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Abstract

Seid Hamid, J. 2005. New Residuals in Multivariate Bilinear Models - Testing Hy-
potheses, diagnosing models and validating model assumptions. Doctoral dissertation.

ISSN 1652-6880. ISBN 91-576-6982-1

New residuals taking the bilinear structure into account are defined for the Extended
Growth Curve Model. It is shown that the ordinary residuals are defined by projecting
the observation matrix on the space orthogonal to the one generated by the design ma-
trices which turn out to be the sum of two tensor product spaces. The space on which
the ordinary residuals are defined is then decomposed into four orthogonal spaces and
new residuals are defined by projecting the observation matrix on the resulting four
spaces. The information contained in them is used to check the adequacy of the model
and to check if there are extreme observations.

Tests are proposed for the Growth and Extended Growth Curve models which turn
out to be functions of appropriate residuals. It is shown that the distributions of the
tests under the null hypotheses are independent of the unknown covariance matrix.
The distributions are difficult to find, however, two suggestions are made to tackle this
problem.

We consider a conditional approach and discuss why it is appropriate in our situa-
tion. Moreover, it is shown that the distribution of the conditional test under the null
and alternative hypotheses can be written as sums of independent central and non-
central chi-square random variables, respectively. However, the exact distributions,
which are available as an infinite series, are too complicated to be used in practice and
approximations are needed. We use Satterthwaite’s approximation to find the critical
point.

Under the alternative, an approximation similar to that of Satterthwaite is pro-
vided for obtaining an approximate power. However, our approach is different and
new ideas are utilized to get the approximation. Numerical examples are given to
illustrate the results.

Keywords: ancillary statistics, conditional test, decomposition of linear spaces, esti-
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Chapter 1

Introduction

1.1 Residuals and statistical diagnosis

Modelling is an important part of understanding different phenomena around
us. Statistical models are used in analyzing data, making inference, making
predictions and important decisions. One can follow two approaches in con-
structing a statistical model. The first approach is to assume a predefined
model and check if the assumed model describes the situation well. The sec-
ond approach is to find a model based on data by requiring as few assumptions
as possible. In either case, we need to investigate the adequacy of the proposed
and fitted models. Moreover, the models constructed using the first approach
are usually based on several assumptions that might be unrealistic and need
to be treated carefully.

An important part of modelling is diagnosing the flaws in the models as
well as checking if the assumptions are true or rather check if the data vio-
lates the assumptions. Furthermore, it could also be important to see if there
are outliers and/or influential observations. The most common and natural
approach for validating models and model assumptions is by looking at the
residuals.

In most model fitting problems, whether they are linear or non linear, resid-
uals play an important role in diagnosing the model or the model assumptions.
They are also used to detect outliers and/or influential observations in the data.
Residuals are the part of the data which is left unexplained by the fitted model.
They are defined as the difference between the observed and fitted values:

e =Yi — Yi-

In univariate model fitting problems, the resulting residuals are also uni-
variate and it is relatively easy to examine them. In fact, there has been
many discussions regarding the residuals in such models and many different
types of residuals have been defined and studied, see for example Sen & Sri-
vastava (1990) and Draper & Smith (1998). However, in multivariate models,
the residuals are also multivariate and it is relatively difficult to diagnose the
model through them. It is not also obvious as to how to use them to detect
extreme observations. There has been few studies regarding the residuals in
multivariate models although most tests which have been proposed, such as



the likelihood ratio test, are in some way functions of the residuals. For exam-
ple, see Srivastava & Khatri (1979) for some proposed tests.

Ordinary residuals have also been used to assess the adequacy of the fitted
models and to check for the presence of outliers in longitudinal analysis (Fitz-
maurice et al., 2004). However, under analysis of such data, we believe that
ordinary residuals have more structure due to the within and between indi-
vidual assumptions. The same is true in the Growth Curve Model because of
the bilinear nature of the model. For this model, the ordinary residuals which
are defined as above consist of two parts. One part gives information about
the between individual structure, which we suggest should be used in assess-
ing between individual model assumptions, such as the normality assumption.
Moreover, this part of the residuals can be used to check the presence of ex-
treme observations in the data. The second part gives information about the
within individual structure which in fact is a part of the residual that tells us if
the estimated model fits the data. This part can be shown to be the difference
between the observed and estimated means.

Therefore, when dealing with the Growth and Extended Curve models one
should be careful when examining the ordinary residuals. For example, the
two parts mentioned in the previous paragraph may happen to have opposite
signs and could cancel with each other and give an impression that the model
fits the data well when it in fact is otherwise. This is also true for other models
used to analyze repeated measures and longitudinal data. This explains why
there is a need to define other residuals which take the bilinear structure in
the model into consideration. This has been done by von Rosen (1995b) where
he defined and discussed three residuals. It was indicated that each of the
residuals provide valuable information about different aspects of the model.

1.2 Aim and outline of the thesis

Two GMANOVA models, namely the Growth Curve (GC) model and a special
case of the Extended Growth Curve (EGC) model are of interest. Inspired
from von Rosen’s residuals for the GC model, residuals for the EGC model
taking the bilinear structure into consideration are defined in Paper I. The
information contained in these residuals and that of von Rosen’s for the GC
model are investigated. If defining and understanding these residuals, it is also
important to come up with some ideas concerning how one can make use of
these residuals and the information contained in them to validate the statisti-
cal models and validate model assumptions.

One can simply use the standard errors as cutoff points and see if the resid-
uals are small enough to decide if the estimated model fits the data. Moreover,
one can also see if there are outliers and/or influential observations since they
tend to have large residual values. The standard errors for the residuals at
different time points can be obtained from the estimated dispersion matrices
which are given in Paper 1.

The other approach is through hypothesis testing, i.e. by constructing cer-
tain statistics for testing different hypotheses regarding the models. There
have been some studies regarding hypotheses tests in the GC and ECG mod-



els. We refer to the papers by Khatri (1966), Fujikoshi (1974) and Kariya
(1978) for discussions about the likelihood ratio test and other tests such as
the trace test for the GC model. However, there have not been any studies
what so ever connecting the tests in these models with the residuals. Moreover,
as to our knowledge, no one has ever tried to study residuals in such bilinear
models as well as use them to check the adequacy of the models or check if the
assumptions are violated although it is the most convenient and natural way
of doing it.

This is the topic of Paper II where we have proposed and studied tests
for common hypotheses arising in the GC and EGC models. The tests are
constructed using restricted likelihood followed by estimated likelihood ap-
proaches. Moreover, we show that the tests constructed are functions of ap-
propriate residuals and this enables us to understand the structure of the tests.

If using the tests proposed in Paper II in practice, one needs to find the criti-
cal points. The distribution of most tests defined for MANOVA and GMANOVA
models are difficult to deal with. This is also true for our tests. However, two
suggestions are made in Paper II to overcome this problem. In Paper III we
present and discuss the second approach which is based on conditioning by an
ancillary statistics.

The thesis consists of seven chapters. In the second and third chapters
the GC and EGC models, respectively, are introduced briefly. In the fourth
chapter we give a brief background about conditional tests and we discuss a
conditional approach for the GC model. Some technical results developed and
used in the papers are presented in the fifth chapter. Short summary and main
results about the three papers are given in Chapter 6. Finally, a discussion
together with future research is presented in the seventh chapter.

The following three papers which are the basis for the thesis are given in
the Appendix. The papers will be refereed to by their Roman numerals.

I. Seid Hamid, J. & von Rosen, D. (2005) Residuals in the Extended Growth
Curve Model. (Accepted by Scandinavian Journal of Statistics)

II. Seid Hamid, J. & von Rosen, D. (2005) Hypothesis Testing via Residuals
in two GMANOVA models. (Submitted)

III. Seid Hamid, J. & von Rosen, D. (2005) An Approximate Critical Point
for a Test in the Growth Curve Model: A Conditional Approach. (Sub-
mitted)






Chapter 2

The Growth Curve model

2.1 Introduction

The Growth Curve Model was introduced by Potthoff & Roy (1964) and subse-
quently studied among others by Rao (1965), although the first paper consid-
ering growth curves was presented by Wishart (1938). Discrimination between
growth curves was discussed by Burnaby (1966). Since then different aspects
of the model has been considered by many authors including Khatri (1966),
Gleser & Olkin (1970) and von Rosen (1989). There is a book by Kshirsagar &
Smith (1995) about growth curves which are the principal applications of the
GC model. Some discussions about the Potthoff & Roy model are also given in
the book. Statistical diagnostics for the model is discussed in the book by Pan
& Fang (2002). The book also gives an excellent background about the model
with illustrations using practical examples. For further discussions about the
model, see also Kollo & von Rosen (2005). In this chapter we give a brief
introduction about the model and present some results which are used in the
papers.

Definition 2.1. Let X : p xn and B : ¢ X k be the observation and parameter
matrices, respectively, and let A : pxq and C : k xn be the within and between
individual design matrices, respectively. Suppose that ¢ < p and p(C)+p < n,
where p(e) denotes the rank of a matrix. The GC model is given by

X = ABC +E, (2.1)

where the columns of E are assumed to be independently p-variate normally
distributed with mean zero and an unknown positive definite covariance matrix
3.

The above model is sometimes denoted by MLNM(ABC), where MLNM stands
for Multivariate Linear Normal Model. We have used similar notations in the
papers.

It is important to note here that if A = I the GC model reduces to the
classical MANOVA model. Note also that the matrix C in Definition 2.1 is the
same design matrix as in univariate and classical multivariate linear models.
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The GC model is a generalized multivariate analysis of variance (GMANOVA)
model and has many applications and may arise in many different situations.
One of its principal applications being in the analysis of growth curves which
are applied extensively in biostatistics, medical research and epidemiology. The
model also plays important roles in the study of repeated measurements and
longitudinal analysis.

Suppose, for example, that we have different groups where repeated ob-
servations are taken on a given experimental unit in each group. If these
observations can be associated with some continuous variable, such as time
and temperature, then they may form a response curve, where the curve for
the ith individual can be described as

bo,z‘ + bl,it + ...+ bp_1)itp71 + €.

It is assumed that measurements are taken at the same time points and that
they are assumed to have the same covariance matrix. Moreover, it is impor-
tant to note that all the individuals in all the groups are assumed to have
polynomial growth curves of the same degree. If the degrees of the polynomi-
als are different, they will be handled by the Extended Growth Curve Model
which will be introduced in the next section.

The following examples show how the GC model may arise and illustrate
the observation, parameter and design matrices involved in the model. For
more examples, you can see Srivastava & Carter (1983), Kshirsagar & Smith
(1995) and Pan & Fang (2002).

Example 1 (Potthoff & Roy Dental Data)

Dental measurements on eleven girls and sixteen boys at four different ages
(8, 10, 12, 14) were taken. Each measurement is the distance, in millimeters,
from the center of pituitary to pteryo-maxillary fissure. Suppose linear growth
curves describe the mean growth for both the girls and the boys. Then we
may use the Growth Curve model where the observation, parameter and de-
sign matrices are given by

21 21 205 235 215 20 215 23 20 165
245 26 215 23 20 255 245 22 24 23
275 23 215 17 225 23 22,
20 215 24 245 23 21 225 23 21 19
25 25 225 225 235 275 255 22 215 205
X | 28 23 235 245 255 245 215
4X2T = 1915 24 245 25 225 21 23 235 22 19 |
28 29 23 24 225 265 27 245 245 31
31 235 24 26 255 26 23.5,
23 255 26 265 235 225 25 24 215 195
28 31 265 275 26 27 285 265 255 26
315 25 28 295 2 30 25

1 8
_ bor bo2 | 1 10 [ 111 O
B_<b11 bi2 )’ A= 1 12 and - Caxar = 016 116
1 14
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where the 17; and 01¢ in the first row indicate that there are 11 1’s and 16 0’s.
Note also how we have presented X, i.e. we have used commas to separate the
rows.

Example 2

Consider the Potthoff & Roy data. Now suppose that a quadratic growth
curve is to be fitted to both the girls and the boys. The observation matrix,
X, and the between individual design matrix, C, remain the same. However,
the parameter and the within individual design matrices become

b b 1 8 64
01 02

1 10 100

B=1 bu bz |, A=l 15 1y

bar b2 1 14 196

Potthoff & Roy (1964) in their paper gave an estimator for the parameter of
the model based on a matrix G. The estimator is given by

B=(A'G'A)'A'GTIXC/(cC),

where A and C were assumed to have full rank. However, the problem with the
method utilized by them was that the choice of G is arbitrary. One possible
choice suggested by them was that G = I, however, they also mentioned that if
some information about the dispersion matrix, X is available, then G = I may
not be the best choice. In fact, they indicated that the more G differs from 32,
the worse the power of the tests will be and the wider the confidence intervals
will be although they mentioned that the estimators remain unbiased.

Generalized least square estimation and the admissibility of the estimates
are discussed in Pan & Fang (2002). They have also shown that the general-
ized least square estimators are best linear unbiased in the sense of a matrix
loss function.

We consider estimators obtained by using the maximum likelihood ap-
proach and will be presented shortly. It is possible to show that the maximum
likelihood estimator of the mean structure is obtained by projecting the obser-
vation matrix on the space generated by the two design matrices. This is also
true for the EGC model. For the later model, we have shown that the space
is a sum of two tensor product spaces and used this fact to get the space on
which the ordinary residuals are defined.

Khatri (1966) provided the maximum likelihood estimator for the param-
eter matrix B which is given by,

B=(A'ST'A)'A'STIXC/(CC) T,

where S = X(I — C/(CC’)~'C)X’ and it was assumed that A and C are of
full rank. The maximum likelihood estimator under the general situation, i.e.,
without assuming full rank conditions, is given by

B=(A'ST'A)"A'S”IXC/(CC)” + (A')°Z, + A'Z,C",

where, Z; and Zs are arbitrary matrices, C° is a matrix of full rank spanning
the orthogonal complement of the linear space generated by the columns of C,
and G~ denotes an arbitrary generalized inverse in the sense of GG~ G = G.
For different methods of maximizing the likelihood function, we refer to Srivas-
tava & Khatri (1979), von Rosen (1989) and the book by Kollo & von Rosen
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(2005). Due to the arbitrariness of the vectors Z; and Zs it is evident that the
maximum likelihood estimator is not unique. However, it is important to note
that

ABC=A(A'S"'A)"A's™'XC/(cC)C
is always unique. For more details about maximum likelihood based inference
in the GC model and restricted likelihood estimation we refer to Pan & Fang
(2002).

2.2 Residuals in the Growth Curve model

Consider the classical multivariate linear (MANOVA) model which is given by
X =BC +E,

where X :pxn, B:px k and C: k x n are the observation, parameter and
design matrices, respectively. In univariate and classical MANOVA cases resid-
uals are obtained by projecting X on the space orthogonal to C(C’), the
column space of C’, which is the space generated by the design matrix, i.e.
R = X(I - C/(CC’)~C), where R stands for residuals. However, in the GC
model the space has a bilinear structure which generates a tensor product
C(C') ® Cs(A), where the S in Cg indicates that the inner product is defined
with the help of S71, i.e. < x,y >=x'S™'y. If there is no subscript as in
C(C’), the standard inner product is assumed. Therefore, in the GC model
ordinary residuals are obtained by projecting the observation matrix on the
orthogonal complement to C(C’) ® Cs(A).

However, it is not obvious to understand and interpret the residuals due
to the complexity of the space generated by the design matrices which is the
result of the bilinear nature of the model. It is shown by von Rosen (1995b)
that the residuals in fact are different from those in univariate and MANOVA
models in the sense that they contain both the within and between individual
information.

Residuals taking the bilinear structure in the model into account were de-
fined by von Rosen (1995b). This work was the first paper which takes the
bilinear structure into consideration, although diagnostic tools for assessing
influential observations in the model has been discussed by, for instance, Liski
(1991), Pan & Fang (1995, 1996) and von Rosen (1995a). However, we believe
that understanding the residuals in the model is an important step in devel-
oping diagnostic tools for bilinear models such as the GC and EGC models.
Three residuals were defined by von Rosen (1995b) by projecting X on the
resulting three spaces obtained from decomposing the space orthogonal to the
one generated by the design matrices. The residuals are given bellow:

R, = A(A'ST'A)"A'ST'X(I- C/(CC)0),
Ry =(I—-A(A'ST'A)"A'S™HX(I-C/(CC)~C),
Ry = (I-A(A'ST'A)"A’'S™HXC/(cC')C.
Note that we put g in the subscript so that we can distinguish these residuals
with those for the EGC model defined in Paper 1.
Each of the above residuals contain important information about the model.

The sum of the first two residuals, for example, represents the difference be-
tween the observations and the mean and therefore can be used to check the

14



between individual variations. The last residual is the difference between the
observed and estimated mean and therefore can be used to check within in-
dividual variations. In other words, this gives information about how the
estimated growth curve fits the data. More about the residuals and their
properties can be found in von Rosen (1995b). His results are also extended to
the special case of the EGC model in Paper I. However, the method utilized in
our paper is more natural and has an advantage that it can be used to extend
the results to the more general model. Furthermore, interpretations as to what
information is contained in the residuals and how one can use that information
to validate the model and model assumptions are clearly presented.
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Chapter 3

Extended Growth Curve
model

3.1 Introduction

In this chapter we briefly introduce the Extended Growth Curve Model to-
gether with some important results which are used in the papers. The model
is given in Definition 3.1 below and was introduced by von Rosen (1989) al-
though a canonical form of the model was considered by Banken (1984). A
special case of the model was considered by Srivastava & Khatri (1979). The
EGC model is a special case of a more general model which in econometrics
literature is known as a multivariate seemingly unrelated regression (SUR)
model. The model without the nested subspace condition was considered by
Verbyla & Venables (1988) under a different name; sum of profiles model. The
model is sometimes referred to as MLNM(} " | A;B,C;). This notation is also
used in the papers.

Definition 3.1. Let X : pxn, A; : pXq;, B; : ¢; Xk; and C; : k; X n. Suppose
that qi S D, P(Cl) +p S n and C(C{rn)g C(Cfrn—l)g g C(Cll)’ where p(')
and C(e) represent the rank and column space of a matrix, respectively. Then

the Extended Growth Curve (EGC) model is given by,

X = iAiBiCi +E,

i=1

where the columns of E are assumed to be independently distributed as a p-
variate normal distribution with mean zero and an unknown dispersion matrix
3.

Verbyla & Venables in their paper provided an algorithm for obtaining
maximum likelihood estimators. They also gave some examples to illustrate
how the model may arise and mentioned some remarks as to the applications
of the model. Explicit forms of the maximum likelihood estimators of the
model parameters under the nested subspace condition between the design
matrices were given by von Rosen (1989). The estimators are obtained recur-
sively and are given in the following theorem which is due to von Rosen (1989).

17



Let us first give the following notations which make the formulas in the
theorem a bit shorter.

Qc, = Ci(GiC) G, (3.1)

i

Qa, = (APIS]'PiA)"APIS; (3.2)

i

Theorem 3.2. Consider the Extended Growth Curve Model given in Defini-
tion 3.1. Representations of mazximum likelihood estimators of B; and 3% are
given by

B, =Q, {X- > ABC}C/C.C))” +(A.P))°Z1+ AP/ Z>C
i=r+1

i=r+1 i=r+1
=Sm + Pm+1XQCnLX/P7:L+17

where Zq and Zq1 are arbitrary matrices, and

P, = el L1 T X ..o X To, To :I, r= 1,2,...,m+1,
TZZpr—LAlQAl, i:1,2,...,m,

Si=> Kj i=1,2,..,m,
j=1
K;=P;XQ;, ,(I-Q,)Qc,_,X'P{, Co=1I
where Q¢, and Q4, are as gien in (3.1) and (3.2), respectively.

In our papers we consider the GC model and the EGC model when m=2. How-
ever, we believe that the methods applied could be utilized to define residuals
in the general case and similar approaches may be used to establish and study
different properties of the residuals. Tests based on the residuals for the gen-
eral model could also be constructed and approximate distributions for the
tests could be obtained using the methods presented in Papers I and II. Let us
now define the EGC model with m=2 and give some examples to show how the
model may arise and illustrate the matrices involved in the model. Following
von Rosen (1989), we denote the model by MLNM(A1B1C; + A3B2Cs). This
notation is also used in Papers I-11I.

Definition 3.3. Let X : pXxn, A1 : pXq1,As : pXqo, By : q1 X k1, Bo : g2 X ko
C; : kp xn and Cy : ko X n . Suppose that ¢1,q2 < p, p(C1) +p < n and
C(C4)C C(CY), where p(e) and C(e) represent the rank and column space of
a matrix, respectively. Then the MLNM(A1B;1C; + A3B5Cs) is given by,

X=A;B.:.C;: +A:B:C, +E,

where the columns of E are assumed to be independently distributed as a p-

variate normal distribution with mean zero and an unknown dispersion matrix
3.

18



The MLNM(A1B1C; + A2B2Cs) can be used in the analysis of growth
curves when the groups have polynomial growth of different degrees. This
model also arises when we have the GC model with a linear restriction on the
parameters. The following example illustrates the matrices involved in the
model.

Example 3

Consider the Potthoff & Roy data. Suppose now that linear and quadratic
growth curves are to be fitted for the girls and boys, respectively. Suppose
also that the growth curve for the boys has a linear component. Then, the
observation matrix will be the same as the matrix X given in Example 1,
C, =C, A; = A, B; = B, where C, A, B are the matrices given in Example
1, Cy is a row vector with 27 elements where the first 11 elements equal zero
and the rest equal 1, Bo = bas and AL= (64 100 144 196).

3.2 Some important results

In this section we give some important results and definitions which are of
particular interest. Let us start by giving a theorem due to von Rosen (1989).
The special case of the theorem which is presented in Corollary 3.5 is the basis
for the results given in Paper I.

Theorem 3.4. Suppose conditions in Definition 3.1 are satisfied and let B;
be the maximum likelihood estimator of B;. Then

P.Y A;BCi=> (I- T)XC/(C:C/) Ci, (3.3)

where Py, T;, S; and K; are as given in Theorem 3.2.
Note that if we set r=1, then the expression on the left hand side of (3.3) re-
duces to Py y." | A;B;C; = Y I" | A;B;C; which is the estimated mean struc-
ture. As mentioned above we consider the special case of the EGC model which

is given in Definition 3.3. For this model the above theorem with r=1 reduces
to the following result.

Corollary 3.5. Suppose the conditions in Definition 3.3 are satisfied and let
By and Bs be the maximum likelihood estimators of By and Ba, respectively.
Then, the estimated mean structure for the model is given by

A1BiCi+ AsByCo = (I— T1)XC{(C1C{)” Ci + (I— T2)XC3(C2C5)~ Cs,
where
T, =I— A (AS7 A" ALSTH,
Ty =I— T As(ALT!S; ' T1 Ax)” AL T/ Sy,
S =X(I-c/c.c)y~enHx’,
S =87+ TiXC{(C,C)" Ci(I— C3(C2C3)~ Ca)C{(CiC{)~ . X' TY.
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When considering multivariate models, it is sometimes much easier to deal
with the vectorized form of the models. In the first paper we use the wvec-
operator in finding the spaces generated by the design matrices. It is also used
when obtaining the covariance matrices between the residuals and dispersion
matrices. Next we give the definition of the vec-operator.

Definition 3.6. Let A = (a;,as,...,a,) be a p x ¢ matrix, where a;, i =
1,2,...,q, is the i-th column vector. The wvec-operator vec(e) is an operator
from RP*? to RP? defined by

vecA = (al, ay, ...,a;)". (3.4)

In multivariate model fitting problems, the resulting residuals are also mul-
tivariate and it is of interest to obtain covariance and dispersion matrices for
the residuals. Therefore, it is important to give definitions of covariance and
dispersion matrices, which will be presented in the next definition.

Definition 3.7. Let U and V be two matrices. The covariance matrix between
them is defined by

Cov(U, V) = E[vecUved V] — E[vecU][ved V]

and the dispersion matrix, D[U] = Cov[U,U], where vec(e) is the linear oper-
ator given in (3.4) and vecd(e) is the transpose of vec(e).

General cases of the following results which were established and proved
by von Rosen (1990) are used in Paper I in obtaining the dispersion matrices
for the residuals and the covariance matrices between them.

Theorem 3.8. Let Ty and Ts be as given in Corollary 3.5. Suppose that the
conditions in Definition 3.3 are satisfied. Then,
i) E[I-T{] =X 'L,
ii) B[(I- T)S(I— T{))] = a1 Ly,
iii) E[(I— T2)2(I— T3)] = asLi + as Lo,
) E[(I— T\)S(I— T3)] = asLy + L,
where
L = A1 (A1X ' A1)~ A}
Ly = SA(A] SAY) T A Ax(AL A (AT S A A Ag)” AL AS
x (A7 A TALE.

-

0 — n—p(C1)—1
n—p(Ci) —p+p(A1) =1’
ay — n—p(Cz)—1
n—p(C2) —p+p(A1: A2) — p(A1) — 1’
as = (n—p(C1) —1)(p(A1 : A2) — p(A1))

(n—p(C1) —p+p(A1) = 1)(n— p(C2) —p+p(A1: A2) — 1)

We close this section by giving another important theorem which appeared
in von Rosen (1990). One significant consequence of the theorem is that, since
(G]_{W,G,_1)"! is inverted Wishart distributed, it follows from the theorem
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that P.S"'P, is also inverted Wishart distributed which otherwise is difficult
to show. We use this result in Paper I when calculating the covariance between
R4 and the estimated mean structure and obtaining the dispersion matrix of
this residual. In Paper II, we use the result to show that the distribution of
¢4(X) under the null hypothesis is independent of ¥ as well as to obtain the
expected value of the test statistic.

Theorem 3.9. Let P, and S, be as given in Theorem 3.2. Suppose that the
conditions in Definition 3.1 are satisfied. Then,

P/S;'P, = Gro1(Gr_ W, Grm) " Gy,

where,
GT+1 = GT(GIT'AT+1)07 GO = 17

W, = X(I- C/(C.C))"C)X'.
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Chapter 4

Conditional tests

4.1 Introduction

Since the conditional model tends to be simpler than the original uncondi-
tional one, the conditional point of view will frequently bring a simplification
of the theory (Lehmann, 1986). This is particularly true when considering the
Growth Curve model. Apart from a great simplification provided, condition-
ing, like sufficiency and invariance, leads to a reduction of data. Moreover, in
the presence of nuisance parameters, conditional inference has been used to
eliminate unwanted parameters.

When the problem involves ancillary statistics conditioning with respect to
the ancillary statistic is appropriate since it makes the inference more relevant
to the situation at hand. Ancillary statistic is a statistic whose distribution
does not depend on the parameter of interest. The term ancillary was first
used by Fisher and those statistics are referred to as non-informative since
they do not provide any information about the parameters.

In the presence of ancillary statistics say, Z, one can think of the observation
X (with distribution P) as obtained from a two-stage experiment (Lehmann,
1986):

i) Observe the ancillary statistic, Z, with distribution F.
ii) Given Z, observe a quantity X with distribution P(X|Z).

The resulting X is distributed according to the original distribution P. It
was also suggested that the above argument is valid even if the distribution
of the ancillary statistic depends on parameters other than the parameter
of interest. Such a statistic is usually called S-ancillary or partial ancillary
statistic. For more details about ancillary statistics we refer to Fisher (1956)
and Basu (1964). There is also an important paper by Basu (1975) about
statistical information and likelihood.

The conditioning variables are not always restricted to ancillary statistics.
For brief discussion and further references about conditioning with variables
other than ancillary statistics and concepts of relevant subsets, we refer to
Lehmann (1986).
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4.2 The Growth Curve model

Consider the Growth Curve Model given in Definition 2.1. For this model

S = X(I — C'(CC’)~QC) is distributed as a Wishart random variable with pa-
rameters 3 and n — p(C), i.e., S ~ W,(X,n — p(C)), where p(C) is the rank
of the design matrix C. Its distribution is, therefore, independent of the pa-
rameter of interest, B. This shows that S is S-ancillary for B. As a result,
conditioning using S is appropriate in the sense that it makes the inference
more relevant to the situation at hand without losing any information about
B, the parameter of interest.

It is important to note that our approach is different from other condi-
tional approaches in which conditioning is usually made at an early stage,
and mainly for eliminating nuisance parameters (see Basu, 1977). We are go-
ing to use the conditional approach after the test has been constructed using
the restricted followed by estimated likelihood approaches. Moreover, in most
conditional approaches, the statistic which is used for conditioning is a par-
tial sufficient statistic which gives the advantage that the resulting conditional
distribution depends only on the parameter of interest, see Basu (1978) about
partial sufficiency. However, we have eliminated the nuisance parameter by
using a restricted likelihood approach. The main reason for conditioning in
our case, unlike most other cases, is to make the distribution relatively easy
to handle so that we can provide a critical point for the test.

Furthermore, in problems of testing Fisher (1956) used ancillary statistics
for the determination of the true level of significance. He recommended that,
in the presence of ancillary statistics, the level of significance of a test should
be computed by referring to the conditional sample space determined by the
set, of all possible samples for which the value of the ancillary statistics is the
one presently observed (Basu, 1964).
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Chapter 5

Some technical results used
in the papers

In this chapter we give some technical results which are of particular interest.
These were necessary to develop in order to derive the results in the papers.
Most of the results presented are used in Paper I although some are used in
Paper II. Let us first give some notations which help us shorten the expressions
for some of the formulas. We use these representations whenever needed.

Pc, = C1(C:C}) Cy,
Pc, = C5(C2Ch) ™ Cy,
Pa, = Ai(A1ST A1) AST,
Proa, = T1A2 (AT ST ' T1A2) " ALT, ST,
where, T, —1—Pa,,
S1 =X(I-Pc,)X"
Lemma 5.1. Let S1 and Ti be given in Corollary 3.5. Then
ALSTIT = 0. (5.1)
Proof.
AlST'Ty = A1ST (I- Ai(AIST A1) ASTY)
=A'ST - AIST'A(AISTIA)TALST!

=AlS7' — AlST!
=0.

Theorem 5.2. Let Sy and S be as in Corollary 3.5. Then,
ALSTH = ALS (5.2)

Proof. Recall that S; = S; + T1X(C/}(C1C})~Cy — C,(C2CY)~C2)X'T,. Con-
sequently, we have

AiS;t = Al(S1 + T1X(Ci(C1C}) Ci — CH(C2C5) " Co)X'T)
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Now if we let
V = T,X(C}(C;C})~Ci — C5(C2C4) " Ca),
then we have
AlS; = Al(S +VV)T!
=Ai(ST' —ST'V(V'ST'V 4+ I) VST
= AST - ASTIV(VIST V4T VIsT!
= AiST,
where the last statement follows from Lemma 5.1. O
The above result is used in Paper 1. Due to the result it is possible to replace
A} S; ! by A}S7! whenever necessary. This provides a great simplification since
S1 has a much simpler structure than Ss.
The next theorem shows that the matrix P given in (5.3) below, which
is a basis in determining the space generated by the design matrices for the

model considered in Paper I, is a projection matrix. The space generated by
the columns of P is also provided.

Theorem 5.3. Let
P=(C/(C:C{) C1) @ (A1(A1S7 A1)~ AL ST)

B B _ B (5.3)
+(C3(C2C5)7 C2) ® (T1A2(AS T/ Sy ' T1 A2) " AL T/ S; 1),
then P 1is idempotent and
C(P) = O(CY) ® Cs, (A1) + C(C3) ® Cs, (T1 A2). (5.4)

Remark: Note that ® in (5.4) denotes a tensor product between the spaces.
Observe also that we can replace S; by Ss.

Proof. Consider (5.3) and let us denote the first and second terms in the sum
by E and F, respectively. Then,

PP=(E+F)(E+F)=EE+EF+FE+FF.

Now consider the two cross product terms, i.e., EF and FE. Using the fact
that AﬁSflTl = 0, it follows that EF = 0. Furthermore, we have seen in The-
orem 5.2 that A;S7' = A}S; ! and hence A{S7'T; = A}S;'T; = 0, which in
turn implies that FE = 0. Therefore it remains to show that E and F are
idempotent. However, E is an idempotent matrix follows from the fact that
both C}(C;C})~C; and A;(A}S7 A1)~ A}ST! are idempotent. Similarly, F
is idempotent since both C,(CoCh)~Cy and T1Ay(ALT, ST T1A)~ ALT|ST!
are idempotent.

Now, let us consider the column space of P. Since Cs, (A1) and Cs,(T1A3) are
orthogonal (see Theorem 5.4 below) we have

C(P) =C((C1(C1Ch)~C1) @ (A1(A1ST A1) TAISTY)
+C((CH(C2Ch) " C2) ® (T1A2(AL TS5 ' T1A) " ALT]S; ).

Using the fact that C(A ® B) = C(A) ® C(B) (Takemura, 1983), we get the
desired result. O
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Theorem 5.4. Let Ty be as in Corollary 3.5. Then

Cs,(T1Az2) C Cs, (A1) (5.5)
and
C(A1)+C(T1A2) =C(A1 +C(Az). (5.6)

Proof. Using the fact that C(EF) C C(E) for any two matrices E and F, it
follows that

C(T1A2) C C(Ty)
C(I— A (A[ST A ASTY
=C(A1(AIST A" ASSTH Y
=Cs, (A1)" =Cs, (A1)

Now observe that T; is a projection matrix. It follows that
C(A1) +C(T1Az2) = C(A1) + {(C(A2) + N(T1)) NC(T1)}
C(A1) +{(C(A2) +C(T1) ") NC(T1)}
C(A1) + {(C(A2) +C(A1)) NCs, (AI)J_}
= {C(A1) +C(A2)} N {C(A1) +Cs, (A1)}
=C(A1) +C(As
+

C(A2),
Here we have used the fact that C(A;) +Cs, (A1)t = V where V represents
the whole space, N'(P) = C(P’)* and C(PA) = (C(A) + N (P)) N C(P) for any
matrix A and any projection matrix P. Note that A(P) stands for the null
space of P. O

The above theorem together with the result in Theorem 5.3 is used in ob-
taining the spaces on which the new residuals are defined in Paper I. The
spaces are provided by a decomposition given in the next theorem. We refer to
Kollo & von Rosen (2005) for discussions about decomposition of linear spaces.

Theorem 5.5. The orthogonal complement of the space given in (5.4) can be
decomposed as follows:

{0(C)) ® Cs, (A1) + C(Cy) @ Cs,(T1 Az)} - =TBIIBIIIBIV, (5.7)
where B represents the orthogonal sum and
I=C(C)" @ Cs, (A1),
II = C(C))" ® Cs,(A1)",

I = (C(C) N C(CHY) @ Csy (A1)*,
IV = C(C5) ® (Cs, (A1) + Cs,(A1)).

Proof.

IBIMBHIEIV = (IBIBIIEIV)N(IBIBIIEIV)
—(IBIBIIBIVEANALY)
NIBIEBEIIBIVE BNBY)),
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where A = C(C}) ® Cs, (A1) and B = C(C}) ® Cs,(T1Az2). Furthermore, note
that I, II, III and IV are all subsets of A and B. As a result we get

IBIBIIBIVE(ANAY) = (C(C)® Cs, (A))*

and
IBIIBIIIBIVE (BN BJ‘) = (C(C}) ® Cs, (TlAg))J_

|
Lemma 5.6. Let G, Gy and Wy be as in Theorem 3.9 and let
Gy =H (I:0or'x"'/? (5.8)
and
Gy = Hy(I: O)T*(I: O)T'x~Y/2, (5.9)

where Hy and Hy are non-singular matrices of proper size, and I'* and I'? are
orthogonal matrices of proper size. Then,

SATITISY? = 261 (6/261) 1 G, (5.10)
E[G2(GyWaG)~ GoWox~ V21! = 2~ 1/21! 1?12 (5.11)
and L,
SN T B2 = Go(GLEG:) ' GL s, (5.12)
where TV = (DY . TY) and T = (I'? : 1Y),

Proof. First observe that G; = A§ and Gy = G1(G}A2)°, where A{ is any
matrix of full rank spanning the orthogonal complement of C(A;) (with re-
spect to the standard inner product). Consider (5.10), by substituting G; by
H,;(I:0)I''X~1/2 it follows that
$G1(GXGy) G, =22~ V2r(rix- 2w/l ixn- /2
= x'2riris=2

Now consider G2(GLW2Gs) 'GLWoX /2T If we replace G by (5.9), we
get

G2(GHW,2Go)  'GyW,L s~ /21!

==l (riris TV AWL eVl T ) T iniri e 2w, VY

=2l (riris VAW, Al ) T iniri e V2w, s VAl T

=202 ((1:0)2Z'(1: 0)) ' (I: 0)ZZ'T?

==~ V20i'r?(2,2,) (2,2} : 2,Z)T?
(I:

=2Vl (1 (2,2)) 1 2, 25)T2,

where Z = I’} 2 71/2X(I — C4(C2Ch)~Cs) and Z' = (Z} : Z}). Now note
that Z; and Zy are independent. Moreover E[Zs] = 0 which implies that
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E[(Z12))~'Z,12Z%]) = 0. This in turn implies that E[I : (Z1Z})"1Z,Z}] = (1: 0).
Therefore,

E[G2(GhW2G2) 'GoW,E V21| = =~ V21i'r? (1: (2,2)) ' 2,251
= >~ 2r'r? (1. 0)r?
=s~2ri'r? (1. oy
Finally, consider 3G (G}3G1)” G| X. Replacing G} by (5.9) gives
$G1 (G 2G) GE =V ri ¥ (ririsV2ex V2l 1) iririsV2s
— » 2l ¥ r2rint/?,
O

We close this chapter by presenting the following theorem which is used
in obtaining the covariance matrices between the residuals defined in Paper I.
This result is also used in Paper II when calculating the expected value of one
of the tests.

Theorem 5.7. Let Ty be as in Corollary 8.5 and Ls as in Theorem 3.8. Then,
E[I- Tj) =2 ' L. (5.13)
Proof. Recall that
I-Ts =T Ax(ALT;S;'T1A) " ALTS;

Using Theorem 3.9 and the fact that

I-A(A'ST'A)"A'S™' =SA’(A”SA°)A”, (5.14)
we can rewrite I — T as,

S1G1(G181G1) "Gl A2 (ALG1(GIW2G1) "Gl AL) T ALG(GIW2G1) G

Once again by using a representation similar to (5.14) and the fact that
Gl(GllAz)o = GQ, we get

I-T;=58,G(GSG) 'G (I - W2G2(GLW2G2) ' GY). (5.15)

Now by using the canonical representation of S;G1(G,SG1)~'G/, which is
obtained by replacing G; by H;(I: 0)I''3~1/2, and is given by

SATITIS Y2 4 V20 YL, Y (YL Y)Y (5.16)
where,
Y =TIE12X(1 - C)(C1C})~Cy), Y = (Y] : Y4) and TV = (T} : %), we

obtain,

E[I- Ty = E[SV?TI TN 21 - W2Ga(GLW,G,) ' GY))
+ E[EYT) Yo Y (Y1 Y)) TITEE V(I — WoG2(GHWaGa) ' Gh)l.
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However, the second term in the sum vanishes since I}S~1/2W,I'Y B-1/2 jg
a function of only Y; and X(C}(C;C})~ C; — C5(C2C%)~ Cs). Moreover, the
latter is independent of Y. An application of Lemma 5.6 therefore shows that

E[I - T3] = £G1 (G 2G1) G} — G2 (G4LEG,) ' Gh.
Substituting Gs in the above expression by G1(G)A2)° results in
G (GIEG1) Gl — G2 (GLEG:) T G
=3G1(G1ZG1) "Gl — ZG1(G1A2)°((G1A2)”GIZG1(G]AL)%) !
X (GllAQ)O/Gll
= 3G (G1ZG1) I - (G1ZG1)(G1A2)°((G1A2)” (G1ZG1)(G1A2)%)”
(G1A2)7]G)
=3G1(G1ZG1) 'GIA(ALG(GI2G1) T 'GIAL) TALG(GIEG) TG
=L,®t.

To get the last equality, we have used (5.14) and the fact that G; = A$.
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Chapter 6

Summary of the papers

6.1 Paper I

In this paper the special case of the Extended Growth Curve model given in
Definition 3.3 is considered. New residuals, taking the bilinear structure in the
model into account, are defined. The vec operator is applied on the estimated
model to show that the estimated model is the projection of the observation
matrix X on the space generated by the two design matrices. The space turns
out to be the sum of two tensor product spaces. In univariate and multivariate
linear models, ordinary residuals are defined by projecting X on the space
orthogonal to the one generated by the design matrices. We have shown that
this is also true for the model considered in this paper. The space where the
residuals are defined is given by

(C(C)) ® Cs, (A1) + C(Ch) ® Cs, (T1A2))*.

We decomposed the above space into four orthogonal spaces and defined four
residuals by projecting X on the resulting spaces.

The residuals are interpreted and remarks are given regarding what kind
of information they provide and how one can use this information to validate
the model and model assumptions. The residuals can also provide some infor-
mation about outliers and/or influential observations. These interpretations
also apply to von Rosen’s residuals since the model considered in his paper is
a special case of the one considered in Paper I.

Properties of the residuals are provided. It is shown that the residuals
defined are symmetrically distributed around zero and are uncorrelated with
each other. We have also given the dispersion matrices for the residuals and
the covariance between them and the estimated model.

The results are illustrated using the Potthoff & Roy (1964) data. The
residuals are used to check if the assumed growth curves fit the data well and
if there are observations which are extreme in some sense. The calculated
standard errors are used as cutoff points.

6.2 Paper II

Here the residuals defined in Paper I and those defined by von Rosen (1995b)
are considered. In Paper I, it was suggested that the new residuals taking the
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bilinear structure into consideration can be used to validate model assump-
tions as well as detect outliers and/or influential observations. In Paper II, we
propose statistics for testing different hypotheses in the Growth and Extended
Growth Curve models. The tests are constructed using restricted followed by
estimated likelihood approaches. The restricted likelihood approach was intro-
duced by Patterson & Thompson (1974). A brief discussion about the topic is
presented by Searle (1992). The method is also applied to the GC model by
Pan & Fang (2002).

As expected, the tests turn out to be functions of appropriate residuals in
the respective models which enable us to understand and interpret the tests.

For the GC model, we write the likelihood as a product of two terms. We
maximize a part of the likelihood which is a function of only 3 to get an
estimator for the covariance matrix. Then we replace the covariance matrix
by the resulting estimator to get the estimated likelihood which is then maxi-
mized under H, and H, U Hy, where H, and H; are the null and alternative
hypotheses, respectively.

The EGC model has more structure in the mean since the groups involved
could have polynomial growth curves of different degrees. As a result, we have
more hypotheses to test and hence more tests to construct. We write the
likelihood for the model given in Definition 3.3 as a product of three terms.
Depending on the hypothesis to be tested, we maximize a part of the likeli-
hood to get an estimator for the covariance matrix. As before, the estimator
replaces 3 to get the estimated likelihood, which is then maximized under H,
and H, U H;.

We have shown that the distributions of all the tests under the null hy-
potheses are independent of the unknown covariance matrix 3. Moreover, the
conditional and unconditional expected values for all the tests are also pro-
vided in the paper.

The distributions of the tests proposed in this paper are difficult to obtain,
as a result, there is a need to provide some methods to find the critical points.
We suggest two alternative approaches to approximate the distributions for
the tests under both the null and alternative hypotheses. The first suggestion
is to approximate the densities for the tests based on the first two moments.
The second one is to use conditional versions of the tests, which is considered
in Paper III.

6.3 Paper III

In this paper we consider one of the tests proposed in Paper II, although the
approach can be extended to all the tests proposed there. The aim is to con-
sider the conditional version of the test. Apart from a great simplification and
reduction provided by conditioning we discuss why conditioning makes the test
problem relevant to the situation at hand. Due to the existence of a natural
ancillary statistics, we do the reduction and simplification without losing any
information about the parameter of interest.

We have shown that under the null hypothesis the test can be written as
sums of independent weighted central chi-square random variables. This en-
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ables us to use existing results for such a sum. Sum of weighted independent
chi-square random variables has been considered by many and the exact dis-
tribution has been provided as an infinite series in Kotz et al. (1967), Mathai
(1982) and Moschopoulos (1985). However, the distribution is too compli-
cated to be used in practice and hence an approximation is needed. Several
approximations have been proposed, see for example Moschopoulos (1985). In
this paper we use the well known approximation introduced by Satterthwaite
(1941, 1946) and provide an approximate critical point for the test. For more
discussions about the approximation we refer to Khuri et al. (1998). The ex-
tension of the approximation to linear combination of independent Wishart
random variables together with some Monte Carlo results to demonstrate the
closeness of the approximation is given in Tan & Gupta (1983).

Under the alternative, it is shown that the test can be written as sums
of weighted independent non-central chi-square random variables. Although
too complicated to be used in practice, the exact distribution for such a sum
has also been provided as an infinite series in Press (1966). Moreover, there
exist several algorithms to numerically solve the series, see for example Imhof
(1961). In this paper, we provide a new approximation which can be used
to get an approximate power for the conditional test. The approximation is
similar to that of Satterthwaite’s for the weighted sum of independent central
chi-square random variables. This kind of approximation, as to our knowl-
edge, has not been done for a weighted sum of non-central chi-square random
variables. Moreover, our approach is quite different and new ideas have been
utilized to obtain estimators for the parameters.

Both the exact and approximate distributions under the alternative hypoth-
esis depend on the unknown covariance matrix, 3. As a result, in practice one
needs to find a reasonable estimator for 3 to get an estimate for the power.
In this paper, we have suggested and discussed three alternative estimators.
Finally, numerical examples have been provided to illustrate the results.
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Chapter 7

Discussion

7.1 General discussion

Statistical models play an important role in understanding different practi-
cal problems and they are used in summarizing and describing the underlying
structure in the data. Statistical models are also used in making inference,
prediction and making important decisions. In many cases, these models relay
on several assumptions. Model fitting is not complete without validating the
model and model assumptions, and we believe model evaluation is an impor-
tant part of the model fitting problem.

In univariate linear models residuals play an important role in validating
the model, model assumptions and checking if there are extreme observations
that do not seem to belong to the data (outliers) and/or that in some sense
may alter the model fitting problem (influential observations).

In ordinary univariate linear models, residuals have been studied exten-
sively and there are many graphical and formal approaches based on the resid-
uals to validate the model and model assumptions. Moreover, many other
residuals such as studentized and standardized residuals have been defined
and studied.

In analysis of longitudinal and repeated measurement data, residuals can
also be used to assess the adequacy of the model and they can indicate the
presence of outliers (Fitzmaurice et al., 2004). However, residuals obtained in
analyzing such data are based on results which are usually obtained numer-
ically using iteration and often relay on asymptotic results. Moreover, they
are correlated with each other, do not have constant variance and are not nor-
mally distributed. Furthermore, variance-covariance matrices for the residuals
are different from that of the error terms. This shows that it is not reasonable
to use these residuals, for example, in checking the normality assumption or
the homogeneity of variances. Moreover, we believe that the residuals contain
information about the within and between individual assumptions. As a result
we need to investigate these components separately.

One suggestion, made by Fitzmaurice et al. (2004) to tackle the problem
pointed out in the previous paragraph, is to transform the residuals. It is
mentioned in the book that there are many ways to transform them and one
particular transformation, which is presented below, is discussed.

Let r; be a vector of residuals for each individual, i.e.,
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Then a transformation is given by, (for details see Fitzmaurice et al., 2004)
;=L 'r, =L '(Y; - Y,),

where Cov(r;) =~ Cov(e;) = 3; and > = L;L, is a Cholesky decomposition of >,
(an estimate of 3;) and L; is a lower triangular matrix. It is indicated that the
transformed residuals are uncorrelated and have a unit variance. However, it is
important to note that X, is not a covariance matrix for the residuals and that L;
are very complicated functions of Y and hence are random which obviously tells us
that they can not be treated as constants. Moreover, it is possible to show that )38
is not independent of r; which makes things even more complicated.

That is one of the reasons why one should study ordinary residuals in repeated
measurement and longitudinal analysis more carefully. These have a close relation
with the GC and EGC models since they both have between and within individual
assumptions. Moreover, the most common applications of the GC and EGC models
are in the analysis of repeated measurement and longitudinal data. Due to the
bilinear structure in the models, the residuals have different components and hence
one needs to define new residuals.

The new residuals defined in von Rosen (1995b) for the GC model and those
defined in Paper II for the EGC model contain information about the model and
model assumptions. For example, consider the following residual for the GC model,

R, + Ry = X(I- C'(CC')~0), (7.1)

where Rg1 and Ry are the residuals given in Chapter 2.

Note that (7.1) is the difference between the observations and the corresponding
means, moreover, it is distributed as a multivariate normal random variable. These
residuals can, for example, be used to investigate the normality assumption and can
also indicate if there are outliers in the data. It can be performed by using existing
graphical or formal tests available for multivariate normal distributions. It is also
possible to show that (7.1) is uncorrelated with the predicted values. As a result
one can plot these residuals against the predicted values to check for homogeneity of
variances.

The equivalent expression for the EGC model given in Definition 3.3 is

R; + Ry = X(I— C}(C,C))~Cy), (7.2)

where R; and Ry are the residuals given in Paper 1. The expression given in (7.2)
has the same interpretation, property and application as (7.1).
Now consider the following for the GC model,

R, =(I-A(A'ST'A)"A'S™H)XC'(cC')C, (7.3)
which can be rewritten as
XC'(CC)"C—-A(A'ST'A)"A's™'XC/(cC)C.

The above expression is the difference between the observed and the estimated means.
We can use these residuals to check if the estimated linear curve fits the observed
mean well.

The equivalent expression for the EGC model is

Rs = (I— A;(A{STA) AISTHX(CI(C1C))™Cy — C5H(C2ChH) ™ Cy).
This expression tells us how close the observed mean and estimated mean are for indi-

viduals with linear mean structure (see Paper I). For individuals with quadratic mean
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structure the following expression can be used to check if the estimated quadratic
curve fits the data

Ry={I- Ai(A1STA:) AIST! — T1Ax(ALT;S; ' T1A) " AST!S; '}
X XCIQ(CQC/Q)_CQ

The above mentioned interpretations of our residuals are some of the advantages,
to say the least, which can not be obtained by considering ordinary residuals, i.e.
this is not possible without a decomposition. Indeed, each of the residuals defined
in Paper I bear important information about the bilinear structure in the model and
we may use these information to validate model assumptions and detect outliers.
Moreover, unlike most methods provided for analyzing longitudinal and repeated
data, our approach does not relay on numerical solutions or asymptotic results.

We would like to mention that the groups involved in Paper I do not have to
follow linear and quadratic growth curves. The only assumption required is the
nested subspace condition mentioned in Definition 3.3. Moreover, it is important to
note that the method applied in defining the residuals in Paper I is different from
that of von Rosen (1995). Our approach is better in the sense that

e We obtained the space generated by the design matrices in a natural way. As
a result, we do not have a problem in choosing the right inner product when
we have more than one.

e We have shown that, like univariate and ordinary MANOVA models, residuals
are obtained by projecting the observation matrix on the space orthogonal to
the one generated by the design matrices.

e We also have the advantage that our methods can be utilized in defining resid-
uals in the more general model given in Definition 3.1.

As mentioned before, we could use our residuals for checking model assumptions
such as the assumption of normality and to check for extreme observations. It was
also mentioned that we could check how well the estimated curves fit the data. We
may do this in two ways. One way is to look at appropriate residuals and see how
close they are to zero. In Paper I, we used the standard errors to see how small the
values are. In Paper II, however, we proposed and discussed a different approach,
via testing appropriate hypotheses.

Inspired from the bilinear nature of the model, we looked upon the problem as a
two stage problem, i.e.,

e We estimated the covariance matrix 3 by maximizing an appropriate part of
the likelihood.

e We replaced the covariance matrix by its estimator and defined the tests by

taking the ratio of the likelihood under H, and H, U Hj.

It is important to note that, in the absence of information about B, it is possible
to show that the part of the likelihood used in estimating 32 gives all the information
contained in the data. We refer to Sprott (1975) for details about marginal and
conditional sufficiency. Here are some of the main results from Paper II:

e A reasonable and natural approach was used to obtain the tests.

e As expected, the tests turned out to be functions of appropriate residuals. As
a result it is easy to understand, interpret and study them.

e The tests are easy to calculate and hence are easy to use in practice.

e The distributions of the test statistics under the null hypotheses are indepen-
dent of any unknown parameters.
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e The distributions are difficult to obtain but due to the existence of a natural
ancillary statistics it is reasonable to consider the conditional version of the
tests.

As mentioned above, the distribution of the tests are difficult to obtain. Two
suggestions are given in Paper II to overcome this problem. The first one is to
approximate the density using the first two moments. The conditional and uncon-
ditional expectations for the tests are given. It is also possible to get the second
moments for the tests. However, due to the existence of an ancillary statistic the
problem can be treated in the following way as a two stage experiment, i.e.,

e Observe the ancillary statistic S.

e Calculate the critical point conditioned on S.

In paper III, we considered one of the tests defined in Paper Il and the above
mentioned conditional approach was used to find the critical point for a given level
of significance. The conditional distributions, both under the null and alternative
hypotheses, are much simpler to deal with. Moreover, conditioning with the ancillary
statistic makes the problem more relevant to the situation at hand without losing any
information about the parameter of interest. Beside the above two benefits we ob-
tained from utilizing the conditional approach, we also have the following additional
advantages which allow as to use existing results for such sums.

e Under the null hypothesis, the conditional test can be written as sums of central
chi-square random variables.

e Under the alternative hypothesis, the conditional test can be written as sums

of non-central chi-square random variables.

The distribution under the alternative hypothesis depends on the unknown covari-
ance matrix 3. In practice, one, therefore, needs to estimate 3 to get an estimator
for the power of the test which may be used as a measure of performance. Three
alternative estimators are suggested in Paper III.

Numerical examples were given in Paper I and Paper III to illustrate the results.
In Paper I, the Potthoff & Roy (1964) data was considered. It was assumed that
the girls and boys follow linear and quadratic mean structures, respectively. The
standard errors were used to see if the residuals are reasonably small. The residuals
obtained indicate that the assumed growth curves fit the data well. However, only
small improvements were obtained due to the quadratic term (for the boys) and there
is a need to investigate the significance of this term. This can, for example, be done
using ¢5(X) given in Paper II. Some extreme observations were also detected.

We could also use R1 + Ra, given in (7.2) to check the assumption of normality.
We may first check if residuals at different ages are univariate normal. There are
many ways, both graphical and formal, to check for a univariate normality. We shall
only provide a brief discussion about how we may assess the multivariate normality
assumption for the Potthoff & Roy data through R; 4+ Ra. We can use any of the
available methods for checking multivariate normality. Here we use Small’s graphical
method, see Sirvastava (2002). Such graphical approaches also help us to see if there
are outliers in the data. The idea behind Small’s graphical approach is to reduce the
multivariate data to a univariate one.

Suppose X1, X2,...,Xn are independently distributed as Np(u, 3). Then the statis-
tic

ci=nn—1)"%(x; —x)S7'(x; —%),i =1,2,...,n,

where

x=n""! Z;zl xj, (n—1)S =371 (xi —X)(xi — X)’
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has a beta distribution with parameters o = %p and 3 = %(n —p—1) (see
Srivastava, 2002). It was also mentioned that asymptotically, ¢; may be con-
sidered as independently distributed. The following probability plot shows the
plot of the ¢}s obtained for R = Ry + Ra.

e -
»
oo"" *

»
.o ssossnas®e®

1 E i ®
o [ } a.2 0.3 0.4
Beta Quantiles (Alphas=2 Beta»11)

Figure 7.1. The plot of ¢;’s obtained using Small’s graphical method for
the Potthoff & Roy data gainst Beta(2,11) quantiles.

The above plot shows that the error terms can be considered as normal except
for the two outliers. As mentioned earlier, we could plot the residuals given
in (7.2) against the predicted values or against age to check if the variances at
different ages can be regarded as constant. Below is the plot of the residuals
given in (7.2) against age for the Potthoff & Roy data.
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Figure 7.2. The plot of R against age for the Potthoff & Roy data.
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Only a small difference in the variation of residuals at different ages is indi-
cated in the above plot. That is, there is no enough evidence that shows the
variances are different at different ages. However, we suggest that other inves-
tigations should be made before assuming equal variances.

The same data was considered in Paper III. This time the Growth Curve
model were fitted and the growth curves for girls and boys are assumed to be
linear. The adequacy of the assumed model was investigated through the hy-
pothesis that B = 0. A conditional approach was used to calculate the critical
point and an approximate distribution was provided using Satterthwaite ap-
proach. The data gives strong evidence towards rejecting the hypothesis. That
indicates that the mean structures for the boys and girls can be regarded as
a polynomial of at least first degree. However, results from Paper I show that
the growth curves can be regarded as linear although there is a need to check
if a quadratic term is necessary for the growth curve of the boys. Moreover,
some nice properties that need to be investigated further are observed and will
be given in the next section.

7.2 Future research

We believe that our residuals give a new approach in validating bilinear models
and that there is much left to be done in the future. However, it is our hope
that our approaches will lay the ground for further studies towards developing
diagnostic tools for validating such models.

Moreover, we have shown that residuals in bilinear models such as the GC
and EGC models are defined by projecting the observation matrix on the space
orthogonal to the space generated by the design matrices. It is our hope that
this concept and the way we looked upon the space generated by the design
matrices and the space on which the residuals are defined can be used to under-
stand residuals in more complicated models, such as linear mixed models. We
believe that the concept of decomposing the spaces to understand the residuals
could be applied in such models. It is important to note here that linear mixed
models are most commonly used in analyzing repeated measures and longitu-
dinal data, and they are especially important when we have observations taken
at different time points and when we have unbalanced data.

As mentioned in the previous section, the method used in Paper I can be
used to define residuals in the more general model given in Definition 3.1.
Moreover, the approaches utilized in Paper III to find approximate distribu-
tions for the test in the GC model can be applied to find approximate distri-
butions for the rest of the tests defined in Paper II.

Furthermore, the following nice properties that need to be investigated
further was observed from the numerical examples used in Paper III.

e The power of the test is strictly ”monotone” in B.
e The test is unbiased.

e The estimated power obtained using (1/n)S as an estimator of 3 under-
estimates the power.
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We have also used random data from a multivariate normal distribution
to see the performance of the test in making the right decision, i.e, the test
should not reject the hypothesis that B = 0. As expected, there was not
enough evidence to reject the hypothesis. However, there is a need to do
more simulation studies to support our findings as well as to discover other
properties for the test statistic.

Finally, we would like to note that the hypotheses considered in Paper II
and III can be formulated in a more general form to include many possibilities,
ie.,

H, :FBG =0,
H, :FBG #0,

where F and G are any two matrices. This kind of general formulation can
for example be used if one is interested in comparing two growth curves which
could be done by choosing suitable elements for the matrices F and G.
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