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Introduction

All common methods of forest mensuration assume that the horizontal
sections of ‘the tree stems are circular. However, the cross-sections are never
exactly circular. Many explanations have been suggested of this departure
from circular form, see the very full account of the literature in Tischendorf
I943a.

The deviation from circular shape gives rise to errors in the assessment of

cross-sectional areas, and hence in the calculation of volumes. In studying these
errors several authors have investigated the case of elliptical cross-sections, or
cross-sections composed of two semi-ellipses, see e.g. Chaturvedi 1926, Tischen-
dorf 1927, 1943b, Heikkild 1927, Tirén 1929, Stoffels 1948, and Matusita et al.
1955. Some of these papers also contain references to earlier investigations.
- The justification offered for this approach is that most stems have different
diameters in different directions, and that maximum and minimum diameters
often intersect at approximately right angles. However, the author has not
found in the literature any investigation of the real shape of cross-sections.
The question whether an ellipse or two semi-ellipses can be regarded as a
realistic model of the stem-section, must therefore be regarded as unsettled.
The short-comings of the elliptic approach are emphasized in Tirén 1929 (see
PP- 245, 248).

It therefore seems to be of interest to try to find out what statements about
the errors of different mensurational methods that can be made without
postulating anything about the shape of the cross-sections. Such a study may
also give some hints as to how to carry out an empirical investigation on the
form of the sections.

As indicated in Ch. I below, the appropriate starting point is the theory of
convex, regions. Fortunately many definite statements have been proved about
convex regions, or to quote Blaschke (1920, p. 146): It is particularly remark-
able that from the weak requirement of convexity there follows such a wealth of
beautiful and profound conclusions (“Deshalb ist es besonders merkwiirdig,
dass sich aus der schwachen Forderung der Konvexitit eine solche Fiille

1*—Medd. frin Stat. skogsforskningsinstitut. Band 46: 1I.
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schoner und tiefliegender Folgerungen ziehen ldsst”). It will be seen that some
of the conclusions reached in the elliptic case are valid also under general
conditions.

Since we shall restrict the study to those errors which arise from the geo-
metric properties of the cross-section, errors of measurement will be disvegarded.

In the main text, only the results of the mathematical treatment of the
problem will be presented. The mathematical deductions will be found in an
appendix. However, some of the geometric concepts seem to be of value for
a discussion of the general aspects of the problem, and will hence be dealt
with in the main text. We start with one such concept.



I. The convex closure of a region

The periphery of a stem section is seldom quite smooth, owing to bark
ridges, fissures, etc. In addition, concave, or undulating, portions are sometimes
met with, especially in the lower part of the stem. If a rubber-band is strapped
around the stem, the area inside the band is therefore usually larger than
the cross-sectional area. The contour formed by this rubber-band, or the region

Fig. 1. The convex closure of a region.
Det konvexa holjet till en yta.

inside it, corresponds to what is called in geometry the convex closure of a
region, see fig. 1. This concept seems to be useful in the present context, since
readings of calipers and girth tapes are influenced only by the shape of the con-
vex closure of the cross-section. The same holds true also of Bitterlich’s “Win-
kelzah!”’-method.

Every non-convex region has a smaller area and a greater perimeter than
its convex closure. The difference between the area of the convex closure of a
cross-section and the true cross-sectional area may be called the convex deficit
of the cross-section. The area of the convex closure will in the sequel be denoted

by g.
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II. Girth measurements

On a tape, strapped around the stem, we read the perimeter, ¢ (say), of the
convex closure of the cross-section. We calculate the diameter, and the sec-
tional area, from the following formulas.

Diameter: Dy, = ¢/n
Area: g =C*4m

Thus g, is the area of a circle with perimeter ¢. Owing to the so-called “‘iso-
perimetric property’’ of the circle g, is greater than g, unless the convex closure
of the cross-section is circular. The difference g,—g is the so-called ¢soperi-
metric deficit.

III. Notation for diameters

For our purpose, it is convenient to define a diameter of the cross-section
as the distance between two parallel tangents to the convex closure of the
section. This corresponds to the reading of the common caliper. We thus have
one diameter, D(v), for every angle, v, which the bar of the caliper forms with
a fixed direction in the plane, see fig. 2. We define the diameter of the cross-
section as the arithmetic mean of D(v), taken over all angles. Following a
fundamental theorem, published by Cauchy in 1841 (see Blaschke 1936, p. 1),
this mean diameter is equal to ¢/m, where ¢, as above, is the perimeter of the
convex closure. For this ratio, we have already, in Ch. II, introduced the sym-
bol D,

Fig. 2. A diameter defined as the distance between two parallel tangents.
En diameter definierad som avstdndet mellan tva parallella tangenter.
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In passing, we note that the implications of Cauchy’s theorem can also be

formulated in the following manner: If D is the arithmetic mean of the diameters
of a great number of trees, calipered in random divections, then—disregarding

sampling errors, and errors of measurements—aD equals the average civcum-
ference of the trees as obtained by tape. This holds true irrespective of the form
of the cross-sections. ’

For the variance of the different diameters, D(v), of the cross-section, around
their mean, D,, we shall use the symbol 0% We also need a symbol for the
coefficient of correlation between two diameters taken at vight angles. We shall
denote this coefficient by 7.

IV. The orbiforms

There are cases in which all diameter measurements give the same value,
which, according to Cauchy’s theorem, then must be equal to D, the value
obtained from girth measurement. This, of course, happens when the variance,
o2, vanishes.

One might at first surmise that the convex closure then is a circle. However,
the circle is only one member of a family of convex curves, characterized by
the property that the distance between two parallel tangents is the same in all
directions. For these curves the term orbiform! was proposed by Euler in 1778,
see Tiercy 1920, cf. also Buchheim 1938.

Three examples of orbiforms are given in fig. 3. In 3a is shown the so-called
Reuleaux-triangle, which is formed by three equal circular arcs, intersecting
at 120°. The analytic definition of the curves 3b and 3c is found in the appendix.
The isoperimetric deficits of the three curves amount to 11.4 %, (323), 4.2 %
(3b), and 1.6 9, (3c). The deficit is here expressed as a percentage of the true
area. The Reuleaux-triangle is the orbiform with maximum isoperimetric
deficit.

We now conclude: Even if a stem section 1s convex and has the same diameter,
Dy, in all divections, the sectional avea may fall short of the corvesponding civcular
area, wDy?%/4.

We can also form the following conclusion: Even if the diameters of a cross-
section are known tn every divection, we can not in general draw exact inferences
about the shape and area of the cross-section.

1 According to Strubecker 1955, p. 54, the term “Gleichdick” is used in German engineer-
ing. )

2*—Medd. frin Statens skogsforskningsimstitut, Bano 46: 1I.
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Fig. 3. Three examples of orbiforms.
‘Tre exempel pa orbiformer.
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V. Diameters calipered in random directions

We confine ourselves to estimates of the cross-sectional area, based on di-
ameter measurements, of the form

7 D?[4

where D is a diameter calculated in one way or another from one or two
caliperings. We here study the following four methods.

1) D is one diameter, calipered in a random direction.

2) D is the arithmetic mean of a diameter, D(v), calipered in a random direction,
and the diameter at right angles to D(v).

3) Same as 2), but D is the geometric mean of the two diameters.

4) D is the geometric mean of two diameters, calipered in random, independent-
ly chosen, directions.

In this chapter only the systematic errors will be treated. We hence have to
study mathematical expectations of estimated areas, i.e. averages over all possible
directions. The expected values of the estimates of the sectional area obtained
from the above four methods will be denoted by g, g,, g, and g,, respectively.
The sampling errors will be dealt with in Ch. VII by way of numerical
examples.

Using the symbols introduced in Ch. ITI, and applying well-known statistical
formulas, we find:

7
81:g0+:}02
g2=g0+g02(1+7)

7
g3=g0—|—‘—102r
81 = 8o

Thus the fourth method is, on the average, equivalent to the estimation of
cross-sectional area by girth measurement. It is not used in practice, and is
included here only because of this equivalency. ‘
We further note that g, is the arithmetic mean of g; and g,.
In comparing g;, g, and g;, with one another, and with g, (or g,), we need
not bother with the case 62 = o, already treated in Ch. IV. It is seen that the
ranking of the methods is, to a certain extent, dependent on the value of 7.
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Now 7, being a corrclation coefficient, ranges from —1 to 4 1. We can there-
fore form the following tables of comparisons (for 62 > o):

y=—1 838 —8:< 8
—I1<r<o 8< 8 <&E<&
¥ =0 8 =< L<&

o< 7r< I 80<8<8&<&
r=+1I §0<8=8=%&

We find that, on the whole, g, gives the highest overestimation, and that
g, ranks next. If » is positive, also gy is higher than g,. Now it must be remember-
ed that, as shown in Chs. I and II, g, gives an overestimation equal to the
““convex deficit” plus the “isoperimetric deficit”.

However, if 7 is negative, the third method, i.e. using the geometric mean of
diameters at right angles, gives on an average a lower value than g, The
lowest possible value of g;, for fixed ¢, is attained for » = — 1, and amounts
to go— (m/4)0® Yet, g5 can never be smaller than the area, g, of the convex
closure. In the appendix (§ 3) we prove the following inequality

go=8+ 3_47} o?
which yields

7 7
gsggo—zazgg—{-gaz

From this inequality we can also draw the following conclusion: Irrespectively
of the shape of the cross-section, the average difference between the “‘worst” (g;)
and the “best” (g,, g4, o7 g5) estimate cannot be greater than the average difference
between the “best”’ estimate and the avea of the convex closure. As is evident from
the case of an orbiform, Ch. IV, the differences between the four methods may
be considerably smaller than their common excess over the area of the convex
region.

In the literature are found reports of very high overestimates of the area by
girth measurements as compared to area estimates from calipered diameters,
see Miiller 1915, p. 82. This overestimation must be due to errors of measure-
ment, errors of the instruments, or to subjective adjustment of the position
of the instruments, cf. the discussion in Chaturvedi 1926, pp. 11 ff. See also
Assmann 1956.

The case » = — 1 deserves particular mention. In an ellipse of moderate
excentricity # is very close to —1. E.g. for an ellipse with the ratio 0.8 between
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the axes, 7 is —0.9985. In Tirén 1929, numerical comparisons are made between
the four methods in this case. The ensuing ranking of the methods is in close
accordance with the above comparison for » = —1. (See also table 1, below).
In the elliptic case the differences between the methods are relatively high in
comparison with their excess over the true area.

On the other extreme we have the case » = J-1. In this case methods 1, 2,
and 3, are equivalent, whereas the girth tape gives a somewhat better value,
cf. table 1.

In conclusion, we have found that the methods of this chapter (and of Ch.
II) have a positive bias, unless the cross-section is exactly circular.

VI. Measuring maximum and minimum diameters

We now pass to the case where the sectional area is calculated from observa-
tions of the maximum and minimum diameters. By diameter we still under-
"stand the distance between two parallel tangents to the convex closure, i.e.
the value obtained by calipering.
We now add the following cases to the previous list. In the formula (7/4)D?,
D is calculated as

5) the arithmetic mean of the maximum and minimum diameters,

6) the geometric mean of the maximum and minimum diameters,

7) the arithmetic mean of the maximum diameter and the diameter at right
angles to the maximum diameter,

8) the geometric mean of the diameters in %),

9) the arithmetic mean of the minimum diameter and the diameter at right
angles to the minimum diameter,

10) the geometric mean of the diameters in g).

It must be remarked that in some cases the estimates formed by methods
7)—10) are not well-defined. It may happen, e.g., that the maximum diameter
is attained in two different directions, and that the corresponding diameters
at right angles are unequal. In the subsequent illustrations, however, no such
cases will appear.

One might have added some more methods to the above list, e.g. methods
involving the quadratic mean of two observed diameters. However, the identity

D2 J; D2 (Dl er D2>2= (Dl er D2>2__D1D2

shows that areas calculated by using for D the quadratic mean can easily be
obtained from the area estimates based on arithmetic and geometric means.



12 BERTIL MATERN 460 11

Returning to methods 5)—10), we note that if the convex closure is sym-
metric, e.g. an ellipse, methods 5, 7, and 9, are identical, as are methods 6,
8, and 10. In the elliptical case methods 6, 8, and 10, give the correct value of
the area of the convex closure; methods 5, 7, and 9, give the arithmetic mean
of g and g, see Ch. V. However, for other types of convex regions the six
methods may all give different results. We denote the values of the cross-
sectional areas, obtained from these methods, by g;, g, . . -, &10, respectively.

The following inequalities follow from the fact that the geometric mean
never is greater than the arithmetic mean

85 = 8> g7 = &s» gy = g1o

Further, we infer directly from the definitions of the methods

g =85 = &> gs = &6 = 10

As is seen from the examples of Ch. VII, this list of inequalities is exhaustive
in the general case. Further, it is not possible to find any general inequalities
between the values obtained by the methods of this section, and the estimates
dealt with in earlier chapters.

In contrast to the methods based on diameters calipered in random direc-
tions, all the present methods may give undevestimates of the avea of the convex
closure, as is clear from the following example. A convex figure is composed
of a square with side V2 and two opposite segments of the circle circum-
scribed around the square. In this case we have

g =14 7z =257

T Z_Jrﬁ)z_zz
g=5"% ) =22

Thus, in this particular example

810 =86 — 838y = & = & <&

We shall give some further comments on these methods in next chapter.

VII. Numerical illustrations

The methods presented above will now be applied to six different closed
convex regions (or “‘ovals”).

-The regions are defined by their line supporting function (German: “Stiitz-
funktion”), i.e. by a function, $(v), giving the length of a perpendicular with
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slope v from a fixed interior point to the tangent of the contour, see fig. 4.
The curves studied are the following

a) p(v) = V100 cos? v -+ 64 sin2 v
Ellipse with semi-axes 8 and 10, used in Tirén 1929 for numerical illustrations.
b) p(v) =9 4 coszv

Close resemblance with a), has the same maximum and minimum diameters.

Fig. 4. The line supporting function, p(v), of a convex region.
Stodfunktionen, p(v), till en konvex yta.

c) p(w) =16 4 cosz2v + cos 3 v

d) p(v) =32 4+ 2cos2v 4 cos3v + cos4v

Both ¢) and d) are “egg-shaped”, resembling a curve composed of two semi-
ellipses with different eccentricities.

e). p(v) =35 + 2cos2v 4 2sin4v

May be described as a “rounded rhomb”. Maximum and minimum diameters
do not intersect at right angles.

f) p(v) = 16 4 cos 4 v

Has the shape of a “rounded square”. As in the square, maximum and minimum
diameters intersect at 45°.
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The six curves are also shown in fig. 5.

Some further characteristics of the curves are found in table 1. The table
also shows the estimated area, according to the methods of the previous
chapters.

The six cases being only examples, no far-reaching conclusions can be drawn
from table 1. However, it may be remarked that—in these examples—the

Fig. 5. Six examples of convex regions.
Sex exempel pid konvexa ytor.

methods of Ch. II (girth measurement, g,), and Ch. V (random diameters,
g1 - - -» 84), give more stable results than the methods of Ch. VI (maximum and
minimum diameters, g;, ..., g10). As to the methods of Ch. V, it must be
remembered that the figures in table 1 are ‘“mathematical expectations”
over all possible directions of the diameters calipered.

In the table no orbiform (Ch. IV) is included since all twelve methods are
equivalent in this case—without necessarily giving a good estimate of the
convex area.

As seen from the above definitions, the function p(v) in examples b—f is
a sum of trigonometric functions. In § 3 of the appendix we show that the
supporting function of any closed convex curve can be represented approxi-
mately by a sum of this type.

The six examples will now be used to illustrate the sampling errors, connected
with some of the methods. These errors appear in methods involving a random
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Table 1. Six examples of convex rvegions. Chavactevistics of the vegion. Estimates of the
avea by different methods.

Example a b c d e £

Coefficient of varia-

tion (100 0/Dy). .. 7.82 7.86 4.42 4.94 5.7 4.42
Minimum diameter/ )
maximum diameter 0.800 0.800 0.882 0.871 0.817 - 0.882

Coeff. of correlation
between diameters
at right angles (#).| — 0.9985| — 1.0000| — 1.0000| — 0.6000| 0.0000 1.0000

Area estimate in per-
mille of true area:

go(=8g) v 1019 1019 1022 1017 1030 1030
Bivvrn s e 1025 1025 1024 1020 1034 1032
Bavvnr i 1019 1019 1022 1018 1032 1032
Bge e 1013 1013 1020 1016 1030 1032
Boev e ernnnnennan 1012 1019 1022 1066 1030 1030
LG vveerara s 1000 1006 1018 1061 1020 1026
g v 1012 1019 1022 1082 1146 1163
Bge v e ovnne i 1000 1006 1018 1078 1144 1163
g e mren s 1012 1019 1022 986 921 905
B1ge v e v e mre s 1000 1006 1018 985 919 905

Highest value is ob-
tained by method. 1 1 1 7 7 7,8

Lowest value is ob-
tained by method.| 6, 8, 10 6, 8, 10 6, 8, 10 10 10 9, 10

choice of the direction of the diameters to be measured. Hence they arise only
in the methods of Ch. V, whereas girth measurement (Ch. II), and measure-
ments of maximum and minimum diameters (Ch. VI) are unaffected by sam-
pling errors.

It is evident that no sampling errors are present if the convex closure is
an orbiform (Ch. IV) since then any calipering gives the value D,,.

We express the magnitude of the sampling errors by the standard ervors
of the different area estimates. The standard errors of the estimates 1—4 of
Ch. V will be denoted gy, 05, 65, and o, respectively.

The values of these standard errors in the six examples are found in table 2.
To make the figures comparable with those of table 1, the standard errors
are expressed in permille of the true area, g, of the convex region.

These standard errors obviously depend on the two quantities, ¢ and 7,
characterizing the variation of diameters in different directions. The following
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Table 2. Six examples of comvex vegions. Standard evvors (in permille of true avea) of
different estimates of the avea.

Example a b c d e f
Oyovvvnnnn 159 160 90 I0I 118 91
Ogevevnnnn 4 o o 45 83 - 91
Ogevvnnnnn 9 4 I 44 83 91
Ggevvennnn I13 113 64 71 83 64

approximate relations, derived by the general method given in Cramér 1945,
§ 27.7, are seen to give values in close accordance with those of table 2.

01/8 ~ 20/D,

I+ 7
0y R 03 R 0y P

VIII. Bitterlich’s <““Winkelzahl’’-method

The “Winkelzahl”-method of estimating the basal area of a stand, has
received well-deserved attention since its first publication (Bitterlich 1948):
see e.g. Keen 1950, Grosenbaugh 1952, Seip 1952.

In studying the method, we shall confine ourselves to the case where the
ground level is horizontal. Then all stem sections at breast height are in the
same horizontal plane, H.

In applying the method, all stems are counted whose sections at breast
height subtend an angle greater than or equal to a fix angle « when viewed
from a randomly chosen point in H. The stem count may be repeated on
several sample points. The average number of stems from such counts fur-
nishes—after multiplication with the “Zahlfaktor”, (100 sin «/2)>—an estimate
of the sectional area at breast height, or basal area, of the stand in square
meters per hectare. For small «, the factor can be taken as (500)2.

Let G, be the area of the region in H, from which a particular stem is seen
under an angle = o. We suppose G, defined so as to include the basal area of
the stem. We then form the product

g () = G, sin? (a/2)

The “Winkelzahl”’-method is based on the fact that, if the cross-section is
circular, g(x) equals g, the true basal area of the stem. Any bias of the method
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arising from a non-circular form of the cross-section at breast height will
manifest itself in a deviation of g(«) from g.

Now, as indicated in § 4 of the appendix, in passing to the limit we get
g(0) = g, where g, is the average basal area obtained from one calipering in a
randomly selected direction (Ch. V). For small values of «, g(«) is very close
to g;. Since in the applications « is of the order of magnitude 1°, we infer:
As far as the deviation from civcular form of the cross-sections is concerned, the
“Winkelzahl”-method gives the same bias as the method of calipering every stem in
one vandomly chosen divection. However, it must be observed that this con-
clusion is reached on the assumption that the ground level is horizontal.

It may finally be mentioned that a related method, proposed by Masuyama
1053, gives an unbiased estimate of the basal area under the sole condition that
the cross-sections at breast height are convex. Masuyama’s method is derived
from Steiner’s formula for the area of a curve parallel to a given convex
curve (see Blaschke 1936, formula 150, p. 26).

IX. A remark about some related problems in forest
mensuration

The difficulties encountered in calculating the sectional area of a stem arise
from the circumstance that the cross-section is observed “from the outside”.
To put this in other words, we can attribute the complications to the fact that
diameters—in the sense of Ch. IIT—and not radii are measured.

If a region, convex or net, has uniquely determined radii from a fix interior
point, and these radii can be measured, then an unbiased estimate of the area
is available. It consists of the simple expression n7?, where 7 is the length of a
radius with random direction (cf. appendix, § 5). If several radii, e.g. 7y, 7, 73,
and 7,, are measured, the unbiased estimate takes the form

g (r® + 75® + 75 + 77)

Thus, if this expression is written as 772, 7 shall be the quadratic mean of the
four radii.

This remark pertains to measurements of the area of end-sections of logs,
estimation of the area of the crown projection of a tree, etc.

X. Summary and discussion

The common methods of forest mensuration assume that the cross-sections
of tree stems are circular. However, the sections always depart more or less
from circular form. This deviation gives rise to errors in the assessment of
cross-sectional areas. In the present investigation the author has tried to
apply geometric concepts and theorems of a universal nature and derive from
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them general statements about the performance of mensurational methods.
He is well aware that a mathematician, more acquainted with the relevant
branches of geometry, might elicit a richer fund of statements.

When calipering a stem, or measuring the girth, or performing other similar
observations “from the outside”, e.g. making a stem count according to
Bitterlich’s method, only the convex closure of the section is involved: see figs.
T and 2. The true sectional area is in general smaller than the area of the convex
closure, it has a “convex deficit”.

The so-called ““Csoperimetric deficit”’ results from the fact that the area of the
convex closure is smaller than the area of a circle with the same perimeter as
the convex closure. An isoperimetric deficit is usually present even in cases in
which the diameter is constant in all directions. This is due to the fact that the
circle is only one of the orbiforms, or curves with constant diameter, see fig. 3.

The above concepts are introduced in Chs. I, and IV. In Chs. II, III, and V,
a study is made of some common methods of estimating the cross-sectional
area, viz. by girth-measurement and by calipering diameters in randomly
selected directions. It is found that those methods, except in the circular case,
have a positive bias in comparison with the true area of the convex closure.
If the convex regions are divided into two main types, it is possible for each
one of these types to rank the different methods according to the magnitude
of the bias. Except in some special cases where the convex closure is “ellipse-
like”, the methods give average values that are close to one another in com-
parison with their excess over the area of the convex closure.

Methods involving maximum and/or minimum diameters seem to be less
stable, in the sense that they are more dependent upon the assumptions made
on the shape of the cross-section. They are dealt with in Ch. VI.

By expanding the line-supporting function [p(v) in fig. 4] of a convex
region in Fourier-series, some general inequalities can be obtained between
different area estimates. In this way numerical expressions of convex regions
can also be obtained, Ch. VII. Fig. 5 shows some examples, which in a sche-
matic—and perhaps exaggeratedi—way show various types of departure from
circular form. The examples are also used to illustrate the sampling errors
connected with those methods which involve a random choice of the direction
of the diameters to be calipered.

Bitterlich’s “Winkelzahl”’-method, dealt with in Ch. VIII, is dependent
upon the assumption of circular cross-sections at breast height. In this respect,
however, it is equivalent to the method of estimating the basal area by cali-
pering one randomly selected diameter of every stem.

If a region, more or less close to circular shape, is observed ‘““from the inside”
by measuring the radii, the bias present in measurements “from the outside”
can be avoided, Ch. IX.
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The “geometry of cross-sections” can provide only part of the information
necessary to survey the performance of mensurational methods. Measuring a
physical quantity, such as a cross-sectional area, we have to face the difficulty
of making exact definitions, the influence of imperfect instruments, the bias of
subjective judgments, etc.l. The following conclusions must therefore be
regarded merely as tentative expressions of the views of the author. They may
be of interest in cases, when we require high accuracy. In such cases the geo-
metry of the situation will play a more important role, since we try to reduce
the influence of other disturbing factors as much as possible.

In estimating the cross-sectional area from two diameter caliperings the
arithmetic mean or the geometric mean of the two diameters may be used
without any difference of great practical importance.

The estimates based on maximum and minimum diameters cannot be
recommended without a thorough investigation of the actual shape of the cross-
sections of stems.

The geometric study gives some support to the use of girth tape instead of
caliper. However, a discussion of tape versus caliper must involve many
other considerations. It would therefore be premature to try to come to a
definite conclusion in this controversial question.

In order to get an idea of the actual magnitude of the errors here discussed,
a sample of sawn tree sections should be inspected. Observations should be
made in a very accurate way, so that errors of measurement could be separated
from errors arising from the geometrical properties of the stem sections. By
carrying out the measurements in terms of the convex deficit, the isoperi-
metric deficit, the diameter variance, etc., a good understanding would be
obtained of the ways in which the geometry of cross-sections influences the
performance of mensurational methods.

The author is indebted to professor Lars Tirén who has kindly read the
 manuscript and made valuable comments. He also wishes to express his
gratitude to Miss Greta Nilsson for performing the calculations, and to Mrs.
Anneliese Neuschel for drawing the figures. Finally, acknowledgment is due to
Dr. John T. Lewis of the Mathematical Institute at the University of Oxford,
who has corrected the English of the paper.

Appendix
§ 1. Some general formulas for a closed convex region

Let the origin be an interior point of the bounded closed convex region C.
The line supporting function, $(v), is defined as shown in fig. 4.

1 For.a discussion of such factors, see the fundamental paper by Tirén (1929).’
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Assuming p(v) to be twice differentiable, the condition for convexity is

p(@) + p"(v) = o for all v (1)

For the rectangular coordinates of the contour of C, we get the following
parametric representation

x = p(v) cos v —p'(v) sin v
y = p(v) sinv + p’'(v) cos v

The diameter in direction v:

D(v) = p(v) + ¢ (v + =) (2)
The (mean) diameter of C (Cf. Ch. III):
D=2 [ Dlydv =2 [ pto)av (3)
Thé area of C:
=2 [ —pya @

0

For the perimeter, ¢, of C, we have Cauchy’s formula, referred to in Ch. III:

¢= [pW)dv = [ D) dv = =D, (5)

The variance of the diameters of C is

T

o = 751 f (D —- Dy)? dv (6)

The coefficient of correlation, 7, between diameters intersecting at an angle
«, is found from the formula

ot = = [ 1D6)— Dyl D0 + o) — D s )

For 7,, the symbol 7 is used for brevity in Chs. IIT and V.

By means of (2) we can express D,, o2, and #, as functionals of $(v).
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The fundamental formulas on the line supporting function are found in
textbooks on differential geometry. We note that the formulas (2)—(7) are
valid also in the case in which $’(v) has a finite number of discontinuities.

§ 2. Examples of closed convex regions

Various types of closed convex regions can be obtained by choosing for
p(v) different functions of period 2z. In Chs. IV and VII, we have used expres-
sions of the form

o) = ag + O axcos (kv + Ay) (8)
k=1

where only a finite number of the a,’s are 7 0, and the constants are so chosen
that formula (1) is satisfied.

In this case we get
D(v)=zao+22a2kcos(2kv+x‘lzk) (9)
1

If all @, of even order, except a,, are o, we hence get an orbiform, Ch. III.
The two orbiforms &, and ¢, in fig. 3, have the equations

p(v) =10 4 cos 3 v (3b)
ﬁ(v)=32+005(3v+;—z>+cossv ‘ (3¢)

The rectangular coordinates of the contour can be obtained from

% = @y oS v +gzak{(k + 1) cos [(k—1) v + Ag] —

:0 —(h—1)cos[(k + 1) v+ 45}
y=aosinv——§ an{(k + 1)sin [(k—1) v + 48] +
+ (k—1)sin [(k + 1) 0 + 441}
Inserting (8), or (g), in formulas (3)—(7), we find

Dy =24, (10)

[o o]

g = mag? —g E (B2 — 1) a2 (11)

2
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c=2ma, (12)
02=zZa§k (13)

1
0%y = 2 Z a3 cos (zk o) (14)

1

Hence, for o« = n/2:
(o]

r=Y an (— )Y (15)

1

From (15) is seen that we can, for every ¢ > o, construct curves with any
desired value of 7.

Substituting these expressions in the formulas of Chs. II, and V, we can
express g, - - ., & in the coefficients of (8).

The area estimates of Ch. VI, however, must be separately evaluated in
each case, by solving trigonometric equations. In the examples of fig. 5, these
equations are easy to solve, but they are very complicated in the general case.

In evaluating the standard errors of the area estimates of Ch. V, the esti-
mated area is first expressed as a linear function of trigonometric expressions.

To take an example, the area estimate of example 4 in Ch. VII, according
to method 3, is :

7 (9 + cos 2 v) (9 — cos 2v) =g(161—cos4v)

The error variance, 6,2, is then obtained in the same way as ¢2 in (13) is derived
from (9).

In what concerns the numerical treatment of the elliptic case—example a
of Ch. VII—the reader is referred to Tirén 1929.

§ 3. Proof of an inequality in Ch. V

Any bounded, closed convex region in the plane can be approximated by a
convex polygon in such a way that the area, g, the perimeter, ¢, the diameter
variance, o2, and all other characteristics appearing in the left hand sides of
formulas (3)—(7), are arbitrarily close to the corresponding characteristics of
the given region. Thus, all equations, and inequalities, involving these quanti-
ties, that are true for a convex polygon, will hold in the general case.

Now, for a polygon, $’'(v) has a finite number of discontinuities, and is of
bounded variation. Thus, in this case, formulas (3)—(7) are valid. Further,
by Jordan’s test (Titchmarsh 1939, § 13.232), $’(v) can be developed in a Fourier
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series, converging everywhere to g [p'(v—0) + p'(v + 0)]. By termwise

integration we obtain a Fourier-expansion of #(v), valid everywhere. We choose
the notation so that this series is the one of formula (8), now interpreted as an
infinite series. Then integrals of the type

fp(v (v + a)d [[p (v)]2 dv

etc., can be expressed in the constants of series (8), by means of Parseval’s
theorem. Therefore formulas (10)—(15) are valid also for a convex polygon.
Using (11), (12), (13), and the definition g4 = c?/47 of Ch. II, we get

_3_0.2__g_2nz 2—1) azk—l—znZk\k—l- A3 hs1

Here, all expressions on the right hand side are non-negative. We consequently
.get the inequality of Ch. V:

fHh=g+ 37%2 (16)

"The sign of equality holds in (16) only if $(v) is of the type exemplified by the
“‘ellipse-like” curve of fig. 5b, i.e. if all a, with 2 > 2 vanish.

Several inequalities concerning the isoperimetric deficit, the area of a convex
region with given maximum and minimum diameters etc., are to be found in
‘the literature. See e.g. Bonnesen & Fenchel 1934, pp. 74 ff., Santal$ 1953,

pp- 37 ff.
§ 4. Formulas for Bitterlich’s method

In studying Bitterlich’s method, we first need an expression of the area, G,
in the plane of C, from which C is seen under an angle = « (see Ch. VIII).

Two tangents, whose perpendiculars from the origin have slopes v and
ot + v — a, intersect in a point with coordinates

x = (—1/sin &) [p(v) sin (v — &) + p (v + 7 — &) sin v]
y = (1] sin «) [p(v) cos (v — &) + p(v + 7 — &) cos v]

Hence, after straightforward calculations:

27
I
= — S ! d =N
2f(%y yx') dv

= (1] sin? « fyb v) [p(v) + cosa-p(v + m— &) +sinx - p'(v + T— )] dv

(7)
By this formula G, includes also the area of C.
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We then pass to the product
g(er) = sin? (af2) - G, (x8)

introduced in Ch. VIIIL If C is a circle, g(«) is, for all values of «, equal to the
area, g, of C. In the general case, geometrical considerations give the following
limiting values:

g0) =g glw) =¢ (19)
where, as before, g, is the average value obtained by calipering in a random

direction. The mean value of g(«), when « varies from o to &, can be found
from a formula of Crofton (see Santalé 1953, formula 4.6, p. 21)

ng + fj (¢ —sin o) dx dy = c?/2 ' (20)

Here o is the angle under which C is seen from the point (x, y). The integration
is taken over all points outside C. Substituting G, in (20), the formula can be
written

. g + f(sin o« — a) dG, = c?[2

Using (18) and (19), we find

lim (sin o« — &) - G, = gy lim [(sin oc — &)/sin? («/2)] = 0
>0

Hence by partial integration:

J a1 — cos a) doe = ¢/
0

or

k4

> [ s@an = cjan =g, (21)

0

where g, is the estimate of area obtained by girth measurement (Ch. II).
Formulas (19) and (21) give some information about the course of g() as
~a function of «. In fig. 6, g(x) is shown for the three regions in figures 3b, 5b,
and 5f. As seen from fig. 6, for small values of «, g(«) may be either smaller or
greater than g;. :
When $(v) is given by (8) we find for g(«) the expression

(22)

I+ coso

fo.0) . k k . . . k
g(oc)_—_go—}-g E ak21+0050‘ cos (ko + kmt) + Esin « - sin (ko + k)
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Fig. 6. The function g(«) for the convex regions of figures 3b, 5b, and s5f.

25
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By somewhat lengthy, but trivial calculations, we can derive from (22) the
following inequalities:

lg(e) —go |l =g —¢ (23)
| gla) — g1 | = (g1 — &) tg? («/2) (24)

From (23) is seen that g(«) can never be smaller than the true area, g, of the
region C. From (24) we conclude that for such small values of «, as used in
practice, g(«) is very close to g, as stated in Ch. VIII.

§ 5. Measuring the area ‘““from the inside”

The statement of Ch. IX is a direct consequence of the formula for the area
of a region, expressed in polar coordinates.

Suppose that the origin is an interior point of the bounded region C, and
assume further that, for every v, the radius with direction v intersects the
boundary of the region in one point, with distance 7(v) from the origin. Then

the area of the region is
27

2 f 72(v) dv

0

as shown in textbooks on integral calculus. To put this in words: the area is
equal to the squared ‘“quadratic mean” of the radii, multiplied by z.
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Sammanfattning

Om stamtvirsnittets geometri

De vanliga metoderna fér uppskattning av tridstammens volym och grundyta
forutsitter att stammens tvarsnitt ar cirkelformigt. Det fel, som uppkommer
ddrigenom att tvirsnittet i verkligheten avviker fran cirkelformen, méste beaktas
vid sidana mitningar, vid vilka hog noggrannhet efterstrivas.

Vid klavning av en stam, vid omkretsmatning med mattband och andra »utanpés-
mitningar, t. ex. stamrdkning enligt Bitterlichs metod, har man kontakt endast
med stamtvarsnittets »konvexa holjen, se fig. 1 och 2. Tvarsnittets verkliga yta &r i
allmidnhet mindre dn det konvexa holjets, har ett »konvext deficity.

Det s. k. wisoperimetrviska deficitety uppkommer dirigenom att det konvexa
holjets yta i allmédnhet 4r mindre 4n ytan av en cirkel med samma omkrets. Ett
isoperimetriskt deficit — pa upp till 11,4 % av den verkliga ytan — kan finnas,
aven om tvirsnittet 4r konvext och den klavade diametern dr densamma i alla
riktningar. Cirkeln 4r nimligen endast en av de s. k. orbiformerna, ytor med konstant
diameter. Nigra ex. pd dylika ytor aterfinns i fig. 3.

Med utgdngspunkt i en métning av omkretsen, ¢, uppskattar man tviarsnittets
yta till g, = c2/4qr, som &r lika med den verkliga ytan plus det konvexa och det
isoperimetriska deficitet. Denna yta kan dven skrivas g, = mD¢?/4, dar D, ar det
aritmetiska medeltalet av diametrar i alla riktningar.

Vid klavning av en diameter, D, med pd mafd vald riktning 4r motsvarande
skattning av tvarsnittets yta, 77D?/4. Denna skattning 4r i genomsnitt storre 4n
den genom omkretsmatning erhallna ytan, g,. (Héar liksom eljest i uppsatsen bortses
fran métningsfel.) Skillnaden beror pd variationen mellan tvirsnittets diametrar
i olika riktningar. Om D i det nimnda uttrycket for ytan dr det aritmetiska medel-
talet av en pad mafi vald diameter och en mot denna vinkelrdt diameter, fir man i
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genomsnitt ocksd en, om 4dn ndgot mindre, Overskattning i forhdllande till g,.
Om slutligen D ir det geometriska medeltalet till tv4 sidana diametrar, kan man i
genomsnitt fa ett hogre virde 4n g, eller ett lagre, beroende pa det konvexa holjets
form. Om man bortser frdn vissa speciella fall, d4 det konvexa héljet till formen
liknar en ellips, ger de nu ndmnda metoderna genomsnittliga virden, som ligger
timligen nira varandra, jamfort med deras avvikelse frdn det konvexa holjets yta.

De metoder, som bygger pd klavning av maximi- och minimidiametrar, eller en
av dem och en mot denna vinkelrdt diameter, synes vara i hogre grad beroende av
antaganden om tvérsnittets form. De kan i vissa fall ge relativt stora &verskatt-
ningar i férhallande till det konvexa héljets yta, i andra fall rdtt kraftiga under-
skattningar.

Genom att uttrycka ett konvext omrades »stodfunktion» [p(v) i fig. 4] i s. k.
Fourier-serie kan man visa vissa allmidnna satser om de nu berérda metoderna fér
skattning av tvarsnittets yta. P4 sd vis kan man dven f4 numeriska exempel pd
konvexa ytor av olika form, se fig. 5.

Bitterlichs »Winkelzahl»-metod &r i fraga om det systematiska fel, som uppkom-
mer genom att stammens grundyta inte har cirkelform, jamstéilld med grundyte-
uppskattning genom en klavning i slumpmaéssigt vald riktning. Detta har dock
visats endast under férutsidttning att marken inte lutar.

Om mer eller mindre cirkelliknande ytor kan observeras »inutiy, genom radie-
métningar, kan man undvika de systematiska fel, som uppkommer vid »utanpd-
mitningy. Ex.: métning av en stocks dndytor, en tridkronas projektion.

Uppskattningen av stamtvérsnittets yta har i denna utredning setts endast fran
rent geometrisk synpunkt. Nagra bestdmda rekommendationer om limpliga upp-
skattningsférfaranden kan diarfér inte lamnas. Nedanstiende antydningar far
darfor endast fattas som uttryck for en rent subjektiv bedomning av situationen.

Nir tvirsnittets yta skall uppskattas med hjdlp av tva klavade diametrar,
spelar det ur praktisk synpunkt en rétt liten roll om man anvinder det aritmetiska
eller det geometriska medeltalet till de tva diametrarna.

Uppskattningar grundade pd hogkants- och ldgkantsmétning kan inte rekom-
menderas utan en grundlig undersckning av den faktiska formen hos tridens stam-
tvarsnitt.

Den geometriska undersckningen ger ett visst stod for anvidndningen av om-
kretsmétning i stdllet f6r klavning. En mingd andra omstdndigheter spelar emel-
lertid in vid jimforelsen mellan mattband och klave, varfor det vore férhastat att
hir draga en bestimd slutsats i denna omstridda friga.

Utredningen synes kunna giva vissa hallpunkter f6r planldggningen av ett empi-
riskt studium av stamtvirsnitt. Om man pd en noggrant vald samling av stam-
trissor gor observationer av det konvexa deficitet, det isoperimetriska deficitet,
diametervariansen etc., bér man fa en ritt god inblick i hur »stamtvirsnittets geo-
metri) padverkar olika i praktiken tillimpade mé&tnings- och uppskattningsférfaran-
den.





