set of mirrors, and the sample can be miové
z-direction. The confocal technique thereby allows for itnggof 3D structures,
illustrated with the fish bone in Figutke(right). If a sampling corresponding to the
best possible resolution is chosen for a specific setup,ethgtmg volume image
will have elongated voxels, as light from out of focus objelanits the resolution
in the z-direction more than in the- andy-directions. It is very difficult to give
any numbers for how thick objects that can be imaged with diooah microscope
as it depends on the sample itself as well as on the microssipp. The amount
of light reaching the detector decreases with depth, astennlight from deeper
into the sample will be absorbed and reflected by the samptepnf it and less
light will, hence, reach the detector than from the top p&the sample. An exam-
ple, to give a feeling for the order of the size it is possilblénmage, is that a good
50um cell tissue section with a resolution of approximat@Bum in thex- andy-
direction and).3um in the z-direction can be achieved.

2.4 Transmission electron microscopy (TEM)

A transmission electron microscope, see FigRi@eft) for a schematic drawing,
images the amount of electrons that passes through the sandifferent posi-
tions. The denser the material is in a spot of the sample, tire the electrons are
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scattered and less electrons will, hence, be transmitteddih that spot. This is il-
lustrated with the dense fish bone appearing in the restuitiage in Figure? (left).
Air molecules also scatter electrons and therefore the iimgatgkes place in vac-
uum. Electrons are focused on the sample by an electromadgret and the elec-
trons that are transmitted through the sample are magnifiddpeojected onto a
detector using two more electromagnetic lenses. The régolimit in an electron
microscope for biological samples is ab@utm, (Alberts et al, 1999.

Electron tomography, or 3D imaging of an object using etgttnicroscopy, can
be performed by reconstruction from a series of images ofdmeple, acquired at
different tilt angles. Sided Electron Tomography (SET)SET webpage2009),
uses the common reconstruction method filtered back pfofedn combination
with a refinement method called COMETBKoglund et a].1996. This makes it
possible to use a lower dose of electrons, which in turnwallfor acquisition of
more images in a tilt series, without destroying the samléh the combination
of low dose electron microscopy and a refinement method, S#iTreconstruct
individual molecules down to a resolution of approximatelyn (SET webpage
2009.

2.5 Scanning electron microscopy (SEM)

In scanning electron microscopy (SEM), see FigRrgight), scattered electrons
are detected instead of transmitted electrons. In badksaaibde, the electrons
scattered back from the top part of the object are detecté@. efectron beam in
a scanning electron microscope is focused by an electroatiggans and is bent
using scan coils or a beam deflector to scan over the sampleadkt spot of the
sample, the backscattered electrons are detected andt@shtcean intensity value
reflecting the density of the spot. Hence, a SEM image is a 24y&wf the top part
of the sample. The resolution limit for biological samplesSEM is about Onm,

(Alberts et al, 1994. 3D SEM images can be produced as stacks of 2D images,

each acquired using SEM, with a thin slice of the sample dietfveen successive
image acquisitions. The resolution in theandy-direction is usually higher than
the thickness of the slices, and, hence, 3D images with atedgbox-like, voxels

are the result.
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Figure 2: Simplified drawings of a transmission electronroscope (left), and a
scanning electron microscope (right). Both microscopes laa electron gun (e), a

specimen (s), and a detector (d). The scanning electrorostuope also has a beam
deflector (b).
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3 Fundamental image analysis concepts

As stated in the title, image analysis methods for both 2D3ihiémages have been
developed. The images are, in this case, digital imagesgurized discrete im-
ages). Such images are in a computer represented by gritgtoces, with a value
at each position. The location in the matrix correspondsécspatial coordinates of
the image, and the value at a location represents the gvey-ta intensity, of the
corresponding position in the image. An element of a digitedge, i.e., a position
and value of the matrix, is in 2D denoted a pixel (picture edath and in 3D a voxel
(volume picture element). Hereafter, image element or sirlgment will be used
when no distinction between pixels and voxels is necessaonly two intensity
values are present in the image, it is a binary image. A geegtimage is an image
having more than two intensity values. The range of valueseh when acquiring
an image depends on what is required to solve the problemmatdrad the amount
of available memory. A common range is from 0 to 255, wheregdagents black
and 255 white. All images used in this thesis were either medun that range or
rescaled thereto.

A basic issue when it comes to digital image analysis is cotinigy, i.e., how an
image element is connected to other image eleméund and Rosenfe|dl989.
A pixel has two types of neighboring pixels: four edge neigish and four ver-
tex neighbors, see FiguB A voxel has three types of neighbors; six face neigh-
bors, twelve edge neighbors and eight vertex neighborsk-ggee 3. In 2D, de-
pending on whether only the edge neighbors, or both the edde/@rtex neigh-
bors, are regarded as connected to a pixel, a method is baséeconnectivity
or 8-connectivity, respectively. In 3D, there are thrededént connectivities:
6-connectivity, where only the face neighbors are taken ounsideration; 18-
connectivity, where also edge neighbors are used; and 26ectivity, where all
neighbors are included.

If an image element, pixel or voxel, has the same size in edlctibns, all neigh-
bors of the same type are at equal distance from the elemiay. Should therefore
be treated similarly in all processing and analysis stefpthel sampling rate is dif-
ferent along the different directions, all neighbors of saene type are not at equal
distance from the element. This should be taken into coride in all further
processing of the image. As elongated image elements isfahe main issues in
this thesis, it is discussed in more detail in Sectich

"o ﬁwo@l@

Figure 3: The types of neighbor relations in a 20x 3 neighborhood, and a 3D
3 x 3 x 3 neighborhood.

15



Figure 4: A binary image of a maple leaf (left), and its DT frig

A group of connected elements that somehow is distingui$toed the other
elements is called an object. The complement to the objecbjarcts is gener-
ally called the background. Usually 8-connectivity, in 2&8nd 26-connectivity
in 3D, is used for the object or objects. To avoid topologipatadoxes (see
Rosenfeld and PfaltZ19686), this implies that 4- and 6-connectivity has to be used
for the background in 2D and 3D, respectively.

A survey of digital topology for 2D and 3D digital images cae found in
Kong and Rosenfel989. There, definitions for &ole in 2D, and atunnel and
cavity in 3D are given. If an object completely surrounds a part eftiackground,
it contains ahole in 2D and acavity in 3D. If the background passes through the
object, it contains aunnel. A hollow ball is an example of a 3D object having a
cavity, and a donut is an example of a 3D object having a tunnel

In the following subsections fundamental image analysitods, used or mod-
ified in the papers included in this thesis, are explaineths8atiorDigital distance
transformscovers how to approximate and calculate the closest distirom each
image element in an object, or region, to the background.ulps&ctionSegmen-
tation some methods for how to recognize and delineate objects image are
explained. The Subsecti@bject representatigrcontains methods by which a seg-
mented object can be represented to simplify further arsalys

3.1 Digital distance transforms

Measuring distances is useful in many image analysis ajits, both as a de-
scriptive measure in itself, and also as information fottfar processing and analy-
sis. Distance information is used in all papers appendétidditesis. The pioneer-
ing work regarding digital distances was performedimsenfeld and Pfalt1966
1968, and a brief overview of applications is foundBorgefors(1994.

A distance transformation is a procedure applied to an, iregs, binary image,
where it computes the distance from each image element iokjleet to the closest
image element in the background. The result, the distaaosfiorm (DT), is, hence,
a grey-level image where each object element has an inferaite equal to the
closest distance to the background, see Figure

16



In the earliest approacheRd@senfeld and PfalfZ1966 1969, the distance as-
signed to an object pixel in the DT is given by the minimum nembf neighbor
steps necessary to move from the pixel to the nearest pixbeeibackground. De-
pending on the connectivity used, 4 or 8 in 2D, and 6, 18, onZi], the resulting
distance values are different. The drawback with these BThdt they are very
rotation dependent. An object element can be assignedadtitfelistance values if
the distance transformation is applied to the same objdatdbated differently in
the image.

To achieve a DT more stable under rotation, the differergimsdr steps can be
given different weights. The first idedpntanarj 1969, was to approximate the
length of each local neighbor step by the Euclidean distahtee step. However,
this is not the best weights to use, no matter how intuitiveight sound Borgefors
(198443 proved that other weights give a better approximation tweger distances,
as well as a DT more stable under rotation. Good integer weifghn the local
steps in a 2D image are 3 and 4 for the edge and vertex neighiespectively,
and for a 3D image good weights are 3, 4, and 5 for, the faceg,emlyd vertex
neighbors respectively. Even better approximations tdetheidean distances, and
hence, a DT more stable under rotation, can be achievedifdtigtance information
from a larger neighborhood is taken into account, see Baygefors(1986, and
Svensson and Borgefof20023.

A DT can be calculated by propagating local distances in tagsps over the
image Rosenfeld and Pfalt4966. This is the case for both 2D and 3D images as
well as for images of higher dimensionality. The elementshiobject are set to
infinity, and the elements in the background to O, prior toning the two passes.
During the first, forward pass, the image is processed fréntdeight and from top
to bottom and in 3D, also from front to back. During the secdratkward pass,
the image is processed from right to left, bottom to top, an8D, also from back
to front. The element under consideration, is given the mim value of itself and
the values of its already visited neighbors each increagdtiéir respective local
step weights. This process of propagating information dverimage using local
step weights is often referred to as chamfering, and wedhtligtance transforms
(WDTSs), are therefore often called chamfer distance tanss.

Once a DT has been computed, only a subset of the image eleoféhé object
and their assigned distance values is needed to represesgamstruct the original
object. The distance values can be interpreted as radiisasdRD) or balls (3D)
totally enclosed in the object. If a disc or ball is complgtebvered by another
disc or ball it is not needed in the representation of theiwaigobject. A disc or
ball which is not completely covered by any other single distall is called a
maximal disc or ball. The center elements and correspondistgnce values of
such maximal discs, (CMDs), or balls, (CMBs), are all thatégded to represent
the entire object. These CMDs/CMBs can be identified from einspecting the
distance values in the local neighborhooidelli and Sanniti di Baja1988.

To reconstruct the original object from the CMDs/CMBs, aeme distance
transform, Nystrom and Borgeford 999, is computed from the distance values of
the CMDs/CMBs. It is computed in the same manner as the WET, by prop-
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agating local distance information in two passes over thegin The difference is
that the maximum value of itself and the values of alreadifadsneighbors each
decreased by the respective local step weights, is assigntiee element under
consideration.

It is sometimes useful to propagate distance informatioerwbbstacles are
present in the image. This is performed in the same manner as ordinary DT
with the exception that the obstacle elements are neverdernesl. This constrained
DT, CDT, (Piper and Granupi987, requires iteration of the two scans through the
image until no more changes occur, to propagate the distaforenation around the
obstacles. The number of needed iterations depends on #yeioontents (objects
and obstacles).

Attempts have been made to calculate DTs on grey-level isyaael thereby
incorporate underlying grey-level information into the §Rosin and West1995
Ikonen and Pekk&005 Saha et a).2002 Svensson and Borgefor2002h). How-
ever, it is difficult to weigh together the importance of thistdnce and intensity
information. Despite the problem of mixing modalities, yyteeighted DTs have
shown to be useful in certain applications.

3.2 Segmentation

To separate the contents of an image into regions of intesestbjects, and back-
ground is called segmentation. This is a central process) &gther analysis and
information extraction depend on the result of the segntiemtaThere exists very
many different approaches to image segmentation, of whigetgeneral and com-
mon methods are explained below. These, as most image asnalgshods, are
usually modified to fit the segmentation task at hand.

Thresholding

Thresholding is a simple segmentation method useful inscasere regions of in-
terest can be identified as image elements having similgrlgiels and, at the same
time, the remaining image elements have different gregievio find one (or more)
suitable threshold values, it is often useful to study theydevel histogram of the
image. In the grey-level histogram, the grey-levels vetsasiumber of elements of
each grey-level, is plotted. In simple cases where an imagtms bright objects
in a dark background or vice versa, the histogram has a va#éyeen two peaks,
where the two peaks corresponds to the background and tbetptgspectively, see
Figure5 (top). The grey-level at the valley is then a suitable thoddhHowever,
in most cases the histogram does not contain two well segghrsaks, see Fig-
ure5 (bottom), and choosing a suitable threshold is then not éasyther common
problem is a varying image background. In such cases it willbe possible to
use a single threshold for the whole image, but more locatagmhes need to be
considered. Ir'5ahoo et al(1988, an overview of different thresholding techniques
is given.
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Figure 5: Images and corresponding grey-level histograwiss (top), and leaves
(bottom).

Watershed segmentation

A segmentation algorithm known as watershed, WS, was predexs a general
contour detection algorithm bBeucher and Lantuéjoll979. The method can
be applied to different kinds of image information, such esygevel, distance or
gradient magnitude (local contrast) information, to dévithe image content into
regions. Since the late seventies, the method has beenruaadiriety of different
applications, sedleyer and Beuche1990 andVincent (1993 for overviews. A
brief description of the method, applied to a 2D image, i®gibelow, although it
works similarly in other dimensionalities. The WS segméataalgorithm is easily
understood by interpreting the intensity image as a largschligh values (bright
regions) in the image correspond to mountains or hills inlamelscape, and low
values (dark regions) correspond to lakes or valleys. Ingdiilling a small hole in
every local hollow and slowly submerging the landscape itewd he deepest lakes
or valleys will start to fill, and as the water level rises,\tivéll eventually merge
with other lakes or valleys. At places where different bagihwater are about to
meet, a watershed, or dam, is built. This inhibits wateremibns belonging to
different local hollows to merge. When the whole landscaae lheen submerged
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in water, all image elements will have been assigned to anlzdisvater originating
from a local hollow. Either the watersheds or the basins efermred to as the WS
segmentation of the image. The latter is used in this thessases where separated
mountains or hills are the desired output of the segmemtatiocess, the image
is inverted, i.e., the landscape is turned up-side-dowioy po applying the WS
algorithm.

Depending on the type of information the WS algorithm is #&apto, different
regionalizations of the image can be achieved. One way ipptydahe algorithm
directly to the intensity information. Consider an imagetightly packed cells,
see Figures(a) Since the objects in the image are bright, the image is fader
Figure6(b), prior to application of the WS algorithm. As the algorithsreixplained
above, a regionalization which completely covers the imaijebe created. If it
instead is run only to a certain intensity, known a priori éthe background, it can
create regions corresponding to well defined objects, agjur&6(c). The problem
of deciding a good background level is, however, often ad haiit is to find a good
thresholding level.
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Figure 6: The watershed algorithm applied to intensity infation. The original
image (a), and inverted (b). The result,(c), of the algonitpplied to (b).

The WS algorithm is commonly applied to gradient magnitudfermation.
Consider the image of cell nuclei in Figuré) A gradient magnitude image can be
calculated by filtering the image with one, or a set of locaitcast detecting filters,
see e.g. $onka et a].1999, for a number of commonly used filters. Figuf),
is calculated by filtering the image with a set of Sobel filtetsch detects edges
in different directions, and combining the filter respongesach position. Dark
regions in the gradient magnitude image correspond to megimthe original im-
age with low local contrast, whereas bright regions cowaso regions with high
local contrast, i.e., sharp edges. When the WS algorithnpjidied to the image
in Figure7(b), the result is, a regionalization where the watershedsbeilituated
where the gradient magnitude information is locally highsse Figure&/(c). If the
gradient magnitude image is interpreted as a landscapeotigets will be placed
along the crest line of the mountain range separating tweysl
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Figure 7: The watershed algorithm applied to gradient ntageiinformation. The
original image (a), and the gradient magnitude image (b)e fsult, (c), of the
algorithm applied to (b) and overlayed on (a).

Often, the regionalization resulting from the WS algoritobontains far more
regions than desired. This is a problem often referred tooasr‘segmentation”,
and can be handled in two different ways. One is to prepratessnage, e.g., by
smoothing, in order to reduce the number of local minimahegieging rise to one
region in the WS segmentation. The other is to merge thetiegulegions into
more significant ones, thereby obtaining the desired out@ast often a combina-
tion of both methods, adapted to the problem at hand, is mktedacquire a good
segmentation result. Different criteria can be used to memjghboring regions.
One criterion is to set a threshold for the lowest allowedyhgih, of the lowest
point along the watershed between two regions, measuredtfie bottom of the
more shallow region, see FiguBe This means that the weakest point in the border
decides whether two regions should be merged or not. Sinisartérging crite-
rion only depends on one single image element, it is rathisergensitive. A more
robust method is to merge regions based on statistics frenwtiole separating
border, e.g., the mean or median border value. Note thag satistics from the
whole border is more computationally expensive than usinlg one point along
the border. To use the median value is more computationgfigresive than using
the mean, as more values need to be kept during the complegégng@rocess, in
order to update border values correctly. If the mean valusésl, only the number
of border elements, together with the sum of the intensityag need to be kept
to enable a correct updating of the border during the mergMgrging does not
necessarily need to be decided from intensity measuresanliatso be based on
regional measures such as size of a region, length of thehandshape.

Instead of affecting all information in the image by smoaththe image to
remove irrelevant local minima or by treating all WS regiassequally impor-
tant when merging, seeds can be planted, automatically aualig, marking re-
gions of interest. After seeding, the WS algorithm is run asctibed above
with the exception that watersheds are only built where tegded regions meet,
(Meyer and Beuchel990. After a seeded WS there will, hence, be as many re-
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Figure 8: lllustration of the merging criterion where reggoare merged based on
the height,h, of the lowest point along the separating border, measued the
bottom of the more shallow region.

gions as there were seeds to start from. Seeding can serusefiéway of combin-
ing different types of information. An example of this isiitrated on a small image

of cell nuclei, Figured, where object seeds are found as local maxima in the original

intensity image, and background seeds are local minimaeigtadient magnitude
image. The seeded WS algorithm is thereafter run on the gmadiagnitude infor-
mation. Naturally, also a seeded WS might need to be comMittgreprocessing
and/or a merging algorithm. The strategy of combining isigrand edge informa-
tion in a seeded WS is used in the method developed in Papensl VIil, and is
further discussed in SectiodsAand4.5.

@ (b) (©

Figure 9: The seeded watershed algorithm applied to gradiagnitude informa-
tion. The original image and object seeds (a), and the gnadiagnitude image
and the background seed (b). The result, (c), of the algar@bplied to (b) and
overlayed on (a).

Once a segmentation of the image into objects and backgroasidheen per-
formed, the WS algorithm can also be used to divide objettssimaller parts. This
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is usually desirable, since objects often are attacheddb ether in clusters. A
WS algorithm applied to a distance transform of the clusd@rserve as an efficient
way of dividing the cluster into single objects, see Figliee This way of using
the WS algorithm as a cluster separating method was usechgr®Hl and V, see
Sectionst.2and4.4.
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Figure 10: The watershed algorithm applied to a distanaestoam. An image of
two overlapping coins (a), the regionalization after thadding (b), a DT of the
coins (c), the resulting regions after the watershed algorapplied to the distance
transform (d).

Yet another way of using the WS algorithm is to find suitabieshold levels
for an image. If a grey-level histogram of an image is seen &b amage, the
WS algorithm applied to the inverted histogram image, gadgsiith subsequent
merging, can produce good threshold values for the origmage. In Figurell,
an example of this way of finding two good threshold levelsadight microscopy
image of a cell culture is shown. The peak furthest to thetrighhe histogram
corresponds to the background, the central peak corresgorttealthy cells, and
the peak to the left corresponds to dead cells due to lack toition in the central
part of the culture. WS segmentation of the inverted histogdetects good and
image dependent threshold levels. This can be useful faneeting objects in
similar images but with varying contrast or overall brigégs. Often more than one
threshold level is desired, and as long as the peaks in thaghésn correspond to
the different regions of interest and are separated by teped# valleys, WS based
thresholding will supply the desired threshold levels.

Template matching

If specific structures in an image are sought, that can bindisshed by a certain
shape and/or grey-level distribution, global approacheh ss thresholding or WS
segmentation, are often unsuccessful. An alternative wayiriding the objects
of interest is to locally compare, or match, the image infation with a template
describing the searched structure. Depending on what tolgiature the template
represents, the similarity measure and matching procedarghow the image is
searched, are usually somewhat different.
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Figure 11: Using the watershed algorithm to automaticafig firey-level thresh-
olds. The original image (a). The grey-level histogram of tthage (b). The
histogram displayed as a 1D grey-level image (c) (top). Hsalting regions of a
watershed algorithm applied to the 1D image (c) (middle)k Wiésulting regions af-
ter merging, using a border height criterion, until onlyeiregions remain (c) (bot-
tom). Borders of the resulting regions, (d), after thredimg the original image
with the values 60 and 184, found as the values at the watigshéc) (bottom).

In cases where the template represents an intensity distnit) the similarity
measure needs to weigh together the individual similarégymeen each position
in the template and the its underlying image element. Thi®ize by moving the
template over the image and at each position measuringrfisty between the
template and the subimage underneath. see Fitir&he result from this match-
ing is, hence, an image where the intensity of an elemenesepts the similarity
between the subimage and the template centered at thatreledeommon and
simple similarity measure between the template and therad®, is correlation
(Gonzalez and Wood20032, which in its simplest form is the sum of every tem-
plate element intensity multiplied by the intensity of thésnage element under-
neath it. Matching using this similarity measure can begrengd very efficiently
in the frequency domain. The disadvantage with this siitylaneasure is its sen-
sitivity to intensity changes in the image. To compensatétis, the correlation
coefficient can be used instead. The correlation coefficié@t at a position in the
image is calculated as

VN8 = (SN sl = (S

whereN denotes the total number of elements in the templatej and...N. The
elements grey-levels in the template and subimage are el@thoands;, respec-
tively. Matching using this similarity measure is usuallgrformed in the spatial
domain, as the formula for théC is difficult to translate to the frequency domain.
This approach for segmenting objects with a certain intgmsittern has been used
in Paper IV, see Sectioh3

1)

A simpler measure, to compare the template and the subimadgrneath it,
can be used when the template instead represents a shapeortber in 2D, and
surface in 3D, of the shape then serves as the template, arsdith of values un-
derneath the template, can be used as a similarity measiutee image can be
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Figure 12: A template, centered at *, is moved over the imagkad each position
compared to the subimage underneath.

transformed so that the match score decreases (or incy¢hsadoser to a perfect
match the template is moved, a search algorithm can be uspeéal up the match-
ing procedure. This is the case for the chamfer matchingrigigo first proposed
by Barrow et al(1977. The general idea is to calculate a DT from the contours of
the objects in the image and then perform the matching in igtartte image. The
sum of the distance values hit by the template serves asrthi@sty measure. The
lower the sum is, the better is the match. How the sum chanbes the template
is moved a small step in different directions is the key toifigdhe local best fits.
Directions resulting in higher sums can be discarded, ahdtba directions giving
lower sums should be further investigated. Note that a sstei does not gener-
ally only mean translation, but also rotation, and in somsesacaling needs to be
considered as well. Finding the best local matches is, hextpévalent to finding
local minima in am-dimensional function, whene denotes the number of allowed
geometrical transformations of the template. Since thechefaom a starting po-
sition may end in the closest local minimum (of course, delpenon the search
algorithm used), many starting positions are needed inrdodénd all objects of
interest. For real images, this optimization problem is/Marge and therefore the
original method is not suitable. IBorgefors(1988, a very important improve-
ment to the method made it suitable for problems where natrimdition about the
approximate positions of the objects is available, a hatianl chamfer matching
algorithm (HCMA) was presented. The original chamfer mitgkalgorithm is em-
bedded in a resolution hierarchy which greatly reducesdhgputational cost of the
matching, while also reducing the sensitivity to noise. salation pyramid of the
contour image is calculated, see Figd& and the chamfer matching is started at
the lowest resolution level. The good match positions age tlsed as starting po-
sitions when the matching is moved to the next resolutioalle&nother important
improvement, Borgefors 1984H), is using the sum of the squared distance values
hit by the template instead of just the sum. This similarityasure is better as it
introduces fewer false minima. The HCMA algorithm, extemhtte 3D, is used for
segmenting proteins in volume images in Paper VIII.
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Figure 13: A resolution pyramid of the contours of a mapld.|@he resolution is
halved between successive resolution levels.

3.3 Object representations

It is often useful to study the shape of a segmented objexayudifferent represen-
tation schemes, in order to facilitate recognition and ysialtasks. The aim is to
represent an often complex object by a simpler structureemasily analyzed. Two
intuitive representations of an object will be explainedhd he first is to represent
the object by (simpler) subparts, and the second is to reptdise object by a curve
centrally located in the object.

Decomposing an object into subparts facilitates analysisach part can be
analyzed individually, as well as how the different parts eonnected to compose
the entire object. IBvensson and Sanniti di Bgja002), a 3D method is presented
which decomposes a binary object into simpler parts baséd shape. The method
consists of three main steps, which all use information feomT of the object.
Seeds for the different subparts are identified in the DT efabject. Balls are then
grown from each seed. How much each seed grows depends dstétsat value.
The remaining elements of the object are then each set tadgpédahe closest ball.
A final merging process, used to remove non-significant plagtsdo not have much
outer surface in the object, is often necessary. The idedtifeeds and the resulting
decomposition of a binary "man" are shown in Figutégéa)and14(b) This method
serves as the basis for the decomposition method in Papéatther described in
Sectior4.5, which incorporates intensity information in the decomipos.

As briefly mentioned at the end of Secti8r?, the WS algorithm can be used to
decompose a region into subparts. The WS algorithm can Heedpp the DT of
an object resulting in a decomposition similar to the mettiescribed above. The
difference is mainly that the WS will not necessarily resaltividing lines at po-
sitions where the surface bends. This is because the WS ni§ligyow from local
maxima, and elongated parts will therefore likely beconm faa larger neighbor-
ing region. In Figurel4(c)the same object as in Figutd(b)is decomposed with
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Figure 14: A cross section of a 3D object displaying the seddstified in the
binary decomposition method (a), and the resulting decaitipa (b). The result
of a watershed algorithm applied to a distance transformebbiject (c).

the WS algorithm applied to a distance transform of the dbjEkae WS algorithm
can also be used to decompose a segmented object basedpalimiensity infor-
mation. The decomposition will then be strictly guided bg thtensity distribution
within the object, regardless of the shape of the object.

Instead of analyzing the entire object or its parts, a meédlesentation, such
as its skeleton, can be useful. Analyzing the medial reptesien instead of the
original object has proven successful in several 3D medipalications, see e.g.
Nystrém and Smedbf200]) andFouard et al(2004). Desirable features of a me-
dial representation are that it is thin, centered withird &opologically equivalent
to the original object. Topologically equivalent means titiee number of holes in
2D, and the number of cavities, and the number of tunnels irsBBuld be the same
for each connected component in original object and in theesentation. For a 2D
object, a medial representation possessing these feasuaesurve, while for 3D
objects it can either be a surface, or further reduced to eec¢see Figurd5. For
binary objects, the curve in 2D, or the surface in 3D, togettith the distance from
the background to each element in the representation,gesenough information
to recover the original object, with an accuracy to the outest layer. Therefore,
the representation serves as an efficient way of storingioljects. There are
different approaches for calculating a medial represemtatf a binary object. A
distance based approach can be performed by iterativelyitig the DT of an ob-
ject. The elements in the outer distance layer are itefgtieamoved if they are
not CMDs or CMBSs, or needed for shape or topology presemafBvensson et al.

1999 Svensson2002. A more efficient 2D distance based method, using a path

27



@) (b) (©

Figure 15: A surface skeleton (b), and a curve skeleton (dhe3D binary man

(a).

growing approach, is found irfs@nniti di Baja1994.

The idea of representing a 3D shape by a centralized curgeniify analysis,
can be transferred to the case of grey-level values insileltfect, Svensson et al.
2002. Instead of finding the most central curve, a curve follayihe maximum
intensity is searched for, similar to finding crest lines mauntain range. This can
be achieved by thinning the shape based on intensity, uhdezanstraint that the
grey-level topology is not changed. This means, e.g., thagen within a 3D ob-
ject with strictly lower grey-values than what is surrourglit will result in a closed
surface in the grey-level medial representation. The ige@uensson et a{2002,
of incorporating grey-level information in a medial repeatation was modified and
used in Paper VII, and is, hence, further discussed in Sedto
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4 Contributions

In this Section, the methods and results thoroughly desdriib Papers+VIll, are
briefly presented. How distance transforms should be addptelongated 2D and
3D grids, Paper | and I, is described in Sectidd. This is used in Paper lll,
described in Sectiod.2, to segment individual pores in 3D SEM images of pa-
per. Sectiort.3 corresponding to Paper IV, presents how circular symmetral
capsids can be described and identified in 2D TEM images haselistance and
intensity information. Sectiod.4, presents how different types of information are
combined in Paper V to segment fluorescence labeled cekinincD and 3D im-
ages. Finally, Sectiod.5, describes two different representation schemes, Paper VI
and VII, and a match based segmentation method, Paper ®itlprbteins imaged
using SET.

4.1 Adapting distance transforms to elongated grids

In Section3.1 the concept of a DT, and how to compute it by using a distance
transformation, was explained. The local steps and weiglet® all given for
images with square or cubic image elements. All images anegeber, not sam-
pled in such grids, especially not 3D images, where many tpaghic and mi-
croscopic images have longer voxels in théirection. In 2D, elongated pixels
are sometimes encountered in images produced with a linenecar in satel-
lite images. It is of interest to adapt methods to these etatygrids in order to
avoid interpolation to cubic grids, as this makes the imdgeger without adding
any information. In Papers I, and Il, weighted DTs, WDTSs, images with elon-
gated pixels and voxels are examined. This has also beestig&ted in 2D by
Coquin and Bolon(1995; Bolon et al.(1992 and in 3D byCoquin et al.(1999);
Fouard and Malandai(R005. Pixels in 2D images have a height equal to 1 and
width equal toA > 1, and voxels in 3D images have height and width equal to 1
and lengthA > 1. An elongated pixel has three kinds of neighbors, in theofll

ing denoted by capital letters, while an elongated voxefivadifferent neighbors,
denoted by lower case letters, see Figliée Optimal weights are calculated for
local steps to the neighbors, i.e., to image elementsdnya 3, and3 x 3 x 3
neighborhood, for 2D and 3D, respectively.

B
C

Figure 16: The different types of local steps for imagestitigd in an elongated 2D
grid (left), and 3D grid (right).
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The optimal weights for the local steps in the neighborhoedaxcalculated by
minimizing the maximum error between the WDT and the digiBIT, which is
as rotation independent as possible, in square and culis gfisizesA M x M
andA M x M x M, respectively. The optimal weights for the local steps are
all dependent orh. The weights need to fulfill theemi-regularitycriterion, which
states that if two elements can be connected by only one tygeisection of local
step, this path should be the shortest, or equal to the sitqa¢h between the two
elements. In 2D, see Figul (left), this leads to the following constraints:

A<B and C< B and B<A+C VA. (2)

In 3D, see Figurd 6 (right), the constraints implied by treemi-regularitycriterion
become:

a<b a<ec b<d, ¢<d, d<e, 22<b+2d, b<2a, d<a-+c (3)

These constraints are not enough to generate unique expressr the local dis-
tances in 3D. The poin{d, 2, 1) and(1, 1, 2) can be reached from the origin in two
ways, each fulfilling the constraints above. This givestageur different combina-
tions of additional constraints. The combination chosegite unique expressions
for the local steps was:

et+a<d+b and e+c<2d. (4)

Due to symmetry, the optimization only needs to be perforineone quad-
rant in 2D, and one half of an octant in 3D. The maximal diffeeto the EDT is
assumed to occur on the border of the image, The expressiotisef differences
between the WDT and the EDT will be different along the bowmtrording to the
combination of steps needed to get there. To optimize the WBE local steps
which minimize the maximum of these expressions is founddbyirsg the system
of equations the expressions give rise to. In 2D, the exjmesdor the local steps
and the maximum difference to the Euclidean differencel¢scaith M), denoted
maxdiff are:

A(A) 3A2—A—(A—1)\/A2+1+

- 5A2 —2A +1
20\/(A+ D(VAZF 1 - 1)
5AZ —2A +1 ’

C(A) = RA(N),

(5)
B(A) = AA(A) + VAT +1— A,

maxdiff(A) =| A — AA(A) | .
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The corresponding expressions in 3D are:

a(A)_3A2+A(\f727\/A2+2)+¢A2+2+17\/§
o 5A%Z —2A +1

+

VA2AVAT T 2(2V3 — 1+ A) +5A2(2v2 — 3) + 2A(3 — 4v/2) + 612 — 19)

5AZ —2A +1 ’
b(A) = a(A) — 1+ V2,
c(A) = Aa(A),
d(A) = Aa(A) — A+ VI + A2,
e(A) = Aa(A) — A + VAT T 2,

(6)

All local steps can be derived from one of the local steps.eHtre local steps
are expressed as functions of the or a steps. The reason that all steps can be
expressed as a function of one step, is that when optimizing square or cube,
the error on the border of the cube, for all directions of Ieteps, should be equal.
The WDT for elongated image elements underestimates thendiss along the di-
rections of the local steps and overestimates the distanakections that are not
well covered by the local distances.

Integer local steps are often used and they are acquired hiplying the local
steps with a scale factor and rounding off to the nearesgénte To make sure
that the integer local steps are the best possible for eaadp &xctor, an integer
neighborhood for each rounded integer local step is exaimi@mce the best local
steps depend on, the local step equations are the main result of this worke Th
optimal and best integer local steps for 2D and 3D WDTs wheguals3 is given
in Tables1 and2, respectively. A good way two visualize the difference e BDT
is to show digital circles, 2D, or spheres, 3D, computed withWDTs. The digital
circle and sphere fak = 3 are shown i Figurd?.

Table 1: Local steps in 2D fok = 3.

scale factor A C B maxdiff
1 0.883 2.649 2811 0.351
1.085 1 3 3 0.398
3.454 3 9 10 0.394
4.563 4 12 13 0.370
5.672 5 15 16 0.356
6.768 6 18 19 0.355
12.452 11 33 35 0.352
oo Aopt Copt Bopg 0.351

Note that the errors are very large foraof 3. The WDTSs for elongated grids
are rather rotation dependent, see FiglifeThe largerA is, the more rotation de-
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Table 2: Local steps in 3D fak = 3.

scale factor a b c d e maxdiff
1 0.865 1.279 2595 2757 20911 0.406
1.940 2 3 5 5 5 0.739
2.347 2 3 6 7 7 0.444
6.909 6 9 18 19 20 0.422
9.281 8 12 24 26 27 0.414
17.205 15 22 45 48 50 0.411
19.570 17 25 51 54 57 0.410
o0 Qopt bopt Copt dopt €opt 0.406

pendentthe WDT becomes. To extend the neighborhood wodigtesthe error and
the rotation dependency, but this would of course have theedfect of increasing
the computational cost. Since the elements are elongatesyanmetric neighbor-
hood,3 x 5in 2D and5 x 5 x 3 in 3D, would be a good way to compensate for
the largest errors without increasing the computationatas much as with full

5 x 5 and5 x 5 x 5 neighborhoods. Weights for 3D WDTs in such asymmetric
neighborhoods have been optimized over spher&€oujuin et al(1994.

0 0 &

Figure 17: The disc and ball, 3 views, far= 3, computed using the weights 3, 9,
and 10in2D and 2, 3,6, 7, and 7 in 3D.

4.2 Segmentation of paper pores

In Paper Ill, a method which segments individual pores in pepaolume image
having elongated voxels is described. Information aboaitid space, the pores
between the fiber network, is of interest for paper qualityaffects how the paper
interacts with light and fluids, as well as the overall quatit the paper. Using 3D
image analysis is the only way to extract individual pore<tiother feature extrac-
tion. The paper volume used to demonstrate the method inr Pajgea piece of
milk carton, embedded in epoxy, and digitized as a stack of2&yes using SEM.
Between successive 2D image acquisitions, the top pareafaimple was cut off us-
ing a microtome. The voxels in the final aligned 3D volume amgraximately seven
times longer in the-direction than in the:- andy-direction and correspond to true
voxel sizes 0f).7 x 0.7 x 5.0um. The volume was binarized into fibre network and
void space using shading correction and grey-level thidéhm (Aronsson et al.
2002.
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The algorithm for segmenting individual pores, can be didithto three steps:
identification of the top and bottom surface of the papertatise based WS seg-
mentation of the void space; and merging of neighboringomregi All steps of the
method use distance information and since the voxels ingdhame are elongated, a
WDT with weights adopted to the voxel size is used, see Sedtib Good integer
approximations for the weights were calculated using ththotein Paper Il

Prior to segmenting individual pores, the top and bottonfesas of the paper
need to be identified. This is performed using the rollind dlglorithm as described
for this application inSvensson and Aronss@¢2003. There, distance information
is used to simulate a rolling ball with a user-provided radilihe paper surface is
defined as being the points the surface of the ball traces.rdimaining steps of
the segmentation method are illustrated using a small gatab slice from the
volume, see Figur&8. A WDT is calculated for the void space, see FigliBfb),
where brighter values correspond to larger distance vallibe WS algorithm is
then applied to the distance information yielding as magyores as there were lo-
cal maxima in the DT, see Figuls(c) Merging of regions is necessary to reduce
the over-segmentation to regions corresponding to indaligores. This merging
is performed in two steps. First, all neighboring regionthvei maximum distance
value on the border, only slightly smaller than the largéstiadice value in one of
the regions, are merged. Second, all neighboring regiotiisaninaximum distance
value on the border, larger than a certain size, are mergeg r&dsult after each of
the two merging steps are shown in Figui&gd) and18(e) respectively. During
the first merging step, regions separated due to a smallawditin on the outer sur-
face are merged, and small regions are merged to other smktge, neighboring
regions. During the second merging step, regions shariagge border surface are
merged. The first criterion is dependent on the sizes of thiems and the border
between them, while the second is a fixed-size threshold.

In Figurel9, surface renderings of five individual pores identified ia tolume
are shown. The last slices of the fibre network are shown kiethia pore regions
to give a feeling for the complexity of the segmentation tagken the individual
pores have been segmented features can easily be extradieded to gather in-
formation about the paper structure. In Paper Ill, a fewest are presented for
the five pores visualized in Figufid, as well as some scatter plots of features for
all segmented pores.

4.3 Description and segmentation of viral capsids

When designing segmentation algorithms, it is importanhtmrporate as much
information as possible about the objects to be found. Iy ahljects of a certain
kind are sought, a more specific segmentation, such as mgiétgenerally a good
choice. In Paper IV, a matching method used to segment asslifgidhree types of
viral capsids in 2D is described. The capsids are imaged $b ¢edl nuclei using
TEM. This results in images with a severely textured backgdoas can be seen in
Figure20. Matching based on intensity is computationally expensiveerefore,
less computationally demanding segmentation technicque, as edge based seg-
mentation methods and ring filters, were tried. They werajgwer, not successful
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Figure 18: The pore segmentation algorithm illustrated pard of a 2D slice from

the volume. The original binary image (a), a distance tramsfof the void space
(b). The result of watershed algorithm (c), when applied)o The result after each
of the two merging steps (d) and e), respectively.

Figure 19: A surface rendering of five individual pores idiged by the method
described in Paper III.
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on these images due to the texture in the background.

The three capsid types are all radially symmetric, but thadial density, or
grey-level, distribution differ, see Figu0. The radial grey-level distribution for
each type is used to create a unique description, or sigaatiich, in turn, is used
to create a template for the matching method.

Figure 20: Part of a TEM image showing the three differens@htypes.

A circular symmetric object in an image can be described b® &ihction ofr,
where the value at positianrepresents the grey-value at distandeom the center
of the object. The objects in consideration here are apprately circular and can
therefore be described by such a 1D function. The value &t e&ccalculated as
the mean of all values at distancé&om the center. This representation of a circular
object will be referred to as the density profile of an obje&tprofile represent-
ing each class is created by averaging eight manually pic&gdids of each class
after size and grey-level normalization. A template forteealass is created from
the density profiles by doing the opposite to a profile cattta i.e., all pixels at
distance- from the center in the template image are assigned the vapasaionr
in the profile. Density profiles along with their correspargltemplates are shown
in Figure21.

The templates are used one at a time to calculate threeatioreimages, where
the value in each position shows the similarity between thdedying image and
the template centered at that position. The similarity meas the correlation co-
efficient(C'C') and the matching is performed in the spatial domain, seed®ex:2.
The positions with the highest percentage’@f's for each template were matched
to templates of smaller and larger sizes. The size of thelwmthat produced the
bestCC, along with theC'C itself, were kept for further analysis and classification.
Starting from the highest'C for each class and moving on to lower values, the
circular subimage giving rise to the score was transforméal polar coordinates
and placed as rows in a matrix. Each row was then aligned tol#iss profile and
the matrix was matched against a similar matrix producen fitee class profile. To
classify the subimage as a true capsid, i@ for the aligned matrix needs to be
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Figure 21: Density profiles as functions and images, andesponding templates
for the three different capsid types.

higher than a threshold;1. This threshold is set as a percentage of the highiést

in the image. In addition, th€'C for the circular subimage needs to be higher than
a thresholdy'2, set as a percentageBf. For one of the capsid types, the middle

type in Figure20, the variance of the sums of the rows in the aligned matrig als
needs to be lower than a threshold. These analysis stepsréoeped for positions

of each class until a number of positions not fulfilling thaeria are found.

This segmentation and classification method was appliediccographs from
three different preparations. The results on two imagesn fivhich the eight cap-
sids used to construct the three class profiles were pickedhown in Figur@2.
The method was also applied to 10 micrographs not used felalewmg the method.
The result was compared to visual classification performedrbexpert. In total
185 (82%) of the 226 capsids were correctly classified, 4¥%)h8ere missed, and
38 (17%) false objects were found. The results are veryfaaty considering the
severely textured background and the low contrast betwkjertis and background.
Using the two thresholds, T1 and T2, allows for excludingdéatdapsids as they are
generally not as radially symmetric as true ones. It alssnallfor including true
capsids with lower original match scores due to not pernfedticular shape or a
somewhat distorted interior. As the method is describatkétds very little human
interaction. The thresholds can be tuned for a small imagetlaen used for all
images produced under the same condition.

These results can be further improved if a human expert waakle the final
decision. The thresholds could then be slightly lowered tediterative exami-
nation of the best position could be run farther. The sub#&sagassified as true
capsids can be presented in a table on the screen where thaa lexgmert can mark
the false or true capsids. The false positives can therekfitbéated, and as more
objects are kept, more missed objects can be found.

The density profile is a compact way to describe circular spinia objects.
Besides being a good and useful description, certain meamnts can easily be
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Figure 22: Result of the segmentation and classificatiorhateepplied to two
micrographs. Positions classified as each of the threedagsts are marked with
circles, diamonds and squares, respectively.
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extracted from the profiles and used to distinguish objefotifi@rent types. In the
viral capsid case, it is of interest to measure the width efditer shell. The reason
is that when a viral capsid matures, proteins are attachéuketshell, and it is of
interest to know the thickness of this layer and where it guaed. The width can
be calculated as the length between the two zero-crossihgs,approximate radius
from the center, in the second derivative of a smoothed prafde Figur@3.

. o
width= « width=
capsid 8.23 pixels capsid g 1425 pixels
center fenter

/ TN TNt

Figure 23: Calculation of the width of the outer capsid sfalla capsid without
attached proteins (left), and for a capsid with attachedeagms (right). From top
to bottom: capsid image, density profile as image, profileuastfon, smoothed
profile, first derivate of the smoothed profile, and seconidtve of the smoothed

profile. The straight line in the second derivative of the sthed curve marks the
level.

4.4 Segmentation of cell nuclei

The aim of the method presented in Paper V was to develop aesggtion method
which incorporates several different types of informatinbe used for automatic
segmentation of 2D and 3D images of fluorescence stainechgeléi in tissue.
This allows for studying cells in their natural context. Thenefits of automatic
segmentation compared to manual delineation of the nusiegua mouse, are that
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it is more objective, easily reproduced, and faster.

Mainly three problems are encountered when fluorescencgemaf stained
cell nuclei are studied. The background intensity is gdherat flat but varies,
due to autofluorescence from the tissue and fluorescenceoinbof focus objects.
Usually, there are also intensity variations within eacjeoband the cell nuclei are
often clustered, see Figupd(a) The two last issues complicate the task of finding
borders between all nuclei, while not finding false bordeitbiw the nuclei. The
problems with varying background, presence of false berded weak true borders
are encountered in many other types of imagery as well. Torerghis method, or
part of it, is likely to be useful in other situations.

The method consists of four main steps: automatic markimggibn seeds; WS
segmentation; merging of neighboring regions with wealdbos; and splitting of
regions based on a shape criterion. The different stepsahtithod are illustrated
in a small 2D image of cell nuclei in Figu&l. The extended-maxima transform,
(Soille, 1999, was used to place seeds in local maxima higher thamrrespond-
ing to objects or parts of objects in the intensity image. $ame transform but
applied to the inverted gradient magnitude image, see ERA(c), was used to find
background seeds. This will, of course, result in backgdoseeds also inside the
objects. These are removed based on their small size. Tleetageds and re-
maining background seeds are shown in Figdéc) Using local maxima in the
intensity image as object seeds, and large local minimadrgtadient magnitude
image as background seeds, removes to a great extent thiemralith varying
background. The borders between the seeds were then foulndh&i WS algo-
rithm applied to the gradient magnitude image, see Figd(el) Due to the inten-
sity variation within the objects, many objects will corigi§ several regions, each
originating from a separate seed. These should be joindtutioining regions
from neighboring objects. This is a difficult problem, asdens separating differ-
ent objects are not always stronger than borders betwe@neegithin an object.
The assumption made in this method is that the average bbet@een objects is
stronger than the average border between regions withibjaeto The average gra-
dient magnitude strengths between all regions in the imagehence, calculated.
All borders weaker than a certain threshold are then meggslFigure24(e) one
by one, starting from the weakest border. It is important the borders are merged
in order, as the average border strength for regions atfdgte merging needs to be
updated. The assumption made in the previous step is noysivedid for clustered
objects. They are sometimes so tightly packed, that there édear border between
them. The last step of the method uses distance based sliapedtion to split re-
gions that have deep concavities. A distance transformdsileged for each region,
and the WS algorithm is applied to the distance informatidaighboring regions
are merged if the border between them have high enough désteues, compared
to the distance values inside the regions. The result oktiape based WS will be
a splitting of regions that are connected by a narrow waést,esg. the two objects
in the lower left quadrant of the result in Figu?d(f). This method will, hence,
segment objects that contain at least one seed, have btodesgyhboring objects
that have sufficiently strong gradient magnitude averagehane a reasonable cell
nucleus shape.
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Figure 24: lllustration of the method combining intensiégge, and shape infor-
mation, in the segmentation of cell nuclei. A small 2D imagg énd its gradient
magnitude (b). The object and background seeds are showhiie and black, re-
spectively (c). The result after a seeded WS (d), and aftegimg based on mean
edge strength (e). The final result after splitting regicasdol on shape information

(®.

A small smoothing filter was applied to both the 2D images dm®d3D image
to speed up the WS segmentation. Prior to that,-tiséices of the volume were
compensated for light attenuation and the volume was syfisarno cubic voxels.
To compensate for light attenuation, the mean of all pixernsities higher than 10
was calculated for each slice. This value is plotted agailict number as a solid
curve in Figure25. A straight line was fit to the linear part of the plot, repretsay
the slices inside the tissue sample, in a least square sam$eised to compensate
for the attenuation. The intensities irzaslice were compensated by multiplication
with m/(k x z + m), wherek is the slope of the line angh is the offset. The
mean of all pixel intensities above 10 for each slice afterdbmpensation is seen
as the dotted curve in Figu2s. A multiplicative compensation is important to
make sure that values equal to, or close to, zero are notasede As can be seen
in the plot, some slight attenuation still remains, but thetcast in all slices is now
sufficient for segmentation. Each voxel in the original vokiwas 98m in the z-
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Figure 25: A plot of the mean intensity for all element value4O0 in eachz-slice

in the confocal microscopy image versus slice number. Thid 8oe represents

the values prior to light attenuation compensation and gshdd line represents the

values after compensation. The compensation was perfoamneltscribed in the
text.

andy-directions and 163m in the z-direction. The image was subsampled to cubic
voxels by nearest neighbor interpolation, as this simgkrpolation method proved
to be sufficient.

The method was evaluated on six 2D images and one 3D imagdl ofuctei
in tissue. There was a total of 689 nuclei in the 2D images,@hduclei in the
3D image, of which 91% were correctly segmented for both theifdages and
the 3D image. A surface rendering of the 3D result and a digsare shown in
Figure26. Apart from the nuclei there were fluorescent objects in tih@ges not at
all resembling proper nuclei. These were also segmenteifl hetessary they can
easily be removed based on their different size. This waujgrove the percentage
of correctly segmented nuclei.

The mean intensity in the-slices still decrease with depth, even after the com-
pensation has been performed, see the dashed curve andstinaidint line in Fig-
ure 25. A better compensation would probably have been achievefitting the
line to the mean of the highest percentage of intensitieadh slice, instead of the
mean of all pixel intensities higher than 10 in each slicee Tile should then only
be fit to the slices inside the tissue sample. The slices bdifier peak in Figur@5
originate from when the focal plane was outside the sampleshould, hence, not
be used for fitting the line. Calculating the mean of all pixalues higher than a
low threshold in each slice might, however, be necessaretidé where sample
begins to be in focus.

To test whether the decrease in signal through the 3D sangdeowly due to
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Figure 26: The result of the segmentation method applied/tdiane image of cell
nuclei (a), and a close-up showing that the method managssp@rate touching
nuclei (b).

light attenuation or also due to less staining in the deefiggsssome additional
experiments were performed. New tissue sections were e@s in Paper V. In
addition, one section was stained from both sides, instEadtdetting the stain dif-
fuse into the sample from one side, which is more common.rWekiwere acquired
with different objectives (and from both sides of the sattidhich was stained from
both sides). These volumes revealed that staining fromideesaches through the
whole volume without decrease and that the decrease inlsigisaonly due to light
attenuation.

4.5 ldentification and representation of molecules imaged ith
SET

As mentioned in Sectio®, SET is a protein imaging method producing 3D im-
ages with a resolution down tmm. This is good enough to give coarse structural
information of proteins, together with information on hduwey interact with other
proteins or molecules. SET volumes contain thousands afctbpf which only

a handful are the objects of interest. These are, so fardftynvisual inspection
of objects having approximately the proper size after bigtahresholding of the
image. Developing methods for segmentation and analysibjeicts in the vol-
umes would reduce the amount of human interaction neededddHe objects of
interest. The objects of interest are very small in the vaumages, and therefore
the amount of available shape information is limited. Theorestructions also suf-
fer from noise and varying background. In Papers VI and Wb tepresentations
of proteins imaged with SET are presented. They are bothdbaisehe internal
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density distribution of the object, which make them instwsito changes on the
border. These methods can serve as valuable tools wherzarpdgructural differ-
ences of objects of a certain kind and how they interact witleioobjects. They can
also be used in the segmentation process to help distinguislobjects of interest.
In Paper VIII, a segmentation method which combines intgnetge, and shape
information is presented. This creates a method which regitiee mentioned prob-
lems of varying background, touching objects, and needafgd amount of human
interaction, in cases where the shape of the objects oEsitées known.

Volume images of proteins created from atom positions dégmbs the protein
data bank, (PDB),Rerman et al.2000, were created and used for developing and
evaluating the methods. These volumes were created byseayiieg each atom by
a Gauss kernel with a magnitude corresponding to the wefgheatom. The sum
of the contributions from all atoms less than a resolutiopeshelent distance away
from each element, constitutes the intensity value asditméhat image element.

Object decomposition using internal intensity and shape

In Paper VI, a method which decomposes an object into itstitnast parts is de-
scribed. Measurements of the individual parts and how theycannected in the
object can be used to describe, and distinguish betweeferatit objects. The
method is an extension of a decomposition method for binbjgats presented by
Svensson and Sanniti di Bgja002) to incorporate also the internal intensity distri-
bution of an object. The intensity information decides hoanmparts an object will
be decomposed into, while the shape decides where the Bdydaveen the parts
will be placed. This makes the method robust to small changebke border of an
object. The choice of grey-level threshold used for segimgrthe image is there-
fore not critical, as long as an object stays connected. Aeshold will, hence, not
affect the number of parts an object is decomposed into,thwitlistill affect the
sizes, and to a certain extent, the shape of the parts.

The decomposition method is applied to a grey-level objeetdy segmented
from the background. It consists of two main steps: idemtifon of seeds from
the internal grey-level distribution, and shape based tirék@em these seeds. Local
grey-level maxima are identified and marked as seeds. Siecientages are rather
noisy, using all local maxima would create too many seeds,camsequently, too
many regions in the final decomposed object. Thereforentlagié is smoothed by
applying a Gaussian filter prior to detection of local maxirAi maxima detected
on the smoothed image are considered as significant and sssds. A sphere,
centered at each seed is then grown until it somewhere redbbeborder of the
object. A second growth step consists of assigning the m@ngaobject elements to
the closest sphere. The two growth steps are both basedtanaisnformation. A
distance transform is calculated inside the object, andligtance values assigned
to the seeds are used in a reverse DT, RDT. This RDT corresgorttie spheres,
centered at the seeds. In the second growth step a consti@ihérom the bor-
ders of the spheres with the background as obstacle, isladu The spheres are
then grown distance layer by distance layer until all imdgenents are assigned to
a region. The purpose of distance based growth in two stegpsad of one, is to
stop seeds in protruding or peripheral parts of the objeatphquer elements from
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larger regions. The result of the decomposition methodiagpb some protein im-
ages created from PDB are shown in Figifeand to some proteins (antibody IgG)
imaged with SET in Figur@8. The first columns of the two Figures contain identi-
fications, the second columns contain volume renderingsttanthird contain the
decomposition results. The content of the fourth columigseg-level based medial
representation, will be described below. In the last rowigfiFe 27, the star in the
identification denotes that the molecule presented is amass biological struc-
ture, which in this case consists of three units of the pnotgih PDB identification
leo8.

In some cases, e.g. for 1ligt (which consist of two Fab armsaahRd stem),
guantitative information (number of amino acids or atontsjwd the structural sub-
units (domains) of a protein can be found in PDB. The numbeubiparts in the
decomposition result depends on the resolution, as théstafhow many local in-
tensity maxima that can be distinguished. In a volume imaiije avresolution of
2nm produced from PDB, the protein 1igt is decomposed into 7 attbpsee Fig-
ure27. Each of the two Fab arms are decomposed into 2 regions aret thiem is
decomposed into 3. To enable comparison of the subparte agbomposition and
domain information, in some cases available in PDB, the an@an be smoothed
until it decomposes into the correct number of subpartigdfis done for 1igt, each
Fab arm and the Fc stem make up 34, 32, and 34 % of the total eohaspectively.
The corresponding percentages for the number of amino acetsch domain is 33
for each Fab arm, and 34 for the Fc stem.

Grey-level based medial representation

A medial representation of objects in volume images is ssiggein Paper VII.
This representation facilitates analysis and compar&eit,is compact. Moreover,
it enhances and reveals internal grey-level features tieadifficult to discover by
inspecting the original objects. The representation itantirely on grey-level
distribution and no specific segmentation of the object isessary. Seeds for the
representation are identified as in the decomposition ndedlescribed above, i.e.,
as local maxima after Gaussian smoothing. Some sort of segtien is, hence,
necessary to decide which seeds belong to the object andh whbinot. The repre-
sentation scheme can roughly be described as the maximansityt path connect-
ing these seeds of the different parts. It is developed fteemtethod presented in
Svensson et 82002, and adapted to the application of studying proteins inn
images.

After identification of the local maxima, any possible gteyel cavities are set
to belong to the background. The grey-level cavities aratiled as connected
components of only one grey-level, with neighbors of diyibigher grey-levels. It-
erative thinning guided by the grey-level distributionlietimage is then performed.
A distance label is assigned to each voxel, denoting thermimi constrained dis-
tance to a region with a lower grey-level, when all regiontwhigher grey-levels
are obstacles. Each voxel will, hence, have two values,\awkie, and a distance
value. Thinning is then performed per grey-level, and witeach grey-level, per
distance value. Voxels are removed if their removal doeshange the topology of
the background or the objecBértrand and Malandaji994 Saha and Chaudhuri
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Figure 27: From left to right: PDB identification; volume dared original ob-

ject; grey-level decomposition; medial grey-level basegresentation, MGR, for
constructed PDB volumes.
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Figure 28: From left to right: volume rendered original athjeyrey-level decompo-
sition; and medial grey-level based representation, M@GRtHree 1IgG molecules
from SET.
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Figure 29: Left: Medial grey-level based representatiof’DB ID lafv. Right:
Grey-levels along the representation.

1994. The local maxima serve as endpoints in the representatiahare therefore
considered as unremovable during thinning. The resulgpgasentation is denoted
Medial Grey-level Representation (MGR). MGR for some prateonstructed from
PDB are shown in the fourth column of Figu?&, and for some proteins imaged
with SET in the fourth column of Figur28. The grey-values of the voxels that are
part of the MGR are kept in the representation, as they rénfaimation about the
grey-level distribution along the path, or paths, conmegthe center points. As the
grey-levels depict density, this could indicate how tighdifferent parts are con-
nected. An illustration of this is shown in Figu?é, for a protein constructed from
the PDB ID lafv. The grey-levels between the two middle locakima are low, in-
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dicating that they are only weakly connected, while the bigirey-levels between
the middle and the outer local maxima indicate that they ambably more tightly
connected.

Shape based identification

The segmentation method used so far for segmenting obje&ET volumes con-
sists of grey-level thresholding together with size dismgniation and visual inspec-
tion. This method has several drawbacks. The backgrouneésvar the volumes,
and using one grey-level threshold for the whole volumedftge means that the
size of an object will be dependent on its position in the mwdu To be sure not
to throw away true objects of interest, the range of accepisgk, hence, has to
be rather generous. This in turn, increases the amount ettbihat need to be
visually inspected. As the visual inspection is very timasaming, reducing the
number of objects that need visual inspection is desirafitether problem with
the size discrimination step is that objects touching otipgects or objects that have
been split into parts are easily discarded as they will terjimeted as one object be-
ing too large or several objects being too small. In Papel, ¥linethod is presented
which focuses on the described problems. It combines iityeaisd gradient mag-
nitude information to extract stable borders of the obje&ttemplate is then used
to search for borders corresponding to objects of interest.

The method uses the hierarchical chamfer matching algorittHCMA),
(Borgefors 1988, which matches a binary edge template to a DT of a binary edge
image. The matching is embedded in a resolution pyramideedpp the calcula-
tions and avoid getting stuck in false local minima. The stithe squared distance
values hit by the template is used as the comparison meas@e&ectio.2 A low
sum will, hence, correspond to a good match. The templatgrcéime case of SET
volume segmentation, be either a volume image of a protetiheokind of interest,
constructed from PDB, or a manually identified object in a SBLime. The edge
of the template is found through grey-level thresholdingd extracting the border
of the object. The edges of the image are found by using a da#t&algorithm.
Object seeds are identified as voxels having an intensityenithan a threshold,
known to definitely correspond to the interior of possibletpins. A background
seed is identified as the largest connected component oéalsrhaving a gradient
magnitude lower than a threshold. This produces a backgrseed spread over the
whole volume even if the background is varying. A seeded W8ds applied to
the gradient magnitude image, and the borders betweenghking regions will be
placed along the gradient magnitude maxima. This is sinoléne method used in
Paper V, with the exception that the object seeds are alhdlve same label, as the
borders, and not the individual objects, are sought. Thddyaf the object region
is extracted and used in the HCMA algorithm. The positionsegating low sums
are the result of the method. Objects at these positionddbelpresented, in order
of increasing sum, to an expert for final visual inspection.

In Figure30, the objects at the two best positions in each of three vadunith
the antibody IgG as objects of interest are presented. Tlienas each contain one
visually identified 1gG antibody. The method manages to fireldorrect objects as
the best position in volume one and three and as the secohddsatson in volume
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Figure 30: Volume renderings of subvolumes correspondinti¢ the best (top
row) and second best (bottom row) match positions in thre€ &ume images
containing the antibody IgG in solution. The visually judgeue IgG proteins are
at the best position for the first and third volume and at tlvse best position in
the second volume.

two, even though the template and the objects differ quite.allhe structure at the
best position in volume two is rather similar to the tempkate might possibly be
an antibody not found by the former segmentation method.

As a postprocessing step, the mean intensity of the objetite dest positions
can be investigated to make sure that the position correlsptina position with
high intensity values, and not a part of the background betvte/o objects. This
would possibly have revealed that the second best positiomelumes one and
three correspond to false proteins.
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5 Conclusions and future work

This thesis includes image analysis research essentighjnvthree different fields.
In the digital geometry field, theoretical results regagdiptimization of the local
weights in distance transforms (DTs) adapted to elongaidd tn 2D and 3D have
been described.

In the segmentation field, several methods developed fterdiit applications
have been presented. A DT with weights optimized for an edted voxel grid,
in combination with the watershed (WS) algorithm was usesktgment individual
pores in a paper volume. A match based segmentation algoviths developed
to identify and classify three types of viral capsids in 2Dagas of infected cell
nuclei. An average radial grey-level profile for each capgi was used to create
the templates used in match based segmentation. Intezdiig,strength, and shape
information were combined in a WS based method to segmehnhgelei in 2D
and 3D images. The last segmentation algorithm presenteisithesis combines
intensity, edge, and shape information to segment protires specific kind in
volume images.

In the field of object representation, some description setehave been pre-
sented. The radial grey-level profiles used for identifyamgl classifying capsids
serve as an efficient way of describing and comparing diffecapsids. Two meth-
ods developed to describe and simplify analysis of protein®lume images have
been presented. The first decomposes a segmented objestbparts based on
internal intensity distribution and shape. The secondtesemmedial representation
of an object solely from its internal intensity distributio

Further investigation on how to adapt image analysis mettmdlongated grids
would be useful. Whether, e.g., connectivity and edge detedilters should be
treated differently in such grids, compared to square oiccghds, needs investi-
gation. Using information about elements in a neighborhaftie element under
consideration can perhaps reveal information about itsectivity to other ele-
ments and how steep an edge is and where it should be positione

In relation to the analysis of pores in paper, as well as ta#emposition of
proteins into subparts, the question of how to find the marhgfaan object arose.
The largest inscribed ball is often used, but this is a meathat in most cases is
not representative, neither of the shape, nor of the voluie largest inscribed
convex object would be a more representative feature testigage. However, it is
so far not clear how to identify such an object, or a good axipration thereof.

Another idea, not yet investigated, is whether it is posgsibluse the presented
decomposition method to estimate the resolution achiewnesidec Electron To-
mography (SET) volumes (or in other electron tomographgmstructions). If a
protein of the same kind as in the reconstruction is depiaitthe protein data bank
(PDB), volume images of it can be constructed at differesohgtions. Comparing
the decomposition result of the PDB protein in images ofedéht resolutions with
the decomposed object in the SET image would probably retieahpproximate
resolution obtained in the SET image. There are two circantgs that are likely
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to limit the accuracy of the estimated resolution. The fissthiat the SET images
contain noise, which influence the detection and localiratif local maxima. The
second is that the protein structures deposited in PDB kedy/lio be tighter than
the same protein imaged with SET, as SET images proteinsngdraely in solu-
tion while most protein structures deposited in PDB are thectures proteins have
in crystal lattices.

In the hierarchical chamfer matching (HCMA) algorithm, Ddie calculated
from extracted edges in the image to be searched. Some wsitkdem performed
by Rosin and Wes{1995 on how edge strength information (or other information)
can be included in the DT and subsequently used in the mafcRiosin and West
(1999, however, start from already extracted binary edges. ghslly different ap-
proach would be to calculate a DT directly from the gradieagnitude information.
This can be achieved by calculating a reverse DT (or a DT froeninverted gra-
dient magnitude image) from the values already presentdargthdient magnitude
information. The benefit of this strategy is that no decigibwhat is to be counted
as an edge or not need to be taken. This edge-weighted DT kassbenewhat
investigated by the author with promising results. The polthat occurs, though,
is how to weigh different types of information, a problemgest in all attempts to
combine modalities. This needs further investigation.

Atunnelis defined as the background passing through thenhjad this defini-
tion is also used in the medial grey-level based representatethod. Considering
volume images of proteins and protein complexes, it cousilyebe imagined that
grey-level tunnelgxist and are of interest. A grey-level tunnel would be a dth
grey-levels higher than the background but lower than tixelosurrounding them,
passing through the object. Identifying such grey-levahtls is a topologically
interesting task, and incorporating them into the mediaydevel based represen-
tation would make it even better suited for the protein asialgpplication.

Information from the decomposition result and the medialgevel based rep-
resentation could most likely be used in the segmentationgss. It could prefer-
ably be added at the last step of the presented match baseds@dgion method to
discard false objects and strengthen the overall ratingiefabjects of interest.

The idea of using the WS algorithm on the grey-level histogod an image to
automatically find threshold levels, illustrated in Figdre should also be further
investigated and evaluated on different types of images.

In connection to the description and discussion of each aakiththe contribu-
tion section, some additional ideas or suggestions forawvipg the methods were
mentioned. Investigating these ideas further, togethtr thie briefly described un-
explored ideas above, is left for future work.
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