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Discovery of a Novel Pathway for an SLE-related Disease 
Complex in the Canine Breed Nova Scotia Duck Tolling Retriever  

Abstract  
The dog is an excellent model to study inherited complex diseases, due to its unique 
population history and haplotype structure. In this thesis, dogs from the breed Nova 
Scotia duck tolling retriever (NSDTR) have been used as a model for defining the 
genetic factors controlling a systemic lupus erythematosus (SLE)-related disorder 
called immune-mediated rheumatic disease (IMRD) and a steroid responsive 
meningitis-arteritis (SRMA). 

IMRD is characterized by stiffness, mainly after resting, and pain from several joints 
of extremities and/or muscle pain. The majority of the affected dogs show anti-nuclear 
antibody (ANA)-positivity that can be divided either into a speckled (ANAS) or 
homogenous (ANAH) staining pattern. Dogs affected by SRMA display severe neck 
pain, fever and stiffness and an increased infiltration of immune cells in cerebrospinal 
fluid in the acute phase of disease. SRMA dogs show a negative ANA result.  

We performed a candidate gene study to investigate if dog leukocyte antigen (DLA) 
class II is associated with the canine SLE-related disease. An increased risk for ANAS 
dogs was observed for a homozygous risk haplotype and a general homozygosity at 
DLA class II gives ANAH dogs an increased risk for developing disease. 

Genome-wide association mapping identified additional susceptibility loci for the 
SLE-related disease on canine chromosomes (CFA) 3, 8, 11, 24 and 32. Further 
analysis revealed that most ANAS dogs homozygous for the DLA risk haplotype also 
have the genetic risk factors at CFA 11 and 32. Re-sequencing of the five associated 
regions was performed to identify specific genes and genetic variants involved in the 
disease. 

Expression studies of the candidate genes for ANAS dogs revealed that the PTPN3 
(CFA 11) gene is downregulated and that DDIT4L and BANK1 (CFA 32) is upregulated 
in dogs with the risk haplotype. The identified genes may be important in T-cells, B-
cells and possibly macrophages. 

This thesis describes the first successful mapping of a complex trait in the dog and 
shows that MHC class II together with two other identified genetic risk factors 
contribute to development of systemic autoimmune disease.  
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1 Introduction 

1.1 The domestic dog as a model 

The exact time and location of the domestication process of the dog from its 
grey wolf ancestors is debated and several efforts have been made to identify 
its origin. Fossil records of dog-like skeletons have been dated back 33,000 
years ago (Ovodov et al., 2011), where mitochondrial DNA (deoxyribonucleic 
acid) analysis and single nucleotide polymorphism (SNP) data dates the 
domestication process ~15,000 years back (Larson et al., 2012; Pang et al., 
2009; Savolainen et al., 2002; Vila et al., 1997). How the dog was 
domesticated is also unclear (Niskanen et al., 2013; Ding et al., 2012). One 
hypothesis is that human selected wolfs to fulfill their purposes (e.g. a friendly 
behavior and good hunting skills). Both behavioral and morphological 
differences occur between dog and wolf and efforts have been made to identify 
genetic differences responsible for such traits. A genome-wide association 
study (GWAS) performed in several dog breeds and 12 wolfs distributed 
world-wide was performed and identified strong selection for genes important 
in brain function, starch digestion and fat metabolism, which may underlie an 
adaptation to a starch rich diet (Axelsson et al., 2013).  

During the dog domestication process a first bottleneck occurred, 
decreasing the genetic pool, since it is believed that only a limited number of 
wolfs were founders of the dog population. A second bottleneck occurred 
recently, during breed creation, creating around 400 different breeds worldwide 
(Fogle et al., 2000). Most breeds were shaped less than 200 years ago. The dog 
has been selected and bred for its unique characteristics, such as morphological 
traits (skull shape, body size, coat color etc.) as well as behavioral traits 
(hunting, herding, guarding, tolling and retrieving) creating a unique 
population structure, with each breed arising from a limited number of 
founders. This has resulted in a unique population structure within the dog. 
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Short ancestral haplotype blocks are shared between breeds, from the 
domestication of the wolf population and long haplotype blocks occur within a 
dog breed (Karlsson & Lindblad-Toh, 2008; Lindblad-Toh et al., 2005; Sutter 
et al., 2004). 

Many breeds share recent common ancestors meaning that they also likely 
share common disease-causing alleles, offering a unique opportunity for 
genetic studies (Parker et al., 2004). Dogs suffer from many of the same 
diseases as humans, such as cancer, epilepsy, heart diseases, allergies and 
autoimmune diseases. The different diseases have in both dog and human a 
similar frequency and the same genetic factors are often involved (Karlsson & 
Lindblad-Toh, 2008).  

Specific diseases occur in certain breeds, suggesting a common genetic 
component. The genetic variation is limited within breeds compared to 
between breeds, which gives canine studies unique opportunities to understand 
the genetic mechanisms of natural variation in mammals, including disease 
susceptibility (Ostrander, 2012; Shearin & Ostrander, 2010). 

 
There are several advantages for using the dog as a genetic model: 
Ø Similarities between the canine and human genome 
Ø Each breed represents a closed breeding pool 
Ø Homogeneity within a dog breed 
Ø Trait-causing mutations are identical-by-descent (IBD) within a breed 
Ø Same spontaneously occurring diseases as in humans 
Ø Human and dog share environment 
Ø Medical records and pedigrees accessible 
Ø Easier to identify associated loci of interest than in humans  
Ø Less cases and controls are needed 
 
Challenges when using the dog as a model include:  
Ø Difficult to obtain sufficient number of samples needed 
Ø Population stratification  
Ø High linkage disequilibrium (LD) can make it difficult to get from 

associated locus to mutation 
Ø Difficult to identify additional breeds that share the same phenotype for 

narrowing down associated regions 

1.1.1 Nova Scotia duck tolling retriever 

In this thesis, dogs from the breed Nova Scotia duck tolling retriever (NSDTR) 
have been used as a model for understanding the genetic factors controlling 
complex immune-mediated disease, as this breed has been shown to be 
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overrepresented to develop such diseases. The history of the NSDTR is 
interesting and important to remark since it influences the genetic studies and 
its interpretations of the results presented in this thesis. 

The NSDTR is bred for its special behavior– tolling. A tolling dog plays, 
runs and jumps around the shore, sometimes disappearing for creating a 
curiosity from birds, luring them to swim closer to the shore to appear within 
shooting distance to the hunter. After the hunter shoots the bird, the dogs are 
sent out to retrieve them (Figure 1) (Strang & MacMillan, 1996). 
 

 
 

Figure 1. Pancho, a Nova Scotia duck tolling retriever 
(NSDTR). These dogs are bred for their fox-like 
appearance that is used to attract and retrieve birds for the 
hunter (photo: R. Meijer).  

 
 
 

 
The origin of the NSDTR is slightly unclear and several speculations occur. 
Both the appearance and their special behavior (tolling) have been used in 
attempts to trace the breed’s background. 

The NSDTR as a breed may be traced to Europe before the sixteenth 
century where dogs with similar behaviors and appearance were described. It is 
believed that the NSDTR derives from the Dutch breed Kooikerhondje. These 
dogs were used by the Dutch people to lure ducks into traps – a similar 
behavior as the NSDTR, but without the retrieving qualities. From Holland 
these dogs were imported to England and France for their fox-like resemblance 
to lure ducks into the hunters nests. During the French colonization of Acadia 
(nowadays Nova Scotia, Canada), it is hypothesized that the French people 
brought these dogs over when they established their first permanent settlement. 
The NSDTR was developed in the Yarmouth region of Nova Scotia and first 
described in the early 1800s. At that time it was known as Little River Duck 
Dog or the Yarmouth Toller (Strang & MacMillan, 1996).  

Little is known of what happened during the coming 200 years. But crosses 
with different breeds have been proposed for the development of the modern 
NSDTR breed. Potential crosses with Labrador retriever, Chesapeake Bay 
retriever, Brittany spaniel, Golden retriever and perhaps some small farm collie 
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have been suggested (Perrin, 2012; Strang & MacMillan, 1996). It is important 
to understand the background of the NSDTR to ease the genetic studies and 
break down the high degree of LD within a dog breed by using related breeds.  

An important part of the history affecting the development of NSDTR is 
that canine distemper virus (CDV) outbreaks were reported to occur twice in 
history; in 1908 and 1912. This reduced the population size to only a few 
individuals. A theory is that the predisposition to autoimmune diseases in the 
modern NSDTR may be a result of the early NSDTRs ability to survive these 
outbreaks of CDV (Strang & MacMillan, 1996). A highly efficient immune 
response towards a virus or other pathogens can lead to that the body starts to 
react against a self antigen and treats it as foreign and initiates an autoimmune 
reaction directed towards the self antigen or cells expressing the antigen. 
NSDTRs are reported to have an increased incidence of a systemic lupus 
erythematosus (SLE)-related disease (immune-mediated rheumatic disease 
(IMRD)) (Hansson-Hamlin & Lilliehook, 2009), steroid-responsive 
meningitis-arteritis (SRMA) (Anfinsen et al., 2008; Redman, 2002) and 
Addison’s disease (Hughes et al., 2010; Hughes et al., 2007; Burton et al., 
1997). In our Scandinavian study population we most often see IMRD and 
SRMA (Hansson-Hamlin & Lilliehook, 2009), whereas in USA, Addison’s 
disease seems to be more common. One possible explanation to this is that 
different risk alleles segregate in these populations. Sometimes NSDTRs are 
also affected by hypothyroidism (unpublished observation).  

The first 15 NSDTR dogs were registered in the Canadian Kennel Club in 
1945, but these dogs were still a quite well kept secret of southwestern Nova 
Scotia. Breeding problems almost led to extinction of the population once 
again in the mid 20th century. Breeder enthusiasts saved the breed by using 13 
dogs that are the founders of the current NSDTR population. The first NSDTR 
was imported to Sweden in 1984 (Strang & MacMillan, 1996). It is currently a 
popular breed and around 400 dogs are registered in Sweden each year 
(Tollarklubben, 2007). 

1.1.2 Autoimmune and immune-mediated diseases 

Developments of autoimmune and immune-mediated diseases are dependent 
on both genetic and environmental risk factors. Combined, these factors will 
affect the overall reactivity of the immune system and control which antigen to 
be targeted. Autoimmune diseases are classified into two groups, organ-
specific and systemic autoimmune diseases. This is dependent on where the 
target antigen is expressed. In organ-specific autoimmune diseases the 
autoantigen only occurs in a certain tissue or cell type, whereas in systemic 
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autoimmune disease the response is directed against autoantigens expressed 
throughout the body. 

Autoimmune diseases occur in up to 3–5% in the general human population 
(Jacobson et al., 1997) and most organs in the body have an autoimmune 
disease connected (Marrack et al., 2001). 

Similar or sometimes the same genes are often involved in several 
autoimmune diseases. SLE may exemplify this, where the same genes or gene 
families are reported to be associated with other systemic rheumatic diseases or 
sometimes even organ-specific autoimmune diseases. One hypothesis is that 
there are genetic risk factors that are common to many autoimmune diseases 
and others that are specific for each disease (Shamim & Miller, 2000).  

Autoimmune diseases can be mediated by T-cells, where both CD4+ T-
helper cells and sometimes CD8+ T-killer cells have an important role and the 
organ damage is mediated by T-cells (e.g. type I diabetes) (Homann & von 
Herrath, 2004). In SLE, damage is initiated by autoantibodies and CD4+ T-
helper cells and an increased level of antibodies are observed. These antibodies 
form immune complexes and can cause glomerulonephritis (Kotzin, 1996). 

The dog share many autoimmune and immune-mediated diseases with 
humans, such as SLE-related disease vs. SLE in humans (the disease studied in 
this thesis). A few of them are described below (Table 1). 

Table 1. Examples of similar autoimmune or immune-mediated diseases that occur spontaneously 
in the dog and human. 

Dog disease Human disease 

Canine diabetes mellitus  Latent autoimmune diabetes of adults 
Hypoadrenocorticism Addison’s disease 
Primary immune-mediated haemolytic 
anaemia 

Autoimmune haemolytic anaemia 

Canine systemic lupus erythematosus 
(SLE)/ SLE-related rheumatic disease 
(ANA-positive) 

Systemic lupus erythematosus (SLE)/ SLE-related 
rheumatic disease (ANA-positive) 

Canine rheumatoid arthritis Rheumatoid arthritis 
Symmetrical lupoid onychodystrophy Several keratin disorders  
Canine lymphocytic thyroiditis  Hashimoto’s thyroiditis 
Necrotizing meningoencephalitis Acute forms of multiple sclerosis 
Uveodermatologic (UV) syndrome Vogt – Koyanagi – Harada syndrome 

 

1.1.3 SLE and SLE-related disease complex 

In humans, SLE is a heterogeneous autoimmune disease with a wide range of 
clinical signs. The classification is based on 11 different criteria defined by the 
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American College of Rheumatology (ACR) (Hochberg, 1997; Tan et al., 
1982), ranging from mild to severe symptoms. Four groups include 
dermatological signs (such as butterfly rash, discoid rash, photosensitivity and 
oral ulcerations) and another four groups include systemic criteria (arthritis, 
serositis, renal and neurological disorders). Laboratory findings include 
haematologic disorders and immunologic disorders (such as groups based on 
ANA-positivity). Four (or more) of the criteria are required for an SLE 
diagnosis (Hochberg, 1997; Tan et al., 1982).  

Attempts to create a similar list of criteria for SLE in dogs have been made, 
but no consistent list exists. Therefore it is often more difficult to diagnose 
canine SLE. Moreover, ANA positive dogs usually show clinical signs with 
focus on stiffness and musculoskeletal signs and more seldom impact of other 
organs. Thus, the disease in these dogs is often called SLE-related disease 
(Hansson et al., 1996).  

NSDTRs have been shown to be overrepresented to develop immune-
mediated disease complexes; mainly the SLE-related disorder IMRD and 
SRMA. These disorders have been genetically investigated in this thesis. 

When the genetic studies started in 2007 it was unclear if these diseases had 
a correlation or if they were separate disorders. One of the aims of this project 
was to define whether unique or combined genetic risk factors occur within the 
disease complex/complexes. 

IMRD is characterized by stiffness, mainly after being inactive, pain from 
several joints of extremities and muscle pain. Sometimes fever and skin 
problems are observed, while concurrent liver and kidney changes are rare. 
Initial signs of disease are usually shown between 2-6 years of age. Most 
affected dogs have high serum concentrations of anti-nuclear antibodies (ANA) 
and are therefore termed ANA-positive. Treatment usually involves 
corticosteroids and the results may differ. For some dogs, treatment eventually 
may be withdrawn while in a minority of cases corticosteroid-treatment is 
insufficient. Most dogs need a lifelong corticosteroid-treatment with a low dose 
(Hansson-Hamlin & Lilliehook, 2009). During 2010-2011, 16 NSDTR newly 
diagnosed dogs with an ANA-positive phenotype were reported to us at the 
University Animal Hospital, Swedish University of Agricultural Sciences 
(SLU), Uppsala, Sweden. ANA tests may be performed at other clinics, but the 
majority of the cases are sent to the clinic at SLU. Around 400 NSDTRs are 
registered each year, suggesting an incidence of at least 2% in the Swedish 
population. However, a longer time period is needed to obtain conclusive 
results. The incidence of 2% is most likely an underestimate, but it gives an 
indication of how common this disease is in the Scandinavian NSDTR 
population. In 2003, another study estimated the prevalence of IMRD in the 
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Swedish population by sending out a health form to all dogs born 1998. 35% of 
the dogowner responded and the prevalence of IMRD was estimated to 2.3% 
(Tollarklubben, 2007). 

Dogs affected by SRMA display severe neck pain, fever and stiffness. The 
age of onset is usually between 4-19 months. An increased infiltration of 
immune cells can be seen during investigation of cerebrospinal fluid in the 
acute phase of disease. SRMA dogs always show a negative ANA result. 
Corticosteroids are often recommended for these dogs as well, usually with a 
remarkably good response within one or two days (Anfinsen et al., 2008). In 
the study from 1998, the prevalence of SRMA in Sweden was predicted to 
3.0% (Tollarklubben, 2007). 

Our hypothesis was that IMRD and SRMA represent two separate disorders 
with some common but mostly distinct genetic risk factors. In our genetic 
studies we therefore considered the IMRD and SRMA as two separate 
disorders but also analyzed them for shared genetic risk factors. Clinically the 
phenotypes look very different, although they both seem to have an immune-
mediated background. 

1.1.4 Antinuclear antibodies (ANA) 

During an immune response against extracellular pathogens, professional 
antigen-presenting cells process the antigens and present peptides on major 
histocompatibility complex (MHC) class II molecules to the T-cell receptor 
(TCR) on CD4+ T helper cells. After such an antigen-presentation of the 
extracellular antigens, antibodies are produced by B-lymphocytes. In 
autoimmune diseases autoantibodies are produced against self-antigens. Such 
autoantibodies may be used as a hallmark for several autoimmune diseases in 
both humans and domestic animals.  

ANA are autoantibodies directed against different nuclear antigens and are 
found in patients with certain systemic rheumatic diseases, including SLE, in 
both humans and dogs (Kavanaugh et al., 2000; Hansson et al., 1996). ANA 
can be subdivided according to their specificity. In humans, certain 
autoantibodies have been shown to produce distinct patterns of staining when 
they react with specific antigens e.g. dsDNA (double-stranded DNA) 
(Kavanaugh & Solomon, 2002), histone (Burlingame & Rubin, 1991), Sm 
(Smith antigen, a complex of ribonucleic acid (RNA) and protein) (Tan & 
Kunkel, 1966), RNP (ribonucleoprotein, react with proteins present in the U1 
snRNP complex) (Benito-Garcia et al., 2004), SSA/Ro (two proteins, Ro60 
localized to the nucleus and nucleolus and Ro52 localized in the cytoplasm) 
(Chan et al., 1991) and SSB/La (RNA-binding protein important in 
transcription mediated by RNA polymerase III) (Chambers et al., 1988). 
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In general, anti-dsDNA and -histone antibodies produce a homogenous 
staining pattern (ANAH), whereas anti-Sm, -RNP, -SSB/La and -SSA/Ro 
produces a speckled pattern (ANAS). ANAH is associated with antibodies 
directed against chromosomal antigens, whereas ANAS is associated with 
antibodies against non-chromosomal antigens. Moreover, autoantibodies 
directed towards certain specific antigens are in humans correlated to different 
specific disorders and some specific autoantibodies occur in several disorders 
(Tan, 1989). A specific marker for SLE is Anti-Smith (Anti-Sm) antibodies 
and anti-dsDNA (Kavanaugh & Solomon, 2002; Tan & Kunkel, 1966). 

When conducting the immunofluorescence (IIF) ANA-test on canine sera, 
these patients usually display either a homogenous or a speckled staining 
pattern. The specific autoantigens may be difficult to determine with traditional 
methods in SLE-related disease in dogs (Hansson & Karlsson-Parra, 1999). 
Anti-RNP and anti-dsDNA antibodies have been reported in several dog breeds 
displaying ANA reactivity (Lin et al., 2006; Monier et al., 1992). The specific 
ANA-reactivity in IIF ANA-positive NSDTR dogs is so far unknown.  

Dogs from several different breeds have been reported to be affected by an 
SLE-like disease (including a positive ANA-test) such as the German shepherd 
(Hansson et al., 1996; Thoren-Tolling & Ryden, 1991). 

A study conducted using dogs from 27 different breeds affected by SLE or 
SLE-related disease showed that 25% had a homogenous (ANAH) staining and 
had clinical signs from multiple organs. The other 75% showed a speckled 
pattern (ANAS) with musculoskeletal disorders, fatigue and fever (Hansson-
Hamlin et al., 2006)(Figure 2). Similar results were obtained in a study using 
33 NSDTRs where 39% showed a homogenous staining pattern and 61% 
showed a speckled pattern (Hansson-Hamlin & Lilliehook, 2009). 

 
 



 19 

 
Figure 2. ANA-staining patterns in dogs shown by the indirect immunofluorescence (IIF) ANA-
test. Homogenous staining shows reactivity in the chromosomal regions whereas speckled 
pattern lack chromosomal activity. (Modified with permission from (Hansson-Hamlin et al., 
(2006))  

Besides SLE and SLE-related diseases, a positive ANA-test in the dog has also 
been observed in a few other autoimmune diseases. Gordon setter dogs with 
symmetrical lupoid onychodystrophy (Ovrebo Bohnhorst et al., 2001) and 
beagles with autoimmune thyroiditis (Vajner, 1997) may display ANA-
positivity (30-35% vs. 10%).  

1.1.5 Similarities to human SLE  

Some symptoms are shared between human SLE and SLE-related disease 
complex in the dog, such as arthritis and a positive ANA test (Hansson-Hamlin 
& Lilliehook, 2009) (Table 2). Other symptoms that occur in both species are 
skin symptoms, fever, and liver problems. Kidney problem is rarely seen in the 
dog but do occur. MHC class II has also been identified as a genetic risk factor 
in both humans and the dog (Paper I and III) (Fernando et al., 2008).  

Table 2. Shared clinical symptoms between human SLE and the SLE-related disease affecting 
NSDTR. 

 ANA + Joint Skin Fever Liver Kidney MHC class II 

Dog Yes Yes Sometimes Sometimes Sometimes Rarely Yes 
Human Yes Yes Yes Yes Yes Yes Yes 

 
Women in childbearing age are more often affected than men (80-90%) 
(Danchenko et al., 2006), which is a difference compared to the SLE-related 
disease in NSDTR dogs, where a similar distribution is observed between 
gender (Hansson-Hamlin & Lilliehook, 2009). In general, there are no gender 
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differences observed in autoimmune diseases in the dog and the reason why is 
unknown. 

Both genetic components and environmental factors are involved as risk 
factors for development of the disease. More than 40 different genetic risk 
factors have been identified and confirmed in humans, many of importance for 
B- and T-cell activation, type I interferon, immune-complexes and toll-like 
receptors (Cui et al., 2013).  

Genetic data identified in the SLE-related disease and presented in this 
thesis implicates the importance of a T cell-specific pathway (Paper I-III). 
Several genes important for T cell-specific signaling and activation have also 
been identified in humans with SLE, including the human leukocyte antigen 
(HLA) class II region, PTPN22, TNFSF4, STAT4 and CD44 (Table 3). 
Interestingly, all of these genes have also been denoted as risk factors in 
several other autoimmune diseases (Cui et al., 2013). 

Table 3. Genetic risk factors associated with T-cell signaling or activation identified in human 
SLE patients. 

Chromosome Gene SNP type Reference 

1p13 PTPN22 exonic (Criswell et al., 2005) 
1q25.1 TNFSF4 intergenic (Cunninghame Graham et al., 2008) 
2q32.3 STAT4 intron (Remmers et al., 2007) 
6p21.32-33 HLA-DQA1, HLA-DQA2 intergenic (Chung et al., 2011) 
6p21.32-33 HLA-DR3 intron (Chung et al., 2011) 
6p21.32-33 HLA-DRB1 intergenic (Gateva et al., 2009; Han et al., 2009) 
11p13 CD44 intergenic (Lessard et al., 2011) 

 
PTPN22 (protein tyrosine phosphatase, non-receptor type 22) is associated 
with the inhibition of T-cell receptor and development of autoantibody 
production (Criswell et al., 2005). Tumor necrosis factor superfamily 4 
(TNFSF4) is a co-stimulatory molecule for CD4+ T helper cells and is 
expressed on activated antigen-presenting cells. TNFSF4 show correlation to 
increased expression in patients with SLE (Cunninghame Graham et al., 2008). 
STAT4 (Signal transducer and activator of transcription 4) transmits signals 
from cytokines, type I interferons and interleukins (-12 and -23) and stimulates 
transcription of genes important for T-cell differentiation (Th1) (Nishikomori 
et al., 2002). CD44 is a cell-surface glycoprotein and is important in 
lymphocyte activation. T-cells from SLE patients have shown overexpressed 
CD44 (Li et al., 2007). The HLA class II region is the strongest genetic risk 
factor for SLE (Chung et al., 2011; Gateva et al., 2009; Han et al., 2009) and 
has been associated to a number of autoimmune diseases in humans like 
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multiple sclerosis, rheumatoid arthritis and type I diabetes (Fernando et al., 
2008).  

Most of the associated SNPs in the studies described above occur in non-
coding regions. There are infrequently SNPs occurring in regions with a known 
function, such as in coding region, splice site mutation or 3’ or 5’ untranslated 
regions (UTR). The mutations are more likely to be important for gene 
regulation, transcription factor binding sites, enhancers or promoters. 

The genes identified as risk factors for human SLE are only explaining a 
small part of the inheritance of the disease, only showing odds ratios (OR) with 
a median effect (~1.25) (Manolio et al., 2009; Pawitan et al., 2009). A higher 
concordance rate in monozygotic twins than in dizygotic twins or siblings has 
been observed, but lack complete concordance (Alarcon-Segovia et al., 2005). 
The low OR and missing heritability suggests an important role for the 
environmental factors in the pathogenesis of SLE.  

There is also extensive clinical heterogeneity of SLE. By using the SLE-
related disease in NSDTR as a model, we may discover new genes and 
pathways involved in the development of SLE and provide improved 
subdivision of patients dependent on the same immunological subgroup. 

1.2 Mapping the first complex trait in the dog 

In 1989, DNA sequencing identified the first genetic variant for an inherited 
canine disorder, haemophilia B. A single missense mutation was identified in 
the canine Factor IX gene, which encodes a glycoprotein that is required for 
blood coagulation (Evans et al., 1989). The rapid developments of high-density 
SNP arrays, nucleotide sequencing technologies and the sequencing of 
genomes have made it easier and possible to identify loci also for a complex 
trait.  

The results presented in this thesis describe the first successful genetic 
mapping of a complex trait in the domestic dog. Previously, genetic mapping 
of several monogenic diseases or traits have been described in the dog such as 
the gene encoding the sleep disorder narcolepsy (Lin et al., 1999). Two proof-
of-principle GWAS were previously performed on monogenic traits, the white 
spotting locus and the hair ridge in Rhodesian ridgebacks (Karlsson et al., 
2007) predisposing dermoid sinus (Salmon Hillbertz et al., 2007). The results 
in this thesis have used a combination of three different strategies, a candidate 
gene approach to investigate the dog MHC class II, a genome-wide association 
mapping (GWAM) to unbiased search for risk loci and next generation 
sequencing technologies to identify genetic variants important for mechanisms 
involved in disease development. The sequencing of the dog genome and 
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techniques used to identify associated regions are described in the following 
sections.  

1.2.1 The dog genome and genetic variation 

The report of a draft sequence of the human genome in 2001 (Lander et al., 
2001; Venter et al., 2001) opened up new doors to study the genome in depth. 
In 2005, the dog genome sequence of a female boxer, Tasha, was published, 
covering 99% of the genome (Lindblad-Toh et al., 2005). This dog was chosen 
based on tests for a low rate of heterozygosity, which makes it easier to 
assembly the sequences and generate a better quality of the genome sequence. 

The dog has 38 autosomal chromosomes and the sex chromosomes X and 
Y. The genome structure is 2.4 Gb in size and contains 20,657 protein-coding 
genes with RNA-sequencing evidence (M. Grabherr, personal communication). 
The dog genome is smaller than the human and mouse genomes, partly because 
of a lower amount of some repeat insertions including endogenous retroviruses 
in the dog genome (Barrio et al., 2011). The mechanisms underlying this 
difference are unknown but could be caused by a combination of canids being 
more efficient in purging repetitive DNA sequences and having a more 
restricted number of canid-specific infectious retroviruses. Overall, 94% of the 
dog genome is in conserved synteny to the human and mouse genomes 
(Lindblad-Toh et al., 2005). Some genes that only appear in the dog genome 
are genes encoding G protein-coupled olfactory receptors. This is a result of 
positive selection for duplications in this gene family leading to canid-specific 
expansion of such genes. 

In parallel to the sequencing of the dog genome, SNP discovery was 
performed using dogs from 11 different breeds, which identified 2.5 million 
SNPs (on average 1 SNP per 1,000 base pair (bp)) (Lindblad-Toh et al., 2005). 
Types of variation that occur within the genome are SNPs, insertions or 
deletions (InDels) and other structural variations such as copy number variants 
(CNV) - deleting or duplicating a large region of the DNA and inversions - a 
chromosome rearrangement. 

Within a dog breed LD is extensive with haplotypes extending 0.5-1.0 mega 
bases (Mb) in size, but between breeds LD is only around 10 kilo bases (Kb). 
Some breeds share longer haplotypes within the shorter ones, suggesting that 
shared genetic risk factors can occur, due to the two bottlenecks described in 
chapter 1.1 (Karlsson & Lindblad-Toh, 2008; Sutter et al., 2004).  

1.2.2 Candidate gene approach 

The genes studied in a candidate gene approach are chosen based on a 
hypothesis-biased search. The genes can be located in a place in the genome 
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previously associated with linkage studies, the genes may be involved in the 
same pathway as other genes implicated to be important for the disease, genes 
may be expressed in cells or tissues important and relevant for the disease or 
associated in other model organisms with same/similar disease.  

Most commonly, SNPs are genotyped to tag associated haplotypes, but 
sequencing can also be used for part of a gene, the entire gene, promoters and 
conserved elements. The candidate gene approach is useful, because less 
markers and samples are needed to generate sufficient statistical power and less 
multiple testing corrections are required. It is also of lower cost than more 
high-throughput methods.  

The candidate gene approach was used for Paper I and III for sequencing 
the polymorphic exon 2 of MHC class II, because it is known as an important 
genetic risk factor in SLE and other autoimmune diseases in humans, mice and 
other mammals. The biological function of MHC class II molecules as antigen-
presenting molecules is also of relevance for the disease development. 

1.2.3 Genome-wide association mapping  

Genome-wide association mapping (GWAM) was used in Paper II to perform 
an unbiased scan of the entire genome in controls and cases affected by the 
SLE-related disease in NSDTR. The dog-sequencing project (Lindblad-Toh et 
al., 2005) identified a large number of SNPs used to create canine SNP 
genotyping arrays used for GWAM. The first SNP array contained 27,000 
markers (Karlsson et al., 2007). Subsequently, a 22K array (that was used in 
Paper II in this thesis) and 50K were developed and finally the high density 
173K genotyping array (Vaysse et al., 2011) is now available.  

When performing a GWAS, the entire genome is scanned in all individuals 
from a case-control population in an attempt to find regions where the affected 
individuals are genetically identical and differ from the healthy controls, 
defining an associated haplotype. The associations can either be a single 
marker in LD with the causative mutation, an associated haplotype or the 
actual causative mutation. In dogs, like other domestic animals, this approach 
is particularly powerful since dog breed creation occurred recently, few 
recombination events have occurred and long haplotype blocks can be 
identified that potentially share the trait of interest, an IBD region. The 
advantage of using the dog is that fewer markers, compared to e.g. humans are 
needed. It has been estimated that 10,000 to 15,000 SNPs are sufficient in the 
dog (Lindblad-Toh et al., 2005; Sutter et al., 2004) compared to 300,000 to 
1,000,000 in humans (Gabriel et al., 2002).  

Fewer samples are also needed in the dog compared to humans. It has been 
estimated that to map a Mendelian recessive trait in the dog, only 20 cases and 
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20 controls are needed and that for a complex disease an allele conferring a 5-
fold increased risk requires 100 cases and 100 controls to have 98% chance of 
being detected (Karlsson & Lindblad-Toh, 2008; Karlsson et al., 2007; 
Lindblad-Toh et al., 2005). Compared to humans, larger study populations are 
needed e.g. 6,000 cases and 6,000 controls would generate 94% power to 
detect disease susceptibility variants with an odds ratio of 1.3 and minor allele 
frequency (MAF) of 0.1 (Wang et al., 2005). 

The study population used is a case/control cohort based on strict inclusion 
and exclusion criteria. In the dog it can be easier to collect random unrelated 
cases and controls than to collect complete families (as previously used in 
linkage studies). To avoid stratification it is important to use unrelated 
individuals from the same population structure, otherwise false positives may 
occur due to the heterogeneity effect.  

We used a 2-stage mapping strategy. In the first stage, GWAM, we used 
one breed with the disease or trait of interest. A homogenous study population 
is required to avoid false positives. The hypothesis is that the mutation arose 
before breed-creation. Allele frequencies between cases and controls are 
compared and long (around 1Mb) regions are identified. To narrow down 
associated regions the second stage is applied, fine-mapping. More SNPs are 
added to the associated regions and preferably samples from a related breed 
sharing the same disease or trait of interest. Since haplotypes are short (around 
10 Kb) across breeds the associated haplotype can effectively be narrowed 
down (Karlsson & Lindblad-Toh, 2008; Karlsson et al., 2007).  

Many studies have been successfully performed to map monogenic traits 
and in this thesis we present the first complex trait successfully mapped (Paper 
II). 

1.3 The role of MHC class II in canine autoimmune diseases 

Major histocompatibility complex (MHC) was described in the 1930s by Peter 
A. Gorer (Gorer, 1937). The organization of the region is highly conserved 
between species and consists of three classes: 

 
Ø MHC class I: expressed by all nucleated cells except neurons, present 

intracellular antigens and mediates CD8+ T killer cells to destroy infected 
cells. 

Ø MHC class II: expressed by professional antigen-presenting cells, presents 
extracellular antigens to CD4+ T helper cells, which leads to activation of 
B-cells to produce antibodies to the specific antigen. 
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Ø MHC class III: encode genes in the complement system (innate immune 
system). 
 

The data presented in this thesis have focused on the polymorphic genes of the 
dog MHC class II because of their well-established role as genetic risk factors 
for development of autoimmune disease.  

MHC class II genes are expressed as cell surface attached alpha/beta 
heterodimers on specialized leukocytes (professional antigen presenting cells 
such as dendritic cells, macrophages and B-cells) and act mainly as cell surface 
receptors for processed antigens of extracellular origin. These peptide antigens 
are bound to the polymorphic antigen-presenting cleft of the class II molecule 
(Bjorkman et al., 1987). The size of peptides bound by class II molecules are 
usually between 13-25 amino acids and are presented by MHC class II 
molecules to T-cell receptors on CD4+ T helper cells. In the event of activation, 
helper T-cells will release cytokines and interleukins, which can alter various 
types of immune reactions, such as the regulation of antibody production. This 
process is important for initiating the immune responses against infectious 
organisms but is also likely to be involved in immune-mediated or autoimmune 
diseases.  

A wide diversity and polymorphism exist within the MHC to ensure that 
individuals can respond to a large variety of antigens. The MHC class II genes 
encode extremely polymorphic class II antigens (Bontrop et al., 1999; Bach, 
1985). In humans there are > 1,800 different alleles identified at the HLA class 
II complex and the DRB1 locus is the most polymorphic (Robinson et al., 
2013). There are several systemic rheumatic diseases in both dogs and humans 
associated with the MHC, including SLE (Fernando et al., 2008; Smerdel-
Ramoya et al., 2005; Teichner et al., 1990).  

The classical MHC class II region in humans is called the HLA region and 
consists of DP, DQ and DR genes. The genes produce two glycoprotein chains, 
an α-chain and a β-chain that together form a heterodimeric structure with 
extracellular domains (α1+α2 and β1+β2), where α1 and β1 forms the peptide 
binding cleft. DRβ forms heterodimers with DRα and DQα with DQβ. At least 
one class II molecule from each class II sub region (DR and DQ in dog) 
composed of an alpha-beta heterodimer is expressed on the cell surface of 
antigen presenting cells (Albert et al., 1985). The highest polymorphism 
(except DRα) is found in exon 2 of the α- and β-chains, which are involved in 
peptide binding (Little & Parham, 1999).  

The HLA complex is located on human chromosome 6p21.31 and extend 
approximately 4 Mb (Complete sequence and gene map of a human major 
histocompatibility complex. The MHC sequencing consortium, 1999). Almost 
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half of the expressed genes within this region (>120) are involved in the 
immune defense (Stewart et al., 2004).  

The MHC class II region differs markedly between species. Humans have 
one monomorphic HLA-DRA gene, four expressed HLA-DRB genes (DRB1, 
DRB3, DRB4 and DRB5) (Andersson et al., 1998) (and five DRB 
pseudogenes), one expressed HLA-DQA1 and DQA2 gene and finally one 
expressed HLA-DQB1 and DQB2 gene (Robinson et al., 2013). In 
comparison, the feline MHC class II only consists of 44 genes, with an 
expansion of three DRA genes, seven different DRB genes and a lack of the 
entire DQ region (Yuhki et al., 2003).  

The dog MHC is called the dog leukocyte antigen (DLA) and consists of 
three classes. The DLA region is located on canine chromosome (CFA) 12, and 
the class II region is around 711 Kb in length. There are 45 loci of which 29 
are complete functional genes (five are unprocessed pseudogenes and 10 are 
processed pseudogenes) (Debenham et al., 2005). The dog has one DLA-
DRA1, DLA-DRB1, DLA-DQA1, DLA-DQB1 gene, respectively and one 
DLA-DQB2 pseudogene. DLA-DQB2 gene shares 98% identity with DLA-
DQB1 over 2562 bp (intron 2 to the end of exon 6) (Debenham et al., 2005; 
Wagner et al., 1999).  

In 2008, 67 DLA-DRB1 alleles, 21 DLA-DQA1 alleles and 54 DLA-DQB1 
alleles had been identified in the dog (Kennedy, 2013; Kennedy et al., 2001; 
Kennedy et al., 2000). Currently there are 300 DLA-DRB1, 51 DLA-DQA1 
and 150 DLA-DQB1 alleles identified, but all are not yet confirmed. 206 DLA-
DRB1, 37 DLA-DQA1 and 100 DLA-DQB1 alleles have been confirmed (L.J 
Kennedy, personal communication). The DLA-DRA1 locus appears to be 
monomorphic. There is a large distribution of polymorphism between the class 
II loci. DRB is most polymorphic followed by DQB and DQA whereas DRA is 
largely monomorphic in all mammals studied. The functional reason for why 
DR is more polymorphic than DQ is not known but could be related to 
requirement for different antigen presentation. 

There is a large inter-breed variety in DLA class II both regarding the 
observed allele frequencies and the number of identified alleles in each breed. 
A general frequency of approximately 30% homozygotes has been observed at 
all three loci. Number of alleles within a dog breed varies from 2 – 22 and 
often there are certain specific alleles that dominate in frequency in a breed 
(Kennedy et al., 2002). This interbreed variation could partly explain the fact 
that some breeds are susceptible to certain autoimmune or immune-mediated 
diseases.  
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1.3.1 MHC is involved in several canine immune-mediated diseases 

The association between HLA and autoimmune disease in humans has been 
extensively reviewed during the past decades and several associations have 
been identified (Fernando et al., 2008). Below follows a brief description of 
what is currently known within the field of canine autoimmune or immune-
mediated diseases and its association to MHC class II (summarized in Table 4).  

Canine diabetes mellitus occurs spontaneously in various breeds (Catchpole 
et al., 2005). Association between diabetes mellitus and DLA class II has been 
reported by Kennedy et al. who studied the disease in various breeds and found 
three haplotypes associated with the disease (DRB1*009/DQA1*001/ 
DQB1*008, DRB1*015/DQA1*0061/DQB1*023 and DRB1*002/DQA1*009/ 
DQB1*001) and one protective haplotype (DQA1*004/DQB1*013). A trend 
was observed between the breeds with DLA-DQA1*00101 as a shared risk 
factor between breeds (Kennedy et al., 2006b; Catchpole et al., 2005). 

Hypoadrenocorticism, also called Addison's disease, is a deficiency of 
corticosteroids and mineralocorticoids produced by the adrenal gland. A large 
number of breeds are predisposed to the disease. Several closely related alleles 
of the DLA-DRB1/DQA1/DQB1 in six different breeds show association to 
hypoadrenocorticism (Springer spaniel; DRB1*01501/DQA1*00601/ 
DQB1*02301, Labrador retriever; DLA-DRB1*00101/DQA1*00101/ 
DQB1*00201, Bearded collie; DLA-DRB1*00901/DQA1*00101/DQB1* 
00802 and Cocker spaniel DLA-DRB1*00901/DQA1*00101/ DQB1*008011) 
(Massey et al., 2013a). Another study conducted in NSDTR found a haplotype 
related to the previously identified as the risk haplotype, only differing at 
DLA-DRB1 (DLA-DRB1*01502/DQA*00601/ DQB1*02301) (Hughes et al., 
2010). Portuguese water dogs affected by hypoadrenocorticism are associated 
to a microsatellite marker located within the DLA region (Chase et al., 2006). 

Primary immune-mediated haemolytic anaemia is an autoimmune disease 
where red blood cells are destroyed, giving rise to signs of anaemia. Two 
haplotypes (DRB1*01501/DQA1*00601/DQB1*00301 and DLA-
DRB1*00601/DQA1*005011/DQB1*00701) was found to be significantly 
associated with the disease in several breeds (Kennedy et al., 2006a).  

Chronic inflammatory Hepatitis in Dobermann is a chronic and progressive 
inflammatory liver disease with a suggested autoimmune etiology (Speeti et 
al., 2003; Meyer et al., 1980). Dobermanns homozygous for the risk haplotype 
DLA-DRB1*00601/DQA1*00401/DQB1*01303, especially with 
homozygosity for DLA-DRB1*00601 are susceptible to hepatitis. A protective 
effect was also identified (DLA-DQA1*00901/DQB1*00101 and DLA-
DRB1*01501) (Dyggve et al., 2011). Another study including English springer 
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spaniel identified two risk alleles (DRB1*00601 and DQB1*00701) and two 
protective alleles (DRB1*00501 and DQB1*00501) (Bexfield et al., 2012). 

Canine rheumatoid arthritis (CRA) or canine polyarthritis is described as 
symmetrical spontaneously occurring inflammatory polyarthritis (Bari et al., 
1989). The DLA-DRB1*002 allele was found associated in several breeds 
(Ollier et al., 2001). This allele contains the shared five amino acid epitope 
RARAA at amino acid positions 70–74. This is known as the shared epitope 
for rheumatoid arthritis in human (Gregersen et al., 1987). 

Symmetrical Lupoid Onychodystrophy is an immune-mediated disease in 
dogs and is described as separation and sloughing of several claws from claw 
beds and ultimately affecting all claws. The disease occurs in many breeds but 
Gordon setter has been reported to have a particularly high prevalence (Ovrebo 
Bohnhorst et al., 2001). We have reported that dogs carrying haplotype 
DRB1*01801/DQA1*00101/DQB1*00802 were at increased risk for 
developing the disease and that the risk factor was even stronger in 
homozygous form. A protective haplotype (DRB1*02001/DQA1*00401/ 
DQB1*01303) was also identified and the effect of the protective haplotype 
was clearly stronger than the risk haplotype (Wilbe et al., 2010b). 

Canine Lymphocytic Thyroiditis (CLT) is characterized by autoimmune 
destruction of the thyroid gland with increased levels of thyroid-stimulating 
hormone (TSH) and sometimes presence of circulating autoantibodies against 
thyroglobulin (TgAA) (Dixon & Mooney, 1999; Nachreiner et al., 1998). A 
risk haplotype (DLA-DRB1*01201/DQA1*00101/DQB1*00201) have been 
identified in giant schnauzers for developing CLT and the same DQA1 risk 
allele has been observed in Dobermanns and in a variety of additional breeds 
(Wilbe et al., 2010a; Kennedy et al., 2006c; Kennedy et al., 2006d). In our 
study, protection for the disease was also identified in dogs carrying another 
haplotype (DRB1*01301/DQA1*00301/DQB1*00501) (Wilbe et al., 2010a). 

Canine anal furunculosis affects German shepherd dogs. This is an 
inflammatory disease of the perianal tissues. The disease is believed to be 
immune-mediated with evidence of response to immunosuppressive drugs 
(Hardie et al., 2005). Kennedy et al. found strong genetic association to the 
DLA-DRB1*00101 allele and that homozygosity for DRB1*00101 had an 
earlier onset of anal furunculosis (Barnes et al., 2009; Kennedy et al., 2008). 

Necrotizing meningoencephalitis in dogs is an autoimmune disease. It 
occurs in many different breeds but the Pug dogs share clinical similarities 
with several acute forms of multiple sclerosis in humans. MHC class II was 
shown to be a genetic risk factor where the haplotype 
(DRB1*0100110/DQA1*00201/DQB1*01501) was found to be associated 
with increased risk. Homozygosity gave an even higher risk for disease and a 
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protective effect was observed (DRB1*01502/DQA1*00601/DQB1*02301) 
(Greer et al., 2010).  

Uveodermatologic syndrome is an immune-mediated disease characterized 
by inflammatory infiltrates and loss of melanocytes in affected tissues (eye and 
skin) that ultimately causes blindness. The disease is highly predisposed in the 
American Akita breed. Angles et al found that DLA-DQA1*00201 was 
significantly associated with the syndrome (Angles et al., 2005). 

Canine chronic superficial keratitis is an inflammatory ocular disease of 
autoimmune nature. A risk haplotype (DLA-DRB1*01501/DQA1*00601/ 

DQB1*00301) was associated with disease in German shepherd dogs. 
There was also an increased risk for dogs homozygous for the risk haplotype 
and an increased risk associated with general homozygosity of the MHC class 
II (Jokinen et al., 2011). 

Polymyositis is frequently observed in the Hungarian Vizsla. An immune-
mediated etiology has been suggested. A risk haplotype (DLA-
DRB1*02001/DQA1*00401/DQB1*01303) was identified and the risk 
increased for homozygotes (Massey et al., 2013b). 
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Table 4. Identified DLA associations with canine autoimmune or immune-mediated diseases. 

Condition Comment Breeds References 

Canine diabetes mellitus Suggested immune-
mediated disease 

Range of breeds; 
Samoyed, Cairn 
and Tibetan terrier 

(Kennedy et al., 
2007; Kennedy et al., 
2006b; Catchpole et 
al., 2005) 

Hypoadrenocorticism Suggested 
autoimmune disease 

Nova Scotia duck 
tolling retriever 

(Massey et al., 
2013a; Hughes et al., 
2010; Chase et al., 
2006) 

Primary immune-mediated 
haemolytic anaemia 

Suggested 
autoimmune disease 

Range of breeds (Kennedy et al., 
2006a) 

SLE related immune-
mediated rheumatic disease  

Suggested 
autoimmune disease 

Nova Scotia duck 
tolling retriever 

Paper I and III 

Chronic inflammatory 
hepatitis 

Suggested 
autoimmune disease 

Dobermann (Bexfield et al., 
2012; Dyggve et al., 
2011) 

Canine rheumatoid arthritis Autoimmune disease. 
RA shared epitope 

Range of breeds (Ollier et al., 2001) 

Symmetrical lupoid 
onychodystrophy 

Immune-mediated 
disease 

Gordon setter (Wilbe et al., 2010b) 
Bearded collie 
Giant schnauzer 

Canine Lymphocytic 
thyroiditis 

Autoimmune disease Range of breeds; (Wilbe et al., 2010a; 
Kennedy et al., 
2006c; Kennedy et 
al., 2006d) 

Dobermann 
Giant schnauzer 

Canine anal furunculosis Immune-mediated 
disease 

German shepherd (Barnes et al., 2009; 
Kennedy et al., 2008) 

Necrotizing 
meningoencephalitis 

Suggested 
autoimmune disease 

Pug  (Greer et al., 2010) 

Uveodermatologic (VKH-
like) syndrome 

Immune-mediated 
disease 

Akita (Angles et al., 2005) 

Canine chronic superficial 
keratitis 

Suggested 
autoimmune disease 

German shepherd (Jokinen et al., 2011) 

Polymyositis	   Suggested immune-
mediated disease 

Hungarian Vizsla (Massey et al., 
2013b) 

 
Thus, many canine autoimmune or immune-mediated diseases have shown 
DLA class II association. It is important to remark that although DLA-
DRB1/DQA1/DQB1 genes are encoding proteins that are functionally 
confirmed to control immune responses, they are only markers for the disease 
risk until functional experiments have been performed to confirm the risk. This 
is due to the high LD within MHC in all species and in particular in dogs 
where the extensive inbreeding further increases LD that occurs within a dog 
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breed. Many other genes important for immune function is located within the 
DLA region and can carry the functional mutation/s.  

However, functional studies using transgenic mice have shown that MHC 
class II is sufficient for inducing autoimmune diseases. E.g. transgenic mice 
expressing HLA-DQ8, a gene in linkage with DR4 associated with 
susceptibility with rheumatoid arthritis, were produced. The mice showed a 
collagen-induced arthritis and became an important animal model to study 
human autoimmune arthritis and suggesting that HLA-DQ molecule might 
have an important role in determining susceptibility to rheumatoid arthritis 
(Nabozny et al., 1996). 

In this thesis we have added one more breed to the studies of autoimmune 
or immune-mediated diseases and its association to MHC class II, the SLE-
related disease complex in NSDTR.  

1.3.2 General risk in homozygosity  

The selective breeding practice has caused a reduced genetic variation and an 
increase in homozygosity (Lindblad-Toh et al., 2005). This can also be 
observed in the MHC class II of the dog, where several autoimmune or 
immune-mediated diseases show an increased risk if the associated haplotype 
occurs in homozygous form. A homozygous risk haplotype have been 
identified in dogs affected by symmetrical lupoid onychodystrophy (Wilbe et 
al., 2010b), canine chronic superficial keratitis (Jokinen et al., 2011), chronic 
inflammatory hepatitis in Dobermann (Dyggve et al., 2011), necrotizing 
meningoencephalitis (Greer et al., 2010), polymyositis (Massey et al., 2013b), 
earlier onset of canine anal furunculosis (Kennedy et al., 2008) and the SLE-
related disease in NSDTRs, presented in this thesis (Paper I and III).  

A general risk in homozygosity at DLA class II have been observed, 
independent of haplotype, in canine chronic superficial keratitis (Jokinen et al., 
2011) and hypoadrenocorticism (Massey et al., 2013a) and in ANAH dogs with 
the SLE-related disease presented in this thesis (Paper III). Dogs with 
hypoadrenocorticism tend to have an earlier onset of disease if homozygous 
(Hughes et al., 2010). No protective homozygous haplotype have been 
observed. The fact that homozygosity at DLA class II leads to differential risk 
for developing immune-mediated disease is expected to be caused by the 
ability of presentation of autoantigens by the risk DLA but not by the 
protective DLA class II molecules. MHC class II heterozygotes can express a 
wider variety of class II molecules than homozygotes, thereby being able to 
respond to larger diversity of pathogens. The finding is in agreement with 
rodent models for experimentally induced autoimmune disease where high- 
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and low responder strains (differing only at MHC) develop disease at different 
levels upon challenge with the inducing antigens (Holmdahl, 2003). 

Heterozygosity at MHC appears advantageous in most natural populations. 
The prevailing hypothesis is that the selection for high degree of MHC class II 
polymorphism is pathogen-driven (Borghans et al., 2004). Polymorphism is 
maintained because of heterozygote advantage in the individual of being able 
to present a larger repertoire of peptide antigens and thus increase the chance 
of mounting an immune response towards pathogenic microorganisms. Thus, 
MHC polymorphism is maintained because of selective pressure imposed by 
different pathogens occurring in a population’s environment (Havlicek & 
Roberts, 2009). There are two classical examples for this. The first was 
described in chicken where Marek’s disease was shown to be caused by a 
particular herpes-like virus and that the chicken with certain MHC types were 
susceptible and chickens with other MHC types were resistant leading to 
frequency-dependent selection for the chickens with resistant MHC types 
(Longenecker et al., 1977). The other example is malaria in humans, where 
humans with HLA class II haplotype DRB1*1302/DQB1*0501 are able to 
defend the malaria-inducing trypanosomal parasite leading to increased 
frequency of the protective MHC type in West Africa where malaria is 
common (Hill et al., 1991). It has also been shown that certain HLA class I 
alleles influence HIV progression (Carrington & O'Brien, 2003). 

The exceptions to the general observation of high MHC polymorphism in 
natural mammalian populations are found either among solitary species or in 
populations that have experienced bottle-necks due to high hunting pressure or 
to other environmental factors (O'Brien & Yuhki, 1999; Mikko & Andersson, 
1995; Ellegren et al., 1993) Last, MHC variation has shown to be preserved 
because of sexual selection, where individuals prefer to mate with a partner 
with dissimilar MHC genotype to their own (Wedekind & Furi, 1997; Potts et 
al., 1991).   
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2 Aims of this Thesis 
The overall aim of this research project was to identify genetic risk factors for 
the immune-mediated diseases IMRD, which is an SLE-related disease 
complex, and SRMA, aseptic meningitis, in the canine breed NSDTR. In 
particular, the IMRD disease type characterized by a positive ANA phenotype 
was studied. Identification of novel genes important for this SLE-related 
disease may have major importance for both dog and human health. 
 
The specific aims were to: 
 
Ø Perform a candidate gene study to investigate if DLA class II is associated 

with the canine SLE-related disease and SRMA. 
 
Ø Investigate if genome-wide association mapping identifies additional 

susceptibility loci for the SLE-related disease and SRMA. 
 
Ø Perform regional re-sequencing of associated regions to identify specific 

genes and genetic variants involved in the disease and perform expression 
studies of positional candidate genes. 

 
Ø Evaluate whether differential gene expression of the gene variants carried 

on risk versus control haplotypes is associated with IMRD with the 
speckled ANA phenotype. 

 
Ø Characterize the relationship between ANA type (speckled and 

homogenous) and the genetic constitution at DLA class II and other 
identified risk loci for IMRD.  
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Ø Identify novel genes and pathways associated with the canine SLE-related 
disease complex. 
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3 Present Studies 

3.1 Introduction 

The studies (Paper I-III) presented in this thesis aims to identify genetic risk 
factors for an SLE-related disease complex in the dog NSDTR. The IMRD 
complex has previously been described (Hansson-Hamlin & Lilliehook, 2009) 
and since the NSDTR breed is overrepresented for the disease, genetic 
components are suggested to be involved in development of this disease 
complex. No specific mode of inheritance has been reported, but it appears to 
be a multifactorial disease. DLA class II has previously been reported to be 
involved in several autoimmune and immune-mediated disease in dogs and 
humans (Bexfield et al., 2012; Dyggve et al., 2011; Jokinen et al., 2011; Greer 
et al., 2010; Hughes et al., 2010; Wilbe et al., 2010a; Wilbe et al., 2010b; 
Barnes et al., 2009; Kennedy et al., 2008; Kennedy et al., 2006b; Kennedy et 
al., 2006d; Smerdel-Ramoya et al., 2005; Graham et al., 2002; Ollier et al., 
2001), Therefore, a candidate gene approach was performed to investigate 
whether the DLA class II is a genetic risk factor for this SLE-related disease 
complex.  

We also performed an unbiased search of the entire genome in an effort to 
identify additional genetic risk factors by using a GWAS. The DLA class II 
region contains several highly polymorphic genes and all alleles were not 
covered in the canine 22K SNP chip array used in these studies. Therefore, the 
optimal way to explore whether DLA class II is a genetic risk factor for the 
disease complex was by performing a separate sequence-based candidate gene 
study. 
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3.2 Methods and results 

3.2.1 Dog samples  

All dogs included in the studies described in Paper I-III were purebred and 
privately owned. All owners approved their dogs to participate in the study by 
filling out an owner’s consent form. Ethical permission was granted by the 
Ethical board for experimental animals in Uppsala, Sweden (Dnr C138/6). 
Samples were obtained by a close contact with different veterinary clinics 
throughout Sweden, by visiting NSDTR competitions and shows, attending 
breed club meetings and by direct contact with dog owners with interest to 
participate in the study. Samples were collected during 2002-2013. 

Veterinarians selected dogs to be included in the studies based on strict 
inclusion and exclusion criteria following examination. To be classified as 
affected by IMRD the dogs had to display musculoskeletal signs consistent 
with symmetrical polyarthritis and suffer from pain affecting several joints of 
extremities and display stiffness, mainly after rest. Signs needed to be apparent 
for at least 14 days. A positive IIF-ANA titre further strongly supported the 
diagnosis and classified the dogs as ANA-positive IMRD. Dogs classified as 
SRMA-affected display high fever and strong pain mainly from the neck and 
respond to corticosteroid treatment. The diagnosis is supported by 
cerebrospinal fluid showing a significant neutrophilic pleocytosis. These dogs 
have a negative ANA-test. Dogs fulfilling the exclusion criteria were the dogs 
with no clinical signs of any autoimmune disease and >7 years of age.  

EDTA blood and serum samples were collected for all dogs included in the 
study population (Paper I-III). Genomic DNA was purified from 200 µl of 
blood using a commercially available kit, Qiagen QIAamp DNA Blood Mini 
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. For 
Paper III, we also collected peripheral blood from 165 healthy NSDTR dogs in 
Tempus Blood RNA tubes (Applied Biosystems, Foster City, CA). Samples 
were kept on ice during transportation and RNA was purified from total blood 
using the Tempus Spin RNA Isolation Reagent kit (Applied Biosystems) 
according to the manufacturer’s instructions. 

3.2.2 IIF ANA procedure 

Serum samples were used for Indirect Immunofluorescence (IIF)-ANA tests. 
The diagnostic procedures were performed at the University Animal Hospital, 
SLU, Uppsala, Sweden using monolayers of HEp-2 cells fixed on glass slides 
(Immuno Concepts, Sacramento, CA). Slides were examined by fluorescence 
microscopy and the nuclear fluorescence pattern was used to subdivide a 
positive ANA result into either a homogenous or a speckled pattern (Hansson-
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Hamlin et al., 2006). The test was considered positive at a titre of ≥1:100. 
Positive ANA tests were divided into either a speckled (ANAS) or homogenous 
(ANAH) staining pattern and tests were repeated after two-three months. The 
ANA phenotype was assigned to a dog if two subsequent tests performed on 
samples taken from the same dog were consistent. Sera from all healthy 
controls were negative on the IIF-ANA test. Only one IIF-ANA test was 
performed on healthy dogs, because no dogs without clinical signs have ever 
showed a positive test.  

3.2.3 DLA class II in ANA-positive dogs  

In Paper I, we investigated the possible role of MHC class II as a genetic risk 
factor in IMRD and SRMA by sequence-based typing of the polymorphic exon 
2 of the DLA-DRB1, -DQA1 and -DQB1 loci in the DLA class II region. In 
paper III we further correlated MHC class II genotype with the ANA-staining 
pattern in IMRD dogs. PCR (polymerase chain reaction) fragments containing 
DLA-DRB1, -DQA1 and -DQB1 exon 2 sequences were amplified, purified 
and sequenced using capillary-electrophoresis. Data analysis of the exon 2 
nucleotide sequences for DLA-DRB1, -DQA1 and -DQB1 were performed 
with MatchTools and MatchToolsNavigator (Applied Biosystems). 2x2 
Contingency Tables were used to calculate OR, 99% Confidence Interval and 
p-values. Cases and controls were divided into presence or absence of each 
allele, haplotype or genotype and the total number of individuals in each group 
was calculated. A comparison was made between the cases and controls 
between total number of alleles, haplotypes and genotypes in each group.  

In Paper I, a total of 176 dogs including 51 IMRD (33 ANA-positive), 49 
SRMA cases and 78 healthy controls (two dogs were affected by both IMRD 
and SRMA) were included in the analysis.  

A total of five DLA-DRB1, four DLA-DQA1 and four DLA-DQB1 alleles 
were identified forming five different haplotypes and 13 genotypes. Haplotype 
2 (DLA-DRB1*00601/DQA1*005011/DQB1*02001) occurred in increased 
frequency in all IMRD ANA-positive cases together compared to controls 
(54.5% vs. 34.6%, OR= 2.3). An even stronger association was found in all 
ANA-positive dogs homozygous for haplotype 2 (genotype 2) (48.5% vs. 
11.5%, OR= 7.2). No association to DLA class II was observed for SRMA-
affected dogs. 

In the subsequent study (Paper III), we increased the number of NSDTR 
with IMRD and a positive ANA test. A total of 64 cases were ANA-positive 
(26 cases were classified as ANAH and 32 cases as ANAS). Six of the 64 
clinical cases were not analyzed for ANA subgroup due to lack of more serum. 
All 78 healthy control sera were negative for IIF ANA. 



 38 

We investigated for DLA class II association and further dissected the 
phenotype by dividing the ANA-positive cases into ANAH and ANAS to 
determine whether dogs with different types of ANA pattern has differential 
genetic association to DLA. The same number of alleles, haplotypes and 
genotypes were observed as in our previous study (Paper I). A similar 
association in this larger sample set was observed for all ANA-positive dogs 
jointly for haplotype 2 (50.8% vs. 34.6%, OR= 2.0) and genotype 2 (45.3% vs. 
11.5%, OR= 6.4). Among the ANAS dogs, 30 of 32 were either heterozygous 
or homozygous for haplotype 2 and 26 of those were homozygous for 
haplotype 2 (81.3%, OR= 33.2) implicating that homozygosity for the risk 
DLA class II haplotype results in increased risk of developing IMRD with the 
ANAS phenotype. No significant association was observed between the 
different haplotypes or genotypes of MHC class II and the cases with ANAH 
pattern.  

We next removed the ANAS risk genotype and analyzed that data based on 
homozygosity. An increase in homozygosity was seen in ANAH cases 
compared to controls (62.5% vs. 13.0% OR= 11.1), implicating a general 
disadvantage due to homozygosity at DLA class II for ANAH dogs (Table 5). 

Table 5. Homozygous frequencies show an association to both ANAS and ANAH dogs. Genotype 
2 frequencies show an increased risk in ANAS dogs. By removing the risk genotype, a significant 
association is identified for ANAH dogs in general homozygosity at DLA. Significant associations 
are indicated in bold. 

 Tot pop % 
n=142 

Controls % 
n=78 

All cases % 
n=64 

ANAS % 
n=32 

ANAH % 
n=26  

Homozygous 45.8 (65) 23.1 (18) 73.4 (47) 84.4 (27) 65.4 (17) 
Genotype 2 26.8 (38) 11.5 (9) 45.3 (29) 81.3 (26) 7.7 (2) 

 Tot pop % 
n=104 

Controls % 
n=69 

All cases % 
n=35 

ANAS % 
n=6 

ANAH % 
n=24  

Homozygous no risk  26.0 (27) 13.0 (9) 51.4 (18) 16.7 (1) 62.5 (15) 

S= Speckled 

H= Homogenous 

 

3.2.4 GWAS identifies five additional loci 

To perform a systematic and unbiased search of the entire dog genome for 
additional genetic risk factors a GWAS was conducted (Paper II). A case-
control association analysis of 138 NSDTR from the Swedish and Finnish 
populations (44 SRMA dogs, 37 IMRD (where 22 were ANA-positive) and 57 
healthy controls) was performed. All dogs used for the GWAS were unrelated 
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at the grandparental level. Genotyping was performed with the CanineSNP20 
BeadChip panel that contains 22,000 validated SNPs.  

We hypothesized that IMRD and SRMA might have both common and 
unique genetic risk factors and therefore examined the diseased dogs both as 
one group and for the classified sub-phenotypes, ANA-positive IMRD and 
SRMA separately. To test for the presence of stratification in our sample 
population we used PLINK (Purcell et al., 2007) to make multidimensional 
scaling plots. We then produced scatter plots for two dimensions in which each 
spot corresponds to a specific individual. Some stratification was observed 
when all diseased dogs were analyzed together and for the SRMA-affected 
dogs alone. We therefore used PLINK to correct for population stratification 
based on clustering by identity-by-state, thereby accounting for population 
substructure to lower false positive rates and increase power.  

Analysis of all cases (IMRD and SRMA) as one group identified a large 
region containing multiple associated SNPs on CFA 32 (praw= 1.5 x 10-5 and 
pgenome= 0.12). After correction for stratification, the region showed even 
stronger association (praw= 7.9 x 10-6 and pgenome= 0.06) (Figure 3). 

Four highly associated regions were identified when analyzing ANA-
positive IMRD dogs separately. The strongest association was found for one 
SNP on CFA 8 (praw= 1.5 x 10-6 and pgenome= 0.02) and a region containing 
multiple SNPs on CFA 24 (praw= 3.2 x 10-6 and pgenome= 0.04), both reaching 
genome-wide significance. We also found multiple associated SNPs on CFA 
11 (praw= 7.4 x 10-6 and pgenome= 0.08) and on CFA 3 (praw= 2.2 x10-5 pgenome= 
0.18) (Figure 3). The associated peaks were the same when all IMRD-affected 
dogs were included (data not shown) as when only ANA-positive IMRD-
affected dogs were used, but with a weaker degree of association.  

When analyzing all SRMA-affected dogs separately, one region with 
multiple associated SNPs was identified on CFA 32 (praw= 7.10 x 10-6 and 
pgenome= 0.04) reaching genome-wide significance (Figure 3).  
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Figure 3. Five strongly associated regions were detected in the study population. One locus on 
CFA 32 was identified in all diseased dogs (black). Four loci on CFA 3, 8, 11 and 24 was 
associated with ANA-positive dogs (blue) and one loci (CFA 32) was identified in SRMA dogs 
(red).  

The associated regions had large haplotype sizes (mostly ≈1 Mb in size), as 
expected within a canine breed (Lindblad-Toh et al., 2005). However, a couple 
of regions were larger suggesting the possibility that genetic risk is caused by 
multiple nearby loci or extended LD within this region.  

3.2.5 Fine-mapping verifies the loci 

To validate associated loci from the GWAS, we performed fine-mapping 
(Paper II). Additional NSDTR and dogs from other breeds were included to 
reach a total number of 405 dogs. The sample consisted of 82 IMRD cases (32 
ANA-positive, not divided into speckled and homogenous staining), 78 SRMA 
cases and 176 controls. Additional breeds, with individuals affected by 
corresponding diseases and control dogs, were included to allow identification 
of shared haplotypes across breeds. ANA-positive dogs were represented by 19 
German shepherds (five cases and 14 controls) and 10 cocker spaniels (six 
cases and four controls), while for SRMA-affected dogs we used 30 boxers (10 
cases and 20 controls) and 10 petite basset griffon Vendeen (four cases and six 
controls).  
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822 SNPs at ≈1 SNP/10 Kb density were genotyped. SNPs were analyzed 
with PLINK with MAF > 0.1 and call rate > 80%. The same settings were used 
to analyze haplotypes generated with a sliding window approach provided by 
PLINK. 

Due to the low number of samples, examination for shared haplotypes was 
performed without prior association in the other breeds. However, they could 
be used for haplotype sharing across breeds. 

For ANA-positive dogs, three of the four peaks showing association in the 
GWA analysis also showed increased p-values for association with the disease 
at the fine-mapping level, whereas one locus showed weaker association (CFA 
8) in the fine-mapping analysis. The SNP showing the strongest genetic 
association was found on CFA 11 (praw= 8.7 x 10-13, OR= 7.9) and resides 
within a highly associated haplotype (praw= 1.3 x 10-12). The candidate region 
contains the EPB41L4B, C9orf4 and PTPN3 genes. The second best 
association results was a haplotype on CFA 24 (praw= 1.6x10-12, OR= 5.0), 
including six genes, AK128395, WFDC10B, WFDC13, AY372174, WFDC1 
and DNTTIP1. The association on CFA 3 includes a haplotype (praw= 2.2 x   
10-11 and OR= 4.5) containing seven genes, AK126887, AP3B2, SCARNA15, 
FSD2, RPL23A, WHDC1L1 and HOMER2. The GWA hit on CFA 8 became 
lower after fine-mapping for ANA-positive dogs and was therefore not 
considered validated for ANA-positivity alone.  

The region on CFA 32 also showed association to ANA-positive dogs alone 
(praw= 3.5 x 10-7, OR= 3.3). This is a large region (1.6 Mb) that includes several 
genes, DAPP1, MAP2K1IP1, DNAJB14, DDIT4L, EMCN, PPP3CA and 
BANK1.  

For SRMA, the region on CFA 32 was validated (praw= 2.4 x 10-7, OR= 0.3) 
and contains the genes DAPP1, MAP2K1IP1, DNAJB14 and H2AFZ. A novel 
association for SRMA dogs alone was identified on CFA 8 (praw= 3.2 x 10-7, 

OR= 2.6). The peak resides in a gene desert between the SNRPE and VRK1 
genes.  

When all cases were analyzed together, the main peak of association on 
CFA 32 remained at approximately the same strength (praw=4.4 x 10-6, OR= 
3.0). The region remains large and appears to comprise three peaks, positioned 
at the genes DAPP1, PPP3CA and BANK1. Since the association is present in 
multiple phenotypes, it is possible that it contains one or more risk alleles.  

3.2.6 Targeted re-sequencing of candidate loci 

We next performed targeted re-sequencing of associated regions (Paper III). 
The five regions (CFA 3, 8, 11, 24 and 32), spanning approximately 5Mb, were 
re-sequenced in seven individuals (four ANA-positive cases and three healthy 
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controls), using hybrid capture and 400-600 X coverage, with Illumina 
sequencing, in order to identify candidate mutations. The sequencing data were 
aligned with Burrows-Wheeler Aligner (BWA) (Li & Durbin, 2010). 
SAMtools (Li et al., 2009) was used for SNP and InDel calling, BEDTools 
(Quinlan & Hall, 2010) for calculations of coverage statistics and finally 
SEQscoring (Truve et al., 2011) to visualize the data and discover differences 
in the genomic sequence, such as SNPs, InDels and CNVs, between ANA-
positive IMRD and healthy control dogs.  

A total of 13,084 potential SNPs were detected and of these, 426 SNPs 
were located within or close (±5 bp) to a conserved element (Lindblad-Toh et 
al., 2011; Garber et al., 2009). 2780 possible InDels were detected, among 
those, 88 occurred within or close to a conserved element (±5 bp). To identify 
structural variations, such as larger insertions, CNV or deletions SEQscoring 
(Truve et al., 2011) was used to calculate coverage differences between cases 
and controls. We did not identify any structural variants that differed between 
cases and controls. 

3.2.7 ANAS association to DLA class II, CFA 11 and 32 

We next combined the results from DLA class II association study with the 
additional identified risk loci (Paper III). Twenty-five of the ANAS-positive 
NSDTRs with MHC class II genotype 2 were included for additional analysis 
as well as 145 healthy controls and a total of 63 ANA-positive dogs (regardless 
of ANA-staining pattern). 384 SNPs for the five identified loci (CFA 3, 8, 11, 
24 and 32) were chosen from the next generation sequencing data set. The 
SNPs were chosen based on the following criteria:  
 
Ø Difference in allele frequency in cases compared to controls 
Ø Positioned in either protein coding regions, 5’ UTR or 3’ UTR  
Ø Located within non-coding conserved elements 
 
Conserved elements were identified using comparative sequence analysis 
based on the analysis of 29 mammals using SiPhy (Lindblad-Toh et al., 2011; 
Garber et al., 2009). We examined the GWA risk loci on CFA 3, 8, 11, 24 and 
32 for association to the speckled phenotype (ANAS).  

Strong associations to CFA 11 and 32 were observed in DLA haplotype 2 
homozygous ANAS dogs. None of the other chromosomal regions showed a 
significant association. The region on CFA 11 covering the PTPN3 gene 
comprised a haplotype of 15 SNPs that was highly associated to ANAS dogs 
(most associated SNP, p= 8.2 x 10-07, OR= 5.7). The most associated region on 
CFA 32 (p= 1.5 x 10-08-4.7 x 10-05 and OR= 3.4-6.8) is 1.3 Mb in size and 23 
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SNPs show significant p-values. The region contains several genes, including 
DAPP1, MAP2K1IP1, DNAJB14, H2AFZ, DDIT4L, EMCN, PPP3CA and 
BANK1 and the most associated SNP (32:24556037) is located upstream of 
DAPP1. One highly associated haplotype comprising two SNPs in high LD 
was also identified (32:24556037 and 32:25485961). 

Similar levels of association were observed between the CFA 11 region and 
ANAS dogs, implying that this region is more important for ANAS dogs since 
fewer dogs were used to achieve the same statistical significance for the 
association. The region on CFA 32 shows more significant P-values in the 
ANAS group compared to all ANA, suggesting that this region is most 
important for IMRD ANAS–positive dogs.  

3.2.8 Multi locus analysis 

A multi locus analysis was performed to analyze the combined contribution of 
other risk factors at MHC class II, CFA 11 and 32. In total we had 56 healthy 
controls and 26 IMRD dogs with ANAS–positivity with genotype data on all 
three loci (MHC class II, CFA 11 and 32). Among the 56 healthy controls, nine 
dogs were homozygous for the MHC risk genotype 2 and the other had either 
one copy of it (23 dogs) or none (24 dogs). 44.4% lacked additional risk loci, 
33.3% had one extra risk locus, 22.2% had two extra risk loci and none had 
three additional risk loci. 

Among IMRD ANAS-positive dogs, 23 out of 26 were homozygous for 
haplotype 2, one was heterozygous and the other two had no MHC class II risk. 
Among the dogs homozygous for haplotype 2, 39.1% had zero additional risk 
factors, 17.4% had one additional risk factor, 34.8% had two additional risk 
factors and 8.7% had three additional risk factors. 

The nine control dogs with MHC risk had a total of seven risk haplotypes 
for the additional loci, which gives an additional contribution of 19.4%. There 
were 26 additional risk haplotypes out of the 23 ANAS homozygous dogs 
which gives and additional contribution of 28.3%. 

3.2.9 Expression studies of candidate genes 

Peripheral blood mononuclear cells (PBMC) were collected from 165 healthy 
dogs to prepare RNA to be used to measure the mRNA expression levels for all 
candidate genes within associated regions on CFA 11 (PTPN3) and CFA 32 
(DAPP1, MAP2K1IP1, DNAJB14, DDIT4L, EMCN, PPP3CA and BANK1). 
These genes were selected because they are located at the highest associated 
SNP or within the most associated haplotype. The dogs were genotyped for 
risk and non-risk SNPs/haplotypes and correlated to the level of gene 
expression.  
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Three SNPs (11:67,516,041, 11:67,538,032 and 11:67,538,806) in the 
highly associated 15 SNP haplotype on CFA 11, spanning the PTPN3 gene, 
were genotyped in the healthy dogs. No dogs homozygous for the whole risk 
haplotype on CFA 11 were present in the healthy group. Among the ANAS 
patients in the genetic study, only four dogs were homozygous for the risk 
haplotype on CFA 11 and all of them showed very severe IMRD that 
eventually led to death. Therefore, a SNP in the close vicinity of the haplotype 
(also associated p= 7.5 x 10-4) where all three genotypes occur (position 
11:67583604) was genotyped. This four SNP haplotype was used for 
correlation with expression. An 8-fold downregulation of PTPN3 mRNA levels 
(p= 0.013) was identified in dogs carrying the risk haplotype. 

All genes on the large region (1.3 Mb) on chromosome 32 were also 
analyzed for differential expression and correlated to genetic association. Two 
of them, DDIT4L (3-fold, p=0.0002) and BANK1 (1-fold, p=0.006), show an 
upregulation of mRNA expression related to the two SNP haplotype 
(32:24556037 and 32:25485961). A modest upregulation of DAPP1 and 
PPP3CA is correlated with the SNP (32:24890208), which is included in a risk 
haplotype but not associated alone. 

3.3 Discussion 

In Paper I we performed a case/control candidate gene approach by sequencing 
the polymorphic exon 2 of the DLA-DRB1, -DQB1 and –DQA1 class II genes. 
We also (Paper II) performed a GWAS followed by fine-mapping in an effort 
to identify additional genetic risk factors. MHC class II was identified as a risk 
factor for both ANAS and ANAH IMRD dogs but not for SRMA dogs. Four 
additional risk factors for the ANA-positive phenotype were identified by a 
GWAS (CFA 3, 11, 24 and 32), where CFA 11 and 32 were associated to the 
speckled phenotype (Paper III). Expression studies revealed that PTPN3, 
DDIT4L and BANK1 have different expression according to risk/non risk 
haplotype identified for ANAS dogs (Paper III) and that several different cell 
types, such as T-cells, B-cells and possibly macrophages are involved. 

We demonstrated that the dog is an excellent model for studying complex 
genetic disease and that only few cases and controls are needed to identify 
genetic risk factors underlying a complex genetic disease.  

3.3.1 DLA class II is a genetic risk factor 

In Paper I and III, we identified MHC class II as an important genetic risk 
factor for ANA-positive IMRD dogs. A particular homozygous risk haplotype 
was identified in ANAS dogs and a general homozygous disadvantage was 
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found in ANAH dogs. The observed association with an OR at 33 is one of the 
highest reported for an autoimmune disease and MHC class II, suggesting that 
MHC class II is probably of major importance for development of IMRD with 
the ANAS phenotype in dogs.  

Only two ANAS dogs lack haplotype 2 and both are slightly atypical IMRD 
cases. One of the cases showed clinical signs from multiple organ systems in a 
way not usually observed in NSDTRs diagnosed with IMRD. Clinical signs 
shown by this dog were skin necrosis on ear flaps and around the mouth, 
weight loss and muscle atrophy of the head muscles, apart from the joint pain 
and stiffness indicating a rheumatic disease. Finally this patient was euthanized 
due to breathing problems. This dog had MHC class II genotype 6 and only the 
risk factor at chromosome 11. The other dog was diagnosed with SRMA at 10 
months of age and it was treated with corticosteroids and recovered 
completely. Later on, at two years of age, the dog was diagnosed with IMRD 
and had become ANA-positive. In this material, this is the only dog suffering 
from both SRMA and IMRD (data not shown). This dog was homozygous for 
MHC class II (genotype 3) and did not carry the risk factors at chromosome 11 
and 32. 

Five DLA-DRB1, four DLA-DQA1 and four DLA-DQB1 alleles forming a 
total of five different haplotypes was observed in the Scandinavian NSDTR 
population. In the US and Canada the same number of alleles have been 
detected forming a total of seven different haplotypes (Hughes et al., 2010). 
The two extra haplotypes identified only differ in DQB1 (DLA-
DRB1*01501/DQA1*00601/DQB1*02301 and DLA-DRB1*01502/ 
DQA1*00601/DQB1*00301 (Hughes et al., 2010) compared to the haplotypes 
previously identified in the Scandinavian population (Paper I) suggesting that a 
recombination event has occurred in the North American population of 
NSDTR. 

A similar haplotype to the ANAS-positive risk, where the DLA-DQB1 allele 
differs (DLA-DRB1*00601/DQA1*005011/DQB1*00701), has been shown to 
predispose to another immune-mediated disease, immune-mediated hemolytic 
anemia in a number of different breeds (Kennedy et al., 2006a). This DLA-
DRB1*00601 allele contains the five amino acid epitope RARAA known as 
the shared epitope for rheumatoid arthritis in human (Gregersen et al., 1987). 
Dogs affected by rheumatoid arthritis have an increased risk for developing 
disease when displaying the RARAA epitope from various DLA-DRB1 alleles 
(Ollier et al., 2001). In human SLE patients, a similar epitope as the RA-shared 
epitope (QARAA) is found to be associated with SLE (Tsuchiya et al., 2001).  

The identification of MHC class II as genetic risk factor provides further 
support that IMRD is an autoimmune disease and that it represents an 
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important model for human systemic rheumatic autoimmune diseases, like SLE 
since MHC class II is involved also as a risk factor for development of human 
SLE (Smerdel-Ramoya et al., 2005; Graham et al., 2002). 

The general homozygous disadvantage observed may be due to competitive 
binding actions of MHC class II molecules, but homozygosity at DLA by itself 
is not sufficient to disease development. 

3.3.2 Additional loci identified genetically 

In Paper II, we demonstrated the power of mapping a complex disease in the 
dog by using less than 100 cases and 100 controls, which was the first complex 
disease mapped in the dog. Five candidate loci were identified (four for IMRD, 
one for SRMA and one shared locus). Three of these were strongly validated 
by fine-mapping in IMRD dogs (CFA 3, 11 and 24) and CFA 32 were 
validated both as separate risk factors for the diseases and combined. We also 
showed that ANA-positive dogs with a speckled phenotype (ANAS) are 
associated to the loci in CFA 11 and 32 and that all ANA-positive dogs, 
regardless of ANA phenotype are associated to CFA 3 and 24.  

Haplotypes are extended over more than Mb lengths within a dog breed and 
in order to break down the long haplotypes, an additional breed with the same 
phenotype is used (Karlsson & Lindblad-Toh, 2008). This is however a 
challenge when using the NSDTR, because to our knowledge, no related 
breeds share such a strong predisposition for the SLE-related disease complex, 
which makes it difficult to identify the causative mutation and shorten down 
the long haplotype blocks. A closely related breed could instead be used to 
break down long associated haplotypes by identifying shared non-risk loci. 

The region on CFA 11 contains the PTPN3 gene only and the region on 
CFA 32 is large (1.3 Mb in size), spanning several genes. However, three 
excellent candidate genes occur on the CFA 32 region, DAPP1, PPP3CA and 
BANK1, of which BANK1 has already been associated with human SLE 
(Kozyrev et al., 2008).  

A multi locus analysis was performed to determine whether ANAS cases 
homozygous for the risk MHC class II in general also carried more risk loci at 
the other identified chromosomes (CFA 11 and 32). There was a trend towards 
an accumulation of risk haplotypes in cases vs. controls (28.3% and 19.4%). 
Since sample material is small, no statistically significant results were 
obtained, however, an accumulation towards more risk genotypes in total is 
observed in ANAS dogs compared to controls. This supports the finding that 
these three loci jointly contribute to the disease risk and that all loci should be 
taken into account and not only MHC class II. This implicates a multifactorial 
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disease with incomplete penetrance where environmental triggers are likely to 
play a crucial role. 

Further analyses are needed to explore whether the dogs that carry risk 
alleles at all three loci develop a more severe form of disease than dogs only 
carrying risk alleles at a few of the loci. Further studies are also required to 
understand how risk factors interact with unknown environmental risk factors 
for this immune-mediated disease complex. This study has, however, provided 
insight to potential multi-locus contributions to IMRD development.  

3.3.3 A novel pathway suggested 

Gene expression studies correlated to genetic association to ANAS dogs 
revealed that the PTPN3 (protein tyrosine phosphatase nonreceptor 3) gene on 
CFA 11 is downregulated in dogs with the risk haplotype. This gene belongs to 
the same family as PTPN22, which is a major genetic risk factor for many 
different autoimmune diseases including SLE (Chung & Criswell, 2007). 

It has been suggested that the phosphatase encoded by the PTPN3 gene 
participate in TCR-signaling as a negative regulator by dephosphorylating the 
TCR, which downstream inhibits activation of nuclear factor of activated T-
cells (NF-AT) (Sozio et al., 2004; Han et al., 2000).  

The CFA 32 region contains several genes whose mRNA levels are 
upregulated in dogs carrying the risk haplotype. Because of the canine 
distemper virus outbreak (CDV) that occurred in the beginning of 1900s 
(Strang & MacMillan, 1996), there might have been a selection for this whole 
region in dogs that survived the CDV outbreaks, since this region contain 
several genes important for immune function and regulation.  

The top SNP from the genotyping (32:24556037) correlates with 
differential mRNA expression of DDIT4L and BANK1. The function of the 
protein encoded by DDIT4L (DNA-damage-inducible transcript 4-like) is 
relatively unknown but it may be involved in negative regulation of 
mammalian target of rapamycin pathway (mTOR), which has a fundamental 
role in cell growth control (Corradetti et al., 2005). 

BANK1 (B-cell scaffold protein with ankyrin repeats) is an interesting gene 
extensively studied in human SLE. BANK1 was found to be associated to SLE-
development in several independent case-control data sets (Yang et al., 2010; 
Chang et al., 2009; Gateva et al., 2009; Guo et al., 2009; Kozyrev et al., 2008).  

A modest upregulation was identified for DAPP1 and PPP3CA mRNA 
expression in ANAS–positive dogs. These genes encode proteins that are 
essential for both TCR- and B-cell receptor (BCR)-mediated immune 
responses and cell proliferation and may act via the NF-AT pathway. 
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DAPP1 (dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-
phosphoinositide) is expressed in both T- and B-cells (Sommers et al., 2008) 
and indirectly inhibit both TCR- and BCR-signaling (Ortner et al., 2011). 
Consequently, it is plausible that they may influence activation of NF-AT 
(Marshall et al., 2000). 

PPP3CA (protein phosphatase 3, catalytic subunit, alpha isozyme) encodes 
the catalytic subunit of calcineurin. This gene is an important and recognized 
target of two important immunosuppressive drugs (cyclosporine A and FK506) 
(Guerini, 1997; Clipstone & Crabtree, 1992) and has been reported to be 
differentially expressed in patients with SLE (Kyttaris et al., 2007). 

NF-AT proteins constitute a family of transcription factors with a key 
regulatory function of immunological tolerance and can cause development of 
autoimmune diseases if they are regulated incorrectly. The NF-AT family 
consists of five members NFATc1, NFATc2, NFATc3, NFATc4, and NFAT5. 
NFATc1 through NFATc4 are regulated by calcium signaling by calcineurin 
(Serfling et al., 2006). Several of our associated genes show correlation to the 
NF-AT pathway. Importantly, several of the identified genetic risk factors are 
crucial for T-cell activation, B-cell activation and professional antigen-
presenting cells like macrophages. It is thus conceivable that patients with a 
more severe form of IMRD carry multiple of these genetic risk factors or 
particular disadvantageous combinations of risk factors. Our findings also 
implicate that the NF-AT pathway may be a critical pathway for IMRD. Future 
studies may reveal a possibility for NF-AT involvement also in a sub-type of 
human SLE.  

3.3.4 Same disease complex or not? 

When this study was initiated it was unclear whether IMRD and SRMA 
belongs to the same disease complex or not. Firstly, we showed that DLA class 
II is only a risk factor for IMRD but not SRMA (Paper I). Secondly, we 
identified a shared genetic risk locus on CFA 32 between the diseases and 
additional three that were specific for IMRD (Paper II). Based on our 
investigation, it is clear that there is one common genetic risk locus (CFA 32) 
and a number of different genes involved as specific risk factors for the 
different diseases. All of the identified risk loci contain genes, which are 
known to be important for immune function and in particular for the NF-AT 
pathway. It is therefore clear that it is not the same disease, but still unclear if 
the diseases belong to the same complex or whether they should be considered 
as largely different diseases. 
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4 Conclusions 
The results of this thesis contribute to an overall increased knowledge 
concerning the genetic background for the development of canine SLE-related 
disease. It also highlights the dog as an excellent model organism for mapping 
genetic risk factors for complex traits as the deeper understanding obtained 
might be of major importance for human rheumatic disease as well. The main 
conclusions were as follows: 

 
Ø DLA class II is associated with the canine SLE-related disease IMRD but 

not with SRMA. More specifically, homozygosity for a specific DLA class 
II haplotype confers increased risk for dogs with IMRD with ANAS 
phenotype, whereas a general homozygosity at DLA class II gives ANAH 
dogs an increased risk for developing disease. 
 

Ø Genome-wide association mapping followed by fine-mapping and regional 
re-sequencing identified five additional risk loci for the SLE-related IMRD 
(CFA 3, 8, 11, 24 and 32). The loci on CFA 3, 11 and 32 were associated 
with ANA-positive dogs and the locus on 32 was shared between the two 
phenotypes.  

 
Ø Most ANAS dogs homozygous for the DLA risk haplotype also carried the 

genetic risk factors at CFA 11 and 32. 
 
Ø mRNA expression studies revealed that the PTPN3 gene (CFA 11) is 

significantly downregulated and that DDIT4L and BANK1 mRNA 
expression (CFA 32) is significantly upregulated. 
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Ø Several of the identified genetic risk factors are crucial for T-cell activation, 
B-cell activation and professional antigen-presenting cells like 
macrophages. 
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5 Future prospects 

5.1 DLA class II 

The degree of LD in the MHC class II region needs to be defined in the 
NSDTR population. It cannot be ruled out that other genes in close proximity 
to this region are of importance for IMRD development. However, as 
previously described, many other studies of autoimmune diseases in both 
human and animals indicate that MHC class II is directly involved as a major 
genetic risk factor for such diseases. 

The autoantigens that bind to the MHC class II molecules expressed from 
the risk haplotype remains to be defined. Functional studies remain to 
determine whether MHC class II molecules observed in dog patients with 
autoimmune rheumatic diseases present a common autoantigen that binds 
MHC class II molecules containing the RA epitope. 

5.2 Identification of mutations and downstream targets 

Further genetic studies are needed, especially to explore the ANAH phenotype 
and shared risk loci for all ANA dogs (regardless of staining). The associated 
regions on CFA 3 and 24 seem to belong to all ANA dogs (regardless of 
staining), but due to a low sample number in ANAH dogs, it is possible that we 
have missed to detect separate risk factors for this phenotype. A study using 
more dogs should be conducted. 

One of the highest priority aims is to identify the exact disease-causing 
mutations. Because the mutations could be either coding or regulatory they will 
have different functional consequences and accordingly different functional 
studies will be needed to define their consequences and involvement in disease 
development. They can be coding (synonymous or non-synonymous), affect 
RNA stability, be located in a promoter or enhancer region, in a conserved 
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element or in transcription factor binding sites. Different techniques are needed 
depending on the nature of identified mutations. If identified mutations occur 
in a coding region, the functional effect will be studied using cell culture 
methods by overexpressing the genes with the mutation and study the 
functional consequences. Regulatory mutations can be studied by quantitative 
PCR (to evaluate the expression) and allele-specific PCR. Mutations in 
promoter and enhancer regions can be evaluated for functional consequence on 
transcription using transient transfections in relevant cell culture systems with 
reporters carrying either the wild-type or mutated regulatory regions. 

Pathway analysis is another informative way to study the downstream 
effects of mutations. We are currently collecting fresh PBMC from healthy 
dogs and dogs in the acute phase of the disease, before treatment is started, to 
perform mRNA pathway studies. The goal is to identify downstream targets by 
RNA sequencing (RNAseq). We also aim to sort PBMC and perform RNAseq 
in different cell types (such as B-cells, Th1 and Th2 cells and dendritic cells) to 
evaluate if certain cell types have differentially expressed genes.  

We have shown that interactions between three loci occur in the ANAS 
phenotype. It would therefore be interesting to elucidate these three 
interactions in a cell model and study the mechanisms of e.g. NF-AT and T-
cell activation. 

5.3 Characterize the ANA autoantigen and cytokine changes 

Canine ANA specificity determination is currently usually restricted to a 
speckled (non-chromosomal) or homogenous (chromosomal) staining pattern. 
A future goal is to identify subgroups of ANA-reactivity by identifying specific 
autoantigens. A novel autoantigen can be used as a biomarker in diagnostic 
procedures and also help us to further understand the disease mechanism by 
correlating it to genetic studies.  

An imbalance in cytokine production and cytokine levels relates with SLE 
development in humans (Su et al., 2012; Lee et al., 2010). Identification of 
cytokines and possible alterations will therefore be examined in blood samples 
from NSDTRs with immune-mediated diseases. The ultimate ambition is to 
improve treatment and help breeding of healthier dogs in general and Nova 
Scotia duck tolling retrievers in particular. 
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5.4 Genes and pathways identified in dogs in human SLE 
patients 

Our plan is to study the genes and pathways found in the canine SLE-related 
disease, in a cohort of human SLE patients divided into sub-phenotypes. We 
have designed two arrays, a smaller and a larger. The smaller array is 5.7 Mb 
and covers the genes identified in our dog candidate regions, NF-AT pathway 
and other known “SLE-genes” of interest. The larger array covers 29.4 Mb and 
consists of 1300 genes important for our different dog-immune projects, 
including diabetes, Addison’s disease, Shar-Pei fever, Lymphocytic thyroiditis, 
and atopic dermatitis. Specific genes involved in the NF-AT pathway, 
autoimmunity in general, T-cell activation, B-cell activation, interferons, 
interleukins, tumor necrosis factors, toll-like receptors, genes in the hyaluronic 
pathway and the complement system are covered. Both designs capture ± 2 Kb 
relative of identified transcription start sites, ± 20 bp of exon borders and 3’ 
UTR, and all conserved elements located ±100 Kb upstream and downstream 
of the genes and within the gene.  

A pilot trial was performed using the smaller array and a total of 124 
patients and 17 controls. Patients were divided into nine different pools (11-17 
individuals/pool) depending on their clinical or immunological sub-phenotype 
and analyzed accordingly. We selected distinctive patient groups (such as 
patients with nephritis, skin manifestations or presence of anti-dsDNA 
antibodies) and tested if rare or common gene variants or pathways occur more 
frequently in specific subgroups. A large phenotypic diversity occurs in human 
SLE patients and it would therefore be helpful to sub-categorize SLE patients. 
We have identified NF-AT as a new major pathway for the canine SLE-like 
disease and this pathway may also play a role in the development of SLE or 
other rheumatoid human diseases.  

The pools had an average coverage of 3775 X and less than 0.3% of the 
tiled region missed sequence data. We identified a large number of novel 
SNPs, with many variations that only occurred in the case pools, suggesting 
that these might represent novel genes important for specific phenotypes of 
SLE. However, data need to be confirmed in a larger sample cohort as well as 
SNP genotyping as this pilot trial only gives us a hint of novel pathways and 
genes.  

The ultimate goal is to develop new diagnostic and treatment regimes for 
patients based on identification of new important genetic risk factors by 
subdividing patients based on both different clinical and genetic appearances.  
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