An Improved Dual-Permeability
Model of Solute Transport in
Structured Soils

Model Development and Parameter Identification in
Laboratory and Field Experiments

Mats Larsbo

Faculty of Natural Resources and Agricultural Sciences
Department of Soil Sciences
Uppsala

Doctoral thesis
Swedish University of Agricultural Sciences
Uppsala 2005



Acta Universitatis Agriculturae Sueciae
2005:51

ISSN 1652-6880

ISBN 91-576-6950-3

© 2005 Mats Larsbo, Uppsala

Tryck: SLU Service/Repro, Uppsala 2005



Abstract

Larsbo, M. 2005. An improved dual-permeability model of solute transport in
structured soils: Model development and parameter identification in laboratory
and field experiments. Doctoral Thesis. ISSN 1652-6880, ISBN 91-576-6950-3.

Preferential flow through macropores is one of the major pathways through which
pesticides can leave the root zone and enter ground and surface waters. Dual-
permeability models account for preferential flow by including a separate flow
domain coupled to the less permeable soil matrix. The exchange of water and
solutes between flow domains is usually described by first-order expressions. Key
model parameters regulating the degree of preferential flow are difficult or
impossible to derive from direct measurements. Therefore, the objective was to
evaluate the possibilities of parameter identification through automatic calibration
in the dual-permeability model MACRO. An improved version of the model, with
implicit numerical solutions introduced to shorten model run times, was first
developed. This enabled the use of computationally intensive calibration methods.
Generalised likelihood uncertainty estimation (GLUE) and sequential uncertainty
domain parameter fitting (SUFI) were applied to a comprehensive field data set
containing measurements of soil water contents, drainflow and flux and resident
concentrations of bentazone and bromide. All groups of data were needed to get
highly conditioned and unbiased parameter estimates. However, the parameter
describing mass exchange between pore domains was poorly conditioned even with
a very comprehensive data set. SUFI decreased the initial uncertainty domains
significantly for all parameters except for the parameter describing mass exchange
between pore domains in the subsoil. However, random sampling from SUFI
posterior uncertainty domains resulted in larger prediction uncertainty compared to
GLUE. This is because these domains contain parameter combinations that are
poor simulators, mainly due to parameter correlations. GLUE and a parameter
identification method based on the localisation of information (PIMLI) were
applied to real and numerically generated data from laboratory microlysimeter
experiments. The data contained enough information to reduce the uncertainty of
the parameter describing mass exchange between pore domains, the saturated
matrix hydraulic conductivity and the macroporosity. Simultaneous identification
of the macroporosity, the macropore hydraulic conductivity and the parameter
describing macropore tortuosity was not possible, probably because of parameter
correlations. Measurements with large information content for parameter
identification were generally found during the first irrigations after solute
application.
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Appendix

This thesis is based on the following papers, which are referred to in the text by
their Roman numerals
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Improved Dual-Permeability Model of Water Flow and Solute
Transport in the Vadose Zone. Vadose Zone Journal, In Press.

II. Larsbo, M. and Jarvis, N. Information content of measurements
from tracer microlysimeter experiments designed for parameter
identification in dual-permeability models. Manuscript.

1. Larsbo, M. & Jarvis, N. 2005. Simulating solute transport in a
structured field soil: Uncertainty in parameter identification and
predictions. Journal of Environmental Quality 34, 621-634.

Paper 1 and III are reproduced with permission of the American Society of
Agronomy.

In Paper I, I had the main responsibility for the writing. The fifth author
contributed to the Introduction and the Materials and Methods sections. I did all
the Fortran programming of the new numerical solutions in the model and
conducted the parameter identification exercise. I also did the comparison with the
analytical solution to the kinematic wave equation. In Paper II, I was responsible
for the writing, chose all methods and carried out all the analysis. In Paper III, I
initiated the study, carried out all the analysis and had the main responsibility for
the writing.



Introduction

Residues of pesticides used in agriculture have been found in surface waters and
groundwater both in Europe (Leistra & Bouten, 1989) and the USA (Barbash et
al., 2001) at concentrations that often exceed the EU drinking water limit of
0.1 pg I''. These findings have led to public concern about environmental and
health effects from the intensive use of pesticides. Aquatic ecosystems near
agricultural land are at risk of being negatively affected by pesticide residues. The
toxicological effects remain uncertain in many cases, but the risk that contaminated
ground or surface water used for human consumption might cause health problems
even at concentrations below the drinking water limit cannot be ruled out.

Modern pesticides are usually thoroughly tested in the laboratory and in the field
before they are approved for use in agriculture. Based on results from laboratory
experiments, pesticides were expected to stay in the root zone where they have the
potential to be beneficial to the crop and where the degradation rate is usually high.
However, the occurrence of pesticides in groundwater during the last twenty years
has revealed limitations in the understanding of transport processes in the soil.

Today, a number of pathways through which pesticides can leave the root zone
and enter ground and surface water have been identified. Leaching through soils is
considered to be of major importance for the occurrence of pesticides in
groundwater (Flury, 1996). It has been shown that a fraction of the pesticide can
move below the root zone and appear in tile drains much earlier than would be
expected from classical theories. High concentrations of pesticides in drainflow
have been observed within weeks of application (Kladivko et al., 1991; Brown et
al., 1995; Larsson & Jarvis, 1999). One rain event can even be enough to cause
leaching through tile drains independent of the sorption and degradation
characteristics of the solute (Kladivko et al., 1991). One important reason why the
classical theories fail is that they do not account for preferential flow. Apart from
leaching, runoff can carry pesticides from agricultural fields to lakes and rivers and
spray drift and volatilisation of pesticides can cause direct pollution of surface
waters. In addition to these major pathways, point sources originating from
improper handling of pesticides, for example during filling of sprayers, can
significantly contribute to contamination of ground and surface water (Kreuger &
Nilsson, 2001).

Simulation models are important tools for analysis of water flow and solute
transport in the vadose zone. They can be used to test single process descriptions,
to study system responses when many processes are interacting and to extrapolate
both in time and space, where multiple measurements would be impractical. This
makes the use of simulation models for assessment of pesticide leaching an
attractive option. The EU directive 91/414 suggests that simulation models should
be used to assess the leaching risk within the EU. However, experimental data are
essential for model development, for evaluating the accuracy of models and thus
for assessing the confidence that should be placed in model predictions. As the
understanding of the processes governing the transport of pesticides through soil
has increased, the models have become more complex, but all models are



simplifications of real systems and model estimations are always wrong to some
extent. A test of twelve European pesticide leaching models against data from four
field experiments showed that the subjectivity in the process of parameter
estimation and input selection is critical (Boesten, 2000). Therefore, the
transparency of the modelling process is the basis for ‘good modelling practice’
(Vanclooster et al., 2000).

Theoretical background

Preferential flow

Preferential flow occurs when water and solutes move predominantly through a
limited part of the soil, largely bypassing the soil matrix (Jarvis, 2002). Preferential
flow thus reduces the residence time of solutes in the unsaturated zone and limits
the contact with reactive soil materials, which leads to slower degradation and less
sorption of contaminants. Water and solutes may move to far greater depths, and
much faster, than would be predicted by Richards’ equation. An important feature
of preferential flow is its non-equilibrium nature resulting from the short time
available for equilibration between preferential flow paths and the bulk of the soil
matrix. One of the causes of preferential flow is macropores created by
earthworms, shrinking of drying soils, decayed root channels or voids in naturally
aggregated soils. There are many definitions of macropores in the literature (Beven
and Germann, 1982). In this thesis a macropore is simply defined as a pore that,
when water filled, results in preferential flow. Macropores usually have a larger
impact on water flow and solute transport in fine-textured soils but can occur in
many types of soils (Flury et al, 1994). Macropore flow will occur whenever the
precipitation at the soil surface exceeds the infiltration capacity of the soil
micropore domain (Fig. 1). Clay & Stott (1973) and Rao et al. (1974) were among
the first to introduce preferential flow as an explanation for elevated concentrations
of pesticides found in the subsoil. It is now widely accepted that preferential flow
often has a large impact on the transport of solutes through structured soils (Flury,
1996).

Although preferential flow implies a potential risk for elevated concentrations of
pesticides below the root zone, it may sometimes reduce leaching of solutes.
Shipitalo et al. (1990) showed that a low-intensity irrigation shortly after
application reduced leaching of atrazine, bromide and strontium ions. They argued
that the solutes were washed into the soil by the first irrigation and thereby partly
protected from the preferential flow created in the subsequent irrigations. Larsson
& Jarvis (2000) demonstrated the same effect for some very mobile pesticides in a
modelling exercise.
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Fig. 1. Generation of macropore flow and runoff: a) rain intensity is smaller than the matrix
infiltration capacity, b) rain intensity exceeds the matrix infiltration capacity causing
macropore flow that can transport surface applied solutes to the ground water, bypassing the
soil matrix, and c) rain intensity exceeds the total soil infiltration capacity causing runoff.

Preferential flow models

Preferential flow in structured soils can be described by a variety of dual-porosity
(van Genuchten & Wierenga, 1976), dual-permeability (Gerke & van Genuchten,
1993a, Jarvis, 1994) or multi-porosity/permeability (Gwo et al., 1995) models.
Dual-porosity and dual-permeability models divide the soil into two interacting
regions, one associated with the macropore system and one with the micropore
system. Dual-porosity models assume that the water in the micropores is stagnant
while dual-permeability models allow flow in both regions. Within each group,
models differ mainly in the descriptions of water flow in the pore regions and the
transfer of water and solutes between pore domains. One widely used dual-
permeability model is MACRO (Jarvis, 1994; Larsbo & Jarvis, 2003), which uses
Richards’ equation to describe water flow in micropores and a modified kinematic
wave equation to describe water flow in macropores. Reviews of the most popular
preferential flow modelling approaches are given in Feyen et al. (1998) and
Simtinek et al (2003). Compared to single pore domain models, preferential flow
models require additional parameters to describe the dual or multi pore domains.
These parameters are sometimes difficult or impossible to derive from direct
measurements.



Exchange between pore domains

Fick’s diffusion law is assumed to govern the transfer of solutes from a saturated
macropore into a stagnant micropore domain. Fick’s law in one dimension is given
by:

oC . 0*C .
a:llc :D a-xlzﬂlc [1]

where Cy,;. (kg m’) is the solute concentration in the micropores, 7 (s) is time, D
(m® s is the diffusion coefficient corrected for pore tortuosity and x (m) is the
horizontal coordinate. The implementation of Fick’s law into models of water flow
and solute transport demands detailed information on the geometry of the soil
aggregates and the macropore structure, which is difficult or impossible to obtain.
Therefore, the concept of first-order mass transfer (FOMT), which is also
mathematically simpler to implement than Fickian diffusion, has often been used to
describe solute transfer between macropores and micropores in dual-porosity (van
Genuchten & Wierenga, 1976; Vanclooster et al, 1996) and dual-permeability
models (Gerke & van Genuchten 1993a; Larsbo & Jarvis, 2003). The FOMT term
for solutes, I' (kg m” s™") is given by:

rs = as (Cmac - Cmic ) [2]

where oy (s™') is the FOMT coefficient for solutes, reflecting the geometry of the
pore system and Cy,. (kg m™) is the solute concentration in the macropores. These
models use an average solute concentration in the stagnant or low-permeability soil
matrix, thus neglecting within-aggregate gradients. The effects of these
simplifications have been studied for some important cases. Griffioen (1998)
compared analytical solutions to Fick’s diffusion law in one dimension and FOMT
for cyclic mass transfer into and out of an immobile zone. He concluded that
FOMT was unsuitable when the time for filling was short. Jergensen et al. (2004)
compared the FOMT concept as implemented in the analytical dual porosity model
CXTFIT with a numerical solution to the two-dimensional form of Fick’s diffusion
law in the discrete fracture/matrix diffusion model FRACTRAN (Sudicky &
McLaren, 1992), using data from saturated large undisturbed column experiments.
Both approaches could accurately simulate the breakthrough of bromide but the
FOMT coefficient had to be recalibrated for different flow rates and durations of
bromide pulses.

Figure 2 illustrates the effects of the simplifications in FOMT for different time
scales for one-dimensional diffusion of a non-reactive solute in a stagnant zone.
Step changes of the solute concentration at the boundary were used and the initial
concentration in the stagnant zone was zero. The average concentration in the
stagnant zone calculated by Fick’s diffusion law could be well simulated with
FOMT when the FOMT coefficient was optimised by minimising the root mean
square error for the whole simulation period (Fig. 2a). When the time scale was
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reduced ten times, the average concentration was poorly simulated by FOMT using
the same FOMT coefficient (Fig. 2b).

The assumption of stagnant water in the micropores will in most cases not be
valid. In these cases, the water transfer between pore domains can be viewed as a
process, which at least mathematically, is similar to diffusion of solutes. The
equation for horizontal one-dimensional water flow is given by:

ot Ox ox

where C (m™) is the differential water capacity 60/ dy and K (m s™) is the
hydraulic conductivity in the micropore domain.

First-order mass transfer has been used to model water exchange in dual-
permeability models (Gerke & van Genuchten, 1993a; Larsbo & Jarvis, 2003). The
equation for FOMT of water, I', (s™), which is mathematically identical to Eq [2],
is given by Gerke & van Genuchten (1993a) as:

1—‘w = aw (l//mac - y/mic) [4]

where a,, (m™ s'l) is the FOMT coefficient for water, Wy, (m) and ;.. (m) are the
average pressure potentials in the micropores and in the macropores respectively.
The driving force for water transfer can also be given as a difference in water
contents (Larsbo & Jarvis, 2003). This approach is further described in the
Materials and methods chapter. Again, the FOMT coefficient is dependent on the
geometry of the pore system, the time scale and the initial conditions.
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Fig. 2. Comparison of Fick’s diffusion law and first-order mass transfer (FOMT), both
written in dimensionless form, for different time scales for step changes in solute
concentration at the stagnant zone boundary, a) simulation time = 2 and b) simulation time
= 0.2. The FOMT coefficient used in both a and b was optimised by minimising the root
mean square error for the whole simulation period used in a.
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Wallach & Steenhuis (1998) pointed out that if a few preferential flow paths carry
all the solutes and the width of the stagnant micropore domain between adjacent
preferential paths is very large then the average concentration in the matrix will be
very small most of the time and not suitable to use as the driving force for the
solute exchange. The fact that the FOMT-coefficient is dependent on the time-scale
and not only related to soil properties has implications for extrapolations from
laboratory experiments to field conditions. Calibrated values from laboratory
experiments will in general not be applicable for field conditions if the
experimental setup differs from field conditions. However, the dependency of the
FOMT-coefficient on the time-scale is largest in the beginning of the solute
infiltration period when only the concentration in a thin layer close to the
macropore is influenced (Griffioen, 1998). The relatively large uncertainty in
calibrated values for the FOMT coefficient for these cases will probably have little
significance regarding leaching since most of the solute bypasses the soil matrix

anyway.

Despite the above-mentioned problems, different kinds of FOMT formulations
are frequently used to describe mass transfer between pore regions in structured
soils (Siminek et al., 2003) because the data needed to justify the higher degree of
complexity for models based on Fick’s law is often lacking. Gerke & van
Genuchten (1993b) argued that FOMT is sufficiently accurate for water exchange
for most practical purposes when considering the large uncertainties involved in
modelling and measuring preferential flow processes. Simtnek er al. (2003)
considered accurate coupling of the macropore and micropore domains to be one
of the greatest challenges in preferential flow modelling. They highlighted the
different hydraulic properties of micropore-macropore interfaces compared to the
bulk of the micropores (Thoma, Gallegos & Smith, 1992). These differences
further reduce the possibilities to use direct measurements to determine the FOMT
coefficient.

Parameter sensitivity and uncertainty

The degree of influence of input parameters on model estimations can be assessed
through sensitivity analysis. A parameter is considered sensitive if a change in a
parameter value results in a large change in the model estimations. Parameter
sensitivity has often been stated mathematically by the sensitivity coefficient:

S,.:a—y;ﬂ [5]

where y is the model estimation and x; is an input parameter. Sensitivity analysis is
conducted for a number of reasons, among others to determine (i) which
parameters contribute most to the output variability, (ii) which parameters are
insignificant and can be eliminated from the model, (iii) whether parameters
interact and (iv) the initial parameter intervals for use in a subsequent calibration.
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Parameter uncertainty originates for example from uncertainty in measured
values, spatial and temporal variability and uncertainty in the derivation of
parameter values from primary data (Dubus, Brown & Beulke, 2003). Parameter
uncertainty can be accounted for by the use of a parameter distribution around the
expected value instead of the use of a single value.

Calibration

Calibration has become a cornerstone in water flow and solute transport modelling
(Dubus, Beulke & Brown, 2002). Calibration refers to the process of determining
parameter values based on comparisons of model outputs and measurements.
Given the larger number of parameters and the difficulties to derive parameter
values from direct measurements, the requirement for calibration appears
particularly important for preferential flow models.

Traditionally, calibration has been done by ‘trial-and-error’, where one
parameter at a time is changed and the model fit to experimental data is evaluated
by visual inspection. Although the trial-and-error method can be useful, especially
when the data is scarce or of low quality, it is highly subjective and demands a high
degree of expert judgement. Therefore, this type of calibration has largely been
abandoned in favour of less subjective automatic methods. The principle
underlying automatic calibration is the minimisation of an objective function
through the modification of input parameters. The objective function is given as a
function of the residuals, the differences between observed and estimated values. A
number of objective functions have been suggested (Loague & Green, 1991). Two
frequently used objective functions are the root mean square error and the model
efficiency (EF). In the case of multiple data sets (e.g. resident and effluent
concentrations), the objective function has to be formulated as a multi-objective
function. The model efficiency is given here as an example:

where w; is the weight given to each data set, m is the number of data sets, n is the
number of observations in each group, O; and P are the observed and simulated
values, and 51 is the average of the observations for each group. The weights are
constrained by:

Zm:wl. =1 [7]

i=1

Both the choice of objective function and, in case of multiple data sets, the way
weights are assigned are subjective. This type of goodness-of-fit measure does not
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take temporal offsets of model estimates against measurements into account. A
difference in timing that may have little effect on, for example, accumulated
leaching may have a major effect on the objective function value (Armstrong et al.,
1996).

Three aspects generally determine the success of a calibration procedure:
identifiability, stability and uniqueness. If more than one parameter set results in
the same model response the parameters are not identifiable. Instability means that
a small change in a measured value or an error in a fixed parameter leads to a large
change in a calibrated parameter value. Uniqueness is the inverse of identifiability;
if a given response leads to more than one set of parameters the inverse solution is
non-unique. A reduction of the number of parameters included in the calibration
will increase the identifiability. Pesticide leaching models are likely to be subject
to non-uniqueness problems because of their non-linear character and internal
correlations (Dubus, Beulke & Brown, 2002).

Even when it is possible to find a unique solution or to successfully reduce the
parameter uncertainty through calibration, the problem of applicability of
calibrated values remains. Parameters that do not have a physical, chemical or
biological meaning can only be obtained by calibration. Dubus, Beulke & Brown
(2002) argue that such calibrated values are only valid for the specific conditions in
which they were derived and cannot be used to extrapolate.

Monte Carlo based methods

The ever-increasing power of modern computers and the development of efficient
numerical solutions have enabled the use of computationally intensive methods for
parameter identification and predictions. These methods have greatly increased the
awareness of some general problems with parameter identification in highly
complex models (Beven and Binley, 1992; Gupta, Sooroshian & Yapo, 1998).

Traditional statistical theory assumes that model outputs are linear functions of
the parameter values within their uncertainty interval (Kuczera & Parent, 1998).
This is often a poor approximation for the highly non-linear processes included in
pesticide leaching models. A number of Monte Carlo based methods for parameter
identification have been developed during the last fifteen years to address the
limitations associated with traditional calibration strategies that aim to find optimal
parameter values and confidence limits based on the assumption of linearity. One
of these limitations is that it is often impossible to find a unique parameter set that
results in a significantly better fit to measured data compared to others. This
observation of ‘equifinality’ was the starting point for the development of the
GLUE methodology (Beven & Binley, 1992), which is further described in
Materials and Methods.

Using a probabilistic approach to calibration, the unknown model parameters are
treated as random variables, distributed according to a probability distribution,
which expresses the existing knowledge about parameter values. Given this ‘prior’
knowledge, new measurements can be used to calculate posterior parameter
distributions according to Bayes’ theorem (Box & Tiao, 1973), which describes the
process of learning from experience:
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p01y)=1017)p(0) 3]

where in our case, y is the vector of measurements, p(ﬁ | y) is the posterior
parameter probability distribution, 1(0 | v) is a likelihood function for the
parameters 0 given y and p(@) is the prior parameter probability distribution.

The Metropolis algorithm, which is the simplest example of Markov chain
Monte Carlo sampling, has successfully been used for sampling of the posterior
parameter distributions in hydrological models (Kuczera & Parent, 1998). The
Metropolis algorithm generates samples from a random walk, which adapts to the
true posterior distribution.

Multi-objective problems arise whenever there is more than one measurement
and corresponding model output to consider in parameter optimisation. The
improvement in the fit to one measurement often leads to the deterioration of the fit
to others. This has usually been handled by lumping all measurement points into
one objective function (see Eq. [6] and [7]). By doing this, weights are implicitly
assigned to the measurements (Gupta, Sorooshian & Yapo, 1998). In the case of
multiple data sets, a single objective function can still be used, but a decision about
the importance of each data type must be made (Beven & Binley, 1992; Zak,
Beven & Reynolds, 1997), which introduces another element of subjectivity into
the procedure. A more sophisticated way to handle multi-objective problems was
proposed by Gupta, Sorooshian & Yapo (1998). They argue that since the choice
of objective function and the weights assigned to different data types are
subjective, attention should be focused on finding a ‘pareto’ (or non-inferior) set of
parameters. The pareto set has the properties that moving from a point within the
pareto set to a point outside always leads to the deterioration in the model fit to at
least one measurement. Furthermore, starting from any point outside the pareto set,
there always exists at least one point within the pareto set that increases the fit to
all measurements. Any point within the pareto set is in this respect ‘better’ than any
point outside the pareto set. In hydrological modelling, the pareto-optimality
concept has mainly been applied to rainfall-runoff models (Yapo, Gupta &
Sorooshian, 1998; Vrugt et al. 2003).

The methods discussed above, that have been developed to better account for
uncertainty in parameters and predictions, are themselves uncertain because
subjective choices still have to be made, for example in the selection of method
and objective function.

The research problem

Dual-permeability models are more parameter demanding than single pore domain
models since extra parameters are needed to define the division and the exchange
between pore domains. Many of the parameters regulating the degree of
preferential flow are difficult or impossible to measure directly. Although
preferential flow models are gaining in popularity, a more widespread use has been
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hampered by these difficulties (Simtnek et al., 2003; Forum for the Coordination
of Pesticide Leaching Models and Their Use, 2000).

Parameters that cannot be determined through direct measurements must be
identified by some calibration method. In order to reduce the degree of subjectivity
and to ascertain the reproducibility of the results, calibration is preferably done
through some inverse modelling method. Many inverse modelling methods are
computationally intensive, sometimes requiring such a large number of model runs
for successful calibration that they become impractical. The use of inverse methods
for parameter identification in dual-permeability models has to date been limited to
only a few studies (Schwartz, Juo & Mclnnes, 2000; Kiétterer et al., 2001; Roulier
& Jarvis, 2003a,b) partly because model run-times have been excessively long,
especially for field applications. Although these studies have contributed to the
understanding of parameter identifiability in dual-permeability models, a lot
remains to be done. For example, Roulier & Jarvis (2003a) suggested that the
possibility of improving parameter identification by different experimental setups
needed to be examined, while Dubus, Beulke & Brown (2002) considered the
identification of data requirements for effective and robust calibration of pesticide
leaching models a research priority.

The dual-permeability model MACRO (Jarvis, 1994) is relatively parsimonious
regarding the number of parameters (Simtnek er al. 2003) but does include
parameters that are difficult to measure directly. In addition to long run times
caused by the small time steps needed to ensure stability of the explicit numerical
solutions, the previous version of MACRO suffered from a coarse spatial
resolution near the soil surface. In order to analyse the possibilities of parameter
identification in the MACRO model these problems must first be solved.

Objectives

The objectives were: (i) to develop an improved dual-permeability model of solute
transport in the vadose zone which can be used in computationally intensive
automatic calibration procedures, (ii) to test the possibilities of identification of
key model parameters regulating the degree of preferential flow under laboratory
and field conditions, and (iii) to develop an efficient laboratory setup and an
improved sampling scheme for identification of these parameters.

The MACRO model was used in all applications. To improve the performance of
MACRO, explicit numerical solutions for Richards’ equation, the convection-
dispersion equation and the heat flow equation were replaced by standard implicit
solutions, adapted for use in a dual-permeability model where this was necessary.
Three different methods, all capable of dealing with parameter uncertainty, were
used for parameter identification: sequential uncertainty domain parameter fitting
(SUFI) (Abbaspour et al., 1997), generalised likelihood uncertainty estimation
(GLUE) (Beven & Binley, 1992), and the parameter identification method based
on the localisation of information (PIMLI) (Vrugt, Bouten & Weerts, 2001). Both
artificial and real laboratory data from transient tracer microlysimeter experiments
were used to test the possibilities for parameter identification in the laboratory
(Papers I and II). Data on drainflow and transport of the weakly sorbed herbicide
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bentazone and bromide were used in a parameter identification exercise using field
data (Paper III). PIMLI was used to identify the measurements containing most
information for parameter identification in the laboratory microlysimeter setup
(Paper II).

Materials and Methods

Model description and development of MACRO 5.1

The MACRO model is a one-dimensional, physically based, dual-permeability
model for water flow and solute transport in the soil vadose zone. The total
porosity is divided into micropores and macropores, characterised by different flow
rates and solute concentrations. A schematic representation of the model processes
is given in Fig. 3. Only aspects of specific interest in relation to the results
presented in this thesis are presented here. A more detailed description of the
model can be found in Larsbo & Jarvis (2003).

Micropores Macropores

Richards' equation Kinematic wave equation

ﬁ First-order cxchange ﬂ

CDE Convection only
ﬁ Boundary defined ﬂ
by: 6, y, and K,

Sorption and degradation Sorption and degradation

Fig. 3. Schematic representation of important process descriptions in MACRO. The
symbols 0y, v, and K, denote the saturated micropore water content, the boundary pressure
potential and the saturated micropore hydraulic conductivity, CDE is the convection-
dispersion equation.

Water flow

Water flow in the micropores is governed by Richards’ equation (Richards, 1931)
while water flow in the macropores, ¢u,. (m s'l), is described by a modified
kinematic wave approach (Germann, 1985), where the macropores are assumed to
drain by gravity only. The hydraulic conductivity in the macropores, K (ms™), is
expressed as a power function of the macropore water content, 0, (-):
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Do = Kmae = (K pacar) e [9]

mac,sat

where Kie.sat (I s7) is the saturated conductivity of the macropores, Omac.sat (-) 18
the saturated macropore water content and »* (-) is a ‘kinematic’ exponent
reflecting macropore size distribution and tortuosity.

Solute transport

Solute transport in the micropores is calculated using the convection-dispersion
equation with a first-order source-sink term representing mass exchange between
flow domains. Convection is assumed to dominate solute transport in the
macropores (i.e. dispersion is not explicitly accounted for).

The dual-permeability formulation

In the previous version of MACRO, the Brooks-Corey (1964) function was used to
define the water content-pressure head relation in the micropores. The air-entry
pressure parameter was used to define the pressure at the micropore-macropore
boundary. In the new version, the Brooks-Corey function has been replaced by the
van Genuchten (1980) function and the pressure at the micropore-macropore
boundary is defined independently by an additional parameter. Both these changes
increase the flexibility of the retention function, especially in the region close to
saturation.

The saturated micropore water content (0,), the boundary pressure head (y,)
(Fig. 4) and the saturated micropore hydraulic conductivity (K}) define the division
between micropores and macropores. An additional point on the van Genuchten
retention function defines the maximum water content allowed during one time
step, Omax = Op + Cinac, Where Ciqe (<) is the air-filled pore space in the macropores.
The modified form of the van Genuchten retention function for the micropores is
given by:

e

S
where S (-) is the effective water content in the micropores, 0, (-) is the current
micropore water content, 6, (-) is the residual water content, 0, (-) is a fictitious
saturated water content, obtained by extrapolating the fitted water retention
function to zero pressure, o (m") , N (-) and M (-) are shape parameters (where
M= 1-1/N) and y (m) is the soil water pressure head.

Lateral water flow from macropores to micropores is described as a first-order
approximation to the diffusion equation:
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Fig. 4. Example of the modified van Genuchten water retention curve used in MACRO 5.1
for a fictitious soil gvan Genuchten o = 0.03 cm!,van Genuchten N = 1.5, residual water
content, 6, = 0.0 m®> m> and saturated micropore water content, 6, = 0.5 m® m?). The
symbols 6 (-) and 0, denote the real and fictitious saturated water contents respectively.

3Dy,
S, = (%j (6,-6) (1]

where d (m) is an effective diffusion pathlength related to aggregate size, y,, (-) is a
scaling factor introduced to match the approximate and exact solutions to the
diffusion problem (Gerke and van Genuchten, 1993b) and D, (m” s') is an
effective water diffusivity given by:

— ng + ngif emac [12]
w 2 9

mac,sat

where Dy, (m2 s") and Dgpic (m2 s'l) are the water diffusivities at the saturated
micropore water content and the current micropore water content respectively. A
discussion on the validity of the first order mass transfer equation is presented in
Exchange between pore domains. Water flow can occur in the reverse direction if
the pressure potential in the micropores exceeds . In this case, any water
exceeding 0y, is instantly routed into the macropores.

The mass transfer term for solutes, U, accounts for both diffusion and
convective flow:

3D.0
Ue = (%j (cmac-cmic)—‘r_SwC' [13]
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where D, (m* s) is an effective diffusion coefficient, cpic (kg m?) is the solute
concentration in the liquid phase in micropores, cp. (kg m‘3) is the solute
concentration in the liquid phase in macropores, and ¢’ (kg m™) indicates either the
solute concentration in macropores or micropores, depending on the direction of
water flow, S,,. The solute concentration in the water routed into the macropores at
the soil surface is calculated assuming instantaneous equilibrium in a thin surface
layer or mixing depth, z;; (m).

Numerical solutions

The explicit numerical solutions used to solve Richards’ equation, the convection-
dispersion equation and the heat flow equation in the previous version of MACRO
have been replaced with standard implicit solutions. These are described in Paper I
and in Larsbo & Jarvis (2003). It was hypothesised that the superior stability of
implicit solutions would allow larger time steps and hence reduce run times. The
number of numerical layers in the previous version of MACRO was limited to
twenty-two, which often led to a rather coarse spatial discretisation. In MACRO
5.1, the maximum number of numerical layers has been increased to two hundred,
allowing for a much finer spatial discretisation and simulations of deep vadose
zones.

The effects of nodal distance (numerical layer thickness) in the Richards’
equation-based, numerical model SWAP were demonstrated by van Dam (2001).
He compared simulations with nodal distances 1 and 5 cm to reference simulations
with nodal distance 0.1 cm for infiltration into dry soils and evaporation from wet
soils. He concluded that the use of nodal distances smaller than 1 cm, close to the
soil surface, yielded acceptable simulation results while nodal distances of 5 cm
severely overestimated infiltration and evaporation. The effect of nodal distance in
simulations with the improved version of MACRO was tested for solute infiltration
into a hypothetical dry clay soil. A non-reactive tracer was applied during one hour
at a rate of 1.0 g m” h'. The irrigation rate was 3.0 mm h" for the whole
simulation period. Parameter values for the hypothetical soil are given in Table 1.

Table 1. Parameter values for the hypothetical clay soil.

Parameter Value
Saturated micropore hydraulic conductivity, K, (cm h™") 0.1
Boundary pressure head, y;, (-cm) 10
Saturated micropore water content, 6y, (%) 45
Saturated macropore water content, 0, st (%) 3
Residual water content, 0, (%) 5
van Genuchten alfa, o (cm™) 0.02
van Genuchten N, N (-) 1.1
Mixing depth, z,; (cm) 0.1
Inaccessible water due to anion exclusion, 0., (%) 5
Initial water content, 0;, (%) 30
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Parameter identification methods

Four methods for evaluation of the possibilities of parameter identification in the
MACRO model have been used in this thesis. These are briefly described in the
following sections.

The Morris method

The Morris method (Morris, 1991) was developed as a preliminary screening tool
for parameter sensitivity. He proposed a method comprising individually
randomised one-factor-at-a-time designs. By screening entire prior uncertainty
intervals the problems with non-linearity, encountered in classical one-at-a-time
analysis (Hopmans & Simtinek, 1999), are reduced. Before sampling, each
parameter interval is divided into a number of equally large layers with the
parameter values defined by the midpoints of each layer. To keep the number of
model runs to a minimum, the scheme starts with the sampling of a base
parameterisation, which is used in the calculation of one elementary effect for each
parameter. The elementary effect, £, similar to the sensitivity coefficient (see Eq.
[5]), for parameter i is defined as:

|f/(x1,...,xl._1,xl. +AX, X, ) — f/(x)|
Ax.

1

E,(x)= [14]

where Ax; is the change in parameter i = 1,...,k, y is a model output and x is a base
parameter vector. A large mean value of the elementary effects for parameter i
indicates high sensitivity. A large measure of spread indicates a parameter involved
in interactions or with non-linear effects. The base parameterisation is increased or
decreased with equal probability, one-parameter-at-a-time. The sampling continues
until all layers are used in a base case parameterisation.

GLUE

The generalized uncertainty estimation (GLUE) framework deals with model
parameter and prediction uncertainty within the context of Monte Carlo analysis
coupled with Bayesian estimation (Beven & Binley, 1992). The posterior
parameter distribution is approximated by a discrete probability distribution, which
can be used for predictions. Statistical measures, for example percentiles can be
calculated from the posterior parameter distributions.

Usually, many parameter sets may equally well describe the observations
according to some goodness-of-fit measure (objective function). Within the GLUE
framework this is referred to as ‘equifinality’. If we accept this, it is not meaningful
to search for unique parameter values. Therefore, the GLUE procedure is only
concerned with evaluating the ‘likelihood’ of parameter sets as simulators of the
observations. Likelihood is here used in a broad sense, meaning a specified
measure of how well the outcome of a model and a parameter set describes the
observations. Not all parameter sets will be acceptable simulators of the
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observations. GLUE does not provide any information about parameter
interactions, but these are implicitly reflected in the likelihood values.

The outcome of GLUE will, to some extent, be dependent on a number of
subjective choices. Prior parameter distributions should be based on all available
information, which is often limited to expert judgement and past experience. Beven
& Binley (1992) consider it unlikely that this choice will be critical since new
observations are supposed to dominate the posterior distribution. They suggest
using a uniform prior distribution when information is lacking. The choice of
objective function should reflect the available observations and the purpose for
which the modelling is required. Finally, a threshold defining acceptable parameter
sets needs to be defined. All non-acceptable parameter sets are discarded by
assigning them zero weight.

Even though GLUE was designed to identify acceptable parameter sets,
information on individual parameters can be obtained from cumulative posterior
parameter distributions (Beven & Freer, 2001). These distributions give
information on the degree of parameter conditioning. Parameters with distributions
differing the most from the prior distributions have been most conditioned by the
process.

Kuczera & Parent (1998) compared GLUE to Metropolis sampling for a simple
water balance model for which the exact results were known. They showed that
GLUE could produce misleading results unless a large number of samples were
drawn. It should be noted that they used much fewer samples (3000) compared to
most GLUE applications (20000-60000). The Metropolis sampling generated
reliable results with modest sampling. Makowski, Wallach & Tremblay (2002) also
made a comparison between the Metropolis algorithm and GLUE for parameter
identification in a highly parameterised non-linear model. The results were similar
for the two methods. The GLUE method has been criticised by Thiemann et al.
(2001) for adopting a too liberal view of Bayesian statistics accepting just about
any goodness-of-fit measure as a likelihood function.

GLUE has been shown to be useful for analysis of model parameterisation
problems mainly with distributed hydrological models (Beven & Binley, 1992;
Beven & Freer, 2001) but also with soil chemistry models (Zak, Beven &
Reynolds, 1997; Zak & Beven, 1999) and nitrogen transport models (Schulz,
Beven & Huwe, 1999). Because of the relatively large number of parameters
and known uniqueness problems in preferential flow models (Roulier & Jarvis,
2003a, b), GLUE should be a potentially useful tool for analysing the possibilities
of parameter identification in the MACRO model.

SUFI

Sequential uncertainty domain parameter fitting (SUFI) is a sequential, forward,
iterative and Bayesian procedure for parameter fitting (Abbaspour et al., 1997).
SUFI begins with prior uncertainty domains of input parameters, which are
subsequently reduced in an iterative procedure as the parameters become more
conditioned by the measured data.
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After defining prior uncertainty domains, these are divided into a number of
equally large strata with the parameter value defined by the mid-point in each
stratum. All combinations of parameter values are simulated in each iteration.
Simulation results are then compared with observations through an objective
function and the strata associated with the best values of the objective function are
retained in the next iteration. A critical tolerance determines which strata are
removed between iterations and a stopping rule determines when the iterative
procedure is stopped. The remaining strata when the stopping rule is violated
define the posterior uncertainty domains. As with GLUE, a number of subjective
choices (the choice of objective function, critical tolerance and stopping rule) need
to be made that are likely to influence the result.

SUFI has been used successfully for calibration of parameters in the van
Genuchten/Mualem model for hydraulic parameters using data from multi-step
outflow experiments (Abbaspour, Sonnleitner and Schulin, 1999). Roulier & Jarvis
(2003a) used SUFI for calibration of the MACRO model using leaching data for
MCPA and chloride measured in microlysimeter experiments. They concluded that
SUFI gave reliable parameter estimates, when these could be checked with
independent measurements.

PIMLI

Both SUFI and GLUE use one objective function calculated from the fit to all
available measurements. One problem with this is that parameters often are
insensitive to many of the measurements included. In that case, the ‘noise’ created
by these measurements might overshadow the information contained in the
measurements to which parameters are sensitive. The result is non-detectable or
small responses to parameter changes in the objective function.

Vrugt, Bouten & Weertz (2001) and Vrugt ef al. (2002) addressed this problem
by developing a parameter identification method based on the localisation of
information (PIMLI). The PIMLI procedure starts with Monte Carlo sampling of a
pre-defined number of parameter sets from prior parameter distributions. These
parameter sets are then executed through a model and subsequently categorized as
‘accepted’ or ‘non-accepted’ for each single measurement, depending on how well
their corresponding estimation reproduces the measurement. Calculating the
information content, IC, identifies the measured data containing most information
for the identification of a parameter:

O-posterior (m’ p)

IC(m, p)=1-
Gprior (p)

[15]

where Gposierior(2, p) 1s the standard deviation of parameter p in the accepted
parameter sets and Gyio(p) is the standard deviation of parameter p in the prior
parameter distribution. If IC(m, p) is close to zero, measurement m can be
simulated equally well by any parameter value, indicating that m is non-informative
for that parameter. If the information content is close to one, the accepted
parameter values occupy a well-defined internal region of the prior distribution
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indicating that m is informative for the parameter. When the measurements with
highest /C are identified, these are used to constrain the parameters and to
construct the posterior parameter distributions. These posterior distributions are
sampled in the following iteration and the procedure repeated.

The smoothing effect of including many insensitive measurements is illustrated
in Fig. 5, which shows dotty plots of EF for different values of the macroporosity.
All data, equally weighted between groups, was used in the calculation of EF in
Fig. S5a, whereas only the ten measurements with the highest /C for the
macroporosity were used in Fig. 5b. The prior parameter distributions for the
hypothetical clay soil from Paper II were used. Using all the data results in positive
EF values distributed over the whole uncertainty domain, whereas the use of the
most informative measurements gives positive EF values distributed within a
limited interval.
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Fig. 5. Model efficiencies for different values of the macroporosity using all data (a) and the
ten measurements with highest /C (b). Parameter values were sampled from a normal
distribution with a mean value of 3 and a standard deviation of 1.5.

Experiments

In this thesis, the methods described in the previous section have been applied to
data from both real and artificial microlysimeter experiments and to data from a
field experiment carried out on a tile-drained clay soil.

The laboratory microlysimeter experiment

An experimental setup designed for parameter optimisation should include the
measurements that are most sensitive to changes in the optimised parameter values
(Hopmans and Siminek, 1999). It could be added that measurements that are
sensitive to parameters not included in the optimisation should be excluded from a
calibration exercise whenever possible. Otherwise there is a risk that posterior
distributions of optimised parameters will be biased by errors in parameters not
included. Moreover, the cost of laboratory experiments concerning sampling,
sample analysis and time needed to carry out the experiments should be kept at a
minimum.
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I have been working with cylindrical soil samples, 20 cm high and with a radius
of 9.6 cm. This size, referred to as microlysimeter, has several advantages
compared to larger monoliths and smaller soil cores: (i) microlysimeter monoliths
can be taken fairly easily with the use of a hydraulic pump and four hand-driven
soil anchors, (ii) the size is usually large enough to represent the macropore
structure of the soil, at least for agricultural topsoils, (iii) each soil horizon can
often be sampled separately, which facilitates parameter identification, and (iv) the
size of a microlysimeter is relatively small which means that many replicates can
be run in a laboratory experiment. There are, on the other hand, some obvious
disadvantages compared to larger sizes of lysimeters. As the size of a lysimeter
decreases the risk that it does not represent the field characteristics of the soil
increases. There is also a risk that continuous macropores are cut off by the walls
of the lysimeter as the radius decreases or that the vertical continuity is
overestimated because of the artificial bottom boundary.

A special irrigation chamber was constructed to facilitate the laboratory
microlysimeter experiments. Twenty-four air atomising nozzles (Spraying Systems
Inc.), each located 1.2 m above a microlysimeter, create a fine mist with low
kinetic energy, which retains the structure of the soil surface throughout the
experiment. The irrigation rate can be varied between 4 and 12 mm h”' dependent
on the applied air and water pressure. Percolation samples are collected in plastic
bottles connected to the microlysimeter bottoms through rubber hoses. A
perforated base plate allows free drainage at the base of the column. A schematic
sketch of the experimental setup is given in Fig. 6.

Microlysimeters and small soil cores (5 cm high and 3.5 cm radius) were
collected from the topsoil of a heavy clay (defined as a Fluventic Eutrochrept in the
USDA system) at Ultuna, outside Uppsala (59°49° N, 17°38’ E). This soil was
selected because a high degree of preferential flow could be expected (Messing &
Jarvis, 1993). The microlysimeters were irrigated four times with filtered rainwater
in the laboratory (17.1, 11.8, 18.6 and 18.8 mm). The first irrigation lasted three
hours and the following three each lasted two and a half hours. Potassium chloride
was applied before the third and fourth irrigations at 74.8 and 81.8 g Cl m”
respectively. High time-resolution measurements of percolation and effluent
concentrations and resident chloride concentrations at the end of the experiment
were made and subsequently used for model testing and parameter identification.
This parameter identification study is further described in Paper I.
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Figure 6. The laboratory setup. Air atomising nozzles placed directly above the
microlysimeters create a fine mist, which retains the structure of the soil surface throughout
the experiment.

GLUE was applied to the data for parameter identification because it is
straightforward and the large number of runs needed for reliable results was not
considered a problem for this type of simulation. Four key parameters regulating
the degree of preferential flow, the saturated micropore hydraulic conductivity
(Kp), the macroporosity (Omacsat), the kinematic exponent in the macropores (n*)
and the diffusion pathlength (d), were included in the parameter identification
exercise. The prior uncertainty domains for these parameters were based on expert
judgement and preliminary measurements. Tension infiltrometers could preferably
be used to directly measure K, (Messing and Jarvis, 1993). However, the spatial
variability of the hydraulic conductivity is often large and measurements cannot be
made at the exact location of the microlysimeter sampling since preparation of the
infiltration surface will disturb the sample. Therefore, direct measurements can
only give approximations of Kj. The impossibility of directly measuring the
diffusion pathlength (see Exchange between pore domains) justifies a large prior
uncertainty. In order to sample these parameters from distributions that are
consistent with model responses to changes in parameter values, d and K, were
transformed to d * and log(K,) respectively. All four parameters were then sampled
from uniform distributions. The remaining parameters were fixed at values derived
from measured data or set to model default values. The equally weighted, additive
form of the model efficiency (Eq. [6] and [7]) was used as likelihood function.
Twenty thousand simulations were run and corresponding EF values were
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calculated. All parameter sets resulting in EF wvalues larger than 0.5 were
considered acceptable.

Artificial microlysimeter experiments

Numerical data representing microlysimeter tracer experiments on two hypothetical
soils representing one typical clay and one typical loam were generated to further
study parameter identification in the MACRO model (Paper II). Prior parameter
distributions were chosen to reflect the uncertainty attained after appropriate
laboratory and field measurements are conducted. Two mm of irrigation with a
concentration of 2.0 kg m™ of a non-reactive tracer was applied on day 1 during
two hours (= 4.0 g m?). A total of twelve irrigations with zero concentration were
then applied with a three-day interval. A cycle of three irrigations of 12, 8, and 4
mm during one hour respectively was repeated four times (equivalent to ca. 1 pore
volume). The potential evaporation was set to 1 mm d™' to reflect laboratory
conditions. ‘Measurements’ were made with ten minutes intervals from the start of
each irrigation until the percolation ceased.

Two plausible experimental setups were examined using the model outputs, (i)
percolation rate (mm h™), solute concentration in the effluent water (g m”) and
high time-resolution resident solute concentrations (g m™) at six depths, hereafter
referred to as all data, and (i) measurements of percolation rate, effluent
concentration, and one resident solute concentration profile (six depths) at the end
of the experiment, hereafter referred to as limited data. Only the percolation rate
from the first cycle was used in the analysis since the pattern for all four irrigation
cycles was identical.

A sensitivity analysis for MACRO has been carried out for pesticide losses from
agricultural fields by Dubus & Brown (2002). Since results of a sensitivity analysis
tend to depend on the site and scenario considered (Ferreira ef al., 1995), a limited
sensitivity analysis was performed for this experimental setup. The Morris method
was chosen because it is able to examine model sensitivity over entire uncertainty
intervals and because of its relatively small computational demand. Each parameter
uncertainty interval was divided into 100 equally large layers and Ax, (see Eq.
[14]) was set to 1% of the parameter uncertainty interval. Using a fraction of the
parameter uncertainty interval scales the elementary effects to the parameter
uncertainty. The elementary effects thereby give information on the reduction in
estimation uncertainty that can be expected from a reduction in the parameter
uncertainty. The elementary effects were also divided by the value of the
corresponding output to enable a comparison between different data groups.

PIMLI was applied to the numerically generated data in order to find an
improved measurement scheme for laboratory microlysimeter experiments and to
test the possibilities of parameter identification in MACRO. The interval for
acceptable parameter sets was arbitrarily set to £20% of the true value for all types
of data. Two thousand five hundred simulations were run in each iteration with
parameter sets sampled from the updated distributions. Information contents were
calculated for all measurements. The distributions of the accepted parameter values
for the ten measurements with largest /C:s were added to make up the posterior
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parameter distributions. Parameter sets for the next iteration were created by first
dividing each parameter interval into fifteen equally large layers. Each layer was
then randomly sampled in proportion to its frequency of accepted parameter
values. The parameter value was sampled randomly within the layer. The
procedure was stopped after ten iterations since the tenth iteration resulted in only
minor reductions in parameter uncertainty.

The decrease in parameter uncertainty (precision) and the location of the
posterior mean value in relation to the true value (accuracy) give information on
the success of the parameter identification exercise. The precision was evaluated
by the reduction coefficient, defined as one minus the posterior standard deviation
divided by the prior standard deviation. The distance, given in standard deviations
of the posterior distribution, between the true value and the mean value of the
posterior distribution was used as a measure of accuracy. Ideally, the mean value of
the (normally distributed) posterior distribution should equal the true value.

The field data set

An experiment carried out on a well-structured silty clay (defined as a Typic
Eutrochrept, USDA) at Lanna in Vistergdtland, Sweden (58°21° N, 13°08° E) was
used for the parameter identification study using field data (Paper III). The data set
was selected because it is comprehensive and because it shows strong evidence of a
high degree of preferential flow (Larsson & Jarvis, 1999). Tile-drains are installed
at 1-m depth at 13.5-m spacing, draining a plot 0.4 ha in size. Bentazone (2.51 kg
ha™) and potassium bromide (44.4 kg Br ha™) were simultaneously applied in the
autumn of 1994. Apart from standard measurements of soil physical and hydraulic
properties, the data from Lanna consist of daily measurements of drainflow during
more than one year, concentrations of bentazone and chloride in drainflow sampled
every 1.5 mm of drainflow, resident concentrations at five depths on three
occasions for bentazone and five occasions for bromide, and water content
measured at nine depths on five occasions.

MACRO was parameterised for the Lanna field based on the data of soil physical
and hydraulic properties (Larsson & Jarvis, 1999). Where data did not exist,
parameters were determined by: (i) inbuilt pedotransfer functions (van
Genuchten/Mualem model parameters for the subsoil), (ii) recommendations by
Forum for the Coordination and Use of Pesticide Fate Models and Their Use
(2000) (Freundlich exponent and the diffusion coefficient for bentazone in free
water), and (iii) model default values.

Six key parameters were investigated using SUFI and GLUE. The parameters
were chosen either because they are difficult to estimate through direct
measurements or because they were considered sensitive based on prior experience
with the model (Dubus & Brown, 2002). All parameters were assigned uniform
distributions within their uncertainty limits in accordance with Beven & Binley
(1992). It should be noted that many of the parameters not included in the
calibration are to some extent uncertain and sensitive. However, to limit the
computational work only the most sensitive parameters could be included.
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The model efficiency assuming equal weights was used for both the SUFI
calibration and the GLUE analysis. The critical tolerance in SUFI, as well as the
limit defining acceptable simulations in GLUE was defined in absolute terms as the
maximum EF,, value, EF ., minus 0.2. In SUFI, all strata with zero hits at the
critical tolerance were removed between iterations. The iterations stopped when no
further reduction was possible at the critical tolerance. Following Roulier & Jarvis
(2003a), SUFT was first applied to parameters controlling the degree of macropore
flow against data of water content, drainflow and resident and flux concentrations
of bromide. In a second step, pesticide properties were calibrated on the bentazone
data, retaining the parameter values from the first calibration step. In GLUE, thirty
thousand simulations with parameter values generated using Latin hypercube
sampling, were run both for bromide and for bentazone.

GLUE was also used for evaluating the effects of data availability on parameter
conditioning since model efficiencies calculated for each group of data can easily
be combined. The groups of data were combined in four different ways, (i) all
observations (A4/), (ii) only soil water contents and resident concentrations of
bromide and bentazone (Res), (iii) only drainflow and flux concentrations of
bromide and bentazone (Flux) and (iv) soil water contents, drainflow and both
resident and flux concentrations of bentazone (NoTracer). In this study, all
parameter sets with corresponding EF,, values within 0.2 of EFm.x were
considered acceptable. This definition of the threshold allows comparison of
parameter conditioning between groups of data with different EF . values.

The experiments at Lanna did not reflect normal agricultural practice since
bentazone was applied on bare soil in autumn at a dose much higher than
recommended. The posterior uncertainty intervals from SUFI and the posterior
likelihood distributions from GLUE were therefore used to predict the accumulated
leaching and the maximum concentration in drainflow for a scenario applying good
agricultural practice. The model was re-parameterised for spring application of
bentazone at the maximum recommended dose (1.305 kg ha™). The crop
parameters, taken from Forum for the Coordination of Pesticide Fate Models and
Their Use (2001), were chosen to represent field peas (Pisum sativum, L). The
same driving data as in the calibration was used. SUFI does not provide
information on the distribution of parameter values within the posterior uncertainty
domains. Therefore, parameters sets were generated using Latin hypercube
sampling from uniform distributions. Since all prior distributions were uniform,
GLUE posterior distributions are simply given by normalising the likelihood
distribution. The effect of data availability on predictions was tested, using the
same groups as in the analysis of parameter conditioning.
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Results and discussion

Model development

The improved numerical solutions in MACRO 5.1 were successfully verified by
comparisons between simulation results and analytical solutions for a variety of
water flow and solute transport problems in Vanderborght et al. (2005) and Paper
I. Depending on the type of application, run times were reduced by 50 to 90%
compared to the previous version of MACRO.

The infiltration rate into the micropores of an initially dry soil is shown in Fig. 7a
for nodal distances of 0.5 and 5.0 cm. The larger nodal distance results in larger
infiltration, which is in accordance with results reported by van Dam (2000). Fig.
7b shows the solute infiltration rate into macropores for the two nodal distances.
Solutes stored within the mixing depth in the micropores enter the macropores
when macropore infiltration starts. Solute infiltration into the macropores decreases
as the solutes in the mixing depth are depleted. The larger nodal distance results in
a retardation of the solute infiltration and a smaller maximum value. The effects of
smaller nodal distances on pesticide leaching in field applications are difficult to
assess since model error, errors in parameter values and uncertainty in input data
might have a larger impact on the accuracy of model simulations. However, the
improved numerical accuracy compared to previous versions of the model
eliminates one source of uncertainty, thus improving the chances of finding ways to
reduce others.

A comparison between simulations with MACRO 5.1 and the previous version of
MACRO would be interesting but probably difficult to interpret. Differences
originating from changes in model concepts could probably not be separated from
changes due to improved numerical solutions. Therefore, such a comparison is not
included in this thesis.
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Fig. 7. Effects of different nodal distances for infiltration into a dry clay soil, a) micropore
infiltration, and b) solute infiltration into macropores.

The laboratory microlysimeter experiment

MACRO 5.1 could accurately simulate the high-resolution tracer data from the
microlysimeter experiments (EF values of 0.64, 0.48 and 0.74 for percolation rate,
solute leaching rate and resident solute concentration respectively). The measured
solute leaching rate, indicative of strong preferential flow, is shown in Fig. 8
together with the best GLUE simulation and the maximum and minimum values
using all simulations with EF values larger than 0.5. The leaching pattern was
excellently captured.
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Fig. 8. Solute leaching rates from the laboratory microlysimeter experiment following
solute applications. The best GLUE simulation (black dotted line) and the minimum and
maximum values of the simulations with EF values larger than 0.5 (grey lines) are
compared to measurements (triangles).

The results from the parameter identification exercise using GLUE are summarised
in Table 2. The posterior uncertainty, defined by the 5™ and the 95™ percentiles for
the accepted parameter sets was reduced by more than 80% for the diffusion
pathlength. This large reduction of the uncertainty is related to the relatively large
prior uncertainty. Due to the difficulties in deriving prior information for the
diffusion pathlength a large prior uncertainty is usually needed. The kinematic
exponent for the macropores (n) was poorly constrained by the measurements
even though the prior uncertainty domain was thought to include all feasible
values. Problems with simultaneous identification of the macroporosity (Omacsat)
and n" could be expected since they are intimately related through Eq. [9]. Both the
saturated micropore hydraulic conductivity (Kp) and Oy, Were, at least to some
extent, constrained by the data.

Table 2. Prior and posterior parameter uncertainty for the laboratory microlysimeter
experiment. The 5™ and 95™ percentiles are used to define the posterior uncertainty,

Parameter Prior Posterior
uncertainty uncertainty
Saturated micropore hydraulic conductivity (mm h™) 0.1-10 0.16-4.9
Macroporosity (%) 1.5-4.5 24-3.8
Kinematic exponent, macropores (-) 2-8 2.2-7.4
Diffusion pathlength (mm) 2.5-50 6.0-15

Artificial microlysimeter experiments

Average elementary effects from the Morris sensitivity analysis of twelve
parameters in MACRO 5.1 using all data for time series of percolation and both
resident and effluent concentrations are shown in Fig. 9 for the hypothetical clay
and loam soils. The most sensitive parameters were d, Omacsa, Kp and the
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dispersivity (D) for both soils. The diffusion pathlength was mainly sensitive to
the effluent concentration and the resident concentration, 8, . to the percolation
rate and the effluent concentration whereas K, and D, were mainly sensitive to the
effluent and resident concentration. For the loam, o was also sensitive, mainly to
the percolation rate. The higher sensitivity of d for the loam is probably due to a

larger uncertainty interval, which also included small values where the sensitivity is
high.
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Fig. 9. Morris sensitivity analysis results showing average elementary effects due to a
change in a parameter value of 1% of the parameter uncertainty interval for, a) hypothetical
clay and b) hypothetical loam. The elementary effects for resident concentration are average
values for six depths. High time-resolution measurements of resident concentrations were
used. The parameters are: d, diffusion pathlength; 0., macroporosity; n", kinematic
exponent; Ky, saturated micropore hydraulic conductivity; Kiesa» Saturated macropore
hydraulic conductivity; a, van Genuchten alfa; N, van Genuchten N; 0,, residual water
content; D,, dispersivity; z;,, mixing depth; A, micropore tortuosity factor; 0., excluded
water due to anion exclusion.
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The results from the PIMLI exercise are summarised in Table 3 for the
hypothetical clay and in Table 4 for the hypothetical loam. For the clay,
uncertainties were reduced by more than 50% for six parameters using al/ data.
The prior distributions for the remaining parameters were left unaltered or only
slightly changed by the process. These parameters were also least sensitive
according to the Morris analysis (Fig. 9a and b). The true values of d, n*, K, and D,
were within one standard deviation of the posterior mean value, indicating that the
posterior distributions of these parameters converged towards their true values
during the iterative process. The mean value for K, s« was smaller than the true
value. The underestimation of Ky, Was probably compensated by an
underestimation of O,c sat.

Uncertainties were reduced in eight parameters for the hypothetical loam using
all data (Table 4). In addition to the parameters for which the uncertainty was
reduced for the clay, also the uncertainty for 6., was reduced. This is in
accordance with the Morris analysis, which showed that this parameter was more
sensitive for the loam (Fig. 9a and b). The macroporosity was also successfully
identified. Even though n~ was identified both accurately and with high precision, it
was evident from a visual inspection of the histograms of its posterior distribution,
that it converged towards the lower limit of its uncertainty interval.

Table 3. Results from the PIMLI analysis for the hypothetical clay soil. The table shows
true values, mean values and standard deviations (in parenthesis) for the posterior
distributions after ten iterations, and reduction coefficients defined as one minus the
posterior standard deviation divided by the prior standard deviation.

Parametert True value Posterior Reduction coefficient
All data Limited data All data Ltd data
d 20 20.5"(3.66) 19.9°(3.25) 0.72 0.75
Bimac.sat 3.0 2.71(0.19) 2.907(0.24) 0.86 0.82
n (-) 3.0 3.16(0.27) 2.99%(0.25) 0.81 0.83
Ky 1.0 1.05%(0.16) 1.09%(0.19) 0.69 0.65
Knao.sat 50 37.0(8.3) 37.9(8.07) 0.57 0.58
o 0.02 0.020°(0.010)  0.021°(0.011) 0.09 0
N 1.1 1.09%(0.030) 1.09%(0.030) 0 0
0, 5.0 5.0°(1.9) 5.0°(1.9) 0 0
D, 3.0 2.90%(0.24) 3.0°(1.15) 0.80 0
Zumix 1.0 1.75(0.72) 1.75(0.72) 0 0
A 0.5 0.57(0.29) 0.57(0.29) 0 0
Bee 5.0 5.07(2.89) 5.0°(2.89) 0 0

* The true value is within one standard deviation.

+ d (mm), diffusion pathlength; 6, s (%), macroporosity; n" (), kinematic exponent; K,
(mm h"), saturated micropore hydraulic conductivity; K (mm h), saturated macropore
hydraulic conductivity; a (-), van Genuchten alfa; N (-), van Genuchten N; 6, (%), residual
water content; D,, (cm), dispersivity; z; (mm), mixing depth; A (-), micropore tortuosity
factor; .. (%), excluded water due to anion exclusion.
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Table 4. Results from the PIMLI analysis for the hypothetical loam soil. The table shows
true values, mean values and standard deviations (in parenthesis) for the posterior
distributions after ten iterations, and reduction coefficients defined as one minus the
posterior standard deviation divided by the prior standard deviation.

Parametert True value Posterior Reduction coefficient
All data Limited data All data Ltd data
d 5 5.12"(0.61) 4.85"(0.48) 0.96 0.97
Ormac.sat 3.0 3.07°(0.42) 3.287(0.31) 0.68 0.77
n (-) 3.0 2.727(0.53) 2.23(0.17) 0.63 0.88
Ky 3.0 2.817(0.53) 1.25(0.22) 0.61 0.84
Kinac.sat 50 40.8°(15.1) 26.0(5.45) 0.22 0.72
o 0.05 0.0437(0.0086)  0.036(0.0054) 0.41 0.63
N 1.5 1.50%(0.088) 1.50%(0.088) 0 0
0, 5.0 5.0°(1.9) 5.0°(1.9) 0 0
D, 3.0 3.057(0.20) 3.0°(1.15) 0.83 0
Zumix 1.0 1.75(0.72) 1.75(0.72) 0 0
A 0.5 0.5°(0.29) 0.5°(0.29) 0 0
Bexe 5.0 3.96"(2.47) 2.61(1.81) 0.14 0.37

" The true value is within one standard deviation.

T d (mm), diffusion pathlength; 0/, < (%0), macroporosity; n" (-), kinematic exponent; K,
(mm h™), saturated micropore hydraulic conductivity; Kpsesa (mm h™), saturated macropore
hydraulic conductivity; o (-), van Genuchten alfa; N (-), van Genuchten N; 0, (%), residual
water content; D,, (cm), dispersivity; z,,;, (mm), mixing depth; A (-), micropore tortuosity
factor; 0. (%), excluded water due to anion exclusion.

When only limited data were used, the process did not reduce the uncertainty in D,
independent of soil type. The posterior distributions of the other parameters were
generally similar to those obtained using all data except for Ky, n and Kinac.sat
which had larger reduction coefficients and converged towards even smaller (and
incorrect) values for the loam. The failure to constrain D, did not have a large
effect on the posterior distributions of the other parameters but might be important
for the identification of sorption and transformation parameters in simulations with
reactive solutes.

In all cases, measurements with large information content were generally found
during the first irrigation cycle. For successful identification of d, Oyacsar and Ko,
the peak outflows and the concentrations in the recession phases must be captured.
This indicates that high time-resolution measurements during the first irrigations
following application will result in data containing more information for parameter
identification than low time-resolution data obtained from a larger number of
irrigations.

The field data set

MACRO could fairly well simulate observations of soil water contents, drainflow,
both resident and effluent concentrations of bromide and bentazone from the Lanna
field site (Table 5). Visual comparisons are presented in Paper III. The largest EF
values for individual groups were in most cases much larger than the corresponding
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EF value obtained from the best overall simulation obtained with GLUE. This is
generally the case for multi-criteria problems (Gupta, Sorooshian & Yapo, 1998)
and reflects errors in model process descriptions, parameterisation and
measurements. Comprehensive data sets, such as Lanna, are needed to highlight
these problems.

Table 5. Model efficiencies (EF) for simulations using the optimal sequential uncertainty
domain parameter fitting (SUFI) parameter values, the best generalized uncertainty
estimation (GLUE) parameter set and the optimal GLUE parameter set for each group.

Group SUFI GLUE Optimal
Soil water contents 0.483 0.512 0.539
Drainflow 0.258 0.300 0.437
Resident bromide concentrations 0.215 0.340 0.797
Flux bromide concentration 0.164 -0.199 0.327
Resident bentazone concentrations 0.802 0.688 0.816
Flux bentazone concentrations -0.0751 -0.194 0.312
All groups (=EF ) 0.308 0.241 -

The SUFI procedure reduced all initial uncertainty domains except for d in the
subsoil (Table 6). However, many GLUE simulations with parameter values lying
outside the SUFI posterior uncertainty domains had EF values larger than the
threshold (Paper III), indicating that the uncertainty domains were sometimes
reduced too much. Many parameter sets sampled from within the posterior
uncertainty domains resulted in poor simulations with the minimum EF value being
—3.2. This is probably because SUFI did not determine the posterior uncertainty
domains correctly in all cases and does not account for parameter correlations.

Table 6. Initial and final uncertainty domains for SUFI and optimal parameter values
obtained from both the SUFI and GLUE procedures.

Parametert Initial Posterior Optimal SUFI Parameter
uncertainty uncertainty parameter value for best
domain domain value GLUE
simulation
Ky, 1-175 cm, 0-0.25 0.0833-0.167 0.104 0.119
(mm/h)
dyop (mm) 0-300 50-300 70.8 61.5
dgp (mm) 0-300 0-300 75.0 82.4
Ko (cm® g7 0-16 0-2.67 0.222 1.83
Hiop (dh 0-0.25 0.0556-0.125 0.0845 0.0708
Hsup (A7) 0-0.25 0-0.0833 0.0208 0.0309

+ K., saturated micropore hydraulic conductivity; d, diffusion pathlength; K, organic
carbon partition coefficient; p, degradation rate coefficient. The subscripts top and sub
denote topsoil and subsoil respectively.
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The results from the GLUE analysis using different groups of data for parameter
conditioning are presented in Fig. 10. Using A4/l gave the highest degree of
parameter conditioning. However, not all parameters were highly conditioned even
with such a comprehensive data set as Lanna. The diffusion pathlength in the
topsoil was especially difficult to identify. The highly irregular pattern of the
hourly rainfall used as driving data results in different flow rates in the macropores.
The different time scales for equilibration between pore domains are likely to
reduce the possibilities to identify the diffusion pathlength (see Exchange between
pore domains), which may have contributed to the poor conditioning in the topsoil.
The parameters were generally poorly conditioned by Res. This is not surprising
for K, and dy,, considering the low sensitivity of these macropore flow parameters
to this type of measurement. The failure to condition K4 and iy, is probably due to
infrequent sampling in time and large spatial variability of these field
measurements (Larsson & Jarvis, 1999). A high degree of conditioning was
attained using NoTracer for all parameters except K, and d,,. Differences in
parameter conditioning between A/l and NoTracer show that tracer data contain
information on solute transport that is not included in the bentazone data. This
indicates that parameter correlations can lead to incorrect estimates when tracer
data are lacking.

Random sampling of the SUFI posterior uncertainty domains resulted in larger
prediction uncertainty compared to GLUE (table 7). This is because the SUFI
posterior uncertainty domains contain parameter combinations that are poor
simulators due mainly to parameter correlations. Table 7 shows that A/l and
NoTracer resulted in the smallest prediction uncertainty ranges.
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Fig 10. Cumulative likelihood distributions for parameter conditioning with generalised
likelihood uncertainty estimation (GLUE) using different combinations of observations. The
number of acceptable simulations included in each combination of groups is denoted n. The
term K, is the saturated matrix hydraulic conductivity, K, is the organic carbon partition
coefficient, d is the diffusion pathlength and p is the degradation rate coefficient. The
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Table 7. Results from the predictive simulations for SUFI and GLUE using different
combinations of observations.

Maximum bentazone concentration in Accumulated losses of bentazone
drainflow through drains
Sth 50th 951h Sth Soth 951h
percentile  percentile  percentile  percentile  percentile  percentile
mgm” [%]
SUFI 37.4 76.0 279 2.03 4.99 22.4
All 40.9 95.2 198 2.56 7.19 18.7
Res 45.2 139 383 1.24 6.47 23.5
Flux 67.1 155 316 5.37 11.7 21.2
NoTracer 79.7 142 237 4.58 8.59 17.1

Conclusions

The use of implicit numerical solutions for water flow, solute transport and heat
flow in the improved version of the MACRO model reduces run times significantly
compared to explicit solutions even when a much finer spatial discretisation is used
in the implicit schemes. Reasonably short run-times are a prerequisite for
successful parameter identification using inverse modelling. The improved model
could accurately simulate high time-resolution measurements of percolation rate,
leaching rate and resident chloride concentrations from laboratory microlysimeter
experiments showing a high degree of preferential flow. Data of soil water
contents, drainflow and flux and resident concentrations of bentazone and bromide
from a field experiment on a structured clay soil were fairly well simulated.

Data from laboratory microlysimeter experiments contained enough information
to reduce the prior uncertainty of the parameter describing mass exchange between
pore domains, the saturated matrix hydraulic conductivity and the macroporosity.
Simultaneous identification of the macroporosity, the macropore hydraulic
conductivity and the kinematic exponent was not possible, probably because of
parameter correlations. Using numerically generated data representing one clay and
one loam soil it was shown that high time-resolution measurements of resident
concentrations were needed to reduce the uncertainty in the dispersivity (dispersion
length) and to avoid biased estimates of the saturated micropore and macropore
hydraulic conductivities for the loam.

Measurements with large information content for parameter identification were
found during the first irrigations after solute application for the hypothetical soils.
Data on peak outflows and effluent concentrations at the end of recession phases
contained most information for identification of the parameter describing mass
exchange between pore domains, the saturated matrix hydraulic conductivity and
the macroporosity. This indicates that high time-resolution measurements during

39



the first irrigations following application will provide more information than low
time-resolution data from a larger number of irrigations.

All groups of data from the field experiment were needed to get highly
conditioned and unbiased parameter estimates using GLUE. However, the
parameter describing mass exchange between pore domains was poorly
conditioned even with a very comprehensive data set. SUFI decreased the initial
uncertainty domains significantly for all parameters except for the diffusion
pathlength in the subsoil. However, random sampling from SUFI posterior
uncertainty domains resulted in larger prediction uncertainty compared to GLUE.
This is because these domains contain parameter combinations that are poor
simulators due mainly to parameter correlations.

Future research and recommendations

We must keep in mind the goals of modelling, which may be to increase our
understanding of the system that we simulate, or, to make as accurate predictions
as possible. When the goal is to make predictions it is of limited use to ensure that
a calibration problem is well-posed by reducing the number of parameters.
Calibrated values will be dependent on the assumed values of the parameters not
included and the bias in parameter values might have consequences for model
predictions when the setting is changed, for example from the lysimeter scale to the
field scale, or when the precipitation pattern changes. By reducing the number of
calibrated parameters we are saying that the model is overparameterised, not only
for the experiment used for optimisation, but for all cases where the calibrated
parameter distributions are used. This might of course be the case, but it certainly
needs to be proven before accepted. Hence, the best way to deal with equifinality is
to accept it.

Although there has been great progress in preferential flow modelling during the
last two decades there are still problems that need to be resolved to increase
confidence in modelling results. Model descriptions can certainly be improved but
an increase of model complexity will be of limited use as long as the uncertainty in
parameterisation is large. Therefore, parameter identification remains one of the
greatest challenges in this area of research. Data from tracer microlysimeter
experiments can be used to reduce the uncertainty in parameters determining the
degree of preferential flow. However, the applicability of these parameters
especially for field conditions should not be taken for granted. The simplifications
in the first-order mass transfer approach require that the effects of changing both
spatial and temporal scales are examined before calibrated values are used for
predictions.

We have seen that probabilistic approaches generated new knowledge about the
possibilities and limitations of parameter identification in dual-permeability models
for water flow and solute transport. Although it is not possible to objectively
determine the posterior parameter probability distributions, these methods can be
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used to study effects of data availability on the uncertainty in parameterisation and
predictions and to evaluate for which parameters a reduction of the uncertainty will
be critical. The search for unique ‘optimal’ parameter values in dual-permeability
models should be abandoned in favour of probabilistic approaches.
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