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Abstract 

Höök, H. 2005. Campylobacter epidemiology – insights from subtyping by pulsed-field gel 
electrophoresis. Doctoral thesis. 
ISSN 1652-6880, ISBN 91-576-6988-0 
 
Campylobacter jejuni and Campylobacter coli are frequent worldwide causes of food-borne 
gastroenteritis. Poultry is regarded as the most important infection source. In temperate 
countries, a marked seasonal variation of human campylobacteriosis is seen, with most 
cases occurring during the warmer season. In this PhD project, pulsed-field gel 
electrophoresis, PFGE, was used to explore the genetic and epidemiological relationships 
among both campylobacters colonising broilers and campylobacters causing sporadic 
infection in humans. 

In a commercial broiler flock, a subsequent addition of genotypes occurred during 
rearing, with two types found at two weeks of age and six types on the day before slaughter. 
Two new types were found in the slaughter samples. In two-thirds of the individual birds 
sampled the day before slaughter, more than one type were found. 

In two separate studies, Campylobacter isolates from humans infected in Sweden were 
characterised by PFGE. Although a large variation in distinct restriction patterns was found, 
most isolates could be sorted into clusters based on pattern similarities. Isolates in some 
clusters and subclusters were significantly more seasonally concentrated than other isolates. 

A sequenced strain of C. jejuni, NCTC 11168, was used as a reference strain and 
molecular size marker for PFGE. Using a Campylobacter strain for this purpose may be 
advantageous compared with using commercially available molecular markers, as the more 
sample-like DNA migration patterns facilitate and refine interpretation and analysis. 

In conclusion, PFGE was found to be a useful tool for investigating Campylobacter 
epidemiology in both broilers and humans. The results show that multiple genotypes of 
C. jejuni may be present in a commercial broiler flock during rearing and even in 
gastrointestinal tracts of individual birds. Both recurring environmental exposure and 
genetic changes within the population may explain the genotype diversity. Although a large 
number of genotypes may be found among Campylobacter strains infecting humans, a large 
proportion of these may be genetically related. It seems that certain Campylobacter 
genotypes infect humans in the regions studied during a short period of the year, and that 
these genotypes account for a substantial proportion of the cases during the season (summer 
and early autumn) with highest campylobacteriosis incidence. 
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Sammanfattning 

Campylobacter jejuni och Campylobacter coli är vanliga orsaker till matförgiftning över 
hela världen. En vanlig smittkälla är fjäderfä, i synnerhet slaktkyckling. I de flesta 
tempererade länder varierar förekomsten av human campylobakterios kraftigt med årstiden. 
Flest fall inträffar under den varma årstiden. I detta doktorandprojekt användes 
pulsfältsgelelektrofores, PFGE, för att undersöka genetiska och epidemiologiska samband 
dels bland Campylobacter som koloniserar kycklingar, dels bland Campylobacter som 
orsakar sporadisk infektion hos människor. 

Den genotypiska diversiteten och dynamiken hos Campylobacter följdes under 
uppfödningen av en slaktkycklingflock. Under uppfödningen tillkom alltfler genotyper, 
med två olika typer funna vid två veckors ålder och sex typer dagen före slakt. Ytterligare 
två nya typer hittades i prover från slakten av flocken. Två tredjedelar av de provtagna 
fåglarna hade mer än en genotyp i mag-tarmkanalen. Inga tecken sågs på att någon typ 
konkurrerade ut någon annan under uppfödningen av flocken. 

I två separata studier karakteriserades Campylobacter-isolat från människor som smittats 
i Sverige. Ett stort antal olika restriktionsmönster hittades, men många typer liknade 
varandra och kunde på grundval av mönsterlikhet sorteras in i olika kluster. De två största 
klustren i varje studie inkluderade omkring två tredjedelar av isolaten. Isolat i några kluster 
och subkluster uppträdde signifikant mer koncentrerat under året än andra isolat. 
Restriktionsmönstren för de typer som var mer koncentrerade till sommaren stämde överens 
mellan de två studierna. Grupper av isolat som var relaterade i typ och tid, möjligen 
representerande mindre utbrott, identifierades. Isolat från barn tenderade att vara av mer 
ovanliga typer än isolat från vuxna. 

En sekvenserad stam av C. jejuni, NCTC 11168, användes som referensstam och 
storleksmarkör för PFGE. Användning av en sekvenserad stam av Campylobacter för detta 
ändamål kan ha fördelar jämfört med användning av kommersiellt tillgängliga markörer, då 
vandringsmönstret för DNA från den sekvenserade stammen är mer likt vandringsmönstret 
för DNA från andra Campylobacter. På så vis underlättas och förfinas tolkning och analys 
av PFGE-profilerna. 

PFGE visade sig vara ett användbart verktyg för att undersöka epidemilogin för 
Campylobacter hos både slaktkyckling och människor. Resultaten visar att flera genotyper 
kan finnas samtidigt i en kommersiellt uppfödd slaktkycklingflock och även i mag-
tarmkanalen hos enskilda fåglar. Såväl upprepad miljöexponering som genetiska 
förändringar inom populationen kan förklara denna diversitet. Även om människor 
infekteras av många olika genotyper av Campylobacter så kan en stor del av dessa vara 
genetiskt relaterade. Det verkar som om vissa genotyper av Campylobacter i de studerade 
områdena uppträder koncentrerat under en kort period av året. Dessa genotyper kan ligga 
bakom en stor del av fallen under sommar och tidig höst, det vill säga den period då 
incidensen av campylobakterios är som högst. 
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Introduction 

The genus Campylobacter is of great importance in human medicine and food 
safety, moreover, species in this genus are classical veterinary pathogens. Since 
McFadyean and Stockman (1913) first isolated the organism from aborted ovine 
foetuses at the beginning of the 20th century, and Smith and Taylor (1919) 
proposed the name Vibrio fetus for the bacterium, a huge amount of knowledge 
has been discovered about this fascinating organism. Present knowledge now 
includes the complete genome sequencing of Campylobacter jejuni (Parkhill et al., 
2000), the most important human pathogen among campylobacters. Despite this, 
many details regarding the pathogenicity of the organism and the epidemiology of 
human campylobacteriosis remain unknown. 
 

Taxonomy and morphology 
The genus Campylobacter 
In 1963, Sebald and Véron  proposed that Vibrio fetus and Vibrio bubulus, based 
on a considerably lower GC content than other vibrios, should form a new genus, 
Campylobacter (from Greek καμπυλος (kampulos) = curved and βαχτηρς 
(baktron) = rod) (Sebald & Véron, 1963). Ten years later, Véron and Chatelain 
(1973), designated and described the neotype strain for the type species, 
Campylobacter fetus, of the new genus. They also proposed the transfer of Vibrio 
jejuni and Vibrio coli to the genus Campylobacter. 

 Since then, the genus Campylobacter has undergone several revisions, and 
species originally assigned to Campylobacter have formed new genera, the most 
notable being Helicobacter and Arcobacter (Goodwin et al., 1989; Vandamme et 
al., 1991). The genera Campylobacter, Arcobacter and Sulfurospirillum belong to 
the family Campylobacteraceae (Vandamme & De Ley, 1991; On, 2000), which, 
together with some other genera and unnamed Campylobacter-like organisms, 
form a separate phylogenetic branch, known as rRNA superfamily VI, within the 
class Proteobacteria (Vandamme et al., 1991). According to the current version of 
the List of Prokaryotic Names with Standing in Nomenclature, LPSN (Euzéby, 
2005), the genus Campylobacter consists of 17 species, whereof four are further 
divided into two subspecies each (Figure 1). Of these 21 taxons, 15 were first 
described in 1981 or later.  

 According to the LPSN, Campylobacter sputorum is divided into two 
subspecies: C. sputorum subsp. sputorum and C. sputorum subsp. bubulus 
(Euzéby, 2005). However, On et al. (1998b) proposed that the infrasubspecific 
divisions of C. sputorum should be revised to include three biovars of the species, 
based on their ability to produce catalase and urease: C. sputorum bv. sputorum 
(catalase- and urease-negative), C. sputorum bv. faecalis (catalase-positive, 
urease-negative) and C. sputorum bv. paraureolyticus (catalase-negative, urease-
positive). They recommended that strains previously assigned to C. sputorum 
subsp. bubulus should be redesignated as bv. sputorum (Roop et al., 1985; On et 
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Campylobacter curvus (L04313)

Campylobacter concisus (L04322)

Campylobacter rectus (L04317)

Campylobacter showae (L06974)

Campylobacter gracilis (L04320)

Campylobacter hominis (AJ251584)

Campylobacter sputorum (X67775)

Campylobacter coli (L04312)

Campylobacter jejuni jejunisubsp. (L04315)

Campylobacter jejuni doyleisubsp. (L14630)

Campylobacter lari (L04316)

Campylobacter insulaenigrae (AJ620504)

Campylobacter upsaliensis (L14628)

Campylobacter helveticus (U03022)

Campylobacter fetus fetussubsp. (L04314)

Campylobacter fetus venerealissubsp. (L14633)

Campylobacter hyointestinalis hyointestinalissubsp. (AF097689)

Campylobacter lanienae (AF043425)

Campylobacter hyointestinalis lawsoniisubsp. (AF097685)

Campylobacter mucosalis (L06978)

Helicobacter pylori (Z25741)

0.01

Figure 1. Phylogenetic tree showing all currently approved Campylobacter species and 
subspecies. The tree was constructed by the neighbour-joining method (Saitou and Nei, 
1987) from a distance matrix that was corrected for multiple substitutions at single 
locations by the two-parameter method (Kimura, 1980). Prealigned 16S rRNA sequences 
were obtained from the Ribosomal Database Project, RDP-II (http://rdp.cme.msu.edu/, Cole 
et al., 2005), with the exception of the sequence of Campylobacter insulaenigrae which 
was obtained from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and manually 
aligned. All strains used were type strains. Accession numbers in GenBank are shown in 
parentheses. Helicobacter pylori, a species of a related genus, is also shown in the tree for 
comparison. Escherichia coli (M35018) and Pasteurella multocida (X80725) were used as 
an outgroup. (K.-E. Johansson & H. Höök, 2005, unpublished). 
 

al., 1998b). The Subcommittee on the Taxonomy of Campylobacter and Related 
Bacteria approved this revised biovar nomenclature (Vandamme & On, 2001). 

 
Morphology and biochemical characteristics 
Campylobacters are Gram-negative, non-spore-forming, slender, comma or spiral 
shaped rods, 0.2 to 0.5 μm wide and up to 8 μm long (Smibert, 1984). Cells 
exposed to oxygen or in old cultures may become coccoid (Ng et al., 1985). The 
bacterium is motile in a characteristic corkscrew-like manner by means of a single 
unsheathed flagellum at one or both poles (Smibert, 1984). Most campylobacters 
are microaerophilic and require an oxygen concentration of 3–15% and a carbon 
dioxide concentration of 3–5%, but some species are anaerobic. Campylobacters 
are unable to utilise carbohydrates, instead they obtain energy from amino acids or 
tricarboxylic acid cycle intermediates (Smibert, 1984). They are oxidase-positive. 
 
Genetic properties 
For most Campylobacter species, including thermophilic campylobacters, the 
DNA GC content is 30–36%, although for the entire genus it varies between 29% 
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and 46% (Vandamme & De Ley, 1991). Since publishing of the complete genome 
sequence of C. jejuni NCTC 11168 (Parkhill et al., 2000), genetic knowledge 
regarding this organism has increased rapidly. The chromosome of the sequenced 
strain is small (1,641,481 base pairs) compared to other prokaryotes, with a low 
GC content (30.6%), and an unusually high percentage protein coding sequences 
(Parkhill et al., 2000). In contrast to other sequenced prokaryotes, almost no 
insertion sequences or phage-associated sequences have been found, and very few 
repetitive sequences (Parkhill et al., 2000). Another property is the apparent lack 
of operon organisation of the genes (Parkhill et al., 2000). An important finding is 
the occurrence of hypervariable sequences, found mostly in genes coding for 
biosynthesis or surface structure modification, and closely linked genes (Parkhill 
et al., 2000). The hypervariable regions of the genome may be important for the 
adaptation and survival of C. jejuni in different environments, and for its 
pathogenic potential (Parkhill et al., 2000; Linton, Karlyshev & Wren, 2001). 
 
Campylobacter jejuni and related species 
DNA:rRNA hybridisation has demonstrated that Campylobacter jejuni, 
Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis form a 
separate rRNA subcluster within rRNA cluster I (constituting the genus 
Campylobacter) in rRNA superfamily VI (Vandamme et al., 1991). 
Campylobacter helveticus is a later described species which shows close DNA 
homology with C. upsaliensis (Stanley et al., 1992). Recently, Campylobacter  
insulaenigrae, a new distinct species most closely related to C. lari and C. jejuni, 
was described (Foster et al., 2004). C. jejuni, C. coli, C. lari and C.  upsaliensis 
are often referred to as thermophilic  or thermotolerant  campylobacters (Skirrow, 
1994). This refers to the fact that most strains of the named species, together with 
C. helveticus, prefer a slightly higher growth temperature than other 
campylobacters (Doyle & Roman, 1981). However, this terminology is not 
completely clear-cut, as  neither C. jejuni subsp. doylei nor the recently described 
and genetically related C. insulaenigrae grows at 42°C (Vandamme & Goossens, 
1992; Foster et al., 2004). Moreover, several other Campylobacter species grow at 
42°C (Vandamme & Goossens, 1992), and consequently may be called 
thermotolerant campylobacters. It is notable that the described use of 
“thermophilic” and “thermotolerant” is appropriate only in the strict context of 
campylobacters, as thermophilic/thermotolerant as general microbiological terms 
refer to microorganisms that thrive in or tolerate temperatures above 50°C. In this 
regard, all campylobacters belong to the mesophilic organisms. 

 As one of the leading bacterial causes of human enteritis worldwide, C. jejuni is 
the Campylobacter species that has been most extensively studied. The organism 
was first isolated from cattle with infectious diarrhoea by Jones, Orcutt and Little 
(1931), who named it Vibrio jejuni. Unfortunately, the original strains were lost, 
and the species was redefined when it was transferred to the new genus 
Campylobacter (Véron & Chatelain, 1973). C. jejuni is further divided into two 
subspecies: C. jejuni subsp. jejuni and C. jejuni subsp. doylei. Subsp. doylei differs 
from subsp. jejuni in that it does not reduce nitrate or grow at 42°C (Vandamme & 
Goossens, 1992). Hereafter in this thesis, C. jejuni refers to C. jejuni subsp. jejuni. 
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 The second most common Campylobacter species isolated from humans is 
C. coli. The organism was first isolated from swine with swine dysentery (Doyle, 
1944), and is the primary Campylobacter species found in swine (Pearce et al., 
2003; Guévremont, Higgins & Quessy, 2004). As in the case of C. jejuni, the 
original strains were lost and the current type strain is from a later date (Véron & 
Chatelain, 1973). C. coli differs phenotypically from C. jejuni primarily by its 
inability to hydrolyse hippurate (Vandamme & Goossens, 1992). 

 C. lari differs from other thermophilic campylobacters in its resistance to 
nalidixic acid and ability to grow anaerobically in the presence of trimethylamine-
N-oxide hydrochloride, TMAO (Benjamin et al., 1983). It was first isolated in 
1976 from human faeces, but most strains are found in wild birds (Benjamin et al., 
1983; Waldenström et al., 2002). 

 During the 1980s, several authors reported isolation of catalase-negative or 
weakly positive thermotolerant campylobacters from dogs (Sandstedt & Wierup, 
1981; Sandstedt, Ursing & Walder, 1983), cats (Fox et al., 1989) and humans 
(Steele, Sangster & Lanser, 1985; Patton et al., 1989). The organisms were called 
CNW (catalase-negative or weakly positive) campylobacters until 1991, when the 
new species C. upsaliensis was proposed (Sandstedt & Ursing, 1991). 

 

Growth and survival 
Microaerobic atmosphere 
An optimal microaerophilic atmosphere for growth of campylobacters is one 
containing 5–7% oxygen, 10–15% carbon dioxide and 65–85% nitrogen or 
hydrogen (Kiggins & Plastridge, 1956; Butzler & Skirrow, 1979). This can be 
achieved by evacuating anaerobic jars and filling them with the above gas mixture 
(Luechtefeld et al., 1982) or by using commercially available gas envelopes 
(Wang et al., 1982). A candle extinction jar is a cheap and simple alternative, 
although it gives a slightly higher oxygen pressure (Luechtefeld et al., 1982; 
Wang et al., 1982). 
 
Growth temperature and pH 
All campylobacters grow well at 37°C. C. jejuni has been found to grow between 
30°C and 45°C, with an optimal temperature range of 42°C to 45°C, and a pH 
range of 5.8 to 8.0 (Doyle & Roman, 1981; Gill & Harris, 1982; Kelana & 
Griffiths, 2003). No growth occurs below pH 4.9, under otherwise optimal 
conditions (Doyle & Roman, 1981). 
 
Survival in different environments 
As thermophilic campylobacters do not multiply at normal room temperature, the 
role of C. jejuni as a food-borne pathogen is associated with its ability to survive 
in food during storage and handling. The temperature seems to be a key factor for 
the survival of C. jejuni, and one that determines which effect other adverse 
conditions will have on the decrease in viable cells. In cattle slurry, C. jejuni 
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survives 41 days at 4°C and 7.7 days at 37°C (Paluszak & Olszewska, 2000). Low 
pH (pH 3.0 to 4.5) results in a reduction in viable cells even in a growth-
supporting medium, but the inactivation is much faster at higher temperatures. At 
4°C and pH 4.5, more than 4 days is required for a 3-log10 decrease in the number 
of cells (Doyle & Roman, 1981). C. jejuni has been shown to survive for days or 
weeks in refrigerated foodstuffs (Zhao, Doyle & Berg, 2000). The number of 
C. jejuni on beef decreased during the first week of frozen storage and remained 
thereafter constant (Moorhead & Dykes, 2002). C. jejuni has been shown to 
survive in frozen chicken for more than 12 months (Beuchat, 1987). Garlic has 
been shown to have an inhibiting effect on C. jejuni survival in butter (Zhao et al., 
2000). 

 Recently, C. jejuni was shown to be infective for the protozoan Acanthamoeba 
polyphaga, and to survive for longer periods when cocultured with amoebae 
(Axelsson-Olsson et al., 2005). Protozoan hosts may play a role in the survival of 
campylobacters in the aquatic environment, although this remains to be elucidated. 
 
Viable but non-culturable campylobacters (VBNC) 
Campylobacters may go into a viable but non-culturable stage (Rollins & Colwell, 
1986). VBNC, viable but non-culturable campylobacters, typically show a coccoid 
form with intact cell membranes (Rollins & Colwell, 1986). However, the coccoid 
form is not necessarily associated with non-culturability. The role of VBNC as 
infectious agents is still debated. In a recent study, VBNC were unable to revert to 
the viable Campylobacter form and colonise chicken gut with normal caecal flora 
(Ziprin & Harvey, 2004). 
 

Isolation and identification  
A great variety of selective media and procedures for the isolation of 
campylobacters exists. Since species differ in their resistance to antibiotics and 
other selective agents, no single medium is sufficient for the isolation of all 
Campylobacter spp. In most cases, selective media are necessary to enable 
isolation of the relatively slow-growing campylobacters in samples with a 
competing normal microbiological flora, for example faeces or food (Butzler & 
Skirrow, 1979). A prerequisite for recognising the frequent appearance of C. jejuni 
as a human pathogen, and a starting point for the growing interest in 
Campylobacter was when Skirrow (1977) developed a selective agar for C. jejuni 
and C. coli isolation from faeces. The Skirrow agar is based on blood agar 
supplemented with trimethroprim, polymyxin B and vancomycin. Many other 
media have since been developed according to the same principle: suppression of 
other microflora by the addition of various selective agents. Both blood-containing 
media, e.g. Butzler agar (Lauwers, De Boeck & Butzler, 1978) and Campy-BAP 
(Blaser et al., 1980), and charcoal-based media, e.g. mCCDA agar (Hutchinson & 
Bolton, 1984), have been shown to be effective for the isolation of campylobacters 
from human and animal faeces. Preston agar (Bolton & Robertson, 1982) was 
developed for Campylobacter isolation from faeces as well as environmental 
samples. The membrane filtration technique utilises the fact that campylobacters, 
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in contrast to most other bacteria, easily pass through filters with a pore size of 
0.45 μm (Dekeyser et al., 1972; Mégraud & Elharrif, 1985; Bolton, Hutchinson & 
Parker, 1988; Moreno et al., 1993). Filtration techniques are especially suitable for 
the isolation of C. upsaliensis, as this species is sensitive to most antibiotics used 
in other Campylobacter media (Bolton et al., 1988; Goossens et al., 1990). A pore 
size of 0.65 μm enabled a higher isolation rate of C. jejuni and C. coli (Bolton et 
al., 1988). However, selective media with a high rate of isolation of C. upsaliensis 
as well as other thermophilic campylobacters have been developed (Aspinall et al., 
1993, 1996). 

 Recently, increased interest in Campylobacter species other than C. jejuni and 
C. coli as causes of human enteritis has occasionally resulted in the 
recommendation to routinely incubate specimens at 37°C instead of 42°C. This is 
aimed at increasing the probability of isolation of these other species, without any 
significant decrease in the isolation rate of C. jejuni and C. coli. However, a large 
British study with four participating laboratories found 42°C to be the optimal 
temperature for the isolation of C. jejuni, and that incubation at 37°C significantly 
reduced the isolation rate of this species (Gee et al., 2002). The incubation 
temperature (37°C or 42°C) had no effect on the isolation rates of Campylobacter 
from foodstuffs cultured on Preston agar after an enrichment step (Scates, Moran 
& Madden, 2003). However, each temperature was found to select for certain 
C. jejuni genotypes, which led to the recommendation to use both temperatures to 
detect the widest range of genotypes. 

 
Species identification  
Phenotypic tests used to differentiate between different Campylobacter species 
include growth at 25°C and 42°C or 43°C, catalase production, nitrate and nitrite 
reduction, H2 requirement for microaerophilic growth, indoxyl acetate hydrolysis, 
growth in the presence of 3.5% NaCl, 1% glycine and 0.1% TMAO, and 
susceptibility to specific antibiotics such as nalidixic acid and cephalotin (Skirrow 
& Benjamin, 1980; Vandamme & De Ley, 1991). C. jejuni is the only 
Campylobacter species that hydrolyses hippurate (C. jejuni subsp. doylei may vary 
in its reaction) (Vandamme & Goossens, 1992). Therefore, hippurate hydrolysis 
(Hwang & Ederer, 1975) has become the most widely used test to identify 
C. jejuni, and especially to differentiate it from the phenotypically and 
genotypically similar C. coli (Walder, Sandstedt & Ursing, 1983; Lior, 1984). In 
addition to observed variability in hippurase reaction (Morris et al., 1985), some 
strains of C. jejuni have eventually been shown to be hippurase-negative (Totten et 
al., 1987; Fermér & Engvall, 1999). This indicates the need for alternative or 
additional tests. 

 A number of PCR (polymerase chain reaction)-based methods for identifying 
thermophilic campylobacters have been developed. PCR of the hippuricase gene 
identifies C. jejuni with higher sensitivity than the hippurate hydrolysis test 
(Linton et al., 1997). Other PCRs detect and differentiate all thermophilic species 
(Fermér & Engvall, 1999). 



 

 15 

Reservoirs  
Campylobacter spp. are found on mucous membranes of the reproductive and 
gastrointestinal tracts and in oral cavities in a great variety of animals. Although 
the principal organ system in which bacteria are found is typical for most 
Campylobacter species, few species seem to be strictly host species-specific. 
C. jejuni, the leading cause of human campylobacteriosis, is frequently found in 
both birds and mammals. Although C. jejuni (as well as the classical causative 
agent of “vibrionic abortion”, C. fetus subsp. fetus) causes abortion in sheep 
(Diker & Istanbulluoglu, 1986; Hedstrom et al., 1987), and has occasionally been 
reported in association with various diseases in cattle (Welsh, 1984), poultry 
(Stephens, On & Gibson, 1998), mink (Hunter et al., 1986), goats (Anderson et 
al., 1983), horses (Atherton & Ricketts, 1980; Hong & Donahue, 1989) and dogs 
(Davies, Gebhart & Meric, 1984; Misawa et al., 2002), animals often carry the 
bacteria without any visible signs of disease or other harm. 
 
Birds 
As the temperature optimum for thermophilic campylobacters corresponds to the 
body temperature of birds rather than mammals, they seem to be well adapted to 
the avian gut, and birds have been suggested as the natural hosts for these 
organisms (Newell & Wagenaar, 2000). Campylobacters have been found in a 
great variety of bird species, both domesticated and wild. Among domesticated 
birds, a high prevalence of C. jejuni and C. coli is often found in broiler chickens 
(Wedderkopp, Rattenborg & Madsen, 2000; Hansson et al., 2004), as well as in 
older birds such as broiler breeder flocks and egg-laying hens (Doyle, 1984; Cox 
et al., 2002b). Furthermore, Campylobacter colonisation is common in turkeys 
(Wallace, Stanley & Jones, 1998; Cox et al., 2000; Borck, 2003), geese (Aydin, 
Atabay & Akan, 2001), ducks (Savill et al., 2003), ostriches and quails (Minakshi, 
Dogra & Ayyagari, 1988; Oyarzabal, Conner & Hoerr, 1995). 

 Campylobacters have been isolated from a wide range of wild bird species 
(Luechtefeld et al., 1980; Fricker & Metcalfe, 1984; Petersen et al., 2001a; 
Broman et al., 2004). However, they are unevenly distributed among species, and 
the feeding behaviour of birds has been shown to influence the Campylobacter 
colonisation rate (Waldenström et al., 2002). Campylobacter species found in wild 
birds include the most common human pathogens C. jejuni and C. coli. Moreover, 
a substantial proportion of isolates are identified as C. lari. Wild birds have been 
suggested to be important reservoirs for campylobacters infecting broilers and 
humans. However, comparisons of C. jejuni subtypes from wild birds with 
subtypes from humans and chickens reveal only a few common subtypes (Petersen 
et al., 2001a; Broman et al., 2002; Broman, 2003). 
 
Other animals  
C. jejuni and C. coli are often found in faeces from food-producing animals such 
as cattle, sheep  and swine (Rosef et al., 1983; Stanley et al., 1998; Nielsen, 2002; 
Inglis, Kalischuk & Busz, 2003; Sasaki et al., 2003; Stanley & Jones, 2003; 
Guévremont et al., 2004). In cattle and sheep, C. jejuni is the most frequently 
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isolated species, with only a small proportion of C. coli found. In swine, the ratio 
between the two species is the opposite, with C. coli accounting for the great 
majority of isolates (Rosef et al., 1983; Guévremont et al., 2004). A recent study 
reported the novel species Campylobacter lanianae being the most frequently 
found Campylobacter species in cattle (Inglis et al., 2003). Horses and goats seem 
to be more rare carriers of Campylobacter  spp. (Rosef et al., 1983). 

 Dogs and cats, both with and without diarrhoea, are frequent carriers of 
campylobacters (Moreno et al., 1993; Hald & Madsen, 1997; Sandberg et al., 
2002; Engvall et al., 2003; Hald et al., 2004). C. upsaliensis is the most frequently 
isolated species, but C. jejuni and C. coli account for a substantial proportion of 
the isolates. Also C. helveticus can be isolated from dogs and cats (Stanley et al., 
1992; Moser et al., 2001).  

 Few studies have addressed the possible occurrence of campylobacters in wild 
mammals. However, C. jejuni and C. coli have been isolated from various wild 
mammals such as the hare, hedgehog, squirrel, deer, badger, fox, rodents and seal 
(Fernie & Park, 1977; Rosef et al., 1983; Petersen et al., 2001a). 
 

Campylobacter in foods 
Poultry products 
The occurrence of Campylobacter in all parts of the broiler production chain is 
well documented all over the world. The Campylobacter prevalence in fresh and 
frozen poultry meat for human consumption varies from 7% to 83% in different 
countries and investigations (Park et al., 1981; Aho & Hirn, 1988; Willis & 
Murray, 1997; Madden, Moran & Scates, 1998; Osano & Arimi, 1999; 
Uyttendaele, De Troy & Debevere, 1999; Kramer et al., 2000; Shih, 2000). 
Roasted chicken or other poultry products ready for consumption have sometimes 
been reported to be contaminated by campylobacters (Quinones-Ramirez et al., 
2000). Cross-contamination from raw poultry products due to poor hygiene 
practices is a suspected cause of this (Quinones-Ramirez et al., 2000), although 
inadequate cooking may contribute. 
 
Other meats 
In an investigation in Northern Ireland, no evidence of Campylobacter 
contamination was found on beef carcasses or retail beef or pork (Madden et al., 
1998). Likewise, a Japanese investigation did not demonstrate any campylobacters 
on fresh meat from cattle or swine (Ono & Yamamoto, 1999). In contrast, 
Campylobacter contamination of bovine, porcine and ovine liver was found in 
Britain (Moore & Madden, 1998; Kramer et al., 2000). Lamb from halal butchers 
in Britain was found to be contaminated with C. jejuni and C. coli (Little et al., 
1999). Investigations where all lamb carcasses were Campylobacter-negative have 
been reported in Spain (Sierra et al., 1995) and Northern Ireland (Madden et al., 
1998). 
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 Hence, although campylobacters are frequently isolated from food-producing 
animals other than poultry, the prevalence in food products from these animals 
seems to be low. A possible cause of this difference may be the difference in 
slaughter procedures between poultry and larger animals. 
 
Other foods 
A high prevalence (6 %) of Campylobacter in unpasteurized milk on sale to the 
public has been demonstrated in Britain (Humphrey & Hart, 1988). C. jejuni and 
C. coli have been found in shellfish (Reinhard et al., 1996; Wilson & Moore, 
1996). There are few studies on the Campylobacter occurrence in food of non-
animal origin. In Canada, 1.6% to 3.3% of various vegetables on the retail market 
were demonstrated to be contaminated with Campylobacter (Park & Sanders, 
1992). 
 

Campylobacteriosis in humans  
Spiral-shaped bacteria in faeces from children with enteritis were described by 
Escherich already in 1886 (Escherich, 1886). However, for many years after 1906, 
the year of the first successful isolation of the organism that would later become 
Campylobacter (McFadyean & Stockman, 1913), diseases caused by these 
organisms were of exclusively veterinary concern. Campylobacters were first 
isolated from humans during a milk-borne enteritis outbreak in 1938 (Levy, 1946), 
and around 1960 a number of “related vibrios”, apparently what we now know as 
C. jejuni and C. coli, were isolated from the blood of humans with diarrhoea 
(King, 1957, 1962). Nevertheless, it was not until the breakthrough of the culture 
of campylobacters from faeces in the 1970s (Cooper & Slee, 1971; Dekeyser et 
al., 1972; Butzler et al., 1973) that the human pathogenic potential of 
Campylobacter was universally recognised. After Skirrow’s medium for isolation 
of campylobacters from faeces was described (Skirrow, 1977), diarrhoea-
associated occurrence of campylobacters in humans was reported from many 
countries, and during the 1980s the reported campylobacteriosis incidence 
increased rapidly.   

 The vast majority of campylobacteriosis cases in humans are gastrointestinal 
infections. The incubation time is usually 2 to 5 days, but may vary from 1 to 11 
days (Black et al., 1988; Skirrow, 1994). Sudden onset of diarrhoea, which may be 
watery or bloody, is the most common symptom. Other symptoms are abdominal 
cramps, fever, myalgia, headache, nausea and vomiting. The onset of fever often 
precedes the onset of diarrhoea by 12 to 24 hours (Black et al., 1988). The illness 
is most often self-limiting, with symptoms diminishing after a few days up to two 
weeks. Faecal excretion of campylobacters usually continue for two to three weeks 
(Skirrow, 1994).  

 Experimental studies have shown that an ingestion dose of 500 to 800 organisms 
may be sufficient to cause illness (Robinson, 1981; Black et al., 1988), although 
the attack rate was higher among volunteers given higher doses (Black et al., 
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1988). The dose-response relationship of Campylobacter infections has recently 
been reconsidered (Teunis et al., 2005). 

 A few percent of patients develop reactive arthritis as a sequel to Campylobacter 
enteritis. The interval between the preceding infection and arthritis onset is up to 
four weeks. Individuals with human lymphocyte antigen B27 (HLA-B27) are 
more often affected (Peterson, 1994). A more infrequent sequel is the acute 
immune-mediated inflammation of peripheral nerves known as Guillain-Barré 
syndrome (Nachamkin, 2001). 

 Extra-intestinal manifestations of Campylobacter infection in humans are rare. 
Transient bacteraemia may be present during the course of an enteric infection, but 
is uncommon (Black et al., 1988). Systemic illness in association with 
Campylobacter occurrence in blood is rarely seen (Skirrow et al., 1993), and most 
often affects immunocompromised individuals (Söderström, Schalen & Walder, 
1991). However, there are reports of Campylobacter septicaemia in 
immunocompetent patients (Söderström et al., 1991; Krause et al., 2002). C. lari 
seems to be unproportionally common in Campylobacter septicaemia, with regard 
to its otherwise rare appearance as a human pathogen (Skirrow et al., 1993). Other 
reported manifestations, with or without preceding enteritis, are spontaneous 
abortion (Simor et al., 1986; Selander et al., 1993), meningitis (Herve et al., 
2004), myocarditis (Wanby & Olsen, 2001; Westling & Evengard, 2001; 
Cunningham & Lee, 2003) and cellulitis (Ichiyama et al., 1998; Briedis et al., 
2002; Cone et al., 2003; Monselise et al., 2004). 
 

Epidemiology of human infections 
Campylobacteriosis incidence 
C. jejuni and C. coli are common worldwide causes of human gastroenteritis, in 
developed as well as developing countries (Pebody, Ryan & Wall, 1997; Coker et 
al., 2002). The reported incidence varies between countries, probably due to 
differences in surveillance systems as well as real differences in incidence. In 
2004, 69 cases per 100,000 inhabitants were reported in Sweden, whereof 35% 
were reported to be domestically infected (Swedish Institute for Infectious Disease 
Control, 2005a). The yearly incidence during the past eight years is shown in 
Figure 2. The situation in other Scandinavian countries is similar, with a yearly 
incidence of about 50, 80 and 75 cases per 100,000 inhabitants in Norway, 
Denmark and Finland, respectively (European Commission, 2005). However, the 
proportion of infections acquired within the country is considerably higher in 
Denmark than Sweden, whereas a higher proportion of cases in Norway is 
acquired abroad. Hence, considering only domestic cases in each country reveals 
larger differences between countries.  

 Especially mild Campylobacter infections can be expected to be substantially 
underreported. Some efforts to estimate the true campylobacteriosis incidence 
have been made. Mead et al. (1999) assumed the quota reported:unreported cases 
of campylobacteriosis in the United States to be 1:38, based on estimates from 
salmonellosis data. Others estimate the true incidence to be five to eight times 
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Figure 2. Human campylobacteriosis cases in Sweden, reported according to the 
Communicable Disease Act. The number of cases of each category is indicated on the bars. 
For cases reported as infected in Sweden, the proportions of the total number of cases are 
shown. The data were obtained from the official statistics on communicable diseases in 
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higher than the reported incidence (Wheeler et al., 1999; de Wit et al., 2000; 
MAFF, 2000). 
 
Outbreaks 
Most information on infection sources and transmission routes for human 
campylobacteriosis is derived from outbreak investigations. However, outbreaks 
are relatively rare events for this pathogen, most infections appearing to be 
sporadic (Pebody et al., 1997). 

 Large outbreaks of campylobacteriosis, with hundreds or thousands of cases, 
have been associated with contaminated water (Mentzing, 1981; Andersson, 
deJong & Studahl, 1997; Furtado et al., 1998; Melby et al., 2000; Kuusi et al., 
2004; Kuusi et al., 2005). A mixture of Campylobacter and other agents, for 
example Escherichia coli (Bopp et al., 2003), Shigella sonnei (Maurer & 
Sturchler, 2000), norovirus/small round viruses (Maurer & Sturchler, 2000), 
Cryptosporidium or Giardia, is sometimes found during waterborne outbreaks of 
gastroenteritis. 

 Unpasteurized milk is a well documented cause of campylobacteriosis outbreaks 
(Robinson & Jones, 1981; Finch & Blake, 1985; Evans et al., 1996; Kálmán et al., 
2000; Lehner et al., 2000). Faecal contamination of raw milk may be the most 
common transmission pathway (Potter et al., 1983; Birkhead et al., 1988), but 
direct udder excretion of campylobacters has also been reported (Hutchinson et 
al., 1985; Orr et al., 1995). 

 Many outbreaks have been related to the consumption of poultry (Istre et al., 
1984; Rosenfield et al., 1985; Murphy et al., 1995; Evans et al., 1998; Pearson et 
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al., 2000; Allerberger et al., 2003). More unusual food vehicles associated with 
campylobacteriosis outbreaks include garlic butter (Zhao et al., 2000) and lettuce 
(Graves, Bradley & Crutcher, 1998). Cross-contamination, primarily from raw 
chicken, was suggested as a probable transmission route in these outbreaks.  
 
Sporadic infections 
Poultry and poultry products are considered to be common infection sources of 
sporadic campylobacteriosis (Newell & Wagenaar, 2000). Epidemiological 
evidence for this assumption has been gathered in many case-control studies, in 
which poultry consumption is found to be a significant risk factor for 
campylobacteriosis (Norkrans & Svedhem, 1982; Oosterom et al., 1984; Harris, 
Weiss & Nolan, 1986; Deming et al., 1987; Kapperud et al., 1992; Ikram et al., 
1994; Eberhart-Phillips et al., 1997; Neal & Slack, 1997; Studahl & Andersson, 
2000; Effler et al., 2001). The sudden drop in Campylobacter infections when 
poultry products were withdrawn from the market during the dioxin scare in 
Belgium in June 1999 gives additional support to this hypothesis (Vellinga & Van 
Loock, 2002). In Iceland, the human campylobacteriosis incidence decreased 
when Campylobacter-positive broiler carcasses were frozen prior to distribution 
(Stern et al., 2003). The estimated aetiological fraction of cases due to chicken 
consumption varies between 10% and 50% in different studies (Harris et al., 1986; 
Neal & Slack, 1997; Neimann et al., 1998; Effler et al., 2001; Vellinga & Van 
Loock, 2002). 

 Other suggested transmission modes identified as risk factors in case-control 
studies include drinking or handling raw/contaminated milk (Southern, Smith & 
Palmer, 1990; Eberhart-Phillips et al., 1997; Studahl & Andersson, 2000), eating 
barbecued food (Kapperud et al., 1992), contact with diarrhoeic animals (Saeed, 
Harris & DiGiacomo, 1993), contact with dogs or puppies (Kapperud et al., 1992) 
and contact with cats or kittens (Deming et al., 1987). Recently, swimming in 
natural waters was found to be an independent risk factor for domestic 
campylobacteriosis in Finland (Schonberg-Norio et al., 2004). There are also case 
reports on other infection routes, such as eating raw shellfish (Abeyta et al., 1993). 
However, most sporadic cases remain unexplained (Neal & Slack, 1997; Vellinga 
& Van Loock, 2002).  
 
Seasonal variation 
A striking feature of campylobacteriosis in temperate countries is the seasonal 
variation, with one or two incidence peaks occurring in spring, summer or early 
autumn (Nylen et al., 2002; Kovats et al., 2005). The seasonal variations in nine 
European countries show a remarkably consistent pattern from year to year (Nylen 
et al., 2002). The seasonality pattern is still largely unexplained, although it has 
been shown to be related to climatic factors (Patrick et al., 2004; Louis et al., 
2005). Seasonal peaks in Campylobacter prevalence in broilers and other potential 
sources have been suggested to be related to the seasonal variations in humans. 
Others propose flies as important vectors for infection transmission during the 
summer (Ekdahl, Normann & Andersson, 2005; Nichols, 2005). In Wales, 
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consumption or handling of milk contaminated by birds (magpies and jackdaws) 
picking at milk bottles was associated with Campylobacter infection during a 
spring incidence rise (Southern et al., 1990). Another suggested cause of the 
seasonal peaks is human behaviour that may be more common during the warmer 
season, such as barbecuing, camping, swimming in lakes and rivers, and drinking 
water from streams and lakes (Nylen et al., 2002). 
 

Campylobacters in broilers 
The prevalence of Campylobacter spp. in commercial broiler flocks is high in 
most industrialised countries (Pokamunski et al., 1984; Nielsen, Engberg & 
Madsen, 1997). In Sweden, a national surveillance programme was started in 
1991, and the prevalence of Campylobacter-positive flocks within this programme 
was reduced from 16% to 10% 2000. In July 2001 a new programme was initiated 
which showed an apparently higher prevalence (14–20%), probably due to more 
extensive sampling (Hansson et al., 2004; Swedish Zoonosis Center, 2004). The 
Campylobacter prevalence in Swedish broilers shows seasonal variation, with a 
seasonal peak occurring in late August. 

 It is rarely possible to isolate Campylobacter in broiler chickens less than two 
weeks old (Jacobs-Reitsma et al., 1995; Berndtson, Danielsson-Tham & Engvall, 
1996a), but the colonisation of the flock often occurs from then and during the 
weeks until slaughter. Maternal antibodies may at least partly protect very young 
chicks from Campylobacter infection (Sahin et al., 2003b). Colonised birds 
excrete Campylobacter in large quantities; up to 108 CFU Campylobacter per 
gram caecal content (Altmeyer, Krabisch & Dorn, 1985). 

 Once introduced, the spread of campylobacters within the flock is rapid. In a 
few days 100% or close to 100% of the birds are colonised (Lindblom, Sjögren & 
Kaijser, 1986; Jacobs-Reitsma et al., 1995). However, data from the Swedish 
surveillance programme show that in at least one fifth of the Campylobacter-
positive flocks at slaughter the intra-flock prevalence is considerably lower than 
100% (Hansson et al., 2004). Also, in breeder flocks, i.e. older birds, the 
colonisation rate within the flock is often lower than 100% (Jacobs-Reitsma, 
1995). 

 Horizontal transmission is the most important transmission route for 
campylobacters in broiler chickens (Jacobs-Reitsma et al., 1995). Most studies 
indicate that vertical transmission does not occur (Jacobs-Reitsma, 1995; Jacobs-
Reitsma et al., 1995; Petersen, Nielsen & On, 2001b; Sahin, Kobalka & Zhang, 
2003a), although there is contradicting evidence (Pearson et al., 1996; Cox et al., 
2002a). The protective effect of hygiene barriers (Kazwala et al., 1990; 
Humphrey, Henley & Lanning, 1993; Berndtson et al., 1996b; van de Giessen et 
al., 1996; Gibbens et al., 2001) suggests that introduction into the flock occurs 
when campylobacters from outside are transported into the chicken house by the 
staff, on shoes and clothes. Introduction through the water system has been 
described in England (Pearson et al., 1993). Feeding the chickens undisinfected 
water has been shown to be a risk factor for broiler flock colonisation in Norway 
(Kapperud et al., 1993). However, water and feed are unlikely sources in Sweden 
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(Lindblom et al., 1986; Berndtson et al., 1996b). Aerosols may also play a role in 
transmission (Shreeve et al., 2000; Gibbens et al., 2001; Refregier-Petton et al., 
2001). 

 Contamination of previously Campylobacter-free broiler flocks with 
campylobacters during transport (Mead, Hudson & Hinton, 1994; Newell et al., 
2001; Slader et al., 2002) and slaughter (Rivoal et al., 1999; Miwa et al., 2003) 
has been shown in several studies. Slader et al. (2002) showed that transport crates 
were often contaminated with Campylobacter spp. when reused, despite washing 
and disinfection. The probable cause of the ineffectivity of disinfection was that 
organic material remained on the crates. 
 

Subtyping of C. jejuni and C. coli 
Methods of differentiating between bacterial strains below the species or 
subspecies level are generally known as bacterial typing or subtyping. The main 
purposes for bacterial subtyping are to evaluate taxonomy, evolutionary 
mechanisms and phylogenetic relationships, population genetics and bacterial 
epidemiology (van Belkum et al., 2001). Here, focus will be primarily on 
epidemiological typing. A basic assumption in epidemiological typing is that 
isolates from the same transmission chain, for example causing a disease outbreak, 
are clonally related, i.e. originate from a common ancestor (Struelens, 1998). 
Some criteria that may be worth considering in choosing a typing method, 
depending on the aims and settings, are the typeability, reproducibility, 
discriminatory power, ease of performance and interpretation, and availability, 
rapidity and cost of a method (van Belkum et al., 2001). 
 
Phenotyping 
For many years, methods based on phenotypic traits formed the foundation for 
bacterial typing, and so also for Campylobacter typing. Several biotyping systems, 
i.e. typing based on biochemical tests, intended for C. jejuni and C. coli, have been 
described (Bolton, Holt & Hutchinson, 1984; Lior, 1984; Roop, Smibert & Krieg, 
1984; Huysmans, Turnidge & Williams, 1995). Some of the individual tests 
included in these biotyping schemes are also utilised for species differentiation.  

 Resistotyping is typing based on an organism’s sensitivity to selected 
antibiotics, and has been used for characterisation of Campylobacter isolates, 
mostly in combination with other methods (Bopp et al., 1985; Ribeiro et al., 1996; 
Owen, Lorenz & Gibson, 1997a; Rönner et al., 2004). With regard to the 
increasing prevalence of antibiotic-resistant Campylobacter strains in humans and 
food-producing animals, its greatest value may be as a monitoring tool, and as an 
aid in therapy choice. Other phenotypic methods used for Campylobacter 
subtyping are phage typing (Grajewski, Kusek & Gelfand, 1985; Owen, 
Hernandez & Bolton, 1990; Gibson, Fitzgerald & Owen, 1995), protein profiling 
(Diker, Esendal & Akan, 2000; Scarcelli et al., 2001) and fatty acid methyl ester 
(FAME) analysis (Steele et al., 1998). 
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 The most widely used phenotypic method for C. jejuni and C. coli is serotyping. 
Two serotyping systems have been extensively used: Lior and Penner serotyping. 
Lior et al. (1982) performed slide agglutination of heat-labile antigens present in 
the bacterial cell. The antigen types are labelled with the prefix HL. Penner & 
Hennessy (1980) based their method on passive agglutination of heat-stable 
antigens on the cell surface, and theses types are given the prefix HS. The 
identified heat-stable antigens were initially thought to be lipopolysaccharide 
(LPS) somatic O antigens (Penner & Hennessy, 1980; Preston & Penner, 1987; 
Moran & Penner, 1999), but have later been shown, at least in some cases, to be 
capsular antigens (Chart et al., 1996). Penner serotyping is labour-intensive, and 
modified protocols have been developed to make it simpler and more economic 
for use in the routine laboratory (Fricker et al., 1986; Fricker, Alemohammad & 
Park, 1987; Mills et al., 1991). Another shortcoming with both Lior and Penner 
serotyping is that they leave a substantial proportion of the strains untypeable 
(Patton, Barrett & Morris, 1985; Mills et al., 1991; Jacobs-Reitsma & Jansen, 
1995; Frost et al., 1998; Rautelin & Hänninen, 1999). 
 
Genotyping 
Phenotypic methods are based on the detection of phenotypic properties, which 
depend on the organism’s production of certain proteins. Gene expression may 
vary in the same bacterial strain, depending, for example, on the nutrients 
available in the medium or other culture characteristics, and hence the phenotype 
may not be the same under different conditions. In contrast, genotyping is based 
on a more stable marker, DNA, and identifies the genotype regardless of gene 
expression.  

 Some genotypic methods employing different approaches are plasmid analysis 
(Bopp et al., 1985; Patton et al., 1991), DNA-DNA hybridisation (Hernández et 
al., 1991) and flagellin gene sequencing (Meinersmann et al., 1997; Clark et al., 
2005). Multilocus sequence typing, MLST, is based on sequencing of a set of so-
called housekeeping genes, i.e. essential genes (mostly involved in the metabolism 
of the bacterium) that are present in all strains (Maiden et al., 1998). An MLST 
system for C. jejuni has been developed (Dingle et al., 2001) and is being 
increasingly used to study epidemiology (Duim et al., 2003; Manning et al., 2003; 
Sails, Swaminathan & Fields, 2003a, 2003b; Clark et al., 2005) as well as the 
population structure of the bacterium (Dingle et al., 2005). Microarrays based on 
the sequencing of the entire genome of C. jejuni have been constructed, and may 
enable identification of variable markers of potential value in developing new 
typing techniques (Leonard et al., 2003. 2004; Taboada et al., 2004). 
 
Restriction enzyme analysis 
In the late 1960s, the first cleavage-site-specific restriction endonuclease (type II 
restriction enzyme), from a Haemophilus influenzae strain, was discovered and 
shown to cleave DNA at specific sites by the 1978 Nobel Prize Laureates 
Hamilton O. Smith and Daniel Nathans (Smith & Wilcox, 1970; Danna & 
Nathans, 1971; Smith & Nathans, 1973). Since then, thousands of type II 
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restriction enzymes have been characterised, and more then 500 are commercially 
available (Roberts et al., 2005). Many bacterial genotypic methods make use of 
restriction enzymes. Separation of DNA fragments in an electrophoretic gel 
produces a banding pattern (fingerprint) that is specific to the cleavage site 
positions in the restricted DNA. Analysis based on differences between such 
patterns is known as restriction fragment length polymorphism (RFLP) analysis. 

 A number of specific methods based on restriction enzyme analysis have been 
used for Campylobacter subtyping. In restriction endonuclease analysis, REA, the 
genomic DNA from the sample is restricted by an enzyme producing 30–100 
distinct DNA fragments (Owen et al., 1990; Korolik, Moorthy & Coloe, 1995; 
Jimenez et al., 1997). Other restriction-enzyme-based methods used for typing of 
C. jejuni and C. coli are ribotyping (Owen et al., 1990; Gibson et al., 1995), 
random amplified polymorphic DNA (RAPD) analysis (Hernández et al., 1995; 
Hilton et al., 1997) and amplified fragment length polymorphism, AFLP, analysis 
(Kokotovic & On, 1999; Hänninen et al., 2001). Some methods combine PCR and 
REA, i.e. after amplification of a specific locus, the PCR product is cleaved with 
restriction enzymes to produce RFLP patterns. The tandem-arranged flagellin 
genes in C. jejuni (flaA and flaB) constitute a locus containing both highly 
conserved and variable regions (Meinersmann et al., 1997), and are the most 
frequently utilised target for such PCR-REA, the method being called PCR-RFLP 
analysis of the flagellin locus or fla typing (Nachamkin, Bohachick & Patton, 
1993; Burnens et al., 1995; Ayling et al., 1996). Other gene loci used for PCR-
REA of C. jejuni include the LPS gene cluster (Shi et al., 2002), and the genes 
gyrA and pflA (Ragimbeau et al., 1998). 
 
Macrorestriction and pulsed-field gel electrophoresis 
Conventional REA of whole-genomic DNA gives complex banding patterns 
which may lead to difficulties in interpretation. Use of restriction enzymes with 
recognition sites of six to eight base pairs, so-called rare-cutting enzymes, 
produces banding patterns consisting of relatively few but large fragments, 
ranging from  about 1 to 1,000 kbp (McClelland et al., 1987). This is known as 
macrorestriction profiling, MRP. 

 In conventional electrophoresis, the electrophoretic mobility of DNA fragments 
above 20 kbp is independent of molecular size. Larger fragments could not be 
resolved by electrophoresis until Schwartz and Cantor (1984) introduced 
electrophoresis in an alternately perpendicularly oriented field, which enabled 
resolution of yeast chromosomes up to 2000 kbp. To prevent shear degradation of 
DNA, microbial cells were embedded in agarose before cell lysis and DNA. The 
contour-clamped homogeneous electric field, CHEF, the PFGE variant most 
widely used today, was introduced in 1986 (Chu, Vollrath & Davis, 1986). The 
same year, Bernards et al. (1986) showed that agarose-embedded DNA could be 
digested by restriction enzymes before loading into the gel. This forms the basis of 
bacterial macrorestriction profiling by PFGE, as used today. 

 PFGE has been extensively used in genetic and epidemiological studies of 
C. jejuni and C. coli. The many applications include genomic mapping and sizing 
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(Yan & Taylor, 1991; Kim et al., 1992; Taylor et al., 1992), outbreak 
investigations (Lehner et al., 2000; Olsen et al., 2001), exploring the diversity of 
campylobacters causing sporadic infections (Owen et al., 1997b; Hänninen et al., 
1998), examining the persistence of genotypes in a population (Petersen & 
Wedderkopp, 2001) or the environment (Slader et al., 2002), and comparison of 
genotypes between hosts (Hänninen et al., 2000; Petersen et al., 2001a) or humans 
and foodstuff (Lindmark et al., 2004). 
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Aims 

The main objective of the present work was to gain insight into Campylobacter 
epidemiology by genetic subtyping. The aims of the included studies were: 

• to investigate the genotype diversity of Campylobacter isolates from humans 
infected in Sweden, 

• to relate genotypic results to epidemiological information on human infections, 
and to detect possible clustering of Campylobacter genotypes in time, season, 
location, age or sex, 

• to investigate the seasonal distribution of Campylobacter genotypes from 
humans infected in Sweden, 

• to explore the genotype diversity and dynamics of Campylobacter during 
rearing and slaughter of a commercial broiler flock, and 

• to evaluate the use of a sequenced strain of C. jejuni as a reference profile and 
molecular size marker for pulsed-field gel electrophoresis in epidemiological 
subtyping of C. jejuni. 
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Figure 3. Reported domestic campylobacteriosis cases per month during the periods studied 
(data from the two years aggregated) in study IV compared with the numbers of  isolates 
collected in each county. Dates for reported cases are the dates of notification, whereas 
dates for isolates are the stated or estimated illness onset dates. Note the inverse ratios 
between the bars for July and August in the diagram for Västernorrland, and the bars for 
June and July in the diagram for Västmanland. This incongruence is probably the result of 
the delay in reported cases, and gives the largest effect on the bars around the seasonal peak 
in the respective county. The numbers of reported cases are obtained from the official 
statistics of communicable diseases in Sweden (http://gis.smittskyddsinstitutet.se/mapapp/ 
build/22-141000/Disease_eng.html). 

Comments on materials and methods 

The materials and methods are explained in detail in each paper. 
 

Human populations (Papers III and IV) 
Human campylobacteriosis is a notifiable disease that has been reported according 
to the Swedish Communicable Disease Act since 1989. Both clinicians and 
microbiological laboratories are required to report campylobacteriosis cases to the 
County Medical Officer (Smittskyddsläkare), CMO, and to the Swedish Institute 
for Infectious Disease Control, SMI (Anon., 2004). Sweden is divided into 21 
counties, and the surveillance system is based on these administrative regional 
units. The CMO organises the surveillance of communicable diseases in the 
county, and the SMI compiles data on communicable diseases for the whole of 
Sweden (Swedish Institute for Infectious Disease Control, 2005b). Most 
campylobacteriosis case reports (90%) include information about whether the 
infection was acquired in Sweden or abroad. 
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 Isolates for studies III and IV were collected in the microbiological laboratories 
of two Swedish county hospitals. Individual clinicians in a county may send 
specimens to other laboratories, and the county hospital laboratory may also 
receive specimens from other counties. However, the overlap of cases diagnosed 
in a county hospital laboratory and cases reported for that county can be expected 
to be high. The total number of reported cases in the two counties of 
Västernorrland and Västmanland during the study periods for study IV were 123 
and 130, respectively, compared with the 117 (95%) and 108 (83%) isolates that 
were collected for the study. The official numbers of reported cases in Sweden are 
based on the notification date, which for salmonellosis has been shown to be 
delayed by 7 days (median) from sample collection (Jansson et al., 2004). In the 
present studies, the illness onset date was used when this was available, and an 
estimated onset date calculated by median deviation from specimen or diagnosis 
date when it was unavailable. Therefore, the dates for cases in these studies are not 
the same as the dates for the same cases in the official statistics. This slight 
incongruence is illustrated in Figure 3.  

  The design of studies III and IV, in which all isolates of documented domestic 
origin from essentially one or two regions were collected during a defined period, 
was chosen rather than random selection of isolates from the whole of Sweden. 
The main reason for this was to enable detection of genotype distribution 
differences associated with other epidemiological factors, in spite of possible 
geographical differences in genotype distribution. For example, the degree of 
seasonality of campylobacteriosis is known to vary between different Swedish 
counties (Lindbäck & Svensson, 2001), which could possibly override and prevent 
recognition of more general seasonal trends in genotype distribution. Another aim 
of the region-based study design was to enable detection of clustering in space and 
time, indicating small but until then undetected outbreaks. However, the region-
based design limits the ability to draw general conclusions from the studies. To 
elucidate whether the genotype seasonality trends seen in studies III and IV apply 
to the whole of Sweden, or other countries, more research is needed. 
 

Macrorestriction and pulsed-field gel electrophoresis 
Choice of restriction enzymes 
The restriction enzyme or enzymes used for PFGE are of course of fundamental 
importance for the results. Many aspects must be considered in the choice of 
enzymes. First, which enzymes, among the hundreds available, will work with the 
organism in question? Many different enzymes, for example SmaI, SalI, KpnI, 
SacII/KspI and BamHI, have been shown to give interpretable banding patterns 
with most C. jejuni strains (On et al., 1998a; Hänninen et al., 2000; Petersen et al., 
2001a). Theoretical cleavage (Bikandi et al., 2004) of the sequenced genome of  
C. jejuni NCTC 11168 shows that in addition to the above-mentioned enzymes, at 
least 20 recognition sequences of existing restriction enzymes (each recognition 
sequence considered once regardless of cleavage site) produce 4 to 20 restriction 
fragments in the size range 15 to 650 kbp (http://www.in-silico.com/s_digest/ 
index.php?mo=Campylobacter, accessed 23 Sep 2004). 
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Technical aspects – restriction cleavage  
A number of technical problems may be associated with restriction cleavage. 
These may be visible in gels as “empty” profiles, extra, usually weak, bands or a 
more or less uninterpretable “smear”.  

 “Empty” profiles, i.e. profiles with no bands except one large, intense band in 
the region of unseparated fragments, may be the logical result of a genome 
containing no or very few cleavage sites for the restriction enzyme used. However, 
a more probable explanation of individual undigested genomes is the presence of 
methylated bases in the DNA sequences. Moreover, some C. jejuni strains have 
been shown to produce DNAse, which degrades their chromosomal DNA during 
the preparative steps of PFGE (Gibson, Sutherland & Owen, 1994). This may be 
prevented by formaldehyde fixation of the bacterial cells. 

 Weak and inconsistent bands in profiles may be due to either incomplete 
digestion or star activity, i.e. relaxation of specificity. Star activity means that in 
addition to sites with the defined recognition sequence the enzyme, to some extent, 
restricts sites with similar sequences. In practice, it may be difficult or impossible 
to distinguish between partial digestion and star activity only from examining gels. 
The solutions to incomplete digestion and relaxed specificity are the opposite of 
each other: complete digestion is achieved by increasing the amount of enzyme 
used (in relation to DNA) and/or prolongation of the incubation time, whereas 
relaxed specificity may be avoided by decreasing the quantity of the enzyme 
and/or reduction of the incubation time. 

 In the present studies, SmaI consistently gave reliable results without weak 
bands or smearing, with a minimum enzyme quantity and incubation time. 
However, restriction with SalI (Papers III & IV) sometimes gave profiles that were 
almost impossible to interpret, with too many bands or smearing. This problem 
was overcome by decreasing the amount of enzyme and limiting the incubation 
time to five hours. It thus appears that relaxed or unspecific cleavage was 
responsible for this problem. Examining extra bands in profiles of CCUG 6824 
(Paper IV) revealed that these were not the result of  incomplete digestion, as the 
bands were not of sizes expected for any combinations of restriction fragments 
(assuming the same fragment order as in the sequenced genome NCTC 11168). 
Relaxed specificity has been reported for SalI (Malyguine, Vannier & Yot, 1980), 
although manufacturers state that an extreme overload of enzyme (more than 100 
units per gram of substrate DNA) would be necessary for star activity. In our 
experience, the amount of enzyme is a critical factor that requires fine adjustment 
to obtain complete digestion but not overdigestion. 

 Extra bands and/or smearing of SalI profiles arose repeatedly when starting with 
a new enzyme batch, and therefore the amount of enzyme used had to be adjusted. 
This is the reason for the varying amount of SalI (Papers II–IV). In study III, a 
similar problem (resulting in more or less smeared profiles) appeared with KspI. 
Also in this case it was corrected by decreasing the amount of enzyme and the 
incubation time, although the problem remained to some extent: distinct profiles 
could not be obtained for five isolates despite repeated runs. 
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Analysis and interpretation of macrorestriction profiles 
Although PFGE is generally considered to have excellent intralaboratory 
reproducibility, its interlaboratory reproducibility has been questioned. Problems 
encountered in interlaboratory comparisons are related to differences in PFGE 
protocols, as the variation in plug preparation procedures and running parameters 
used for PFGE analysis of campylobacters is large (Klena, 2001). Moreover, 
analysis and interpretation of the produced banding patterns entail assessment 
which should be standardised to allow reliable comparisons between studies and 
laboratories (van Belkum et al., 1998). 

 Computer software for the analysis of RFLP patterns produced by various DNA 
fingerprinting methods has been developed and is being used increasingly in 
epidemiological typing studies (de Boer et al., 2000; On & Harrington, 2001). 
Such software may be a suitable aid in the analysis of PFGE gels, especially in the 
analysis of large datasets (Gerner-Smidt et al., 1998; de Boer et al., 2000). 
However, although computer-based analysis applies some degree of automation to 
the analysis, the analyst is required to make a number of critical decisions that may 
affect the final results (Gerner-Smidt et al., 1998). Difficulties may be encountered 
already in the first step of the analysis: determination of the number and positions 
of visible bands in each pattern. This basic pattern recognition may be a simple 
task for human visual perception, but requires the application of complicated 
algorithms for computer programs to perform (Wang, Keller & Carson, 2001). 
The automated band search function in the computer programs may be misled by 
artefacts on gel images, and frequently produces errors (Gerner-Smidt et al., 
1998). Consequently, it is necessary to examine and sometimes correct the 
computer-generated results in this regard (Gerner-Smidt et al., 1998).  

 Recognition of superimposed fragments on gels is a critical step which may 
affect the subsequent quantification of the similarity between patterns. The 
automated band search feature in gel analysis software seldom recognises such 
possible double bands, and hence this may need extra assessment during 
computer-based analysis (Broman, 2003). In the present studies, suspected double 
bands were reviewed by plotting densitometric curves of the profiles and summing 
of fragment sizes. Although we did not perform confirmatory PFGE runs in all 
cases, the double criterion (twice the amplitude in the densitometric curve and 
agreement with the approximate genome size) to identify a double band was 
deemed sufficiently reliable.  

 At least two approaches to enable comparisons of profiles on different gels exist 
(Gerner-Smidt et al., 1998). The original approach includes comparison of band 
positions with a DNA size standard and transformation to fragment molecular 
sizes. Some commercial computer programs for the analysis of enzyme restriction 
patterns instead utilise a reference pattern, present in each gel, for normalising gel 
positions. A comparison of two computer programs utilising these different 
approaches showed that the program that utilised normalised reference patterns for 
the comparison performed slightly better in identifying visually identical 
conventional electrophoresis restriction patterns than the program that calculated 
fragment sizes from comparison with size standards (Gerner-Smidt et al., 1998). 
However, this conclusion not necessarily applies to the analysis of PFGE data, as 
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DNA migration in PFGE gels follows a more complicated pattern. In the present 
studies, transformation of gel positions to molecular sizes was the primary method 
for obtaining intergel-comparable data, and performing a rough analysis of 
banding pattern similarities. However, the subsequent band matching was derived 
directly from gel pictures by comparing the gel position for each band in isolate 
patterns with approximately equal-sized bands in the DNA size standard (Paper III 
& IV) or the reference pattern (Paper IV). 

 Although dendrograms generated from DNA restriction data are a convenient 
way of quantifying and illustrating pattern similarities, they do not necessarily 
reflect the true phylogenetic relationships between strains (Clewley, 1998). To 
draw conclusions on the degree of genetic homology between two or more 
isolates, methods utilising direct comparison of the DNA sequences, for example 
MLST, are required. 
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Results and discussion  

Pulsed-field gel electrophoresis for subtyping of C. jejuni and 
C. coli (Papers I–IV) 
In the present studies, pulsed-field gel electrophoresis was demonstrated to be a 
useful method for subtyping of campylobacters from various hosts and for 
evaluating Campylobacter epidemiology and colonisation dynamics. Although the 
DNA from all isolates could not be digested by each of the enzymes used, all 
isolates gave interpretable restriction patterns with at least one enzyme. By using a 
combination of restriction enzymes, all isolates could be assigned a genotype. 
 

Campylobacter in the broiler flock (Paper I) 
In study I, the dynamics of Campylobacter colonisation of a broiler flock was 
followed. In total, 220 Campylobacter jejuni isolates collected on four sampling 
occasions during rearing and from routine sampling during slaughter were 
subtyped by SmaI restriction and PFGE. During rearing, a subsequent addition of 
genotypes was observed, with two SmaI types being found at two weeks of age 
and six types the day before slaughter. All types that were detected in more than 
one isolate were also found on all succeeding sampling occasions, including the 
slaughter sampling. Two new types were found in the slaughter samples. 

 Previous studies have indicated that colonisation with several Campylobacter 
subtypes rarely occurs in Swedish broiler flocks (Berndtson et al., 1996b). In 
some other countries, broilers flocks colonised by multiple strains seem to be a 
relatively common finding (Pokamunski et al., 1986; Jacobs-Reitsma et al., 1995; 
Hiett et al., 2002). The proportion of broiler flocks colonised by multiple subtypes 
could be expected to be correlated to the overall Campylobacter prevalence, as a 
more abundant occurrence of campylobacters in the farm environment probably 
means that more different subtypes may colonise the broiler flocks. The 
Campylobacter prevalence in Swedish broilers shows a marked variation, between 
both seasons and farms (Hansson et al., 2004). Hence, colonisation of broiler 
flocks with multiple subtypes may be more common in the high-prevalence season 
and farms. Irrespective of the frequency of broiler flocks colonised by more than 
one strain, study I revealed interesting points in the dynamics of Campylobacter 
colonisation of chickens. 

 Subsequent addition of Campylobacter genotypes during rearing may be 
explained by either subsequent introductions or frequent mutations of the present 
clones. Indications that both processes took place in the studied flock were found. 
At least type 3a, which first appeared on day 38 and did not share any bands with 
patterns found earlier, probably entered the flock at a later point than the first 
Campylobacter introduction. Other types showed pattern similarities which may 
have been derived from genetic recombinations of pre-existing types. Assuming 
genomes of similar sizes, the four-band difference between types 2a and 2b is 
compatible with the inversion of a large fragment (180–420 kbp). For types 3a, 3b, 
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Figure 4. SmaI (left) and SalI (right) profiles 
of type 3a to 3d in study I. M indicates 
lambda ladder (DNA size standard) profiles. 
Arrows indicate the differing fragment in 
each profile, compared with type 3a. The 
largest SmaI band in types 3a, 3b and 3b 
consists of two fragments. Observe that 
positions of bands cannot be compared 
between the two gels, as they were run with 
different electrophoretic parameters. 
 

3c and 3d the indication of a genetic relationship was stronger. Each of the types 
3b, 3c and 3d differed from type 3a by two bands, in that one band had shifted to a 
higher gel position (Figure 4). If we consider type 3a as the original variant, this is 
compatible with the insertion of a DNA fragment, at different positions, in these 
three variants. The size difference of the differing fragment was about 35 kbp in 
types 3b and 3c, and about 75 kbp in type 3d, compared with type 3a. Further 
analysis of one isolate of each type with a second restriction enzyme, SalI, 
revealed two-band differences of the same approximate sizes (Figure 4). Although 
all isolates of the same SmaI type may not necessarily show the same SalI pattern, 
this gives additional support to the hypothesized genetic changes as the reason 
behind the band differences in these types. In the two individual samples in which 
variant types 3b and 3c were found, type 3a was also isolated.  

 In contrast to the findings regarding types 2a and 3a, which were possibly the 
origin of genetically rearranged variants found at the same time or later in time, no 
types very similar to type 1 were found. Although type 1 was isolated during the 
whole study and in the greatest numbers of all types, the SmaI pattern remained 
stable throughout the study. This is in agreement with the findings of other studies, 
where some Campylobacter strains have been shown to remain genetically stable 
over long periods in both natural and laboratory environments (Manning et al., 
2001).  

 Although the distribution of genotypes varied between different sampling 
occasions, no indication was found that any subtype excluded another during the 
rearing of the broiler flock. Petersen et al. (2001b) found that different 
Campylobacter genotypes in broiler flocks, as well as parent flocks, sampled over 
a longer period, coexisted rather than excluded each other. Fluctuations in 
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distribution, but no extinction, were also found in a commercial broiler flock 
investigated by Thomas et al. (1997). In contrast, other authors showed 
experimentally that some C. jejuni strains were able to exclude or prevent 
colonisation by other strains in chickens (Korolik et al., 1998; Barrow & Page, 
2000). 

 In the present study, four rearing types were found in the slaughter samples, 
together with two types not found before: type 3d, found in one isolate, and type 4. 
All isolates from one of the pooled cloacal samples were of type 4, which was not 
detected in any other samples. Because of the different sampling methods between 
rearing and slaughter, the interpretation of the results from slaughter should be 
cautious. However, contamination during transport or slaughter is a possible 
explanation, and has been shown to occur in several studies (Rivoal et al., 1999; 
Newell et al., 2001; Slader et al., 2002; Miwa et al., 2003). The ten cloacal 
samples in each pooled sample were collected at short intervals on the slaughter 
line, which implies that the individuals contributing to one sample were probably 
located close to each other during transport and the wait before slaughter. Thus, 
the local spread of a new Campylobacter type, originating, for example, from 
transport crates and with the ability to exclude other campylobacters, may explain 
the total dominance of type 4 in this sample. If so, this demonstrates the 
importance of collecting samples throughout the flock during routine 
Campylobacter slaughter sampling. If all samples are collected from birds from a 
restricted part of the transport vehicle, a subtype originating from local spread 
during transport may be isolated and assumed to be the most prevalent type, or a 
partially colonised or contaminated flock may be regarded as Campylobacter-free. 
 

Campylobacter epidemiology in humans (Papers III & IV) 
Diversity of campylobacters from humans 
A large number of distinct genotypes (combined SmaI/SalI patterns) were found 
among Campylobacter isolates from humans reported as infected in Sweden. A 
high diversity among campylobacters of human origin has been reported by other 
authors, from results obtained by PFGE typing (Hänninen et al. 1998, 2000; 
Hedberg et al., 2001) as well as other genotyping methods (Hernández et al., 
1995; Duim et al., 2000; Dingle et al., 2001; Fitzgerald et al., 2001b). The 
genotype diversity of human strains may be a reflection of the epidemiology of 
Campylobacter enteritis, demonstrating that cases are usually sporadic and may be 
derived from numerous sources rather than a few predominant ones. Alternatively, 
the observed diversity in humans may reflect the Campylobacter population 
structure in reservoirs or sources. A large genotype diversity has also been 
demonstrated in animal hosts (Manning et al., 2003). 

 The isolates from Västmanland in study III revealed a diversity (expressed as 
Simpson’s index of diversity) of similar degree to isolates from Västmanland in 
study IV, for both combined SmaI/SalI types (0.980 compared with 0.987) and 
clusters representing half of the total dendrogram (0.738 compared with 0.758). 
Hence, the higher resolution in study IV did not considerably influence the 
maximum discriminatory power of the method, i.e. the calculated genotypic 
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diversity of isolates. However, it did affect the degree of diversity in comparisons 
of clustering at a specific level of average Dice similarity, e.g. 63% which was the 
cluster level in the study III. Taking the diversity in the total dendrogram into 
account enabled cut-offs for clustering to be set at comparable levels, with respect 
to differences in methods. This is based on the assumption that the total diversity 
of isolates, collected during two (but not the same two) consecutive years in the 
same county, should be approximately the same. The finding that the difference 
between diversity indices for the two counties in study IV was larger than the 
difference between the diversity indices for Västmanland in studies III and IV 
supports this assumption. 
 
Potential outbreaks 
Outbreaks are a possible reason for concentration of cases in time. PFGE has been 
extensively used in outbreak investigations to confirm the epidemiological 
association between Campylobacter isolates from different sources (Fitzgerald et 
al., 2001a; Olsen et al., 2001; Kuusi et al., 2005), and to relate supposed sporadic 
cases to already known outbreaks (Lehner et al., 2000). In the present studies of 
Campylobacter isolates from humans, several sets of isolates with 
indistinguishable PFGE types were found to be derived from cases that occurred 
close in time. Some of these were known family outbreaks. Family outbreaks may 
be due to secondary infection from the first sporadic case or to primary infection 
from a common infection source, for example, when family members have all 
consumed contaminated food. Person-to-person transmission is considered 
responsible for only a small proportion of the total number of cases (Norkrans & 
Svedhem, 1982; Oosterom et al., 1984), and small children more often infect their 
parents than the opposite (Butzler & Skirrow, 1979). In study III, the index cases 
in the three family outbreaks occurred in three-year-old or younger children, with 
a parent and/or sibling falling ill 4 to 9 days later. Transmission of infection from 
child to parent or sibling seems to be the most probable infection route in these 
outbreaks, as the time spans from the index case to the next case correspond well 
to the incubation period for campylobacteriosis. In contrast, the two family 
outbreaks in study IV each included two adults, which were diagnosed on the 
same day. A common infection source seems more likely in these cases. 

 In other sets of type- and time-related cases, no known connection between the 
cases indicated a common infection source. Since most of the PFGE types in 
question were found in other periods as well, some or all of the sets of clustered 
cases may just be coincidences. However, a point source may be responsible for 
cases during an extended period of time, for example, when food from the same 
batch is consumed at different times. Furthermore, continuous source outbreaks, 
which may continue for months or even years (Pearson et al., 2000), could 
possibly be behind accumulation of cases with indistinguishable genotypes during 
a longer period. The majority of isolates (12/17) in cluster III in study IV were 
from Västernorrland in July 2001, some of them grouped in sets of type- and time-
related isolates with common geographical origin. A continuous source outbreak 
not limited to a specific geographical location and caused by several different but 
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related Campylobacter PFGE types may be the cause of this accumulation of 
cases. 

 The aim with the limited analysis of type- and time-related isolates in study IV 
was to indicate potential but previously undetected point source outbreaks, which 
could possibly affect the overall seasonal distribution of PFGE types. Although 
the analysis implied nine small potential outbreaks, excluding of these cases 
(except the first case in each set) from the data did not alter the seasonal 
distribution of different clusters. 
 
Seasonal variations 
The results from Västmanland in 1998 and 1999 (Paper III) indicated that some 
groups of related Campylobacter genotypes were more concentrated to the high-
incidence season from June to September than other types. In order to further 
evaluate the possible genotypic seasonality, a new study (Paper IV) was conducted 
in the same county for another two years, and also expanded to another Swedish 
county. The results from study III were confirmed in study IV: some clusters of 
similar PFGE types were significantly more seasonally concentrated than other 
types. Although differences in banding pattern analysis between studies did not 
allow a reliable common clustering, the overall patterns of seasonally more 
concentrated types in study IV agreed with patterns of such types in study III. 
Hence, the SmaI and SalI profiles in the more summer-frequent cluster in study III 
correspond to profiles in cluster II in study IV. Types with SmaI patterns 
corresponding to the patterns in the seasonally concentrated subcluster Ib in study 
IV were found in only five isolates in study III. However, these were also 
concentrated to summer or early autumn in study III (group K, Figure 2, Paper 
III). 

  A number of possible explanations of the seasonal variation of human 
campylobacteriosis have been suggested, some of them evaluated in observational 
studies. However, few studies have investigated seasonality in different genotypes. 
The variations found in these studies may be explained by seasonal variations in 
Campylobacter genotype distribution in reservoirs and infection sources, or 
seasonal variations in their relative importance for human infection. 

 Studies from several countries show that humans and poultry often share similar 
or indistinguishable Campylobacter genotypes (Hänninen et al., 2000; Kramer et 
al., 2000; Dickins et al., 2002; Nadeau, Messier & Quessy, 2002; Chu et al., 2004; 
Lindmark et al., 2004; Campy-SET, 2005). However, this finding does not in itself 
reveal the direction of the relationship. In Sweden (National Veterinary Institute, 
2001) as well as other European countries (Meldrum et al., 2005), the 
Campylobacter prevalence in slaughtered broilers shows a similar seasonality to 
that of human campylobacteriosis, but peaks somewhat later. A common 
environmental source for humans and chickens, rather than the infection route 
from chickens to humans, has been suggested as a more likely explanation of the 
seasonal increase in both species (Meldrum et al., 2005). There is considerable 
evidence that poultry consumption is an important risk factor for 
campylobacteriosis in humans (Eberhart-Phillips et al., 1997; Studahl & 
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Andersson, 2000; Neimann et al., 2003). However, despite efforts to estimate its 
relative importance (Effler et al., 2001; Vellinga & Van Loock, 2002), the extent 
to which poultry consumption contributes to the total incidence of 
campylobacteriosis is largely unknown, as is its possibly varying role as an 
infection source during different seasons. Studies that address the seasonal 
distribution of genotypes in poultry are needed to establish whether seasonal 
genotype variation in poultry is related to the differences seen in humans. 

 Comparisons of campylobacters from humans and other Campylobacter sources 
than poultry, such as other meats, other domesticated animals (Engvall et al., 
2003), wild birds (Broman et al., 2004) and raw water (Lindmark et al., 2004), 
generally reveal a lower degree of common types. Interestingly, seasonality in 
C. jejuni  prevalence has been reported in black-headed gulls (Larus ridibundus) 
in southern Sweden, with the highest rates found in late autumn, several months 
after the seasonal peak in humans and chickens (Broman et al., 2002). The 
differences in seasonal distribution in different species indicate that ecological 
factors, not yet understood, may be important for Campylobacter epidemiology in 
humans and other species. 

 Several studies have focused on the seasonality of human campylobacteriosis in 
relation to various climate factors, such as temperature, precipitation, relative 
humidity and sunlight. Higher maximum or average temperatures, especially in 
combination with many hours of sunlight, are associated with higher 
campylobacteriosis incidence (Patrick et al., 2004; Louis et al., 2005). Climate 
factors that are beneficial for campylobacters in the environment may be so to 
varying degrees for different genotypes of the bacterium.  

 Flies have been suggested as a possible transmission vector for Campylobacter 
infections in humans, with special reference to seasonal variations (Ekdahl et al., 
2005; Nichols, 2005). This hypothesis could be compatible with the present 
results, as flies acting as vectors could pick up any campylobacters in the 
environment (from faeces, food or waste) and contaminate food ready for 
consumption. However, one expected effect of fly-vector-driven seasonality 
would be a higher diversity of campylobacters infecting humans in the season 
when flies are most abundant, as infections would be assumed to origin from a 
larger variety of different reservoirs, some of them improbable as infection sources 
without the vector. In the present studies, however, the Campylobacter isolates 
from the high-incidence season (coinciding with the high-prevalence season for 
flies) showed a lower degree of diversity than isolates from the rest of the year. 
 
Differences between counties (Paper IV) 
The campylobacteriosis seasonality in the two counties differed, with a more 
pronounced seasonality in the more northern county Västernorrland. Although a 
similar seasonality of campylobacteriosis incidence is seen in most temperate 
countries, the peak time and the amplitude of the peak differ between countries 
(Nylen et al., 2002). A north–south gradient with a later peak and more marked 
seasonality (greater peak amplitude, shorter high-incidence period) at higher 
latitudes has been observed in Norway (Kapperud & Aasen, 1992). The same 
tendency has been reported in Sweden, although seasonality differences between 
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neighbouring counties, not explained by a latitude gradient, also exist (Lindbäck & 
Svensson, 2001). Lindbäck and Svensson (2001) developed a statistical model for 
seasonal distribution of domestic campylobacteriosis cases for all counties in 
Sweden, based on surveillance data from seven years (1992–1998). According to 
their model, the ratio between high and low incidence is larger, the peak week 
occurs later and the two-times-base incidence period starts later, in Västernorrland 
than in Västmanland. The same parameters calculated from data in study IV 
(approximately estimated averages from both study years) roughly agree with 
averages for the two counties from the seven-year model. 

 In addition to the overall seasonal distribution, the seasonal concentration for 
some groups differed between counties. Although the order of more and less 
concentrated groups was the same in both counties, the differences between 
groups with different seasonal patterns were larger in Västernorrland. Hence, the 
geographic region may influence the concentration tendency for different 
genotypes. However, this tendency may also vary between years. As the collecting 
periods were different in the two counties, the effect of county seen in our study 
could be a combined effect of both spatial and temporal differences. In order to 
evaluate this, isolates from the second study year (2002) in Västernorrland were 
compared with isolates from the first study year (June 2002 to May 2003) in 
Västmanland. Although these periods were not perfectly matched, they mainly 
included the same high incidence period, i.e. June to October 2002. The numbers 
of observations were too low to test for significance, but the concentration of each 
group in each county, expressed as median and 75 percentile deviation from the 
peak week, was essentially the same as the total data (Table 2, Paper IV).  
 
Age differences 
Children under ten years contributed with 24% and 9% of the isolates in studies III 
and IV, respectively. In study III, the genotype diversity tended to be higher 
(lower degree of Dice similarity to other isolates, or types that were more 
infrequently found) in isolates from children than isolates from adults. Also in 
study IV, isolates from children, especially small children (0–4 years), tended to 
be of more infrequently found types. This could indicate that adults and children, 
at least partly, get infected from different sources. Small children, who crawl and 
may ingest things from the ground, may get infected more often than adults with 
C. jejuni from non-food origins, for example pet animals and faeces from wild 
birds. 
 

Colonisation with more than one genotype (Papers I & III) 
Co-colonisation in chickens (Paper I) 
In the broiler study, two-thirds of the birds sampled the day before slaughter were 
colonised by more than one SmaI type, although there was a clear tendency for the 
dominance of one type in individual birds. Thomas et al. (1997) found five fla 
genotypes among 300 isolates from a commercial broiler flock, and more than one 
genotype in 37% of the individual faecal samples. However, they could not 
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exclude cross-contamination due to sample collecting from the floor of the poultry 
shed. Also several different serotypes have been found in the same individual 
(Pokamunski et al., 1986). In contrast, in a study where different Campylobacter 
strains were given to chickens then allowed to mix to enable cross-infection, co-
colonisation with different strains of C. jejuni in individual birds was a very rare 
finding, while co-colonisation with C. jejuni and C. coli occurred (Korolik et al., 
1998). 
 
Co-infection in humans (Paper III) 
In study III, PFGE runs with different plugs prepared from different cultures of the 
same original isolate resulted, in two cases, in entirely disparate profiles with all 
enzymes used, although only in one of these cases could the different genotypes 
be confirmed and subsequently isolated. Recombination of the genome, either in 
the patient or in the laboratory, is not a probable explanation, as one single genetic 
event is not sufficient to explain the substantial differences in these cases. Hence, 
these patients were probably infected with two different strains, which were not 
separated during primary isolation. Co-infection with more than one 
Campylobacter species (Zöllner & Wuthe, 1993; Linton et al., 1997; Gorkiewicz 
et al., 2002), serotype (Zöllner & Wuthe, 1993) or genotype (Yan, Chang & 
Taylor, 1991; Steinbrueckner, Ruberg & Kist, 2001) has been reported, but has 
been found in less than 10% of the cases in studies directly addressing this issue 
(Ruberg, Steinbrueckner & Kist, 1998; Richardson et al., 2001). It should be noted 
that the detection of co-infection with different genotypes in the present study was 
an accidental finding, as the routine isolation procedure did not include picking of 
more than one isolate per patient. Therefore, no conclusions about the frequency 
of co-infection in this population can be drawn. 
 

Campylobacter species (Papers III & IV) 
Species identification showed that all isolates in study III were C. jejuni, whereas 
three isolates (1.4%) in study IV were identified as C. coli. In other studies on 
sporadic human campylobacteriosis, C. coli constituted from 3% to 14% of the 
total number of C. jejuni/coli isolates (Goossens et al., 1990; Nielsen et al., 1997; 
Hudson et al., 1999). 

 There is evidence that children are more often infected with C. upsaliensis than 
adults (Lindblom et al., 1995), a Campylobacter species commonly isolated from 
healthy and diarrhoeic dogs and cats (Olson & Sandstedt, 1987; Sandberg et al., 
2002). Other Campylobacter species than C. jejuni and C. coli may be more 
common causes of gastroenteritis than hitherto recognised, especially in children 
(Lindblom et al., 1995). The routine methods used for isolation are designed 
specifically for the detection of C. jejuni and C. coli (Lindblom et al., 1995), 
although other thermotolerant campylobacters or even species not regarded as 
thermotolerant are occasionally recovered (Goossens et al., 1990). 
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Use of a sequenced C. jejuni strain as a reference and molecular 
size marker (Papers II & IV) 
SmaI and SalI restricted genomic DNA from the sequenced strain C. jejuni NCTC 
11168 was found to be a useful reference for the analysis of C. jejuni PFGE 
patterns. The reference pattern enabled fragment size estimates of lower variability 
than those from comparison with a DNA size standard based on lambda ladder 
(Paper II). The better performance of NCTC 11168, in terms of variability, was 
seen despite the fact that the lambda ladder showed a lower variability in 
migration distances within each gel. This indicates that the advantage may be due 
to the more sample-like migration patterns for NCTC 11168. 

 Calculations of SmaI fragment sizes for NCTC 11168 from comparison with 
lambda ladder resulted in systematic overestimation in the size range of 5 to 15 
kbp. Hence, in addition to the lower variability, fragment size estimates based on 
NCTC 11168 may agree better with the actual fragment sizes. 

 Another advantage of using the NCTC 11168 pattern as a reference is related to 
its resemblance to PFGE patterns from other C. jejuni strains derived from 
humans. This was observed during the analysis in study IV, in which the reference 
patterns of CCUG 6824 (equivalent to NCTC 11168) were a convenient aid in 
deciding which bands were equal and unequal. The resulting resolution of the 
band matching procedure was considerably higher in study IV than in study III, in 
which only lambda ladder was used for intergel comparisons. In study IV, the 
SmaI band designation resulted in 58 distinct bands (with 54 distinct positions, 
considering double bands) with fragment sizes below 550 kbp (the largest 
fragments considered in study III), while 28 distinct SmaI bands were designated 
in study III. This difference is partly attributable to the larger number of isolates in 
study IV, and consequently the occurrence of more patterns containing 
infrequently found bands. However, the ability to discriminate between two 
unequal fragments close in size was definitely greater in study IV. 
 

Restriction failure (Papers III & IV) 
Although all isolates gave interpretable banding patterns with at least one enzyme, 
SmaI and SalI repeatedly failed to cleave the DNA from a small fraction (1–9%) 
of the isolates. Cleavage failure of this degree (2–10%) has been reported in 
several PFGE studies, with different enzymes (Harrington, Thomson-Carter & 
Carter, 1999; Lindmark et al., 2004). In most cases, isolates with indigestible 
genomes are classified as untypeable and are excluded from further analyses 
(Broman et al., 2002). In study IV, isolates with genomes that were not restricted 
by SmaI apparently had a distinctive seasonal distribution, as a vast majority 
(16/19) of these isolates were concentrated to July, and no isolates at all were 
found from October to May. Even isolates that were refractory to SalI restriction 
(although only six isolates in total) seemed mainly concentrated to a short season. 
With regard to the uneven seasonal distribution of isolates with restriction failure, 
it was considered implausible to exclude them from the analysis, and “empty” 
profiles were included and regarded as single-band-patterns. However, this may 
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have led to either over- or underestimation of  their genetic similarities, with the 
Dice coefficient computed from relatively few bands (especially in “empty” SmaI 
profiles, whose corresponding SalI profiles had only four or five bands in addition 
to a large band seen in most SalI profiles). Similarly, the differences between 
“empty” profile isolates and isolates with banding patterns for both enzymes could 
possibly be overestimated. However, study IV types that clustered together in 
cluster III and cluster IV (with “empty” SmaI and SalI profiles, respectively) also 
clustered together in total dendrograms based solely on the other enzyme (data not 
shown). In study III, isolates with “empty” SmaI or SalI profiles were too few to 
reveal any possible disparity in distribution. However, the three isolates with zero-
band SmaI patterns showed indistinguishable or closely similar (with a Dice 
coefficient above 90%) SalI and KspI patterns, the latter enzyme pattern consisting 
of considerably more bands. 
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Concluding remarks 

The research presented in this thesis shows that PFGE is a useful tool for 
acquiring insight in Campylobacter epidemiology and colonisation dynamics in 
humans and chickens. 

 The results show that multiple genotypes of C. jejuni may be present in a 
commercial broiler flock during rearing and even in the gastrointestinal tracts of 
individual birds. Subsequent addition of genotypes during rearing occurred, and 
indications of both recurring environmental exposure and genetic changes within 
the population were found. Although the distribution of genotypes varied between 
different sampling occasions, no evidence of competitive exclusion was found. 
The diversity and colonisation dynamics of campylobacters in broilers could be 
important in investigations of Campylobacter infection sources and routes in 
broilers as well as humans. 

 Considerable diversity, with many distinct PFGE types, was found in 
Campylobacter isolates from humans infected in Sweden. However, a large 
proportion of the isolates could be sorted into a few clusters, based on PFGE 
pattern similarities. Analysis of epidemiological information in relation to typing 
data revealed sets of type- and time-related isolates, possibly representing small 
outbreaks. The genotype diversity tended to be higher in isolates from children 
than in those from adults, which may indicate that adults and children, at least 
partly, become infected from different sources. Some clusters of similar genotypes 
were significantly more seasonally concentrated than other types. These genotypes 
may account for a substantial proportion of campylobacteriosis cases during the 
high-incidence season.  

 The sequenced strain C. jejuni NCTC 11168 was used as a reference and 
molecular size marker on PFGE gels. Fragment size estimates obtained from 
comparison with NCTC 11168 showed lower variability and were closer to the 
actual sizes than estimates from comparisons with a standardised size marker for 
PFGE. This facilitates the interpretation and analysis of PFGE patterns, and 
enables higher resolution of the method. 
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Future perspectives 

PFGE has been shown to be a reproducible and convenient typing method with 
many applications. It is especially suitable for investigations of disease outbreaks 
in linking isolates from cases to suspected infection sources. In addition, as has 
been exemplified in the present studies, PFGE typing may help in further 
evaluating Campylobacter epidemiology in humans and animals, beyond the strict 
outbreak setting. However, to benefit as much as possible from PFGE typing 
results in more complex epidemiological issues, there is a need for standardisation 
of the method (both laboratory techniques and analysis and interpretation of the 
data). For example, a standardised nomenclature for describing PFGE types is 
needed. The use of a sequenced strain as a reference and/or molecular size marker 
may be one step in this direction. More reliable fragment size estimates may form 
the basis for a standardised definition of restriction patterns, avoiding dependence 
on internal standards (i.e. normalised gel positions) in specific software. 

 Studies of the seasonal distribution of genotypes in reservoirs and suspected 
sources of human infection may help to elucidate the hitherto insufficiently 
explained seasonality of campylobacteriosis in humans. PFGE, as well as other 
genotyping methods, such as MLST, may be suitable tools for such investigations. 
Association of certain summer-frequent genotypes with a specific reservoir or 
infection source may enable measures to be taken to reduce the number of summer 
infections, which constitute a large part of the total number of campylobacteriosis 
cases. 
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